Distributed Query Processing in P2P Systems with incomplete schema information

Marcel Karnstedt Technical University of Ilmenau marcel.karnstedt@tu-ilmenau.de

Outline

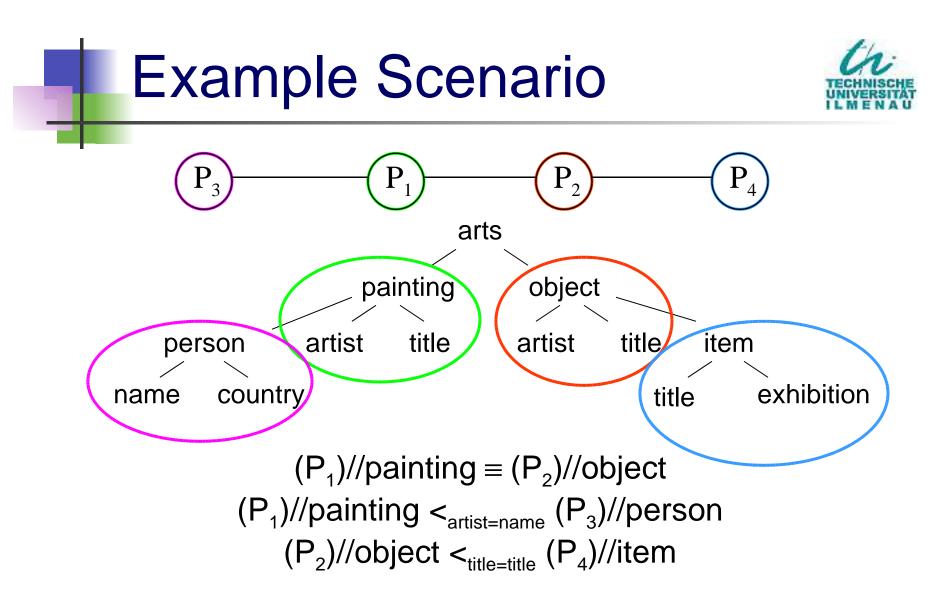
- Motivation, background
- Query model
- Routing approach
- Simulation & preliminary results
- Conclusion
- Current work

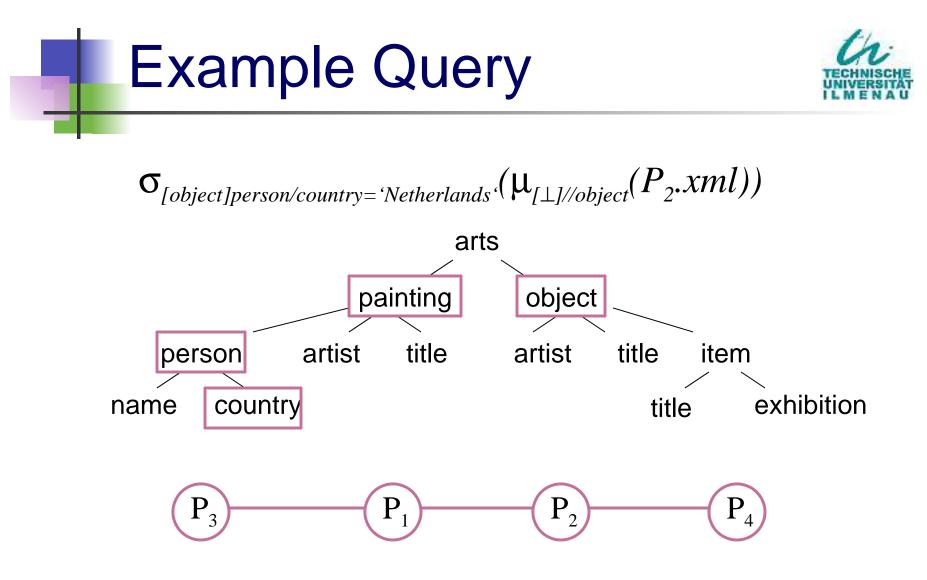
Introduction

- Data integration approach using P2P
- New views on data integration techniques
 - No global schema used, each peer provides a local schema
 - Easy to include new peers
- P2P advantages: decentralization, scalability, robustness, ...
- P2P disadvantages: difficult to process queries efficient, incomplete results, ...

Main Challenges

- No central instance at all
- No global knowledge and schema
 A peer knows only about itself and its neighbours
- Processing of queries that are beyond local schema and correspondences
 - incomplete schema information, unknown elements, incomplete results
- Performance of query evaluation
 - Which of the neighbour peers can provide data at all, which is most suitable for answering?


Contribution


- Data integration approach using schemabased P2P systems
- Efficient processing & routing of queries in such systems
 - Queries referencing unknown schema elements
 - Routing approach based on routing indexes
 - Evaluation
- Open issues of distributed query processor and query engine for P2P systems

Data Model

- All peers provide XML data, described by schemes (DTD, XML-Schema)
 - Maybe use wrappers
- Two issues:
 - (1) formulate schema correspondences
 - (2) formulate queries without complete schema information
- Ad (1): Three correspondence operations:
 ①Equivalence (horizontal), child-of/part-of (vertical), transformation

Distributed Processing

- Data shipping vs. query shipping
 - Classical strategies in distributed systems
 - Data shipping bad choice for investigated systems
 - Query shipping reduces the transferred data volume by far
- Also hybrid shipping techniques
- Special query shipping approaches:
 - Query decomposition
 - "Mutant Query Plans" MQP

P2P Query Processing

- In P2P systems these classical strategies must be adapted!
- Query decomposition
 - Each peer processes part(s) of the query
- Query transformation
 - Use correspondences for rewriting
- Query routing
 - Next slides...

Query Routing

- Problem: incomplete information about data placement and schemes - Which of the known peers is (most) suitable for answering queries?
- ODistributed Indexes (e.g. DHTs), ...
- Routing indexes:
 - Compound Routing Indexes, Hop Count Routing Indexes
 - Schema level: identifiers
 - Instance level: predicates

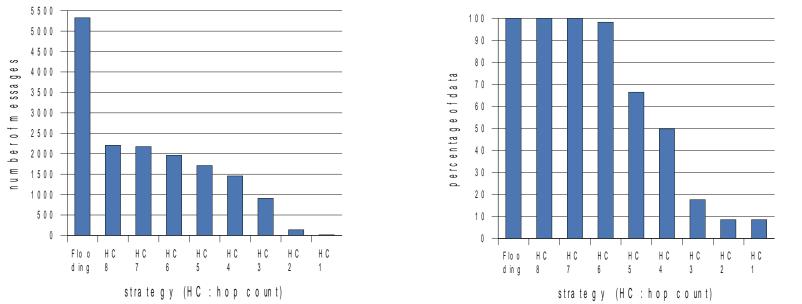
Routing Indexes

Routing index at peer P₂

Neighbour-	Category	Category	Cardi-	#Peers
Peer	Schema level	Instance level	nality	
1	painting	-	520	4
	painting/title	-	520	3
	painting/person	-	210	2
	painting/person/name	-	210	2
	painting/person/birth	[@date<'1800']	132	1
	painting/person/birth	[@date>='1800']	78	1
4	item	-	112	5
	•••			

Indicated how unknown schema elements are integrated

Simulation


- Main goals:
 - Impact of defined horizon
 - Performance of our approach
 - Percentage of data actually retrieved
- Environment:
 - 40 peers, randomly chosen bidirictional correspondences
 - data distributed horizontally and vertically
 - 64 queries
 - Experiments on data about plays of Shakespeare

Preliminary Results

Query shipping, hop count 1...8, flooding:

Percentage of data retrieved:

Learned: only mappings is bad choice, percentage satisfying at hop count of 4-5, ...

Conclusion

Routing indexes are a powerful tool when used for distributed query processing

Schema & instance level

Problem: optimal hop count

- We are able to process queries efficient, even if only limited knowledge is available!
- Small modifications in the horizon lead to significant changes in the results
- Small horizon may already be satisfying
- Unsatisfying percentage if hop count too low

Outlook

- (Semi-)Automatic rule-based schema matching
- Efficient techniques for index building and maintenance
- Extended simulation environment
- Improve query engine, e.g. stateless queries
- Dynamic cost model & cost-based decisions
- Adaptive query processing techniques
- Scenarios: virtual observatory, crisis management

Thank you for your attention!

