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Talk Overview

• Motivation for uniform declarative approach to 
web site design

• A declarative component model

• The data source aspect

• An abstract model for data sources

• A hybrid data source implementation model
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Motivation

• Web site design is usually achieved by
– unstructured low level implementation
– or the use of interface design tools creating 

unmaintainable implementations
– or the use of Content Management Systems with 

complex structures

• We propose
– a simple, systematic and comprehensive declarative 

model for specifying the site
– familiar authoring tools
– late decisions on the implementation technology, such 

as database or server side middleware
– automatic creation of the implementation
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Problems with this

• No integration

• Poor maintainability

• Re-use hard to do

• Lots of languages which change

• Design and implementation tightly bound

• However, separate development of components 
is good



DIWeb 6 8/6/2004

Declarative Web Site Design

• The declarative approach promises the ability to 
describe a site at high level and to generate the 
details
– Strudel separates the management of data from 

structure

– Tiramisu separates design from implementation

– Holland and Kumar – Component-based web Page 
Composition

• hierarchy of presentation components

• separate layout manager and renderers
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An Integrated Approach

• Use one structure to describe all constituent 
parts
– since all are software components

• Generate the implementation
– ensuring that the components contain sufficient 

information

– this permits late decisions on technology

• Use an O-O approach
– to aid maintainability and re-use
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Components

• A component is very simply described as an 
object having a number of parameters
– abstract components have uninstantiated parameters

– concrete components have values for all mandatory 
parameters

– documentation parameters for all components – 
author, date of creation, description, etc.

– representation in XML

• Generation proceeds from concrete components
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Component Maintenance

• Component creation is by inheritance using two 
methods
– instantiating parameters

– adding new parameters

• Example
– The title of a page can be fixed

• making a more concrete component

– The most general page component can be extended 
with parameters for an image, a heading and a series 
of text blocks

• making a more detailed but still abstract component
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Abstract and Concrete Components
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Using the Model

• Each part of the site is designed from abstract 
components and each stage of the specialisation 
may be stored

• This is achieved using tools
– permitting the separate specification of each aspect

– using familiar techniques

• But the product of the tools is maintainable
– being held in an integrated manner

– and being declarative and documented
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Examples

• A web page using a specific style sheet

• A table with particular columns

• A block including a specific place for an image, a 
heading and a piece of text

• i.e. any reusable structure, e.g.

• A data source with a fixed set of views but no 
particular data nor implementation
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A Component Hierarchy

• At the top is Component
– This has the parameters such as name, parent, 

description, author, version, date and implementation

– implementation is probably needed an optional catch-
all for placing code which is hard to generate

• Below this are abstract components for the main 
categories of site constituent
– web site – web page

– layout (and region) – style sheets (and styles)

– visible – data source (and views)

– script
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The Main Page Constituents I

• Web Site
– has title, style sheet, front page & a set of web pages

• Web Page
– has a title, a style sheet, a set of meta-data and a 

sequence of visible components

– dynamic pages also have a data source and a set of 
place holders for content

• Layout
– c.f. SMIL – a set of regions

– a Region is a portion of the visible page into which a 
visible component is placed
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The Main Page Constituents II

• Style
– a set of name, value pairs, i.e. comes from CSS

– but can be used for anything (better called Map)

• Visible
– any XHTML fragment appropriate for the body of a 

page (XHTML DTD used for the hierarchy under this)

• Script
– abstract description of a script hopefully permitting 

frequent operations to be described (not worked out)
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Data Sources

• A Data Source component describes the 
location of site content

• It is parameterised by a set of connection 
parameters and a set of views
– each can be separately specified

• A View is a query and includes:
– the returned metadata

– whether it is single or multi-valued

– whether it is a query or update

– and the query string and an error message
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Example

$db = mysql_connect(“NN", “DD", “PPPP") or die ("Could not connect");
$nameQuery = "SELECT Name FROM Advisor WHERE ID = '$Advisor'";
$nameResult = mysql_query($nameQuery,$db) or die (“Name query error");
$nameRow = mysql_fetch_array($nameResult);
echo “<h3>Advisees of $nameRow[‘Name’]</h3>”;

$query = "SELECT Name, Matric FROM Student 
WHERE Advisor = '$Advisor' ORDER BY Year, Name";

$result = mysql_query($query, $db) or die (“Student query error");
echo "<table>";
echo "<tr> <th>Name</th> <th>Matric</th> </tr>";

while ($row = mysql_fetch_array($result)) 
{

echo "<tr><td>$row["Name"]</td> 
<td>$row["Matric"]</td></tr>";

}

echo "</table>";
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Analysis

$db = mysql_connect(“UN", “DN", “PASS") or die ("Could not connect");
$nameQuery = “ SELECT Name FROM Advisor WHERE ID = '$Advisor‘ ";
$nameResult = mysql_query($nameQuery,$db) or die (“Name query error");
$nameRow = mysql_fetch_array($nameResult);
echo “<h3>Advisees of $nameRow[‘Name’]</h3>”;

$studentQuery = "SELECT Name, Matric FROM Student 
WHERE Advisor = '$Advisor' ORDER BY Year, Name";

$result = mysql_query($studentQuery, $db) or die (“Student query error");
echo "<table>";
echo "<tr> <th>Name</th> <th>Matric</th> </tr>";

while ($row = mysql_fetch_array($result)) 
{

echo "<tr><td>$row["Name"]</td> 
<td>$row["Matric"]</td></tr>";

}

echo "</table>";

Data Source

Views

Visible
Fragments

Implementation Detail
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Data Source Component

• The abstract Data Source Component has the 
parameters:
– Name – maps to DN on the previous slide

– Owner – maps to UN on the previous slide

– Password – maps to PASS on the previous slide

– Views – a set of view components

– Kind – relations, XML, ????

• There are abstract sub-types for each data 
source kind and each data management product
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View Components

• A view component represents the results of a 
query which can be run on the data source

• Parameters
– data source – get the red stuff from the green stuff

– query – the string which is run against the data source

– ColNames – the names of columns returned

– ColTypes – the types of columns returned

– QueryParams – the values of any parameters in the 
query

– Card – does the query return one or many records

– READorWRITE – querying or updating?
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Typical Visible Components

• Visible components include abstract types for 
each major XHTML component type in <body>
– blocks and inlines are the major abstract components

• In the example, we use:
– SingleQueryResult – a subtype of Inline with the 

parameters View and QueryParameters
• get the green stuff from the blue stuff

– DynamicTable – a subtype of table with the 
parameters View and QueryParameters
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The Need for an Abstract Data Model

• The example shows SQL access to an RDB

• However, the data source may be in another 
format
– XML, OODB, Spreadsheet, etc.

• We therefore require a data representation 
which is not bound to any specific 
implementation structure
– so that the queries can be expressed

– and the content management

– we use an entity based data model
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The Abstract Data Model

• Data sources are described in terms of an 
abstract data model
– a schema is a set of entity types

– each entity type has a set of properties
• either base type or entity type

• single or multi-valued

• unique, non-null or key

• inverses can be specified

• The abstract model is implemented in terms of
– relations or XML or both

• an algorithm determines which to use

– also is extensible – e.g. addition of a Gender type
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Example

Book.PublisherMXBookPublishesPublisher

1XString (50)AddressPublisher

1XString (20)NamePublisher

1XIntegerIDPublisher

Book.AuthorMRBookWorksAuthor

1FImagePhotographAuthor

1RGenderGenderAuthor

1RDateDeathDateAuthor

1RDateBirthDateAuthor

1RString (20)NameAuthor

1RIntegerIDAuthor

Publisher.Publishes1RPublisherPublishdByBook

Author.WorksMRAuthorAuthorBook

1RDatePubDateBook

1RString (30)TitleBook

1RString(20)ISBNBook

InverseUnqNullpkImpDomainPropertyEntity
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Mappings to Implementation Structures

• Relations
– Standard ER techniques map an abstract schema to a 

set of create table statements

• XML
– Kleiner & Lipack show how such a model maps to DTDs

• Hybrid model
– RDB can identify XML objects using tag + ID

– XML can identify RDB objects using table name and 
Pkey

– The important issue is not to lose typing and to ensure 
that the generation software has enough to go on
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Example

• Given Book and Publisher entity types related by an inverse 
relationship, you can implement by:

create table Book( ISBN Varchar2(20) Primary Key,
Title Varchar2(30) Non Null,
PublishedBy Number2 references Publisher.ID)

create table Publisher( ID: Number2 Primary Key,
  Name Varchar2(20) Non Null,
  Address Varchar2(50) ) 

or
<!ELEMENT Book EMPTY>

<!ATTLIST Book ISBN ID #REQUIRED>
<!ATTLIST Book Title CDATA #REQUIRED>
<!ATTLIST Book PublishedBy IDREF #IMPLIED>

<!ELEMENT Publisher EMPTY>
<!ATTLIST Publisher ID ID #REQUIRED>
<!ATTLIST Publisher Name CDATA #REQUIRED>
<!ATTLIST Publisher Address CDATA #IMPLIED> 
<!ATTLIST Publisher Publishes IDREFS #IMPLIED>
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Hybrid Representation

• If Book is in XML while Publisher is in an RDB, you can do the 
following:

<!ATTLIST Book RDB$PublishedBy CDATA #IMPLIED> 

and
create table Publisher( ID: Number2 Primary Key,

Name Varchar2(20) Non Null,
Address Varchar2(50)
XML$Publishes Varchar2(100) )

• Sample data:

attribute in BOOK element:
RDB$PublishedBy = “Publisher:23” 

data value in XML$Publishes table
“Book:1224, 3456, 5678”

Conventional
names

Pkey

IDs
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Automatic Implementation Selection

• We have also implemented in the schema editor 
and algorithm for automatically choosing which 
mix of RDBs and XML is most suitable

• Intuitions
– Given few elements containing large blocks of 

unstructured text we want XML. 

– Given many elements with small data types we want 
a relational table

– If we have complex constraints we want a relational 
table
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The Alogorithm

• For each entity type we add up the following 
weights:

50Has check constraints

2N
All element types are text 
                   (N = number of types)

1Each simple constraint

1
Each reference to another type (1-
M)

1
Each short text element in 
type

20Each long text element in type5
Each non text property in 
type

XML propertySQL Property
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Software Support

• Schema Editor (Michael Davidson)
– manages the creation and maintenance of data 

source schemata

• Browser (ChengCheng Zhou)
– permits the browsing of data howvere it is 

implemented

• Query Language (Si Ying Meng)
– permits the expression of queries over the data
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The Schema Editor
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The Browser
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Query Support

• The query language we have chosen is similar to 
OQL and has the basic form:
SELECT path1, path2, …, pathm

FROM EntityTypeName1, EntityTypeName2, …, EntityTypeNamen

WHERE .....logical expression involving paths and constants 

• This maps simply to:
– SQL

– XPATH
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Example

SELECT  Works.Title, Works.PublishedBy.Name
FROM  Author

WHERE  Name = ‘Jane Austen’;

becomes:

SELECT  book1.Title, publisher1.Name
FROM  Author author1, Writes writes1, Book book1, Publisher 

publisher1
WHERE  author1.Name = ‘Jane Austen’ and

and write1.Book = Book1.ISBN
and Book1.PublishedBy=publisher1.ID;

or
Book[child::author=”Jane Austen”]::Title,
Book[child::author=”Jane Austen”]::Publisher::Name
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Much To Do

• Integrating other implementation models

• Integrating the three data management tools

• Switching to XML Schema

• The Generation software

• Tantalising thought
– If the declarative model is published as part of the site 

with the views clearly available, does this fixed the 
hidden web problem


