
DIWeb 1 8/6/2004

Content Management for Declarative Web Site Design

Richard Cooper and Michael Davidson

Computing Science

University of Glasgow

DIWeb 2 8/6/2004

Talk Overview

• Motivation for uniform declarative approach to
web site design

• A declarative component model

• The data source aspect

• An abstract model for data sources

• A hybrid data source implementation model

DIWeb 3 8/6/2004

Motivation

• Web site design is usually achieved by
– unstructured low level implementation
– or the use of interface design tools creating

unmaintainable implementations
– or the use of Content Management Systems with

complex structures

• We propose
– a simple, systematic and comprehensive declarative

model for specifying the site
– familiar authoring tools
– late decisions on the implementation technology, such

as database or server side middleware
– automatic creation of the implementation

DIWeb 4 8/6/2004

Web Site Construction

Design site

 structure

Layout

Pages

Design

Interaction

Add

Style

Build

Data Source

Write Static

Pages

Write
Client Side

Scripts

Write
Dynamic
Pages

Build
Content

Management

Javascript

XHTML

SMIL? Middleware
Product

SQL

XHTML
Forms

+
Middleware

CSS

JDBC

DIWeb 5 8/6/2004

Problems with this

• No integration

• Poor maintainability

• Re-use hard to do

• Lots of languages which change

• Design and implementation tightly bound

• However, separate development of components
is good

DIWeb 6 8/6/2004

Declarative Web Site Design

• The declarative approach promises the ability to
describe a site at high level and to generate the
details
– Strudel separates the management of data from

structure

– Tiramisu separates design from implementation

– Holland and Kumar – Component-based web Page
Composition

• hierarchy of presentation components

• separate layout manager and renderers

DIWeb 7 8/6/2004

An Integrated Approach

• Use one structure to describe all constituent
parts
– since all are software components

• Generate the implementation
– ensuring that the components contain sufficient

information

– this permits late decisions on technology

• Use an O-O approach
– to aid maintainability and re-use

DIWeb 8 8/6/2004

Components

• A component is very simply described as an
object having a number of parameters
– abstract components have uninstantiated parameters

– concrete components have values for all mandatory
parameters

– documentation parameters for all components –
author, date of creation, description, etc.

– representation in XML

• Generation proceeds from concrete components

DIWeb 9 8/6/2004

Component Maintenance

• Component creation is by inheritance using two
methods
– instantiating parameters

– adding new parameters

• Example
– The title of a page can be fixed

• making a more concrete component

– The most general page component can be extended
with parameters for an image, a heading and a series
of text blocks

• making a more detailed but still abstract component

DIWeb 10 8/6/2004

Abstract and Concrete Components

Component

Componen t Component

Component
Component

Component

Componen t

Component

Abstract component Specialised component

DIWeb 11 8/6/2004

Using the Model

• Each part of the site is designed from abstract
components and each stage of the specialisation
may be stored

• This is achieved using tools
– permitting the separate specification of each aspect

– using familiar techniques

• But the product of the tools is maintainable
– being held in an integrated manner

– and being declarative and documented

DIWeb 12 8/6/2004

Examples

• A web page using a specific style sheet

• A table with particular columns

• A block including a specific place for an image, a
heading and a piece of text

• i.e. any reusable structure, e.g.

• A data source with a fixed set of views but no
particular data nor implementation

DIWeb 13 8/6/2004

A Component Hierarchy

• At the top is Component
– This has the parameters such as name, parent,

description, author, version, date and implementation

– implementation is probably needed an optional catch-
all for placing code which is hard to generate

• Below this are abstract components for the main
categories of site constituent
– web site – web page

– layout (and region) – style sheets (and styles)

– visible – data source (and views)

– script

DIWeb 14 8/6/2004

The Main Page Constituents I

• Web Site
– has title, style sheet, front page & a set of web pages

• Web Page
– has a title, a style sheet, a set of meta-data and a

sequence of visible components

– dynamic pages also have a data source and a set of
place holders for content

• Layout
– c.f. SMIL – a set of regions

– a Region is a portion of the visible page into which a
visible component is placed

DIWeb 15 8/6/2004

The Main Page Constituents II

• Style
– a set of name, value pairs, i.e. comes from CSS

– but can be used for anything (better called Map)

• Visible
– any XHTML fragment appropriate for the body of a

page (XHTML DTD used for the hierarchy under this)

• Script
– abstract description of a script hopefully permitting

frequent operations to be described (not worked out)

DIWeb 16 8/6/2004

Data Sources

• A Data Source component describes the
location of site content

• It is parameterised by a set of connection
parameters and a set of views
– each can be separately specified

• A View is a query and includes:
– the returned metadata

– whether it is single or multi-valued

– whether it is a query or update

– and the query string and an error message

DIWeb 17 8/6/2004

Example

$db = mysql_connect(“NN", “DD", “PPPP") or die ("Could not connect");
$nameQuery = "SELECT Name FROM Advisor WHERE ID = '$Advisor'";
$nameResult = mysql_query($nameQuery,$db) or die (“Name query error");
$nameRow = mysql_fetch_array($nameResult);
echo “<h3>Advisees of $nameRow[‘Name’]</h3>”;

$query = "SELECT Name, Matric FROM Student
WHERE Advisor = '$Advisor' ORDER BY Year, Name";

$result = mysql_query($query, $db) or die (“Student query error");
echo "<table>";
echo "<tr> <th>Name</th> <th>Matric</th> </tr>";

while ($row = mysql_fetch_array($result))
{

echo "<tr><td>$row["Name"]</td>
<td>$row["Matric"]</td></tr>";

}

echo "</table>";

DIWeb 18 8/6/2004

Analysis

$db = mysql_connect(“UN", “DN", “PASS") or die ("Could not connect");
$nameQuery = “ SELECT Name FROM Advisor WHERE ID = '$Advisor‘ ";
$nameResult = mysql_query($nameQuery,$db) or die (“Name query error");
$nameRow = mysql_fetch_array($nameResult);
echo “<h3>Advisees of $nameRow[‘Name’]</h3>”;

$studentQuery = "SELECT Name, Matric FROM Student
WHERE Advisor = '$Advisor' ORDER BY Year, Name";

$result = mysql_query($studentQuery, $db) or die (“Student query error");
echo "<table>";
echo "<tr> <th>Name</th> <th>Matric</th> </tr>";

while ($row = mysql_fetch_array($result))
{

echo "<tr><td>$row["Name"]</td>
<td>$row["Matric"]</td></tr>";

}

echo "</table>";

Data Source

Views

Visible
Fragments

Implementation Detail

DIWeb 19 8/6/2004

Data Source Component

• The abstract Data Source Component has the
parameters:
– Name – maps to DN on the previous slide

– Owner – maps to UN on the previous slide

– Password – maps to PASS on the previous slide

– Views – a set of view components

– Kind – relations, XML, ????

• There are abstract sub-types for each data
source kind and each data management product

DIWeb 20 8/6/2004

View Components

• A view component represents the results of a
query which can be run on the data source

• Parameters
– data source – get the red stuff from the green stuff

– query – the string which is run against the data source

– ColNames – the names of columns returned

– ColTypes – the types of columns returned

– QueryParams – the values of any parameters in the
query

– Card – does the query return one or many records

– READorWRITE – querying or updating?

DIWeb 21 8/6/2004

Typical Visible Components

• Visible components include abstract types for
each major XHTML component type in <body>
– blocks and inlines are the major abstract components

• In the example, we use:
– SingleQueryResult – a subtype of Inline with the

parameters View and QueryParameters
• get the green stuff from the blue stuff

– DynamicTable – a subtype of table with the
parameters View and QueryParameters

DIWeb 22 8/6/2004

The Need for an Abstract Data Model

• The example shows SQL access to an RDB

• However, the data source may be in another
format
– XML, OODB, Spreadsheet, etc.

• We therefore require a data representation
which is not bound to any specific
implementation structure
– so that the queries can be expressed

– and the content management

– we use an entity based data model

DIWeb 23 8/6/2004

The Abstract Data Model

• Data sources are described in terms of an
abstract data model
– a schema is a set of entity types

– each entity type has a set of properties
• either base type or entity type

• single or multi-valued

• unique, non-null or key

• inverses can be specified

• The abstract model is implemented in terms of
– relations or XML or both

• an algorithm determines which to use

– also is extensible – e.g. addition of a Gender type

DIWeb 24 8/6/2004

Example

Book.PublisherMXBookPublishesPublisher

1XString (50)AddressPublisher

1XString (20)NamePublisher

1XIntegerIDPublisher

Book.AuthorMRBookWorksAuthor

1FImagePhotographAuthor

1RGenderGenderAuthor

1RDateDeathDateAuthor

1RDateBirthDateAuthor

1RString (20)NameAuthor

1RIntegerIDAuthor

Publisher.Publishes1RPublisherPublishdByBook

Author.WorksMRAuthorAuthorBook

1RDatePubDateBook

1RString (30)TitleBook

1RString(20)ISBNBook

InverseUnqNullpkImpDomainPropertyEntity

DIWeb 25 8/6/2004

Mappings to Implementation Structures

• Relations
– Standard ER techniques map an abstract schema to a

set of create table statements

• XML
– Kleiner & Lipack show how such a model maps to DTDs

• Hybrid model
– RDB can identify XML objects using tag + ID

– XML can identify RDB objects using table name and
Pkey

– The important issue is not to lose typing and to ensure
that the generation software has enough to go on

DIWeb 26 8/6/2004

Example

• Given Book and Publisher entity types related by an inverse
relationship, you can implement by:

create table Book(ISBN Varchar2(20) Primary Key,
Title Varchar2(30) Non Null,
PublishedBy Number2 references Publisher.ID)

create table Publisher(ID: Number2 Primary Key,
 Name Varchar2(20) Non Null,
 Address Varchar2(50))

or
<!ELEMENT Book EMPTY>

<!ATTLIST Book ISBN ID #REQUIRED>
<!ATTLIST Book Title CDATA #REQUIRED>
<!ATTLIST Book PublishedBy IDREF #IMPLIED>

<!ELEMENT Publisher EMPTY>
<!ATTLIST Publisher ID ID #REQUIRED>
<!ATTLIST Publisher Name CDATA #REQUIRED>
<!ATTLIST Publisher Address CDATA #IMPLIED>
<!ATTLIST Publisher Publishes IDREFS #IMPLIED>

DIWeb 27 8/6/2004

Hybrid Representation

• If Book is in XML while Publisher is in an RDB, you can do the
following:

<!ATTLIST Book RDB$PublishedBy CDATA #IMPLIED>

and
create table Publisher(ID: Number2 Primary Key,

Name Varchar2(20) Non Null,
Address Varchar2(50)
XML$Publishes Varchar2(100))

• Sample data:

attribute in BOOK element:
RDB$PublishedBy = “Publisher:23”

data value in XML$Publishes table
“Book:1224, 3456, 5678”

Conventional
names

Pkey

IDs

DIWeb 28 8/6/2004

Automatic Implementation Selection

• We have also implemented in the schema editor
and algorithm for automatically choosing which
mix of RDBs and XML is most suitable

• Intuitions
– Given few elements containing large blocks of

unstructured text we want XML.

– Given many elements with small data types we want
a relational table

– If we have complex constraints we want a relational
table

DIWeb 29 8/6/2004

The Alogorithm

• For each entity type we add up the following
weights:

50Has check constraints

2N
All element types are text
 (N = number of types)

1Each simple constraint

1
Each reference to another type (1-
M)

1
Each short text element in
type

20Each long text element in type5
Each non text property in
type

XML propertySQL Property

DIWeb 30 8/6/2004

Software Support

• Schema Editor (Michael Davidson)
– manages the creation and maintenance of data

source schemata

• Browser (ChengCheng Zhou)
– permits the browsing of data howvere it is

implemented

• Query Language (Si Ying Meng)
– permits the expression of queries over the data

DIWeb 31 8/6/2004

The Schema Editor

DIWeb 32 8/6/2004

The Browser

DIWeb 33 8/6/2004

Query Support

• The query language we have chosen is similar to
OQL and has the basic form:
SELECT path1, path2, …, pathm

FROM EntityTypeName1, EntityTypeName2, …, EntityTypeNamen

WHERElogical expression involving paths and constants

• This maps simply to:
– SQL

– XPATH

DIWeb 34 8/6/2004

Example

SELECT Works.Title, Works.PublishedBy.Name
FROM Author

WHERE Name = ‘Jane Austen’;

becomes:

SELECT book1.Title, publisher1.Name
FROM Author author1, Writes writes1, Book book1, Publisher

publisher1
WHERE author1.Name = ‘Jane Austen’ and

and write1.Book = Book1.ISBN
and Book1.PublishedBy=publisher1.ID;

or
Book[child::author=”Jane Austen”]::Title,
Book[child::author=”Jane Austen”]::Publisher::Name

DIWeb 35 8/6/2004

Much To Do

• Integrating other implementation models

• Integrating the three data management tools

• Switching to XML Schema

• The Generation software

• Tantalising thought
– If the declarative model is published as part of the site

with the views clearly available, does this fixed the
hidden web problem

