# Concurrency Control

### P.J. McBrien

Imperial College London

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = の久()

# Topic 21: Serialisability and Recoverability

#### P.J. McBrien

Imperial College London

イロト イポト イヨト イヨト 二日

# Transactions: ACID properties

### ACID properties

database management systems  $(\mathbf{DBMS})$  implements indivisible tasks called transactions

| Atomicity   | all or nothing                                   |
|-------------|--------------------------------------------------|
| Consistency | consistent before $\rightarrow$ consistent after |
| Isolation   | independent of any other transaction             |
| Durability  | completed transaction are durable                |

(日) (四) (三) (三) (三)

## Transactions: ACID properties

### ACID properties

database management systems (DBMS) implements indivisible tasks called transactions

| Atomicity   | all or nothing                                   |
|-------------|--------------------------------------------------|
| Consistency | consistent before $\rightarrow$ consistent after |
| Isolation   | independent of any other transaction             |
| Durability  | completed transaction are durable                |

```
BEGIN TRANSACTION

UPDATE branch

SET cash=cash-10000.00

WHERE sortcode=56

UPDATE branch

SET cash=cash+10000.00

WHERE sortcode=34

COMMIT TRANSACTION
```

## Transactions: ACID properties

### ACID properties

database management systems (DBMS) implements indivisible tasks called transactions

| Atomicity   | all or nothing                                   |
|-------------|--------------------------------------------------|
| Consistency | consistent before $\rightarrow$ consistent after |
| Isolation   | independent of any other transaction             |
| Durability  | completed transaction are durable                |

## BEGIN TRANSACTION

```
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56
```

```
UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34
COMMIT TRANSACTION
```

Note that if total cash is  $\pounds 137,246.12$  before the transaction, then it will be the same after the transaction.

イロト イボト イヨト イヨト

## Example Data

| branch |       |          |              |  |  |
|--------|-------|----------|--------------|--|--|
| sortco | ode l | oname    | cash         |  |  |
|        | 56 '  | Wimbled  | on' 94340.45 |  |  |
|        | 34 '  | Goodge S | St' 8900.67  |  |  |
|        | 67 '  | Strand'  | 34005.00     |  |  |
|        |       |          |              |  |  |
|        |       | movemen  | it           |  |  |
| mid    | no    | amount   | tdate        |  |  |
| 1000   | 100   | 2300.00  | 5/1/1999     |  |  |
| 1001   | 101   | 4000.00  | 5/1/1999     |  |  |
| 1002   | 100   | -223.45  | 8/1/1999     |  |  |
| 1004   | 107   | -100.00  | 11/1/1999    |  |  |
| 1005   | 103   | 145.50   | 12/1/1999    |  |  |
| 1006   | 100   | 10.23    | 15/1/1999    |  |  |
| 1007   | 107   | 345.56   | 15/1/1999    |  |  |
| 1008   | 101   | 1230.00  | 15/1/1999    |  |  |
| 1009   | 119   | 5600.00  | 18/1/1999    |  |  |

|   |           |           | account             |       |          |
|---|-----------|-----------|---------------------|-------|----------|
|   | <u>no</u> | type      | cname               | rate? | sortcode |
|   | 100       | 'current' | 'McBrien, P.'       | NULL  | 67       |
|   | 101       | 'deposit' | 'McBrien, P.'       | 5.25  | 67       |
|   | 103       | 'current' | 'Boyd, M.'          | NULL  | 34       |
| 1 | 107       | 'current' | 'Poulovassilis, A.' | NULL  | 56       |
|   | 119       | 'deposit' | 'Poulovassilis, A.' | 5.50  | 56       |
|   | 125       | 'current' | 'Bailey, J.'        | NULL  | 56       |

イロト イヨト イヨト イヨト

key branch(sortcode) key branch(bname) key movement(mid) key account(no) movement(no)  $\stackrel{f_k}{\Rightarrow}$  account(no) account(sortcode)  $\stackrel{f_k}{\Rightarrow}$  branch(sortcode)

æ

```
BEGIN TRANSACTION
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56
```

#### CRASH

Suppose that the system crashes half way through processing a cash transfer, and the first part of the transfer has been written to disc

- The database on disc is left in an inconsistent state, with £10,000 'missing'
- A DBMS implementing **Atomicity** of transactions would on restart UNDO the change to branch 56

3

イロト イボト イヨト イヨト

```
BEGIN TRANSACTION
DELETE FROM branch
WHERE sortcode=56
```

```
INSERT INTO account
VALUES (100, 'Smith, J', 'deposit', 5.00, 34)
END TRANSACTION
```

Suppose that a user deletes branch with sortcode 56, and inserts a deposit account number 100 for John Smith at branch sortcode 34

- The database is left in an inconsistent state for two reasons
  - it has three accounts recorded for a branch that appears not to exist, and
  - it has two records for account number 100, with different details for the account
- A DBMS implementing **Consistency** of transactions would forbid both of these changes to the database

イロト 不得下 イヨト イヨト 二日

Transaction Properties: Isolation

```
BEGIN TRANSACTION BEGIN TRANSACTION
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56
```

```
SELECT SUM(cash) AS net_cash
FROM branch
```

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

```
UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34
END TRANSACTION EN
```

END TRANSACTION

Suppose that the system sums the cash in the bank in one transaction, half way through processing a cash transfer in another transaction

- The result of the summation of cash in the bank erroneously reports that  $\pounds 10,000$  is missing
- A DBMS implementing **Isolation** of transactions ensures that transactions always report results based on the values of committed transactions

P.J. McBrien (Imperial College London)

Transaction Properties: Durability

```
BEGIN TRANSACTION
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56
```

```
UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34
FND TRANSACTION
```

# CRASH

Suppose that the system crashes after informing the user that it has committed the transfer of cash, but has not yet written to disc the update to branch 34

- The database on disc is left in an inconsistent state, with £10,000 'missing'
- A DBMS implementing **Durability** of transactions would on restart complete the change to branch 34 (or alternatively never inform a user of commitment with writing the results to disc).

3

イロト イボト イヨト イヨト

# SQL Conversion to Histories

| branch          |             |          |  |
|-----------------|-------------|----------|--|
| <u>sortcode</u> | bname       | cash     |  |
| 56              | 'Wimbledon' | 94340.45 |  |
| 34              | 'Goodge St' | 8900.67  |  |
| 67              | 'Strand'    | 34005.00 |  |



#### history of transaction $T_n$

- **1** Begin transaction  $b_n$  (only given if necessary for discussion)
- **2** Various read operations on objects  $r_n[o_j]$  and write operations  $w_n[o_j]$
- **3** Either  $c_n$  for the commitment of the transaction, or  $a_n$  for the abort of the transaction

# SQL Conversion to Histories



#### history of transaction $T_n$

Same pattern of transaction code gives same pattern of operations

イロト 不得下 イヨト イヨト

## Serial Execution

#### Serial Execution of Transactions

- Executing one transaction at a time
- Provided updates are recorded in stable storage at the time of  $c_i$ , must maintain the ACID properties

æ

イロト イヨト イヨト イヨト

## Serial Execution

#### Serial Execution of Transactions

- Executing one transaction at a time
- Provided updates are recorded in stable storage at the time of  $c_i$ , must maintain the ACID properties

#### Possible Serial Executions

$$egin{array}{rll} H_1 &=& r_1[b_{56}] \ , \ w_1[b_{56}] \ , \ r_1[b_{34}] \ , \ w_1[b_{34}] \ , \ w_1[b_{34}] \ , \ c_1 \ \end{array}$$

3

イロト イヨト イヨト イヨト

# Serial Execution

#### Serial Execution of Transactions

- Executing one transaction at a time
- Provided updates are recorded in stable storage at the time of  $c_i$ , must maintain the ACID properties

#### Possible Serial Executions



# Concurrent Execution

#### Concurrent Execution of Transactions

- Interleaving of several transaction histories
- Order of operations within each history preserved

э

イロト イヨト イヨト イヨト

## Concurrent Execution

#### Concurrent Execution of Transactions

- Interleaving of several transaction histories
- Order of operations within each history preserved

$$\begin{array}{c} H_1 \\ = \\ r_1[b_{56}] \\ , \\ w_1[b_{56}] \\ , \\ r_1[b_{34}] \\ , \\ w_1[b_{34}] \\ , \\ w_1[b_{34}] \\ , \\ c_1 \end{array}$$

イロト イヨト イヨト イヨト

#### Concurrent Execution of Transactions

- Interleaving of several transaction histories
- Order of operations within each history preserved



イロト 不得下 イヨト イヨト

Concurrency control  $\rightarrow$  controlling interaction

(日) (四) (王) (王) (王)

Concurrency control  $\rightarrow$  controlling interaction

#### serialisability

A concurrent execution of transactions should always have the same final result as some serial execution of those same transactions

3

イロト イヨト イヨト イヨト

#### Concurrency control $\rightarrow$ controlling interaction

#### serialisability

recoverability

A concurrent execution of transactions should always have the same final result as some serial execution of those same transactions No transaction commits depending on data that has been produced by another transaction that has yet to commit

・ロト ・四ト ・ヨト ・ヨト ・ヨー

Ц

#### Concurrency control $\rightarrow$ controlling interaction

#### serialisability

A concurrent execution of transactions should always have the same final result as some serial execution of those same transactions

#### recoverability

No transaction commits depending on data that has been produced by another transaction that has yet to commit

H set of all possible histories

・ロト ・四ト ・ヨト ・ヨト ・ヨ

#### Concurrency control $\rightarrow$ controlling interaction

#### serialisability

A concurrent execution of transactions should always have the same final result as some serial execution of those same transactions

SR

#### recoverability

No transaction commits depending on data that has been produced by another transaction that has yet to commit

H set of all possible histories SR set of serialisable histories



Definition

# Which concurrent executions should be allowed?

### Concurrency control $\rightarrow$ controlling interaction

A concurrent execution of transactions should always have the same final result as some serial execution of those same transactions

No transaction commits depending on data that has been produced by another transaction that has yet to commit



H set of all possible histories SB set of serialisable histories RC set of recoverable histories

イロト 不得下 イヨト イヨト

Concurrency

Definition

# Quiz 21.1: Serialisability and Recoverability (1)



イロト イボト イヨト イヨト

Concurrency Defi

Definition

# Quiz 21.2: Serialisability and Recoverability (2)



P.J. McBrien (Imperial College London)

Concurrency Defi

Definition

# Quiz 21.3: Serialisability and Recoverability (3)



## Topic 22: Anomalies in Transaction Execution

#### P.J. McBrien

Imperial College London

Anomalies

## Anomaly 1: Lost Update



Anomalies

## Anomaly 1: Lost Update



P.J. McBrien (Imperial College London)

22: Anomalies in Transaction Execution

## Anomaly 2: Inconsistent analysis



+ recoverable

IA = set of histories with an inconsistent analysis $SR \cap IA = \emptyset$ 

P.J. McBrien (Imperial College London)

Anomalies

Anomaly 3: Dirty Reads



| Anomalies                                                                                                                                                                                                                                                            |             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| Quiz 22.1: Anomalies (1)                                                                                                                                                                                                                                             |             |  |  |  |
| $H_x = \left[ r_2[b_{34}]  ight], \left[ r_1[b_{56}]  ight], \left[ w_1[b_{56}]  ight], \left[ r_1[b_{34}]  ight], \left[ w_1[b_{34}]  ight], \left[ c_1  ight], \left[ w_2[b_{34}]  ight], \left[ r_2[b_{67}]  ight], \left[ w_2[b_{67}]  ight], \left[ c_2  ight]$ |             |  |  |  |
| Which anomaly does $H_x$ suffer?                                                                                                                                                                                                                                     |             |  |  |  |
| А                                                                                                                                                                                                                                                                    | В           |  |  |  |
| None                                                                                                                                                                                                                                                                 | Lost Update |  |  |  |
| C                                                                                                                                                                                                                                                                    | D           |  |  |  |
| Inconsistent Analysis                                                                                                                                                                                                                                                | Dirty Read  |  |  |  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| Anomalies                                                                                                                                                                                                                                                            |                       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| Quiz 22.2: Anomalies (2)                                                                                                                                                                                                                                             |                       |  |  |  |
| $H_y = \left[ r_2[b_{34}]  ight], \left[ w_2[b_{34}]  ight], \left[ r_1[b_{56}]  ight], \left[ w_1[b_{56}]  ight], \left[ r_1[b_{34}]  ight], \left[ w_1[b_{34}]  ight], \left[ r_2[b_{67}]  ight], \left[ w_2[b_{67}]  ight], \left[ c_2  ight], \left[ c_1  ight]$ |                       |  |  |  |
| Which anomaly does $H_y$ suffer?                                                                                                                                                                                                                                     |                       |  |  |  |
|                                                                                                                                                                                                                                                                      |                       |  |  |  |
|                                                                                                                                                                                                                                                                      |                       |  |  |  |
| A                                                                                                                                                                                                                                                                    | В                     |  |  |  |
| A<br>None                                                                                                                                                                                                                                                            | B<br>Lost Update      |  |  |  |
| A<br>None                                                                                                                                                                                                                                                            | B<br>Lost Update      |  |  |  |
| A<br>None<br>C                                                                                                                                                                                                                                                       | B<br>Lost Update<br>D |  |  |  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Anomalies

# Quiz 22.3: Anomalies (3)

 $H_z = \ r_2[b_{34}] \ , \ w_2[b_{34}] \ , \ r_1[b_{56}] \ , \ w_1[b_{56}] \ , \ r_1[b_{34}] \ , \ w_1[b_{34}] \ , \ c_1 \ , \ r_2[b_{67}] \ , \ w_2[b_{67}] \ , \ c_2$ 

Which anomaly does  $H_z$  suffer?

| А                     | В           |
|-----------------------|-------------|
| None                  | Lost Update |
|                       |             |
| С                     | D           |
| Inconsistent Analysis | Dirty Read  |

Anomalies

# Account Table

| account |           |                     |       |          |
|---------|-----------|---------------------|-------|----------|
| no      | type      | cname               | rate? | sortcode |
| 100     | 'current' | 'McBrien, P.'       | NULL  | 67       |
| 101     | 'deposit' | 'McBrien, P.'       | 5.25  | 67       |
| 103     | 'current' | 'Boyd, M.'          | NULL  | 34       |
| 107     | 'current' | 'Poulovassilis, A.' | NULL  | 56       |
| 119     | 'deposit' | 'Poulovassilis, A.' | 5.50  | 56       |
| 125     | 'current' | 'Bailey, J.'        | NULL  | 56       |

イロト イポト イヨト イヨト 二日
Anomalies

Anomaly 3: Dirty Reads (Recoverable Example)



Anomalies

Anomaly 3: Dirty Reads (Recoverable Example)



### Anomaly 4: Dirty Writes



・ロト ・聞ト ・ヨト ・ヨト

### Anomaly 4: Dirty Writes



Anomalies

### Patterns of operations associated with Anomalies

| Anomaly               | Set | Pattern                                              | Problem            |
|-----------------------|-----|------------------------------------------------------|--------------------|
| Dirty Write           | DW  | $w_1[o] \prec w_2[o] \prec e_1$                      | Sometimes not $SR$ |
| Dirty Read            | DR  | $w_1[o] \prec r_2[o] \prec e_1$                      | Sometimes not $RC$ |
| Inconsistent Analysis | IA  | $r_1[o_a] \prec w_2[o_a], \ w_2[o_b] \prec r_1[o_b]$ | Not $SR$           |
| Lost Update           | LU  | $r_1[o] \prec w_2[o] \prec w_1[o]$                   | Not $SR$           |

### Notation

- $e_i$  means either  $c_i$  or  $a_i$  occurring
- $op_a \prec op_b$ mean  $op_a$  occurs before  $op_b$  in a history

(日) (四) (三) (三) (三)

### Worksheet: Anomalies



イロト イヨト イヨト イヨト

### Topic 23: Serialisable Execution

#### P.J. McBrien

Imperial College London

イロト イロト イヨト イヨト 三日

# Serialisable Transaction Execution

- $\blacksquare$  Solve anomalies  $\rightarrow$  H  $\equiv$  serial execution
- Only interested in the **committed projection**



イロト イヨト イヨト イヨト

### Possible Serial Equivalents



- how to determine that histories are equivalent?
- how to check this during execution?

イロト イボト イヨト イヨト

#### $\operatorname{conflict}$

A conflict occurs when there is an interaction between two transactions

- $r_x[o]$  and  $w_y[o]$  are in H where  $x \neq y$  or
- $w_x[o]$  and  $w_y[o]$  are in H where  $x \neq y$

Only consider pairs where there is no third operation  $rw_z[o]$  between the pair of operations that conflicts with both

### conflicts



#### $\operatorname{conflict}$

A conflict occurs when there is an interaction between two transactions

- $r_x[o]$  and  $w_y[o]$  are in H where  $x \neq y$  or
- $w_x[o]$  and  $w_y[o]$  are in H where  $x \neq y$

Only consider pairs where there is no third operation  $rw_z[o]$  between the pair of operations that conflicts with both

### conflicts



#### $\operatorname{conflict}$

A conflict occurs when there is an interaction between two transactions

- $r_x[o]$  and  $w_y[o]$  are in H where  $x \neq y$  or
- $w_x[o]$  and  $w_y[o]$  are in H where  $x \neq y$

Only consider pairs where there is no third operation  $rw_z[o]$  between the pair of operations that conflicts with both

### $\operatorname{conflicts}$



#### $\operatorname{conflict}$

A conflict occurs when there is an interaction between two transactions

- $r_x[o]$  and  $w_y[o]$  are in H where  $x \neq y$  or
- $w_x[o]$  and  $w_y[o]$  are in H where  $x \neq y$

Only consider pairs where there is no third operation  $rw_z[o]$  between the pair of operations that conflicts with both

### $\operatorname{conflicts}$



# Quiz 23.1: Conflicts



æ

イロト イヨト イヨト イヨト

# Conflict Equivalence and Conflict Serialisable

#### Conflict Equivalence

Two histories  $H_i$  and  $H_j$  are **conflict equivalent** if:

- **1** Contain the same set of operations
- **2** Order conflicts (of non-aborted transactions) in the same way.

### Conflict Serialisable

a history H is conflict serialisable (CSR) if  $C(H) \equiv_{CE}$  a serial history

# Failure to be conflict serialisable $H_x = r_2[b_{34}], r_1[b_{56}], w_1[b_{56}], r_1[b_{34}], w_1[b_{34}], c_1, w_2[b_{34}], r_2[b_{67}], w_2[b_{67}], c_2$ Contains conflicts $r_2[b_{34}] \rightarrow w_1[b_{34}]$ and $w_1[b_{34}] \rightarrow w_2[b_{34}]$ and so is not conflict equivalence to $H_1, H_2$ nor $H_2, H_1$ , and hence is not conflict serialisable.

#### Serialisation Graph



### Serialisation Graph



### Serialisation Graph



### Serialisation Graph





### Serialisation Graph





### Serialisation Graph





### Serialisation Graph





#### Serialisation Graph



### Serialisation Graph



### Worksheet: Serialisability



æ

イロト イヨト イヨト イヨト

Serialisable Execution

# Review of Serialisable Histories



Serialisable Execution

# Review of Serialisable Histories



Serialisable Execution

### Review of Serialisable Histories



### Review of Serialisable Histories



P.J. McBrien (Imperial College London)

### Topic 24: Recoverable Execution

#### P.J. McBrien

Imperial College London

# Recoverability

- Serialisability necessary for isolation and consistency of committed transactions
- Recoverability necessary for isolation and consistency when there are also aborted transactions

#### Recoverable execution

A **recoverable** (**RC**) history H has no transaction committing before another transaction from which it read

#### Execution avoiding cascading aborts

A history which avoids cascading aborts (ACA) does not read from a non-committed transaction

#### Strict execution

A strict (ST) history does not read from a non-committed transaction nor write over a non-committed transaction

#### $ST \subset ACA \subset RC$

・ロト ・聞ト ・ヨト ・ヨト

Recoverable Execution

#### Non-recoverable executions



P.J. McBrien (Imperial College London)

Recoverable Execution

### Cascading Aborts



### Strict Execution



イロト イヨト イヨト イヨト

| Quiz 24.1: Recoverability (1)                                                                                                                                                                                                                                        |             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| $H_x = \left[ r_2[b_{34}]  ight], \left[ r_1[b_{56}]  ight], \left[ w_1[b_{56}]  ight], \left[ r_1[b_{34}]  ight], \left[ w_1[b_{34}]  ight], \left[ c_1  ight], \left[ w_2[b_{34}]  ight], \left[ r_2[b_{67}]  ight], \left[ w_2[b_{67}]  ight], \left[ c_2  ight]$ |             |  |  |  |
| Which describes the recoverability of $H_x$ ?                                                                                                                                                                                                                        |             |  |  |  |
| A                                                                                                                                                                                                                                                                    | В           |  |  |  |
| Non-recoverable                                                                                                                                                                                                                                                      | Recoverable |  |  |  |
| С                                                                                                                                                                                                                                                                    | D           |  |  |  |
| Avoids Cascading Aborts                                                                                                                                                                                                                                              | Strict      |  |  |  |

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

| Quiz 24.2: Recoverability (2)                                                                                                                                                     |             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| $H_y = \left[ r_2[b_{34}] \right], \ w_2[b_{34}] \ , \ r_1[b_{56}] \ , \ w_1[b_{56}] \ , \ r_1[b_{34}] \ , \ w_1[b_{34}] \ , \ r_2[b_{67}] \ , \ w_2[b_{67}] \ , \ c_2 \ , \ c_1$ |             |  |  |  |
| Which describes the recoverability of $H_y$ ?                                                                                                                                     |             |  |  |  |
| A                                                                                                                                                                                 | В           |  |  |  |
| Non-recoverable                                                                                                                                                                   | Recoverable |  |  |  |
| C                                                                                                                                                                                 | D           |  |  |  |
| Avoids Cascading Aborts                                                                                                                                                           | Strict      |  |  |  |

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで
# Quiz 24.3: Recoverability (3) $H_z = \left[ r_2[b_{34}] \right], \left[ w_2[b_{34}] \right], \left[ r_1[b_{56}] \right], \left[ w_1[b_{56}] \right], \left[ r_1[b_{34}] \right], \left[ w_1[b_{34}] \right], \left[ c_1 \right], \left[ r_2[b_{67}] \right], \left[ w_2[b_{67}] \right], \left[ c_2 \right] \right]$ Non-recoverable Recoverable D Avoids Cascading Aborts Strict

イロト イロト イヨト イヨト 三日

# Quiz 24.4: Recoverability (4) $H_w = \left[ r_2[b_{34}] \right], \left[ r_1[b_{56}] \right], \left[ w_1[b_{56}] \right], \left[ r_1[b_{34}] \right], \left[ w_1[b_{34}] \right], \left[ w_2[b_{34}] \right], \left[ r_2[b_{67}] \right], \left[ w_2[b_{67}] \right], \left[ c_2 \right], \left[ c_1 \right], \left[ c_2 \right], \left[ c_2 \right], \left[ c_1 \right], \left[ c_2 \right], \left[ c_$ Non-recoverable Recoverable D Avoids Cascading Aborts Strict

イロト イロト イヨト イヨト 三日

## Worksheet: Recoverability



3

# Review of Recoverable Histories

#### Non-recoverable $\rightarrow$ Dirty Read

For a history to be non-recoverable, it must contain a dirty read DRThus  $H=RC\cup DR$ However, a dirty read does not imply a history is non-recoverable



# Review of Recoverable Histories

#### Non-recoverable $\rightarrow$ Dirty Read

For a history to be non-recoverable, it must contain a dirty read DRThus  $H = RC \cup DR$ However, a dirty read does not imply a history is non-recoverable

#### No Dirty Read $\rightarrow$ Recoverable

A history that contains no dirty read must be recoverable, and **avoids cascading aborts** (ACA) at the commit of a transaction. Thus ACA = RC - DR and  $ACA \subset RC$ 



# Review of Recoverable Histories

#### Non-recoverable $\rightarrow$ Dirty Read

For a history to be non-recoverable, it must contain a dirty read DRThus  $H=RC\cup DR$ However, a dirty read does not imply a history is non-recoverable

#### No Dirty Read $\rightarrow$ Recoverable

A history that contains no dirty read must be recoverable, and **avoids cascading aborts** (ACA) at the commit of a transaction. Thus ACA = RC - DR and  $ACA \subset RC$ 

#### Dirty Write $\nleftrightarrow$ Recoverable

A dirty writes and recoverability do not imply anything about each other However, dirty writes make executing recovery complex, and can lead to non-serialisable executions. A **strict** (**ST**) history has no dirty reads or dirty writes.

Thus ST = ACA - DW and  $ST \subset ACA$ 

P.J. McBrien (Imperial College London)



Recoverable Execution

# Review of Serialisable and Recoverable Histories



Recoverable Execution

## Review of Serialisable and Recoverable Histories



Recoverable Execution

# Review of Serialisable and Recoverable Histories



P.J. McBrien (Imperial College London)

24: Recoverable Execution

# Topic 25: Concurrency Control

#### P.J. McBrien

Imperial College London

# Maintaining Serialisability and Recoverability

#### ■ two-phase locking (2PL)

- conflict based
- uses locks to prevent problems
- common technique

#### time-stamping

- add a timestamp to each object
- write sets timestamp to that of transaction
- may only read or write objects with earlier timestamp
- abort when object has new timestamp
- common technique

#### • optimistic concurrency control

- do nothing until commit
- at commit, inspect history for problems
- good if few conflicts

イロト 不得 ト イヨト イヨト

## The 2PL Protocol



**5**  $rl_i[o]$  or  $wl_i[o]$  refused  $\rightarrow$  delay  $T_i$ 

・ロト ・聞ト ・ヨト ・ヨト

2PL Basic 2PL

# Quiz 25.1: Two Phase Locking (2PL)



## Lost Update Anomaly



・ロト ・聞ト ・ヨト ・ヨト

## Lost Update Anomaly



・ロト ・聞ト ・ヨト ・ヨト

## Lost Update Anomaly with 2PL



# Lost Update Anomaly with 2PL



2PL causes T2 to be delayed

イロト イボト イヨト イヨト

# Why does 2PL Work?



- $\blacksquare$  two-phase rule  $\rightarrow$  maximum lock period
- can re-time history so all operations take place during maximum lock period
- CSR since *all* conflicts prevented during maximum lock period

イロト イボト イヨト イヨト

2PL Deadlock Detection

# Deadlock Detection: WFG with No Cycle = No Deadlock





 $H_1$  attempts  $r_1[b_{34}]$ , but is refused since  $H_2$  has a write-lock, and so is put on WFG

- waits-for graph (WFG)
- describes which transactions waits for others

イロト イボト イヨト イヨト



 $H_2$  can proceed to complete its execution, after which it will have released all its locks

#### ■ waits-for graph (WFG)

describes which transactions waits for others

イロト イボト イヨト イヨト



 $H_1$  may now proceed to completion





イロト イポト イヨト イヨト 二日



 $H_1$  attempts  $w_1[b_{34}]$ , but is refused since  $H_2$  has a read-lock, and so is put on WFG



æ





Cycle in WFG means DB in a deadlock state, must abort either  $H_1$  or  $H_2$ 

æ

イロト イヨト イヨト イヨト

## Worksheet: Deadlocks



æ

イロト イヨト イヨト イヨト

## Transaction Isolation Levels

Do we always need ACID properties?

BEGIN TRANSACTION T3 SELECT DISTINCT no FROM movement WHERE amount>=1000.00 COMMIT TRANSACTION T3

 Some transactions only need 'approximate' results e.g. Management overview e.g. Estimates

• May execute these transactions at a 'lower' level of concurrency control *SQL* allows you to vary the level of concurrency control

イロト イボト イヨト イヨト