Principles of peer-to-peer data integration

Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica "Antonio Ruberti" Università di Roma "La Sapienza"

Invited talk at DIWeb 2004

Riga, Latvia – June 2004

Three data integration architectures

• Mediator-based data integration

The traditional architecture for centralized, virtual data integration

• Data exchange

Materialization of data from a source database to a target database

• Peer-to-peer data integration

Decentralized, dynamic data-centric coordination between autonomous organization

Mediator-based data integration

- Mapping between sources and global schema
- Queries over the global schema

Data exchange

- Mapping between sources and target schema
- Materialization according to the target schema

Peer-to-peer data integration

- Several peers
- Local mappings and P2P mappings
- Each query over one peer

- Peer-based Distributed Information Systems
- Mediator-based data integration
- Data exchange
- P2P data integration
- Conclusions

Data integration

Formal framework for data integration

A data integration system \mathcal{I} is a triple $\langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$, where

• \mathcal{G} is the global schema

The global schema is a logical theory over an alphabet $\mathcal{A}_{\mathcal{G}}$

• \mathcal{S} is the source schema

The source schema is constituted simply by an alphabet $\mathcal{A}_{\mathcal{S}}$ disjoint from $\mathcal{A}_{\mathcal{G}}$

• \mathcal{M} is the mapping between \mathcal{S} and \mathcal{G}

Different approaches to the specification of mapping

Which are the databases that satisfy \mathcal{I} , i.e., which are the logical models of \mathcal{I} ?

The databases that satisfy \mathcal{I} are logical interpretations for $\mathcal{A}_{\mathcal{G}}$ (called global databases). We refer only to databases over a <u>fixed infinite domain Γ </u> of constants.

Let C be a source database over Γ (also called source model), fixing the extension of the predicates of A_S (thus modeling the data present in the sources).

The set of models of (i.e., databases for $\mathcal{A}_{\mathcal{G}}$ that satisfy) \mathcal{I} relative to \mathcal{C} is:

 $sem^{\mathcal{C}}(\mathcal{I}) = \{ \mathcal{B} \mid \mathcal{B} \text{ is a } \mathcal{G}\text{-model (i.e., a global database that is legal wrt } \mathcal{G}) \\ \text{ and is an } \mathcal{M}\text{-model wrt } \mathcal{C} \text{ (i.e., satisfies } \mathcal{M} \text{ wrt } \mathcal{C}) \}$

What it means to satisfy ${\mathcal M}$ wrt ${\mathcal C}$ depends on the nature of the mapping ${\mathcal M}.$

A query q of arity n is a formula with n free variables.

If \mathcal{D} is a database, then $q^{\mathcal{D}}$ denotes the extension of q in \mathcal{D} (i.e., the set of n-tuples that are valuations in Γ for the free variables of q that make q true in \mathcal{D}).

If q is a query of arity n posed to a data integration system \mathcal{I} (i.e., a formula over $\mathcal{A}_{\mathcal{G}}$ with n free variables), then the set of certain answers to q wrt \mathcal{I} and \mathcal{C} is

$$ans(q, \mathcal{I}, \mathcal{C}) = \{(c_1, \ldots, c_n) \in q^{\mathcal{B}} \mid \forall \mathcal{B} \in sem^{\mathcal{C}}(\mathcal{I})\}.$$

<u>Note</u>: query answering is logical implication.

<u>Note</u>: complexity will be mainly measured wrt the size of the source database C, and will refer to the problem of deciding whether $\vec{c} \in ans(q, \mathcal{I}, C)$, for a given \vec{c} .

Databases with incomplete information, or Knowledge Bases

- Traditional database: one model of a first-order theory
 Query answering means evaluating a formula in the model
- Database with incomplete information, or Knowledge Base: set of models (specified, for example, as a restricted first-order theory)
 Query answering means computing the tuples that satisfy the query in all the models in the set

There is a <u>strong connection</u> between query answering in data integration and query answering in databases with incomplete information under constraints (or, query answering in knowledge bases).

How is the mapping \mathcal{M} between \mathcal{S} and \mathcal{G} specified?

- Are the sources defined in terms of the global schema? Approach called source-centric, or local-as-view, or LAV
- Is the global schema defined in terms of the sources?
 Approach called global-schema-centric, or global-as-view, or GAV
- A mixed approach?

Approach called GLAV

Example of GLAV

Global schema:	Work(Person, Project), Area(Project, Field)
Source 1:	Has Job(Person, Field)
Source 2:	$Teach(Professor, Course), \ In(Course, Field)$
Source 3:	$Get(Researcher, Grant), \ For(Grant, Project)$

GLAV mapping:

 $\{ (r, f) \mid HasJob(r, f) \} \qquad \rightsquigarrow \quad \{ (r, f) \mid Work(r, p) \land Area(p, f) \}$ $\{ (r, f) \mid Teach(r, c) \land In(c, f) \} \qquad \rightsquigarrow \quad \{ (r, f) \mid Work(r, p) \land Area(p, f) \}$ $\{ (r, p) \mid Get(r, g) \land For(g, p) \} \qquad \rightsquigarrow \quad \{ (r, p) \mid Work(r, p) \}$

The problem of query answering comes in different forms, depending on several parameters:

- Global schema
 - without constraints (i.e., empty theory)
 - with constraints
- Mapping
 - GAV
 - LAV
 - GLAV
- Queries
 - user queries
 - queries in the mapping

 Unless otherwise specified, we consider conjunctive queries (or, unions thereof) as both user queries and queries in the mapping. A conjunctive query has the form

 $\{ (\vec{\mathbf{x}}) \mid \exists \vec{\mathbf{y}} \ p_1(\vec{\mathbf{x}}, \vec{\mathbf{y}}) \land \cdots \land p_m(\vec{\mathbf{x}}, \vec{\mathbf{y}}) \}$

Given a source database C, we call retrieved global database, denoted M(C), the global database obtained by "applying" the queries in the mapping, and "transferring" to the elements of G the corresponding retrieved tuples.

Incompleteness and inconsistency

Query answering heavily depends upon whether incompleteness/inconsistency shows up.

Constraints in ${\cal G}$	Type of mapping	Incompleteness	Inconsistency
no	GAV	yes/no	no
no	GLAV	yes	no
yes	GAV	yes	yes
yes	GLAV	yes	yes

Incompleteness and inconsistency

Constraints in ${\cal G}$	Type of mapping	Incompleteness	Inconsistency
no	GAV	yes/no	no
no	GLAV	yes	no
yes	GAV	yes	yes
yes	GLAV	yes	yes

INT[noconstr, GAV]: example

Consider $\mathcal{I}=\langle \mathcal{G},\mathcal{S},\mathcal{M}
angle$, with

Global schema \mathcal{G} :

student(code, name, city)university(code, name)enrolled(Scode, Ucode)Source schema S: relations s₁(X, Y, W, Z), s₂(X, Y), s₃(X, Y)Mapping \mathcal{M} :

student $(X, Y, Z) \rightsquigarrow \{ (X, Y, Z) | \mathbf{s}_1(X, Y, Z, W) \}$ university $(X, Y) \rightsquigarrow \{ (X, Y) | \mathbf{s}_2(X, Y) \}$ enrolled $(X, W) \rightsquigarrow \{ (X, W) | \mathbf{s}_3(X, W) \}$ INT[noconstr, GAV]: example

Example of source database ${\mathcal C}$ and corresponding retrieved global database ${\mathcal M}({\mathcal C})$

P2P Data integration

INT[noconstr, GAV]: minimal model

GAV mapping assertions $g \rightsquigarrow \phi_{\mathcal{S}}$ have the logical form:

 $\forall \vec{\mathbf{x}} \ \phi_{\mathcal{S}}(\vec{\mathbf{x}}) \to g(\vec{\mathbf{x}})$

where ϕ_S is a conjunctive query, and g is an element of \mathcal{G} .

In general, given a source database C there are several databases that are legal wrt G that satisfies \mathcal{M} wrt C.

However, it is easy to see that $\mathcal{M}(\mathcal{C})$ is the intersection of all such databases, and therefore, is the only "minimal" model of \mathcal{I} .

INT[noconstr, GAV]

INT[noconstr, GAV]: query answering

- If q is a conjunctive query, then $\vec{\mathbf{t}} \in ans(q,\mathcal{I},\mathcal{C})$ if and only if $\vec{\mathbf{t}} \in q^{\mathcal{M}(\mathcal{C})}$
- If q is query over \mathcal{G} , then the unfolding of q wrt \mathcal{M} , $unf_{\mathcal{M}}(q)$, is the query over \mathcal{S} obtained from q by substituting every symbol g in q with the query $\phi_{\mathcal{S}}$ that \mathcal{M} associates to g
- It can be shown that evaluating a query q over $\mathcal{M}(\mathcal{C})$ is equivalent to evaluating $unf_{\mathcal{M}}(q)$ over \mathcal{C} . It follows that, if q is a conjunctive query, then $\vec{\mathbf{t}} \in ans(q, \mathcal{I}, \mathcal{C})$ if and only if $\vec{\mathbf{t}} \in unf_{\mathcal{M}}(q)^{\mathcal{C}}$

Unfolding is therefore a perfect rewriting

• (Data) complexity of query answering is polynomial ($|\mathcal{M}(\mathcal{C})|$ is polynomial wrt $|\mathcal{C}|$)

INT[noconstr, GAV]: example

Let B_1 and B_2 be two global databases with values in $\Gamma \cup$ Var.

- A homomorphism $h: B_1 \to B_2$ is a mapping from $(\Gamma \cup \text{Var}(B_1))$ to $(\Gamma \cup \text{Var}(B_2))$ such that
 - 1. h(c) = c, for every $c \in \Gamma$
 - 2. for every fact $R_i(t)$ of B_1 , we have that $R_i(h(t))$ is a fact in B_2 (where, if $t = (a_1, \ldots, a_n)$, then $h(t) = (h(a_1), \ldots, h(a_n))$
- B_1 is homomorphically equivalent to B_2 if there is a homomorphism $h: B_1 \to B_2$ and a homomorphism $h': B_2 \to B_1$

Let $\mathcal{I} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$ be a data integration system. If \mathcal{C} is a source database, then a universal solution for \mathcal{I} relative to \mathcal{C} is a model J of \mathcal{I} relative to \mathcal{C} such that for every model J' of \mathcal{I} relative to \mathcal{C} , there exists a homomorphism $h : J \to J'$ (see [Fagin&al. ICDT'03]).

INT[noconstr, GAV]: another view

- Homomorphism preserves satisfaction of conjunctive queries: if there exists a homomorphism $h: J \to J'$, and q is a conjunctive query, then $\vec{\mathbf{t}} \in q^J$ implies $\vec{\mathbf{t}} \in q^{J'}$
- Let $\mathcal{I} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$ be a GAV data integration system without constraints in the global schema. If \mathcal{C} is a source database, then $\mathcal{M}(\mathcal{C})$ is the minimal universal solution for \mathcal{I} relative to \mathcal{C}
- We derive again the following results
 - if q is a conjunctive query, then $\vec{\mathbf{t}}\in ans(q,\mathcal{I},\mathcal{C})$ if and only if $\vec{\mathbf{t}}\in q^{\mathcal{M}(\mathcal{C})}$
 - complexity of query answering is polynomial

Consider conjunctive queries and conjunctive views.

 $\begin{aligned} \mathbf{r}_1(T) & \rightsquigarrow & \{ (T) \mid \mathsf{movie}(T, Y, D) \land \mathsf{european}(D) \} \\ \mathbf{r}_2(T, V) & \rightsquigarrow & \{ (T, V) \mid \mathsf{movie}(T, Y, D) \land \mathsf{review}(T, V) \} \end{aligned}$

 $\forall T \mathbf{r}_1(T) \rightarrow \exists Y \exists D \operatorname{movie}(T, Y, D) \wedge \operatorname{european}(D)$ $\forall T \forall V \mathbf{r}_2(T, V) \rightarrow \exists Y \exists D \operatorname{movie}(T, Y, D) \wedge \operatorname{review}(T, V)$

$$\begin{aligned} \operatorname{movie}(T, f_1(T), f_2(T)) &\leftarrow \operatorname{r}_1(T) \\ &\operatorname{european}(f_2(T)) &\leftarrow \operatorname{r}_1(T) \\ &\operatorname{movie}(T, f_4(T, V), f_5(T, V)) &\leftarrow \operatorname{r}_2(T, V) \\ &\operatorname{review}(T, V)) &\leftarrow \operatorname{r}_2(T, V) \end{aligned}$$

Answering a query means evaluating a goal wrt to this nonrecursive logic program (PTIME data complexity), i.e., this logic program is a perfect rewriting.

Maurizio Lenzerini

P2P Data integration

- Peer-based Distributed Information Systems
- Mediator-based data integration
- Data exchange
- P2P data integration
- Conclusions

From [Fagin&al. ICDT'03], a data exchange setting $\mathcal{E} = (S, T, \Sigma_{st}, \Sigma_t)$ consists of

- $\bullet\,$ a source schema S
- a target schema T
- a set Σ_{st} of source-to-target dependencies, each one of the form (tuple generating dependency, tgd)

 $\forall \vec{\mathbf{x}} (\phi_S(\vec{\mathbf{x}}) \to \exists \vec{\mathbf{y}} \phi_T(\vec{\mathbf{x}}, \vec{\mathbf{y}}))$

with $\phi_S(\vec{x})$ conjunction of atoms over S, and $\phi_T(\vec{x}, \vec{y})$ conjunction of atoms over T (cfr. GLAV mappings in data integration)

• a set Σ_t of target dependencies, each one of the form (tgd, or equality generating dependency)

 $\forall \vec{\mathbf{x}} (\phi_S(\vec{\mathbf{x}}) \to \exists \vec{\mathbf{y}} \phi_T(\vec{\mathbf{x}}, \vec{\mathbf{y}})) \text{ or } \forall \vec{\mathbf{x}} (\phi_T(\vec{\mathbf{x}}) \to (x_1 = x_2))$

Formal framework for data exchange

The data exchange problem associated with the data exchange setting $\mathcal{E} = (S, T, \Sigma_{st}, \Sigma_t)$ is the following:

- given a finite instance C of S (source instance)
- find a finite instance J of T (target instance) such that (I, J) satisfies Σ_{st} , and J satisfies Σ_t .

Such a J is called a solution for \mathcal{E} wrt \mathcal{C} , or simply for \mathcal{C} . The set of all solutions is denoted by Sol(\mathcal{C}).

Example of data exchange

$$\begin{aligned} \Sigma_{st}: \\ \{ \forall a \forall b \forall c \ (P(a, b, c) \rightarrow \exists Y \exists Z \ T(a, Y, Z)) \\ \forall a \forall b \forall c \ (Q(a, b, c) \rightarrow \exists X \exists U \ T(X, b, U)) \\ \forall a \forall b \forall c \ (R(a, b, c) \rightarrow \exists V \exists W \ T(V, W, c)) \} \end{aligned}$$

$$\mathcal{C} = \{ P(a_0, b_1, c_1), \ Q(a_2, b_0, c_2), \ R(a_3, b_3, c_0) \}$$

Some possible solutions:

$$J = \{T(a_0, Y_0, Z_0), T(X_0, b_0, U_0), T(V_0, W_0, c_0)\}$$
$$J_1 = \{T(a_0, b_0, c_0)\}$$
$$J_2 = \{T(a_0, b_0, Z_1), T(V_1, W_1, c_0)\}$$

The following results appear in [Fagin&al. ICDT'03]:

- If C is a source instance and J, J' are universal solutions for C, then J and J' are homomorphically equivalent
- Let C, C' be two source instances, J a universal solution for C, and J' a universal solution for C'. Then Sol(C)=Sol(C') if and only if J and J' are homomorphically equivalent
- If the tgds in Σ_t are weakly acyclic (i.e., cycles do not involve existentially quantified variables), then the existence of a solution for C can be checked in polynomial time wrt the size of C. Moreover, if a solution for C exists, then a universal solution for C can be produced in polynomial time wrt the size of C (by "chasing" C)

- Peer-based Distributed Information Systems
- Mediator-based data integration
- Data exchange
- P2P data integration
- Conclusions

P2P data integration

A P2P system Π is a set $\{P_1, \ldots, P_n\}$ of peers, where each peer P_i models an autonomous information site, that

- exports its information content in terms of a schema
- stores actual data in a set of (local) sources
- is related to other peers in Π by means of a set of P2P mappings, where each P2P mapping is a schema level assertion relating information in another peer P_j to information in P_i

Inspired by [Catarci&Lenzerini COOPIS '92], Halevy&al. ICDE'03]. Other related work: [Ghidini&Serafini FCS '98], [Bernstein&al. WebDB '02, Franconi&al.'03].

Logic-based formal framework for P2P data integration

Each peer of Π is a tuple P = (G, S, L, M) constituted by

- a schema G, i.e., a set of FOL formulas over a peer alphabet A_G
- a set S of (local) sources (simply a finite relational alphabet)
- a set L of local mapping assertions between G and S, each of the form

 $cq_S \rightsquigarrow cq_G$

where cq_S and cq_G are conjunctive queries over S and G, respectively

 $\bullet\,$ a set M of P2P mapping assertions, each of the form

 $cq' \rightsquigarrow cq$

where: -cq' is a conjunctive query over one of the other peers in Π - cq is a conjunctive query over the peer schema of P(cq' and cq are of the same arity)
Formal framework for P2P data integration: semantics

- We assume that all peers are interpreted over a fixed infinite domain
- We also refer to a fixed, infinite, denumerable, set Γ of constants, that act as standard names (i.e., Γ is isomorphic to the interpretation domain)
- ... but see the conclusions for a more general approach

In the following, we will use constants of Γ to denote elements of the interpretation domain

Semantics of one peer

For each peer P = (G, S, L, M) we define a FOL theory T_P as follows:

- The alphabet of $T_{\cal P}$ is obtained as union of the alphabets of the schema G and of the sources S
- The axioms of T_P are as follows:
 - all FOL formulas in the schema ${\cal G}$
 - for each local mapping assertion $\{\vec{\mathbf{x}} \mid \exists \vec{\mathbf{y}} \varphi_S(\vec{\mathbf{x}}, \vec{\mathbf{y}})\} \rightsquigarrow \{\vec{\mathbf{x}} \mid \exists \vec{\mathbf{z}} \varphi_G(\vec{\mathbf{x}}, \vec{\mathbf{z}})\} \text{ in } L, \text{ one formula of the form}$

 $\forall \vec{\mathbf{x}} (\exists \vec{\mathbf{y}} \varphi_S(\vec{\mathbf{x}}, \vec{\mathbf{y}}) \supset \exists \vec{\mathbf{z}} \varphi_G(\vec{\mathbf{x}}, \vec{\mathbf{z}}))$

Notice that $T_{\cal P}$ does not consider the P2P mappings in ${\cal M}$

It follows that we are modeling each peer P as a GLAV data integration system, in turn modeled as a FOL theory T_P (ignoring the P2P mappings M)

Maurizio Lenzerini

We resort to the standard notion of certain answer in data integration:

- We start from a source database D for the peer P, i.e., a database over Γ for the source relation symbols in S
- A model of P based on D is an interpretation of T_P that
 - coincides with \boldsymbol{D} on the source relation symbols
 - satisfies all formulas in $T_{\cal P}$
- Given a query Q of arity n expressed over (the schema G of) P, and a source database D, the (local) certain answers of P to Q based on D are

 $ans(Q, P, D) = \{ \vec{\mathbf{t}} \in \Gamma^n \mid \vec{\mathbf{t}} \in Q^{\mathcal{I}}, \text{ for every model } \mathcal{I} \text{ of } P \text{ based on } D \}$

- A source database ${\cal D}$ for Π is the disjoint union of one source database for each peer P_i in Π
- Given a source database \mathcal{D} for Π , the set of models of Π relative to \mathcal{D} is:

 $sem^{\mathcal{D}}(\Pi) = \{ \mathcal{I} \mid \mathcal{I} \text{ is a model of all peer theories } T_{P_i} \text{ based on } \mathcal{D}, \text{ and}$ $\mathcal{I} \text{ satisfies all P2P mapping assertions}$

The meaning of $\mathcal I$ satisfying a P2P mapping assertion may vary in the various approaches

• Given a query Q of arity n posed to a peer P_i of Π , and a source database \mathcal{D} , the certain answers to Q based on \mathcal{D} are

$$ans(Q,\Pi,\mathcal{D}) = \{ \vec{\mathbf{t}} \in \Gamma^n \mid \vec{\mathbf{t}} \in Q^{\mathcal{I}}, \text{ for every } \mathcal{I} \in sem^{\mathcal{D}}(\Pi) \}$$

We consider two alternatives for specifying the semantics of P2P mappings:

• Based on First-Order Logic

P2P mappings are considered as material logical implications

• Based on Epistemic Logic

P2P mappings are considered as specifications of exchange of certain answers

First-Order Logic semantics of P2P mappings

The semantics of P2P mapping assertions is given in terms of First-Order Logic [Halevy&al. ICDE'03, Bernstein&al. WebDB '02]

An interpretation ${\cal I}$ satisfies a P2P mapping assertion

$\{\vec{\mathbf{x}} \mid \exists \vec{\mathbf{y}} \, \varphi_1(\vec{\mathbf{x}}, \vec{\mathbf{y}})\} \rightsquigarrow \{\vec{\mathbf{x}} \mid \exists \vec{\mathbf{z}} \, \varphi_2(\vec{\mathbf{x}}, \vec{\mathbf{z}})\}$

if it satisfies the FOL formula

$$\forall \vec{\mathbf{x}} (\exists \vec{\mathbf{y}} \varphi_1(\vec{\mathbf{x}}, \vec{\mathbf{y}}) \supset \exists \vec{\mathbf{z}} \varphi_2(\vec{\mathbf{x}}, \vec{\mathbf{z}}))$$

which is equivalent to the condition

$$\{\vec{\mathbf{x}} \mid \exists \vec{\mathbf{y}} \, \varphi_1(\vec{\mathbf{x}}, \vec{\mathbf{y}})\}^{\mathcal{I}} \subseteq \{\vec{\mathbf{x}} \mid \exists \vec{\mathbf{z}} \, \varphi_2(\vec{\mathbf{x}}, \vec{\mathbf{z}})\}^{\mathcal{I}}$$

Inadequacy of FOL semantics of P2P mappings

The FOL semantics is not adequate for P2P data integration:

• Lack of modularity

- the system is modeled by a flat FOL theory, with no formal separation between the various peers
- the modular structure of the system is not reflected in the semantics
- Bad computational properties

Computing the set of certain answers to a conjunctive query Q posed to a peer is undecidable, even when all peer schemas are empty [Halevy&al. ICDE'03, Koch FOIKS'02]

• Lack of generality

To recover decidability, one has to limit the expressive power of P2P mappings (e.g., assume acyclicity) [Halevy&al. ICDE'03]

Epistemic semantics for P2P mappings: objectives

A new semantics for P2P mappings, with the following aims:

- Peers in our context are to be considered autonomous sites that exchange information
- We do not want to limit a-priori the topology of the mapping assertions among the peers in the system
- Defining a setting where query answering is decidable, and possibly, polynomially tractable

Epistemic semantics for P2P mappings: basic idea

The new semantics is based on epistemic logic [Reiter TARK'88]

- A P2P mapping cq_i ~> cq_j (with cq_i over P_i and cq_j over P_j) is interpreted as an epistemic formula which imposes that only the certain answers to cq_i in P_i (i.e., the facts that are known by P_i) are transferred to P_j as facts satisfying cq_j. In other words, peer P_i communicates to peer P_j only facts that are certain, i.e., true in every model of the P2P system
- The modular structure of the system is now reflected in the semantics (by virtue of the modal semantics of epistemic logics)
- Good computational properties: computing the certain answers to a conjunctive query Q based on a source database \mathcal{D} is polynomial time in the size of \mathcal{D} , even for cyclic mappings

In epistemic logic, we have a new form of atoms, namely (φ is again a formula):

$\mathbf{K}\,\varphi$

An epistemic interpretation is a pair $\langle \mathcal{I}, \mathcal{W} \rangle$, where \mathcal{W} is a set of FOL interpretations and $\mathcal{I} \in \mathcal{W}$

- a FOL formula constituted by an atom $a(\vec{x})$ is satisfied in $\langle \mathcal{I}, \mathcal{W} \rangle$ by the tuples \vec{t} of constants such that $a(\vec{t})$ is true in \mathcal{I}
- an atom of the form $\mathbf{K}\varphi(\vec{\mathbf{x}})$ is satisfied in $\langle \mathcal{I}, \mathcal{W} \rangle$ by the tuples $\vec{\mathbf{t}}$ of constants such that $\varphi(\vec{\mathbf{t}})$ is satisfied in all epistemic interpretations $\langle \mathcal{J}, \mathcal{W} \rangle$ with $\mathcal{J} \in \mathcal{W}$

An epistemic model of an epistemic logic theory $\{\varphi_1, \ldots, \varphi_t\}$ is an epistemic interpretation $\langle \mathcal{I}, \mathcal{W} \rangle$ that satisfies every axiom φ_i

An axiom φ_i is satisfied in $\langle \mathcal{I}, \mathcal{W} \rangle$ if φ_i is satisfied in all $\langle \mathcal{J}, \mathcal{W} \rangle$ with $\mathcal{J} \in \mathcal{W}$

 $\begin{array}{lll} \langle \mathcal{I}, \mathcal{W} \rangle & \models & \mathbf{K} \left(R(b) \lor R(c) \right) \\ \langle \mathcal{I}, \mathcal{W} \rangle & \not\models & (\mathbf{K} R(b)) \lor (\mathbf{K} R(c)) \\ \langle \mathcal{I}, \mathcal{W} \rangle & \models & \mathbf{K} S(d) \end{array}$

 $\begin{array}{lll} \langle \mathcal{I}, \mathcal{W} \rangle & \models & \mathbf{K} \left(\exists x \, R(x) \right) \\ \langle \mathcal{I}, \mathcal{W} \rangle & \not\models & \exists x \left(\mathbf{K} \, R(x) \right) \\ \langle \mathcal{I}, \mathcal{W} \rangle & \models & \exists x \left(\mathbf{K} \, S(x) \right) \end{array}$

Epistemic semantics for P2P mappings: basic idea

We formalize a P2P system Π in terms of the epistemic logic theory E_{Π} :

- the alphabet \mathcal{A}_{Π} is the disjoint union of the alphabets of the various peer theories T_P , one for each peer P in Π
- all the formulas of the various theories T_P are axioms in E_{Π}
- for each P2P mapping assertion

$\{\vec{\mathbf{x}} \mid \exists \vec{\mathbf{y}} \, \varphi_1(\vec{\mathbf{x}}, \vec{\mathbf{y}})\} \rightsquigarrow \{\vec{\mathbf{x}} \mid \exists \vec{\mathbf{z}} \, \varphi_2(\vec{\mathbf{x}}, \vec{\mathbf{z}})\}$

in the peers of $\Pi,$ there is one axiom in E_{Π} of the form

 $\forall \vec{\mathbf{x}} \left(\left(\mathbf{K} \exists \vec{\mathbf{y}} \varphi_1(\vec{\mathbf{x}}, \vec{\mathbf{y}}) \right) \supset \exists \vec{\mathbf{z}} \varphi_2(\vec{\mathbf{x}}, \vec{\mathbf{z}}) \right)$

Epistemic semantics for P2P mappings: basic idea

In other words, $\langle \mathcal{I}, \mathcal{W} \rangle$ satisfies the P2P mapping assertion $cq_1 \rightsquigarrow cq_2$ if, for every tuple \vec{t} of constants in Γ ,

when $\vec{t} \in cq_1^{\mathcal{J}}$ for every FOL model \mathcal{J} in \mathcal{W} , then $\vec{t} \in cq_2^{\mathcal{I}}$

An epistemic model of Π based on ${\mathcal D}$ is an epistemic interpretation $\langle {\mathcal I}, {\mathcal W} \rangle$ such that

- $\mathcal W$ is a set of models of T_Π based on $\mathcal D$, and
- $\langle \mathcal{I}, \mathcal{W} \rangle$ satisfies all axioms corresponding to the P2P mapping assertions in the peers of Π

Given a query Q of arity n posed to a peer P_i of Π , and a source database \mathcal{D} , the certain answers to Q based on \mathcal{D} under epistemic semantics are

$$\begin{aligned} \textit{ans}_{\mathbf{k}}(Q,\Pi,\mathcal{D}) \ = \ \{ \ \vec{\mathbf{t}} \in \Gamma^n \mid \vec{\mathbf{t}} \in Q^{\mathcal{I}}, \ \text{for every epistemic model} \\ \langle \mathcal{I}, \mathcal{W} \rangle \ \text{of } \Pi \text{ based on } \mathcal{D} \ \end{aligned} \end{aligned}$$

Semantics of P2P mappings: example

FOL semantics of P2P mappings: model 1

FOL semantics of P2P mappings: model 2

According to the FOL semantics, Person(d) is true in all cases, and therefore is a certain answer to $\{x \mid Person(x)\}$

Epistemic semantics of P2P mappings

According to the epistemic semantics, Person(d) is not a certain answer to $\{x \mid Person(x)\}$

Query answering in P2P systems under epistemic semantics

- We are interested in an algorithm for distributed query answering
 - the query is posed to one peer in the system
 - each peer executes the same algorithm, and in doing so exchanges information only with the peers it is connected to
 - no central coordination or centralized data structures
- We assume that peers accept queries in a query language \mathcal{L} (subsuming at least conjunctive queries)
- We require that each peer, given a query Q in \mathcal{L} , is able to compute a Datalog query Q' that is a perfect reformulation of Q

Perfect reformulation

- P2P mappings in a peer P are of the form $cq' \rightsquigarrow cq$ (where cq may be an arbitrary conjunctive query)
 - for each such mapping we introduce in P a new source predicate symbol E (called external source)
 - the symbol ${\cal E}$ has the same arity as cq
 - we add to P a local mapping assertion $\{ \vec{\mathbf{x}} \mid E(x) \} \rightsquigarrow cq$
- Given a query Q in \mathcal{L} , a Datalog query Q_1 is a perfect reformulation of Q if
 - Q_{1} is expressed over the original and the external source predicates of ${\cal P}$
 - for each source database D for P (i.e., over the original and the external sources), we have that

$$Q_1^D = ans(Q, P, D)$$

• Perfect reformulations exists in several settings

Distributed query answering in P2P systems

We have devised a distributed query algorithm based on the following ideas

- Each peer reformulates the queries that are requested to it in terms of the local and external sources
- A reference to an external source triggers a request to the peer to which the external source is connected
- Answers to such requests consist of a Datalog program with two parts:
 - an extensional part, which is a set of facts (about source relations received from other peers)
 - an intensional part, which is a set of Datalog rules
- Infinite looping is avoided by:
 - associating to each (user) query a unique (global) transaction id
 - avoiding requests that have already been made for the same transaction id

Maurizio Lenzerini

Maurizio Lenzerini

Maurizio Lenzerini

Query answering technique: example

P2P Data integration

Query answering technique: example

P2P Data integration

Each peer provides two main functionalities:

- answering a user query by initiating a new transaction
- computing the Datalog program for a request coming from a peer

The algorithm is executed over a source database ${\mathcal D}$ representing the state of all peers

```
\label{eq:algorithm} \textbf{Algorithm} \ P. user-query-handler
```

Input: user query $q \in \mathcal{L}$

Output: set of tuples for q

begin

generate a new transaction id T;

end

Query answering algorithm (cont'd)

Algorithm P.peer-query-handler

Input: query $q \in \mathcal{L}$, query predicate r_q , transaction id T

Output: Datalog program $DP = (DP_I, DP_E)$

 $DP_I := \text{computePerfectRef}(q, r_q, P); \quad DP_E := \emptyset;$

for each predicate $r \in S \cup AuxAlph(P)$ occurring in DP_I do

if getTransaction
$$(r, T) = notProcessed$$
 then

setTransaction(r, T, processed);

if $r \in S$ then /* r is a source symbol in P */

 $DP_E := DP_E \cup Extension(r, \mathcal{D})$

else / * r is an external source symbol * /

DP' := peer(r).peer-query-handler(query(r), r, T);

 $DP_I := DP_I \cup DP'_I; \qquad DP_E := DP_E \cup DP'_E$

return DP

Properties of the algorithm

- It is an algorithm, i.e., it always terminates
- Sound and complete for the epistemic semantics
- Runs in polynomial time in the size of the source database
- Notice that the reformulation step is independent of the data, and hence does not affect data complexity

Dealing with inconsistencies: example

Dealing with inconsistencies and preferences: example

- Peer-based Distributed Information Systems
- Mediator-based data integration
- Data exchange
- P2P data integration
- Conclusions

Many open problems and issues, including

- Classes of integrity constraints in peer schemas affect the perfect reformulation problem
- Global schema (or target schema, or peer schemas) expressed in terms of semi-structured data (with constraints)
- Limitations in accessing the sources
- Privacy-based restrictions on peer answers
- Dealing with inconsistencies vs. data cleaning
- How to incorporate the notion of data quality (peer reliability, accuracy, etc.)
- Optimization
- Going beyond the "unique domain assumption", i.e., by means of so-called mapping tables [Arenas&al SIGMOD03]
- Adding materialization