
Concurrency Control

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) Concurrency Control 1

Topic 21: Serialisability and Recoverability

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 1

Transactions ACID properties

Transactions: ACID properties

ACID properties

database management systems (DBMS) implements indivisible tasks called
transactions

Atomicity all or nothing
Consistency consistent before → consistent after
Isolation independent of any other transaction
Durability completed transaction are durable

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 2

Transactions ACID properties

Transactions: ACID properties

ACID properties

database management systems (DBMS) implements indivisible tasks called
transactions

Atomicity all or nothing
Consistency consistent before → consistent after
Isolation independent of any other transaction
Durability completed transaction are durable

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t code =56

UPDATE branch
SET cash=cash +10000.00
WHERE so r t code =34

COMMIT TRANSACTION

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 2

Transactions ACID properties

Transactions: ACID properties

ACID properties

database management systems (DBMS) implements indivisible tasks called
transactions

Atomicity all or nothing
Consistency consistent before → consistent after
Isolation independent of any other transaction
Durability completed transaction are durable

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t code =56

UPDATE branch
SET cash=cash +10000.00
WHERE so r t code =34

COMMIT TRANSACTION

Note that if total cash is £137,246.12
before the transaction, then it will be
the same after the transaction.

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 2

Transactions ACID properties

Example Data

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

movement
mid no amount tdate
1000 100 2300.00 5/1/1999
1001 101 4000.00 5/1/1999
1002 100 -223.45 8/1/1999
1004 107 -100.00 11/1/1999
1005 103 145.50 12/1/1999
1006 100 10.23 15/1/1999
1007 107 345.56 15/1/1999
1008 101 1230.00 15/1/1999
1009 119 5600.00 18/1/1999

account
no type cname rate? sortcode

100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

key branch(sortcode)
key branch(bname)
key movement(mid)
key account(no)

movement(no)
fk
⇒ account(no)

account(sortcode)
fk
⇒ branch(sortcode)

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 3

Transactions ACID properties

Transaction Properties: Atomicity

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t c od e=56

CRASH

Suppose that the system crashes half way through processing a cash transfer, and the
first part of the transfer has been written to disc

The database on disc is left in an inconsistent state, with £10,000 ‘missing’

A DBMS implementing Atomicity of transactions would on restart UNDO the
change to branch 56

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 4

Transactions ACID properties

Transaction Properties: Consistency

BEGIN TRANSACTION
DELETE FROM branch
WHERE so r t c od e=56

INSERT INTO account
VALUES (100 , ’ Smith , J ’ , ’ d e p o s i t ’ , 5 . 0 0 , 34)

END TRANSACTION

Suppose that a user deletes branch with sortcode 56, and inserts a deposit account
number 100 for John Smith at branch sortcode 34

The database is left in an inconsistent state for two reasons
it has three accounts recorded for a branch that appears not to exist, and
it has two records for account number 100, with different details for the account

A DBMS implementing Consistency of transactions would forbid both of these
changes to the database

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 5

Transactions ACID properties

Transaction Properties: Isolation

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t c od e=56

UPDATE branch
SET cash=cash +10000.00
WHERE so r t c od e=34

END TRANSACTION

BEGIN TRANSACTION

SELECT SUM(cash) AS n e t c a sh
FROM branch

END TRANSACTION

Suppose that the system sums the cash in the bank in one transaction, half way
through processing a cash transfer in another transaction

The result of the summation of cash in the bank erroneously reports that
£10,000 is missing

A DBMS implementing Isolation of transactions ensures that transactions
always report results based on the values of committed transactions

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 6

Transactions ACID properties

Transaction Properties: Durability

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −10000.00
WHERE so r t c od e=56

UPDATE branch
SET cash=cash+10000.00
WHERE so r t c od e=34

END TRANSACTION

CRASH

Suppose that the system crashes after informing the user that it has committed the
transfer of cash, but has not yet written to disc the update to branch 34

The database on disc is left in an inconsistent state, with £10,000 ‘missing’

A DBMS implementing Durability of transactions would on restart complete
the change to branch 34 (or alternatively never inform a user of commitment
with writing the results to disc).

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 7

Transactions ACID properties

SQL Conversion to Histories

branch
sortcode bname cash

56 ’Wimbledon’ 94340.45
34 ’Goodge St’ 8900.67
67 ’Strand’ 34005.00

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash −10000.00
WHERE so r t code =56

UPDATE branch
SET cash=cash +10000.00
WHERE so r t code =34

COMMIT TRANSACTION T1

H1 = r1[b56] , cash=94340.45,

w1[b56] , cash=84340.45,

r1[b34] , cash=8900.67,

w1[b34] , cash=18900.67, c1

history of transaction Tn

1 Begin transaction bn (only given if necessary for discussion)

2 Various read operations on objects rn[oj] and write operations wn[oj]

3 Either cn for the commitment of the transaction, or an for the abort of the
transaction

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 8

Transactions ACID properties

SQL Conversion to Histories

branch
sortcode bname cash

56 ’Wimbledon’ 84340.45
34 ’Goodge St’ 18900.67
67 ’Strand’ 34005.00

BEGIN TRANSACTION
UPDATE branch
SET cash=cash −2000.00
WHERE so r t code =34

UPDATE branch
SET cash=cash +2000.00
WHERE so r t code =67

COMMIT TRANSACTION

H2 = r2[b34] , cash=18900.67,

w2[b34] , cash=16900.67,

r2[b67] , cash=34005.00,

w2[b67] , cash=36005.00, c2

history of transaction Tn

Same pattern of transaction code gives same pattern of operations

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 9

Concurrency Definition

Serial Execution

Serial Execution of Transactions

Executing one transaction at a time

Provided updates are recorded in stable storage at the time of ci, must maintain
the ACID properties

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 10

Concurrency Definition

Serial Execution

Serial Execution of Transactions

Executing one transaction at a time

Provided updates are recorded in stable storage at the time of ci, must maintain
the ACID properties

Possible Serial Executions

H1 = r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

H2 = r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 10

Concurrency Definition

Serial Execution

Serial Execution of Transactions

Executing one transaction at a time

Provided updates are recorded in stable storage at the time of ci, must maintain
the ACID properties

Possible Serial Executions

H1 = r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

H2 = r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

The only two possible serial executions are

Hs12 = r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

Hs21 = r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2 , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 10

Concurrency Definition

Concurrent Execution

Concurrent Execution of Transactions

Interleaving of several transaction histories

Order of operations within each history preserved

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 11

Concurrency Definition

Concurrent Execution

Concurrent Execution of Transactions

Interleaving of several transaction histories

Order of operations within each history preserved

H1 = r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

H2 = r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 11

Concurrency Definition

Concurrent Execution

Concurrent Execution of Transactions

Interleaving of several transaction histories

Order of operations within each history preserved

H1 = r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

H2 = r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

Some possible concurrent executions are

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 11

Concurrency Definition

Which concurrent executions should be allowed?

Concurrency control → controlling interaction

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 12

Concurrency Definition

Which concurrent executions should be allowed?

Concurrency control → controlling interaction

serialisability

A concurrent execution of transactions
should always have the same final result as
some serial execution of those same
transactions

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 12

Concurrency Definition

Which concurrent executions should be allowed?

Concurrency control → controlling interaction

serialisability

A concurrent execution of transactions
should always have the same final result as
some serial execution of those same
transactions

recoverability

No transaction commits depending on data
that has been produced by another
transaction that has yet to commit

Concurrency Definition

Which concurrent executions should be allowed?

Concurrency control → controlling interaction

serialisability

A concurrent execution of transactions
should always have the same final result as
some serial execution of those same
transactions

recoverability

No transaction commits depending on data
that has been produced by another
transaction that has yet to commit

H
H set of all possible histories

Concurrency Definition

Which concurrent executions should be allowed?

Concurrency control → controlling interaction

serialisability

A concurrent execution of transactions
should always have the same final result as
some serial execution of those same
transactions

recoverability

No transaction commits depending on data
that has been produced by another
transaction that has yet to commit

H
H set of all possible histories

SR SR set of serialisable histories

Concurrency Definition

Which concurrent executions should be allowed?

Concurrency control → controlling interaction

serialisability

A concurrent execution of transactions
should always have the same final result as
some serial execution of those same
transactions

recoverability

No transaction commits depending on data
that has been produced by another
transaction that has yet to commit

H
H set of all possible histories

SR SR set of serialisable historiesRC
RC set of recoverable histories

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 12

Concurrency Definition

Quiz 21.1: Serialisability and Recoverability (1)

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Is Hx

A

Not Serialisable, Not Recoverable

B

Not Serialisable, Recoverable

C

Serialisable, Not Recoverable

D

Serialisable, Recoverable

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 13

Concurrency Definition

Quiz 21.2: Serialisability and Recoverability (2)

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Is Hy

A

Not Serialisable, Not Recoverable

B

Not Serialisable, Recoverable

C

Serialisable, Not Recoverable

D

Serialisable, Recoverable

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 14

Concurrency Definition

Quiz 21.3: Serialisability and Recoverability (3)

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Is Hz

A

Not Serialisable, Not Recoverable

B

Not Serialisable, Recoverable

C

Serialisable, Not Recoverable

D

Serialisable, Recoverable

P.J. McBrien (Imperial College London) 21: Serialisability and Recoverability 15

Anomalies

Topic 22: Anomalies in Transaction Execution

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 1

Anomalies

Anomaly 1: Lost Update

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r1[b34] , cash=8900.67,

r2[b34] , cash=8900.67, w1[b34] , cash=18900.67, c1 , w2[b34] , cash=6900.67,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, c2

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 2

Anomalies

Anomaly 1: Lost Update

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r1[b34] , cash=8900.67,

r2[b34] , cash=8900.67, lost update , c1 , w2[b34] , cash=6900.67,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, c2

− serialisable + recoverable LU = set of histories with a lost update
SR ∩ LU = ∅

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 2

Anomalies

Anomaly 2: Inconsistent analysis

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T4
SELECT SUM(cash) FROM branch

COMMIT TRANSACTION T4

H4 = r4[b56] , r4[b34] , r4[b67] , c4

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r4[b56] , cash=84340.45,

r4[b34] , cash=8900.67, r4[b67] , cash=34005.00, r1[b34] , cash=8900.67,

w1[b34] , cash=18900.67, c1 , c4

− serialisable + recoverable IA = set of histories with an inconsistent analysis
SR ∩ IA = ∅

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 3

Anomalies

Anomaly 3: Dirty Reads

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r2[b34] , cash=8900.67,

w2[b34] , cash=6900.67, r1[b34] , cash=6900.67, w1[b34] , cash=16900.67, c1 ,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, a2

+ serialisable − recoverable DR = set of histories with a dirty read
RC ∩DR 6= ∅

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 4

Anomalies

Quiz 22.1: Anomalies (1)

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Which anomaly does Hx suffer?

A

None

B

Lost Update

C

Inconsistent Analysis

D

Dirty Read

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 5

Anomalies

Quiz 22.2: Anomalies (2)

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Which anomaly does Hy suffer?

A

None

B

Lost Update

C

Inconsistent Analysis

D

Dirty Read

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 6

Anomalies

Quiz 22.3: Anomalies (3)

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Which anomaly does Hz suffer?

A

None

B

Lost Update

C

Inconsistent Analysis

D

Dirty Read

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 7

Anomalies

Account Table

account
no type cname rate? sortcode
100 ’current’ ’McBrien, P.’ NULL 67
101 ’deposit’ ’McBrien, P.’ 5.25 67
103 ’current’ ’Boyd, M.’ NULL 34
107 ’current’ ’Poulovassilis, A.’ NULL 56
119 ’deposit’ ’Poulovassilis, A.’ 5.50 56
125 ’current’ ’Bailey, J.’ NULL 56

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 8

Anomalies

Anomaly 3: Dirty Reads (Recoverable Example)

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r2[b34] , cash=8900.67,

w2[b34] , cash=6900.67, r1[b34] , cash=6900.67, w1[b34] , cash=16900.67,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, c2 , c1

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 9

Anomalies

Anomaly 3: Dirty Reads (Recoverable Example)

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r2[b34] , cash=8900.67,

w2[b34] , cash=6900.67, r1[b34] , cash=6900.67, w1[b34] , cash=16900.67,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, c2 , c1

+ serialisable + recoverable DR = set of histories with a dirty read
RC ∩DR 6= ∅ ∧ RC ∪DR = H

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 9

Anomalies

Anomaly 4: Dirty Writes

BEGIN TRANSACTION T5
UPDATE account
SET rate=5.5
WHERE type=’deposit’

COMMIT TRANSACTION T5

H5 = w5[a101] , rate=5.5,

w5[a119] , rate=5.5, c5

BEGIN TRANSACTION T6
UPDATE account
SET rate=6.0
WHERE type=’deposit’

COMMIT TRANSACTION T6

H6 = w6[a101] , rate=6.0,

w6[a119] , rate=6.0, c6

w6[a101] , rate=6.0, w5[a101] , rate=5.5, w5[a119] , rate=5.5,

w6[a119] , rate=6.0, c5 , c6

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 10

Anomalies

Anomaly 4: Dirty Writes

BEGIN TRANSACTION T5
UPDATE account
SET rate=5.5
WHERE type=’deposit’

COMMIT TRANSACTION T5

H5 = w5[a101] , rate=5.5,

w5[a119] , rate=5.5, c5

BEGIN TRANSACTION T6
UPDATE account
SET rate=6.0
WHERE type=’deposit’

COMMIT TRANSACTION T6

H6 = w6[a101] , rate=6.0,

w6[a119] , rate=6.0, c6

w6[a101] , rate=6.0, w5[a101] , rate=5.5, w5[a119] , rate=5.5,

w6[a119] , rate=6.0, c5 , c6

− serialisable + recoverable WR = set of histories with a dirty write
SR ∩WR 6= ∅

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 10

Anomalies

Patterns of operations associated with Anomalies

Anomaly Set Pattern Problem
Dirty Write DW w1[o] ≺ w2[o] ≺ e1 Sometimes not SR
Dirty Read DR w1[o] ≺ r2[o] ≺ e1 Sometimes not RC

Inconsistent Analysis IA r1[oa] ≺ w2[oa], w2[ob] ≺ r1[ob] Not SR
Lost Update LU r1[o] ≺ w2[o] ≺ w1[o] Not SR

Notation

ei means either ci or ai occurring

opa ≺ opb mean opa occurs before opb in a history

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 11

Anomalies

Worksheet: Anomalies

rental charge

H1 = r1[d1000] , w1[d1000] , r1[d1001] , w1[d1001] , r1[d1002] , w1[d1002]

transfer charge

H2 = r2[d1000] , w2[d1000] , r2[d1002] , w2[d1002]

total charge

H3 = r3[d1000] , r3[d1001] , r3[d1002]

P.J. McBrien (Imperial College London) 22: Anomalies in Transaction Execution 12

Serialisable Execution

Topic 23: Serialisable Execution

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) 23: Serialisable Execution 1

Serialisable Execution

Serialisable Transaction Execution

Solve anomalies → H ≡ serial execution

Only interested in the committed projection

Hc =

r1[b56] , r2[b34] , w2[b34] ,

r3[m1000] , r3[m1001] , r3[m1002] ,

w1[b56] , r4[b56] ,

r3[m1003] , r3[m1004] , r3[m1005] ,

r1[b34] , a3 , w1[b34] , c1 , r4[b34] ,

r2[b67] , w2[b67] , c2 , r4[b67] , c4

C(Hc) =

r1[b56] , r2[b34] , w2[b34] ,

w1[b56] , r4[b56] ,

r1[b34] , w1[b34] , c1 , r4[b34] ,

r2[b67] , w2[b67] , c2 , r4[b67] , c4

P.J. McBrien (Imperial College London) 23: Serialisable Execution 2

Serialisable Execution

Possible Serial Equivalents

Hcp = r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] , c1 , r4[b34] , r2[b67] ,

w2[b67] , c2 , r4[b67] , c4

H1 , H2 , H4 H1 , H4 , H2 H2 , H1 , H4 H2 , H4 , H1 H4 , H1 , H2 H4 , H2 , H1

how to determine that histories are equivalent?

how to check this during execution?

P.J. McBrien (Imperial College London) 23: Serialisable Execution 3

Serialisable Execution

Conflicts: Potential For Problems

conflict

A conflict occurs when there is an interaction between two transactions

rx[o] and wy[o] are in H where x 6= y

or

wx[o] and wy [o] are in H where x 6= y

Only consider pairs where there is

no third operation rwz[o] between

the pair of operations that conflicts

with both

conflicts

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Conflicts

P.J. McBrien (Imperial College London) 23: Serialisable Execution 4

Serialisable Execution

Conflicts: Potential For Problems

conflict

A conflict occurs when there is an interaction between two transactions

rx[o] and wy[o] are in H where x 6= y

or

wx[o] and wy [o] are in H where x 6= y

Only consider pairs where there is

no third operation rwz[o] between

the pair of operations that conflicts

with both

conflicts

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Conflicts

w2[b34] → r1[b34] T1 reads from T2 in Hy,Hz

P.J. McBrien (Imperial College London) 23: Serialisable Execution 4

Serialisable Execution

Conflicts: Potential For Problems

conflict

A conflict occurs when there is an interaction between two transactions

rx[o] and wy[o] are in H where x 6= y

or

wx[o] and wy [o] are in H where x 6= y

Only consider pairs where there is

no third operation rwz[o] between

the pair of operations that conflicts

with both

conflicts

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Conflicts

w2[b34] → r1[b34] T1 reads from T2 in Hy,Hz

w1[b34] → w2[b34] T2 writes over T1 in Hx

P.J. McBrien (Imperial College London) 23: Serialisable Execution 4

Serialisable Execution

Conflicts: Potential For Problems

conflict

A conflict occurs when there is an interaction between two transactions

rx[o] and wy[o] are in H where x 6= y

or

wx[o] and wy [o] are in H where x 6= y

Only consider pairs where there is

no third operation rwz[o] between

the pair of operations that conflicts

with both

conflicts

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Conflicts

w2[b34] → r1[b34] T1 reads from T2 in Hy,Hz

w1[b34] → w2[b34] T2 writes over T1 in Hx

r2[b34] → w1[b34] T1 writes after T2 reads in Hx

P.J. McBrien (Imperial College London) 23: Serialisable Execution 4

Serialisable Execution

Quiz 23.1: Conflicts

Hw =

r2[a100] , w2[a100] , r2[a107] , r1[a119] , w1[a119] , r1[a107] , w1[a107] , c1 , w2[a107] , c2

Which of the following is not a conflict in Hw?

A

r2[a107] → r1[a107]

B

r2[a107] → w1[a107]

C

r1[a107] → w2[a107]

D

w1[a107] → w2[a107]

P.J. McBrien (Imperial College London) 23: Serialisable Execution 5

Serialisable Execution

Conflict Equivalence and Conflict Serialisable

Conflict Equivalence

Two histories Hi and Hj are conflict equivalent if:

1 Contain the same set of operations

2 Order conflicts (of non-aborted transactions) in the same way.

Conflict Serialisable

a history H is conflict serialisable (CSR) if C(H) ≡CE a serial history

Failure to be conflict serialisable

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Contains conflicts r2[b34] → w1[b34] and w1[b34] → w2[b34] and so is not conflict

equivalence to H1,H2 nor H2,H1, and hence is not conflict serialisable.

P.J. McBrien (Imperial College London) 23: Serialisable Execution 6

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

P.J. McBrien (Imperial College London) 23: Serialisable Execution 7

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

Conflicts are w2[b34] → r1[b34] ,

SG(Hcp)

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

Conflicts are w2[b34] → r1[b34] ,

SG(Hcp)

T2 T1

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

Conflicts are w2[b34] → r1[b34] , w1[b56] → r4[b56] ,

SG(Hcp)

T2 T1

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

Conflicts are w2[b34] → r1[b34] , w1[b56] → r4[b56] ,

SG(Hcp)

T2 T1 T4

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

Conflicts are w2[b34] → r1[b34] , w1[b56] → r4[b56] , w1[b34] → r4[b34] ,

SG(Hcp)

T2 T1 T4

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

Conflicts are w2[b34] → r1[b34] , w1[b56] → r4[b56] , w1[b34] → r4[b34] ,

w2[b67] → r4[b67]

SG(Hcp)

T2 T1 T4

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

Conflicts are w2[b34] → r1[b34] , w1[b56] → r4[b56] , w1[b34] → r4[b34] ,

w2[b67] → r4[b67]

SG(Hcp)

T2 T1 T4

P.J. McBrien (Imperial College London) 23: Serialisable Execution 7

Serialisable Execution

Serialisation Graph

Serialisation Graph

A serialisation graph SG(H) contains a node for each transaction in H , and an
edge Ti → Tj if there is some object o for which a conflict rwi[o] → rwj [o] exists in H .
If SG(H) is acyclic, then H is conflict serialisable.

Demonstrating that a History is CSR

Given Hcp= r1[b56] , r2[b34] , w2[b34] , w1[b56] , r4[b56] , r1[b34] , w1[b34] ,

c1 , r4[b34] , r2[b67] , w2[b67] , c2 , r4[b67] , c4

Conflicts are w2[b34] → r1[b34] , w1[b56] → r4[b56] , w1[b34] → r4[b34] ,

w2[b67] → r4[b67]

SG(Hcp)

T2 T1 T4

SG(Hcp) is acyclic, therefore Hcp is CSR. Serialisation order T2, T1, T4

P.J. McBrien (Imperial College London) 23: Serialisable Execution 7

Serialisable Execution

Worksheet: Serialisability

H1 = r1[o1] , w1[o1] , w1[o2] , w1[o3] , c1

H2 = r2[o2] , w2[o2] , w2[o1] , c2

H3 = r3[o1] , w3[o1] , w3[o2] , c3

H= r1[o1] , w1[o1] , r2[o2] , w2[o2] , w2[o1] , c2 , w1[o2] , r3[o1] , w3[o1] ,

w3[o2] , c3 , w1[o3] , c1

P.J. McBrien (Imperial College London) 23: Serialisable Execution 8

Serialisable Execution

Review of Serialisable Histories

RC
RC recoverable

SR

SR serialisable

Serialisable Execution

Review of Serialisable Histories

RC
RC recoverable

SR

SR serialisable

CSR

CSR conflict serialisable

Serialisable Execution

Review of Serialisable Histories

RC
RC recoverable

SR

SR serialisable

CSR

CSR conflict serialisable

LU

LU lost update

IA

IA inconsistent analysis

Serialisable Execution

Review of Serialisable Histories

RC
RC recoverable

SR

SR serialisable

CSR

CSR conflict serialisable

LU

LU lost update

IA

IA inconsistent analysis

DW

DW dirty write

P.J. McBrien (Imperial College London) 23: Serialisable Execution 9

Recoverable Execution

Topic 24: Recoverable Execution

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) 24: Recoverable Execution 1

Recoverable Execution

Recoverability

Serialisability necessary for isolation and consistency of committed transactions

Recoverability necessary for isolation and consistency when there are also
aborted transactions

Recoverable execution

A recoverable (RC) history H has no transaction committing before another
transaction from which it read

Execution avoiding cascading aborts

A history which avoids cascading aborts (ACA) does not read from a
non-committed transaction

Strict execution

A strict (ST) history does not read from a non-committed transaction nor write
over a non-committed transaction

ST ⊂ ACA ⊂ RC

P.J. McBrien (Imperial College London) 24: Recoverable Execution 2

Recoverable Execution

Non-recoverable executions

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56
UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

COMMIT TRANSACTION T1

H1 = r1[b56] , w1[b56] , a1

BEGIN TRANSACTION T4
SELECT SUM(cash) FROM branch

COMMIT TRANSACTION T4

H4 = r4[b56] , r4[b34] , r4[b67] , c4

Hc = r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r4[b56] , cash=84340.45,

r4[b34] , cash=8900.67, r4[b67] , cash=34005.00, c4 , a1
Hc 6∈ RC

P.J. McBrien (Imperial College London) 24: Recoverable Execution 3

Recoverable Execution

Cascading Aborts

BEGIN TRANSACTION T1
UPDATE branch
SET cash=cash-10000.00
WHERE sortcode=56
UPDATE branch
SET cash=cash+10000.00
WHERE sortcode=34

COMMIT TRANSACTION T1

H1 = r1[b56] , w1[b56] , a1

BEGIN TRANSACTION T4
SELECT SUM(cash) FROM branch

COMMIT TRANSACTION T4

H4 = r4[b56] , r4[b34] , r4[b67] , c4

Hc = r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r4[b56] , cash=84340.45,

r4[b34] , cash=8900.67, r4[b67] , cash=34005.00, a1 , a4

Hc ∈ RC

Hc 6∈ ACA

P.J. McBrien (Imperial College London) 24: Recoverable Execution 4

Recoverable Execution

Strict Execution

BEGIN TRANSACTION T5
UPDATE account
SET rate=5.5
WHERE type=’deposit’

COMMIT TRANSACTION T5

H5 = w5[a101] , rate=5.5,

w5[a119] , rate=5.5, a5

BEGIN TRANSACTION T6
UPDATE account
SET rate=6.0
WHERE type=’deposit’

COMMIT TRANSACTION T6

H6 = w6[a101] , rate=6.0,

w6[a119] , rate=6.0, c6

Hc = w6[a101] , rate=6.0, w5[a101] , rate=5.5,

w5[a119] , rate=5.5, w6[a119] , rate=6.0, a5 , c6

Hc ∈ ACA
Hc 6∈ ST

P.J. McBrien (Imperial College London) 24: Recoverable Execution 5

Recoverable Execution

Quiz 24.1: Recoverability (1)

Hx = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , w2[b34] , r2[b67] , w2[b67] , c2

Which describes the recoverability of Hx?

A

Non-recoverable

B

Recoverable

C

Avoids Cascading Aborts

D

Strict

P.J. McBrien (Imperial College London) 24: Recoverable Execution 6

Recoverable Execution

Quiz 24.2: Recoverability (2)

Hy = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , r2[b67] , w2[b67] , c2 , c1

Which describes the recoverability of Hy?

A

Non-recoverable

B

Recoverable

C

Avoids Cascading Aborts

D

Strict

P.J. McBrien (Imperial College London) 24: Recoverable Execution 7

Recoverable Execution

Quiz 24.3: Recoverability (3)

Hz = r2[b34] , w2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1 , r2[b67] , w2[b67] , c2

Which describes the recoverability of Hz?

A

Non-recoverable

B

Recoverable

C

Avoids Cascading Aborts

D

Strict

P.J. McBrien (Imperial College London) 24: Recoverable Execution 8

Recoverable Execution

Quiz 24.4: Recoverability (4)

Hw = r2[b34] , r1[b56] , w1[b56] , r1[b34] , w1[b34] , w2[b34] , r2[b67] , w2[b67] , c2 , c1

Which describes the recoverability of Hw?

A

Non-recoverable

B

Recoverable

C

Avoids Cascading Aborts

D

Strict

P.J. McBrien (Imperial College London) 24: Recoverable Execution 9

Recoverable Execution

Worksheet: Recoverability

Hw = r2[o1] , r2[o2] , w2[o2] , r1[o2] , w2[o1] , r2[o3] , c2 , c1

Hx = r2[o1] , r2[o2] , w2[o1] , w2[o2] , w1[o1] , w1[o2] , c1 , r2[o3] , c2

Hy = r2[o1] , r2[o2] , w2[o2] , r1[o2] , w2[o1] , c1 , r2[o3] , c2

Hz = r2[o1] , w1[o1] , r2[o2] , w2[o2] , r2[o3] , c2 , r1[o2] , w1[o2] , w1[o3] , c1

P.J. McBrien (Imperial College London) 24: Recoverable Execution 10

Recoverable Execution

Review of Recoverable Histories

Non-recoverable → Dirty Read

For a history to be non-recoverable, it must contain a dirty read DR

Thus H = RC ∪DR

However, a dirty read does not imply a history is non-recoverable

RC recov

DR set of

RC DR

Recoverable Execution

Review of Recoverable Histories

Non-recoverable → Dirty Read

For a history to be non-recoverable, it must contain a dirty read DR

Thus H = RC ∪DR

However, a dirty read does not imply a history is non-recoverable

No Dirty Read → Recoverable

A history that contains no dirty read must be recoverable, and avoids cascading

aborts (ACA) at the commit of a transaction.
Thus ACA = RC −DR and ACA ⊂ RC

RC recov

DR set of

RC DR

Recoverable Execution

Review of Recoverable Histories

Non-recoverable → Dirty Read

For a history to be non-recoverable, it must contain a dirty read DR

Thus H = RC ∪DR

However, a dirty read does not imply a history is non-recoverable

No Dirty Read → Recoverable

A history that contains no dirty read must be recoverable, and avoids cascading

aborts (ACA) at the commit of a transaction.
Thus ACA = RC −DR and ACA ⊂ RC

Dirty Write 6↔ Recoverable

A dirty writes and recoverabilty do not
imply anything about each other
However, dirty writes make executing
recovery complex, and can lead to
non-serialisable executions. A strict

(ST) history has no dirty reads or dirty
writes.
Thus ST = ACA−DW and ST ⊂ ACA

RC recov

DR set of

RC DR

DW dirty

DW

P.J. McBrien (Imperial College London) 24: Recoverable Execution 11

Recoverable Execution

Review of Serialisable and Recoverable Histories

RC
RC recoverable

ST ST strict

DW

DW dirty write

Recoverable Execution

Review of Serialisable and Recoverable Histories

RC
RC recoverable

ST ST strict

DW

DW dirty write

SR

SR serialisable

CSR

CSR conflict serialisable

Recoverable Execution

Review of Serialisable and Recoverable Histories

RC
RC recoverable

ST ST strict

DW

DW dirty write

SR

SR serialisable

CSR

CSR conflict serialisable

LU

LU lost update

IA

IA inconsistent analysis

P.J. McBrien (Imperial College London) 24: Recoverable Execution 12

Concurrency Control

Topic 25: Concurrency Control

P.J. McBrien

Imperial College London

P.J. McBrien (Imperial College London) 25: Concurrency Control 1

Concurrency Control

Maintaining Serialisability and Recoverability

two-phase locking (2PL)
conflict based
uses locks to prevent problems
common technique

time-stamping

add a timestamp to each object
write sets timestamp to that of transaction
may only read or write objects with earlier timestamp
abort when object has new timestamp
common technique

optimistic concurrency control

do nothing until commit
at commit, inspect history for problems
good if few conflicts

P.J. McBrien (Imperial College London) 25: Concurrency Control 2

2PL Basic 2PL

The 2PL Protocol

1 read locks rl[o], . . . , r[o], . . . , ru[o]

2 write locks wl[o], . . . , w[o], . . . , wu[o]

3 Two phases
i growing phase
ii shrinking phase

4 refuse rli[o] if wlj [o] already held
refuse wli[o] if rlj [o] or wlj [o] already held

5 rli[o] or wli[o] refused → delay Ti

✲
time

✻

no.
locks
in Hi

bi ei

P.J. McBrien (Imperial College London) 25: Concurrency Control 3

2PL Basic 2PL

Quiz 25.1: Two Phase Locking (2PL)

Which history is not valid in 2PL?

A

rl1[a107] , r1[a107] , wl1[a107] , w1[a107] , wu1[a107] , ru1[a107]

B

wl1[a107] , wl1[a100] , r1[a107] , w1[a107] , r1[a100] , w1[a100] , wu1[a100] , wu1[a107]

C

wl1[a107] , r1[a107] , w1[a107] , wu1[a107] , wl1[a100] , r1[a100] , w1[a100] , wu1[a100]

D

wl1[a107] , r1[a107] , w1[a107] , wl1[a100] , r1[a100] , wu1[a107] , w1[a100] , wu1[a100]

P.J. McBrien (Imperial College London) 25: Concurrency Control 4

2PL Basic 2PL

Lost Update Anomaly

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r1[b34] , cash=8900.67,

r2[b34] , cash=8900.67, w1[b34] , cash=18900.67, c1 , w2[b34] , cash=6900.67,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, c2

P.J. McBrien (Imperial College London) 25: Concurrency Control 5

2PL Basic 2PL

Lost Update Anomaly

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

r1[b56] , w1[b56] , r1[b34] , w1[b34] , c1

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

r2[b34] , w2[b34] , r2[b67] , w2[b67] , c2

r1[b56] , cash=94340.45, w1[b56] , cash=84340.45, r1[b34] , cash=8900.67,

r2[b34] , cash=8900.67, lost update , c1 , w2[b34] , cash=6900.67,

r2[b67] , cash=34005.00, w2[b67] , cash=36005.25, c2

P.J. McBrien (Imperial College London) 25: Concurrency Control 5

2PL Basic 2PL

Lost Update Anomaly with 2PL

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

b1 , wl1[b56] , r1[b56] , w1[b56] , wl1[b34] ,

r1[b34] , w1[b34] , c1 , wu1[b56] , wu1[b34]

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

b2 , wl2[b34] , r2[b34] , w2[b34] , wl2[b67] ,

r2[b67] , w2[b67] , c2 , wu2[b34] , wu2[b67]

b1 , wl1[b56] , r1[b56] , w1[b56] , wl1[b34] , r1[b34] , b2 , wl2[b34] , r2[b34] , w1[b34] , c1 ,

wu1[b56] , wu1[b34] , w2[b34] , wl2[b67] , r2[b67] , w2[b67] , c2 , wu2[b34] , wu2[b67]

Lost Update history not permitted by 2PL, since wl2[b34] not granted

P.J. McBrien (Imperial College London) 25: Concurrency Control 6

2PL Basic 2PL

Lost Update Anomaly with 2PL

BEGIN TRANSACTION T1
EXEC move cash(56,34,10000.00)

COMMIT TRANSACTION T1

b1 , wl1[b56] , r1[b56] , w1[b56] , wl1[b34] ,

r1[b34] , w1[b34] , c1 , wu1[b56] , wu1[b34]

BEGIN TRANSACTION T2
EXEC move cash(34,67,2000.00)

COMMIT TRANSACTION T2

b2 , wl2[b34] , r2[b34] , w2[b34] , wl2[b67] ,

r2[b67] , w2[b67] , c2 , wu2[b34] , wu2[b67]

b1 , wl1[b56] , r1[b56] , w1[b56] , wl1[b34] , r1[b34] , b2 , w1[b34] , c1 , wu1[b56] , wu1[b34] ,

wl2[b34] , r2[b34] , w2[b34] , wl2[b67] , r2[b67] , w2[b67] , c2 , wu2[b34] , wu2[b67]

2PL causes T2 to be delayed

P.J. McBrien (Imperial College London) 25: Concurrency Control 6

2PL Basic 2PL

Why does 2PL Work?

✲
time

✻
no. locks

bi eibj ej

Hi Hj

two-phase rule → maximum lock period

can re-time history so all operations take place during maximum lock period

CSR since all conflicts prevented during maximum lock period

P.J. McBrien (Imperial College London) 25: Concurrency Control 7

2PL Deadlock Detection

Deadlock Detection: WFG with No Cycle = No Deadlock

Hn b1 r1[b56] w1[b56] b2 r2[b34] w2[b34]

rl1[b56]

⇓

wl1[b56]

⇓

wl1 [b56]

⇓

rl2[b34]

wl1[b56]

⇓

wl2[b34]

wl1[b56]

⇓

WFG(Hn)

T1 T2

2PL Deadlock Detection

Deadlock Detection: WFG with No Cycle = No Deadlock

Hn b1 r1[b56] w1[b56] b2 r2[b34] w2[b34]

rl1[b56]

⇓

wl1[b56]

⇓

wl1 [b56]

⇓

rl2[b34]

wl1[b56]

⇓

wl2[b34]

wl1[b56]

⇓

WFG(Hn)

T1 T2

rl1[b34]

H1 attempts r1[b34] , but is refused since H2 has a write-lock, and so is put on WFG

waits-for graph (WFG)

describes which transactions waits for others

P.J. McBrien (Imperial College London) 25: Concurrency Control 8

2PL Deadlock Detection

Deadlock Detection: WFG with No Cycle = No Deadlock

Hn b1 r1[b56] w1[b56] b2 r2[b34] w2[b34] r2[b67] w2[b67] c2

rl1[b56]

⇓

wl1[b56]

⇓

wl1 [b56]

⇓

rl2[b34]

wl1[b56]

⇓

wl2[b34]

wl1[b56]

⇓

rl2[b67]

wl2[b34]

wl1[b56]

⇓

wl2[b67]

wl2[b34]

wl1[b56]

⇓

wl2 [b67]

wl2 [b34]

wl1 [b56]

⇓

wl1[b56]

⇓

WFG(Hn)

T1 T2

rl1[b34]

H2 can proceed to complete its execution, after which it will have released all its locks

waits-for graph (WFG)

describes which transactions waits for others

P.J. McBrien (Imperial College London) 25: Concurrency Control 8

2PL Deadlock Detection

Deadlock Detection: WFG with No Cycle = No Deadlock

Hn b1 r1[b56] w1[b56] b2 r2[b34] w2[b34] r2[b67] w2[b67] c2 r1[b34] w1[b34] c1

rl1[b56]

⇓

wl1[b56]

⇓

wl1 [b56]

⇓

rl2[b34]

wl1[b56]

⇓

wl2[b34]

wl1[b56]

⇓

rl2[b67]

wl2[b34]

wl1[b56]

⇓

wl2[b67]

wl2[b34]

wl1[b56]

⇓

wl2 [b67]

wl2 [b34]

wl1 [b56]

⇓

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

wl1[b34]

wl1[b56]

⇓

wl1 [b34]

wl1 [b56]

⇓

WFG(Hn)

T1

H1 may now proceed to completion

2PL Deadlock Detection

Deadlock Detection: WFG with Cycle = Deadlock

Hd b1 r1[b56] w1[b56] r1[b34] b2 r2[b34]

rl1[b56]

⇓

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

WFG(Hd)

T1 T2

2PL Deadlock Detection

Deadlock Detection: WFG with Cycle = Deadlock

Hd b1 r1[b56] w1[b56] r1[b34] b2 r2[b34]

rl1[b56]

⇓

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

WFG(Hd)

T1 T2

wl1[b34]

H1 attempts w1[b34] , but is refused since H2 has a read-lock, and so is put on WFG

2PL Deadlock Detection

Deadlock Detection: WFG with Cycle = Deadlock

Hd b1 r1[b56] w1[b56] r1[b34] b2 r2[b34]

rl1[b56]

⇓

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

WFG(Hd)

T1 T2

wl1[b34]

wl2[b34]

H2 attempts w2[b34] , but is refused since H1 has a read-lock, and so is put on WFG

P.J. McBrien (Imperial College London) 25: Concurrency Control 9

2PL Deadlock Detection

Deadlock Detection: WFG with Cycle = Deadlock

Hd b1 r1[b56] w1[b56] r1[b34] b2 r2[b34]
dead-
lock

rl1[b56]

⇓

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

rl2[b34]

rl1[b34]

wl1[b56]

⇓

WFG(Hd)

T1 T2

wl1[b34]

wl2[b34]

Cycle in WFG means DB in a deadlock state, must abort either H1 or H2

P.J. McBrien (Imperial College London) 25: Concurrency Control 9

2PL Deadlock Detection

Worksheet: Deadlocks

H1 = w1[o1] , r1[o2] , r1[o4]

H2 = r2[o3] , r2[o2] , r2[o1]

H3 = r3[o4] , w3[o4] , r3[o3] , w3[o3]

P.J. McBrien (Imperial College London) 25: Concurrency Control 10

Isolation Levels Need for Serialisability?

Transaction Isolation Levels

Do we always need ACID properties?

BEGIN TRANSACTION T3
SELECT DISTINCT no
FROM movement
WHERE amount>=1000.00

COMMIT TRANSACTION T3

Some transactions only need ‘approximate’ results
e.g. Management overview
e.g. Estimates

May execute these transactions at a ‘lower’ level of concurrency control
SQL allows you to vary the level of concurrency control

P.J. McBrien (Imperial College London) 25: Concurrency Control 11

	Transactions
	ACID properties

	Concurrency
	Definition

	Anomalies
	Serialisable Execution
	Recoverable Execution
	Concurrency Control
	2PL
	Basic 2PL
	Scheduling
	Deadlock Detection

	Isolation Levels
	Need for Serialisability?

