Functional Dependencies and Normalisation

P.J. McBrien
Imperial College London

Topic 17: Functional Dependencies

P.J. McBrien

Imperial College London

What is wrong with this schema?

bank_data									
no	sortcode	bname	cash	type	cname	rate?	mid	amount	date
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

What is wrong with this schema?

What is wrong with this schema?

What is wrong with this schema?

Problems with Updates on Redundant Data

```
INSERT INTO bank_data
VALUES (100,67,'Strand',33005.00,'deposit','McBrien, P.',null,
    1017,-1000.00, '1999-01-21')
UPDATE bank_data
SET rate=1.00
WHERE mid=1007
```

bank_data									
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	1.00	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

Problems with Updates on Redundant Data

```
INSERT INTO bank_data
VALUES (100,67,'Strand',33005.00,'deposit','McBrien, P.',null,
    1017,-1000.00, '1999-01-21')
UPDATE bank_data
SET rate=1.00
WHERE mid=1007
```

bank_data									
no	sortcode	bname	cash	type	cname	rate?	$\underline{\text { mid }}$	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A .	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	1.00	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

SELECT	DISTINCT cash	cash	
FROM	bank_data		34005.00
WHERE	sortcode $=67$		33005.00

Problems with Updates on Redundant Data

```
INSERT INTO bank_data
VALUES (100,67,'Strand',33005.00,'deposit','McBrien, P.',null,
    1017,-1000.00, '1999-01-21')
UPDATE bank_data
SET rate=1.00
WHERE mid=1007
```

bank_data									
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	1.00	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

SELECT DISTINCT rate
FROM bank_data
WHERE account=107

How do you know what is redundant?

Functional Dependency

A functional dependency (fd) $X \rightarrow Y$ states that if the values of attributes X agree in two tuples, then so must the values in Y.

Using an FD to find a value

If the FD no \rightarrow rate holds then x in the table below must always take the value 5.25 , but y and z may take any value.
bank_data

no	$\underline{\text { mid }}$	rate
101	1001	5.25
101	1008	x
119	1009	y
z	1010	5.25

Quiz 17.1: FDs that hold in bank_data

bank_data									
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P .	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

Which set of FDs below does not hold for the data?

A
no \rightarrow rate
no \rightarrow bname

B
no \rightarrow type
bname \rightarrow no

| C |
| :--- | :--- |
| no \rightarrow type |
| mid \rightarrow bname |

D

amount \rightarrow rate
bname \rightarrow sortcode

Quiz 17.2: Deriving FDs from other FDs

```
sortcode }->\mathrm{ bname
no }->\mathrm{ sortcode
no }->\mathrm{ cname
no }->\mathrm{ rate
mid }->\mathrm{ no
Given the FDs above, which FD below might not hold?
```

A
no \rightarrow bname
no,sortcode \rightarrow cname,sortcode

D
amount,tdate \rightarrow amount
amount,tdate \rightarrow mid

Armstrong's Axioms

X, Y and Z are sets of attributes, and XY is a shorthand for $X \cup Y$

Reflexivity

$Y \subseteq X \models X \rightarrow Y$
■ Such an FD is called a trivial FD

Applying reflexivity

If amount,tdate are attributes
By reflexivity
amount \subseteq amount, tdate \models amount, tdate \rightarrow amount
tdate \subseteq amount, tdate \models amount, tdate \rightarrow tdate

Armstrong's Axioms

X, Y and Z are sets of attributes, and XY is a shorthand for $X \cup Y$

Augmentation
$X \rightarrow Y \models X Z \rightarrow Y Z$

Applying augmentation
If no,cname,sortcode are attributes and no \rightarrow cname
By augmentation
no \rightarrow cname \models no, sortcode \rightarrow cname, sortcode

Armstrong's Axioms

X, Y and Z are sets of attributes, and XY is a shorthand for $X \cup Y$

Transitivity
$X \rightarrow Y, Y \rightarrow Z \models X \rightarrow Z$
Applying transitivity
If no \rightarrow sortcode and sortcode \rightarrow bname
By transitivity
no \rightarrow sortcode, sortcode \rightarrow bname \models no \rightarrow bname

Union Rule

Armstrong's Axioms

Reflexivity: $Y \subseteq X \models X \rightarrow Y$
Augmentation: $X \rightarrow Y \models X Z \rightarrow Y Z$
Transitivity: $X \rightarrow Y, Y \rightarrow Z \models X \rightarrow Z$

Union Rule

$$
\begin{array}{ll}
\text { If } X \rightarrow Y, X \rightarrow Z & \text { If } X \rightarrow Y Z \\
\text { By augmentation } & \text { By reflexivity } \\
X \rightarrow Y \models X Z \rightarrow Y Z & Y Z \models Y Z \rightarrow Y, Y Z \rightarrow Z \\
X \rightarrow Z \models X \rightarrow X Z & \text { By transitivity } \\
\text { By transitivity } & X \rightarrow Y Z, Y Z \rightarrow Y \models X \rightarrow Y \\
X \rightarrow X Z, X Z \rightarrow Y Z \models X \rightarrow Y Z & X \rightarrow Y Z, Y Z \rightarrow Z \models X \rightarrow Z \\
& \therefore X \rightarrow Y, X \rightarrow Z \equiv X \rightarrow Y Z
\end{array}
$$

■ Note that the union rules means that we can restrict ourselves to FD sets containing just one attribute on the RHS of each FD without loosing expressiveness

Quiz 17.3: Deriving FDs from other FDs

Given a set $S=\{A \rightarrow B C, C D \rightarrow E, C \rightarrow F, E \rightarrow F\}$ of FDs

Which set of FDs below follows from S ?

```
A
A->BF,A->CF,A->ABCF
B
A->BD,A->CF,A->ABCF
A->BD,A->BF,A->ABCF
```

D
$A \rightarrow B D, A \rightarrow B F, A \rightarrow C F$

Pseudotransitivity Rule

$$
\begin{aligned}
& \text { Armstrong's Axioms } \\
& \text { Reflexivity: } Y \subseteq X \models X \rightarrow Y \\
& \text { Augmentation: } X \rightarrow Y \models X Z \rightarrow Y Z \\
& \text { Transitivity: } X \rightarrow Y, Y \rightarrow Z \models X \rightarrow Z \\
& \text { Pseudotransitivity Rule } \\
& \text { If } X \rightarrow Y, W Y \rightarrow Z \\
& \text { By augmentation } \\
& X \rightarrow Y \models W X \rightarrow W Y \\
& \text { By transitivity } \\
& \begin{array}{l}
W X \rightarrow W Y, W Y \rightarrow Z \models W X \rightarrow Z \\
\qquad X \rightarrow Y, W Y \rightarrow Z \models W X \rightarrow Z
\end{array} \\
& \qquad X \rightarrow Y \text {, } \\
&
\end{aligned}
$$

Decomposition Rule

$$
\begin{aligned}
& \text { Armstrong's Axioms } \\
& \text { Reflexivity: } Y \subseteq X \models X \rightarrow Y \\
& \text { Augmentation: } X \rightarrow Y \models X Z \rightarrow Y Z \\
& \text { Transitivity: } X \rightarrow Y, Y \rightarrow Z \models X \rightarrow Z \\
& \\
& \text { Decomposition Rule } \\
& \text { If } X \rightarrow Y, Z \subseteq Y \\
& \text { By reflexivity } \\
& Z \subseteq Y \models Y \rightarrow Z \\
& \text { By transitivity } \\
& X \rightarrow Y, Y \rightarrow Z \models X \rightarrow Z \quad \therefore X \rightarrow Y, Z \subseteq Y \models X \rightarrow Z
\end{aligned}
$$

Topic 18: FDs and Keys

P.J. McBrien

Imperial College London

FDs and Keys

Super-keys and minimal keys

■ If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a super-key of R

■ If it is not possible to remove any attribute from X to form X^{\prime}, and X^{\prime} functionally determine all attributes, then X is a minimal key of R

FDs and Keys

Super-keys and minimal keys

■ If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a super-key of R
■ If it is not possible to remove any attribute from X to form X^{\prime}, and X^{\prime} functionally determine all attributes, then X is a minimal key of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set \{sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash $\}$

FDs and Keys

Super-keys and minimal keys

■ If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a super-key of R

■ If it is not possible to remove any attribute from X to form X^{\prime}, and X^{\prime} functionally determine all attributes, then X is a minimal key of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set \{sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash \}

1 \{sortcode, bname\} is a super-key since $\{$ sortcode, bname $\} \rightarrow$ cash

FDs and Keys

Super-keys and minimal keys

■ If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a super-key of R

■ If it is not possible to remove any attribute from X to form X^{\prime}, and X^{\prime} functionally determine all attributes, then X is a minimal key of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set \{sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash \}

1 \{sortcode, bname\} is a super-key since \{sortcode, bname\} \rightarrow cash
2 However, \{sortcode, bname\} is not a minimal key, since sortcode \rightarrow \{bname, cash $\}$ and bname \rightarrow \{sortcode, cash $\}$

FDs and Keys

Super-keys and minimal keys

■ If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a super-key of R
■ If it is not possible to remove any attribute from X to form X^{\prime}, and X^{\prime} functionally determine all attributes, then X is a minimal key of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set \{sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash \}

1 \{sortcode, bname\} is a super-key since \{sortcode, bname\} \rightarrow cash
2 However, \{sortcode, bname\} is not a minimal key, since sortcode \rightarrow \{bname, cash\} and bname \rightarrow \{sortcode, cash $\}$
3 sortcode and bname are both minimal keys of branch

Quiz 18.1: Deriving minimal keys from FDs

Suppose the relation $R(A, B, C, D, E)$ has functional dependencies $S=\{A \rightarrow E, B \rightarrow A C, C \rightarrow D, E \rightarrow D\}$

Which of the following is a minimal key?

A
$A B$

C	D
$B C$	B

Quiz 18.2: Keys and FDs

Suppose the relation $R(A, B, C, D, E)$ has minimal keys $A C$ and $B C$

Which FD does not necessarily hold?

A	B	C	D
$A B C \rightarrow D E$	$A C \rightarrow B D E$	$A B \rightarrow D E$	$B C \rightarrow D E$

Closure of a set of attributes with a set of FDs

Closure X^{+}of a set of attributes X with FDs S

1 Set $X^{+}:=X$
2. Starting with X^{+}apply each FD $X_{s} \rightarrow Y$ in S where $X_{s} \subseteq X^{+}$but Y is not already in X^{+}, to find determined attributes Y
B $X^{+}:=X^{+} \cup Y$
4 If Y not empty goto (2)
${ }_{5}$ Return X^{+}

Closure of attributes

Relation $R(A, B, C, D, E, F)$ has FD set $S=\{A \rightarrow B C, C D \rightarrow E, C \rightarrow F, E \rightarrow F\}$ To compute A^{+}

- Start with $A^{+}=A$, just $A \rightarrow B C$ matches, so $Y=B C$
- $A^{+}=A B C$, just $C \rightarrow F$ matches, so $Y=F$
- $A^{+}=A B C F$, no FDs apply, so we have the result

Closure of a set of attributes with a set of FDs

Closure X^{+}of a set of attributes X with FDs S

1 Set $X^{+}:=X$
2. Starting with X^{+}apply each FD $X_{s} \rightarrow Y$ in S where $X_{s} \subseteq X^{+}$but Y is not already in X^{+}, to find determined attributes Y
B $X^{+}:=X^{+} \cup Y$
4 If Y not empty goto (2)
${ }_{5}$ Return X^{+}

Closure of a set of attributes

Relation $R(A, B, C, D, E, F)$ has FD set $S=\{A \rightarrow B C, C D \rightarrow E, C \rightarrow F, E \rightarrow F\}$ To compute $A D^{+}$

- Start with $A D^{+}=A D$, just $A \rightarrow B C$ matches, so $Y=B C$
- $A D^{+}=A B C D, C D \rightarrow E, C \rightarrow F$ matches, so $Y=E F$
- $A D^{+}=A B C D E F$, no FDs apply, so we have the result

Quiz 18.3: Closure of Attribute Sets

Given a relation $R(A, B, C, D, E, F)$ and FD set
$S=\{A \rightarrow B C, C \rightarrow D, B A \rightarrow E, B D \rightarrow F, E F \rightarrow B, B E \rightarrow A B C\}$
Which closure of attributes of S does not cover R ?

A	B	C	D
A^{+}	$B C^{+}$	$B E^{+}$	$E F^{+}$

Closure of a set of Functional Dependencies

Closure of the FD Set

- The closure S^{+}of a set of FDs S is the set of all FDs that can be infered from S

■ Two sets of FDs S, T are equivalent if $S^{+}=T^{+}$

- For speed, we can ignore
- trivial FDs (e.g. ignore $A \rightarrow A$)
- LHS that are not minimal (e.g. ignore $A B \rightarrow C$ if $A \rightarrow C$)
- flatten all FDs to have just one attribute in RHS (e.g. consider $A \rightarrow C D$ as $A \rightarrow C$ and $A \rightarrow D$)
■ Apart from calculating equivalence, do not normally need to compute closure

Closure of a set of Functional Dependencies

Closure of the FD Set

■ The closure S^{+}of a set of FDs S is the set of all FDs that can be infered from S
■ Two sets of FDs S, T are equivalent if $S^{+}=T^{+}$

- For speed, we can ignore
- trivial FDs (e.g. ignore $A \rightarrow A$)
- LHS that are not minimal (e.g. ignore $A B \rightarrow C$ if $A \rightarrow C$)
- flatten all FDs to have just one attribute in RHS (e.g. consider $A \rightarrow C D$ as $A \rightarrow C$ and $A \rightarrow D$)
■ Apart from calculating equivalence, do not normally need to compute closure

Equivalent FDs

$$
\begin{aligned}
& S=\{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow D\} \\
& T=\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A\}
\end{aligned}
$$

Closure of a set of Functional Dependencies

Closure of the FD Set

■ The closure S^{+}of a set of FDs S is the set of all FDs that can be infered from S
■ Two sets of FDs S, T are equivalent if $S^{+}=T^{+}$
■ For speed, we can ignore

- trivial FDs (e.g. ignore $A \rightarrow A$)
- LHS that are not minimal (e.g. ignore $A B \rightarrow C$ if $A \rightarrow C$)
- flatten all FDs to have just one attribute in RHS (e.g. consider $A \rightarrow C D$ as $A \rightarrow C$ and $A \rightarrow D$)

■ Apart from calculating equivalence, do not normally need to compute closure

Equivalent FDs

$$
\begin{aligned}
& S=\{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow D\} \\
& S^{+}=\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\} \\
& T=\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A\}
\end{aligned}
$$

Closure of a set of Functional Dependencies

Closure of the FD Set

■ The closure S^{+}of a set of FDs S is the set of all FDs that can be infered from S
■ Two sets of FDs S, T are equivalent if $S^{+}=T^{+}$
■ For speed, we can ignore

- trivial FDs (e.g. ignore $A \rightarrow A$)
- LHS that are not minimal (e.g. ignore $A B \rightarrow C$ if $A \rightarrow C$)
- flatten all FDs to have just one attribute in RHS (e.g. consider $A \rightarrow C D$ as $A \rightarrow C$ and $A \rightarrow D$)
- Apart from calculating equivalence, do not normally need to compute closure

Equivalent FDs

$$
\begin{aligned}
& S=\{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow D\} \\
& S^{+}=\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\} \\
& T=\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A\} \\
& T^{+}=\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\}
\end{aligned}
$$

Closure of a set of Functional Dependencies

Closure of the FD Set

■ The closure S^{+}of a set of FDs S is the set of all FDs that can be infered from S
■ Two sets of FDs S, T are equivalent if $S^{+}=T^{+}$
■ For speed, we can ignore

- trivial FDs (e.g. ignore $A \rightarrow A$)
- LHS that are not minimal (e.g. ignore $A B \rightarrow C$ if $A \rightarrow C$)
- flatten all FDs to have just one attribute in RHS (e.g. consider $A \rightarrow C D$ as $A \rightarrow C$ and $A \rightarrow D$)
- Apart from calculating equivalence, do not normally need to compute closure

Equivalent FDs

$$
\begin{aligned}
& S=\{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow D\} \\
& S^{+}=\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\} \\
& T=\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A\} \\
& T^{+}=\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\} \\
& \therefore S \equiv T
\end{aligned}
$$

Minimal cover of a set of FDs

Minimal cover S_{c} of S

A minimal cover S_{c} of FD set S has the properties that:

- All the FDs in S can be derived from S_{c} (i.e. $S^{+}=S_{c}^{+}$)
- It is not possible to form a new set S_{c}^{\prime} by deleting an FD from S_{c} or deleting an attribute from an FD in S_{c}, and S_{c}^{\prime} can still derive all the FDs in S
In general, a set of FDs may have more than one minimal cover

Minimal cover of a set of FDs

Minimal cover S_{c} of S

A minimal cover S_{c} of FD set S has the properties that:

- All the FDs in S can be derived from S_{c} (i.e. $S^{+}=S_{c}^{+}$)
- It is not possible to form a new set S_{c}^{\prime} by deleting an FD from S_{c} or deleting an attribute from an FD in S_{c}, and S_{c}^{\prime} can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

$$
S=\{A \rightarrow B, B C \rightarrow A, A \rightarrow C, B \rightarrow C\}
$$

Minimal cover of a set of FDs

Minimal cover S_{c} of S

A minimal cover S_{c} of FD set S has the properties that:

- All the FDs in S can be derived from S_{c} (i.e. $S^{+}=S_{c}^{+}$)
- It is not possible to form a new set S_{c}^{\prime} by deleting an FD from S_{c} or deleting an attribute from an FD in S_{c}, and S_{c}^{\prime} can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

$$
\begin{aligned}
& S=\{A \rightarrow B, B C \rightarrow A, A \rightarrow C, B \rightarrow C\} \\
& \begin{array}{l}
\text { Since } B \rightarrow C \\
B C \rightarrow A \Rightarrow B \rightarrow A
\end{array} \\
& S^{\prime}=\{A \rightarrow B, B \rightarrow A, A \rightarrow C, B \rightarrow C\}
\end{aligned}
$$

Minimal cover of a set of FDs

Minimal cover S_{c} of S

A minimal cover S_{c} of FD set S has the properties that:

- All the FDs in S can be derived from S_{c} (i.e. $S^{+}=S_{c}^{+}$)
- It is not possible to form a new set S_{c}^{\prime} by deleting an FD from S_{c} or deleting an attribute from an FD in S_{c}, and S_{c}^{\prime} can still derive all the FDs in S
In general, a set of FDs may have more than one minimal cover

$$
\begin{aligned}
& S=\{A \rightarrow B, B C \rightarrow A, A \rightarrow C, B \rightarrow C\} \\
& \begin{array}{l}
\text { Since } B \rightarrow C \\
B C \rightarrow A \Rightarrow B \rightarrow A
\end{array} \\
& S^{\prime}=\{A \rightarrow B, B \rightarrow A, A \rightarrow C, B \rightarrow C\}
\end{aligned}
$$

Since $A \rightarrow B, B \rightarrow C \models A \rightarrow C$
$A \rightarrow C \Rightarrow \emptyset$

$$
S_{c}=\{A \rightarrow B, B \rightarrow A, B \rightarrow C\}
$$

Minimal cover of a set of FDs

Minimal cover S_{c} of S

A minimal cover S_{c} of FD set S has the properties that:

- All the FDs in S can be derived from S_{c} (i.e. $S^{+}=S_{c}^{+}$)
- It is not possible to form a new set S_{c}^{\prime} by deleting an FD from S_{c} or deleting an attribute from an FD in S_{c}, and S_{c}^{\prime} can still derive all the FDs in S
In general, a set of FDs may have more than one minimal cover

$$
\begin{aligned}
& S=\{A \rightarrow B, B C \rightarrow A, A \rightarrow C, B \rightarrow C\} \\
& \text { Since } B \rightarrow C \\
& B C \rightarrow A \Rightarrow B \rightarrow A \\
& S^{\prime}=\{A \rightarrow B, B \rightarrow A, A \rightarrow C, B \rightarrow C\} \\
& \text { Since } B \rightarrow A, A \rightarrow C \models B \rightarrow C \\
& B \rightarrow C \Rightarrow \emptyset \\
& S_{c}=\{A \rightarrow B, B \rightarrow A, A \rightarrow C\}
\end{aligned}
$$

Since $A \rightarrow B, B \rightarrow C \models A \rightarrow C$
$A \rightarrow C \Rightarrow \emptyset$

$$
S_{c}=\{A \rightarrow B, B \rightarrow A, B \rightarrow C\}
$$

Worksheet: Minimal Cover (Step 3)

$1 A^{+}=A B D E H G F C$
Try removing $A B \rightarrow D$: find $A B^{+}=A B E H$, so can't remove.
Try removing $A B \rightarrow E$: find $A B^{+}=A B D H E G F C$, so remove it from $S^{\prime \prime}$ to get $S^{\prime \prime \prime}$
Try removing $A B \rightarrow H$: find $A B^{+}=A B D E G F H C$, so remove it from $S^{\prime \prime \prime}$ to get
$S^{\prime \prime \prime \prime}=\{A B \rightarrow D, E F \rightarrow A, F G \rightarrow C, D \rightarrow E, D \rightarrow G, E G \rightarrow B, E G \rightarrow F, F \rightarrow B, F \rightarrow$ $H\}$
2 $E F^{+}=E F A B H D G C$
Try removing $E F \rightarrow A$: find $E F^{+}=E F B H$, so can't remove.
3 $F G^{+}=F G C B H$
Try removing $F G \rightarrow C$: find $F G^{+}=F G B H$, so can't remove.
$4 D^{+}=$DEGBF HAC
Try removing $D \rightarrow E$: find $D^{+}=D G$, so can't remove.
Try removing $D \rightarrow G$: find $D^{+}=D E$, so can't remove.
$5 E G^{+}=E G B F H A D C$
Try removing $E G \rightarrow B$: find $E G^{+}=E G F B H A D C$, so remove it from $S^{\prime \prime \prime \prime}$ to get $S^{\prime \prime \prime \prime \prime}$
Try removing $E G \rightarrow F$: find $E G^{+}=E G$, so can't remove.
6 $F^{+}=F B H$
Try removing $F \rightarrow B$: find $F^{+}=F H$, so can't remove.
Try removing $F \rightarrow H$: find $F^{+}=F B$, so can't remove.
Thus $S^{\prime \prime \prime \prime \prime}$ is a minimal cover

$$
S_{c}=\{A B \rightarrow D, E F \rightarrow A, F G \rightarrow C, D \rightarrow E G, E G \rightarrow F, F \rightarrow B H\}
$$

Topic 19: Normalisation

P.J. McBrien

Imperial College London

Using FDs to Formalise Problems in Schemas

bank_data								
no	sortcode bname	cash	type	cname	rate?	mid	amount	tdate
100	67 Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67 Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67 Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56 Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34 Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67 Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56 Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67 Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56 Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

Using FDs to Formalise Problems in Schemas

bank_data									
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

Formalise the intuition of redundancy by the statements of FDs
mid \rightarrow \{tdate, amount, no $\}$,
no \rightarrow \{type, cname, rate, sortcode\},
$\{$ cname, type $\} \rightarrow$ no,
sortcode \rightarrow \{bname, cash \}
bname \rightarrow sortcode

Using FDs to Formalise Problems in Schemas

bank_data								
no	sortcode bname	cash	type	cname	rate?	mid	amount	tdate
100	67 Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67 Strand	34005.00	deposit	McBrien, P .	5.25	1001	4000.00	1999-01-05
100	67 Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56 Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34 Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67 Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56 Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67 Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56 Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

Formalise the intuition of redundancy by the statements of FDs
mid \rightarrow \{tdate, amount, no $\}$,
no \rightarrow \{type, cname, rate, sortcode\},
\{cname, type\} \rightarrow no,
sortcode \rightarrow \{bname, cash \}
bname \rightarrow sortcode

1st Normal Form (1NF)

Every attribute depends on the key

Quiz 19.1: 1st Normal Form

bank_data									
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
mid \rightarrow \{tdate, amount, no\},									
no \{cna sortc bnam	\{type, me, type $\}$ ode \rightarrow \{b $\text { ne } \rightarrow \text { sort }$	name, rate, $\rightarrow \text { no, }$ name, cash code	sortcode\},						

Is bank_data in 1st Normal form?

True

Prime and Non-Prime Attributes

Prime Attribute

An attribute A of relation R is prime if there is some minimal candidate key X of R such that $A \subseteq X$
Any other attribute $B \in \operatorname{Attrs}(R)$ is non-prime

Prime and non-prime attributes of bank_data

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)
Has FDs mid \rightarrow \{tdate, amount, no\}, no \rightarrow \{type, cname, rate, sortcode $\}$, \{cname, type $\} \rightarrow$ no, sortcode \rightarrow \{bname, cash $\}$, bname \rightarrow sortcode Then

1 the only minimal candidate key is mid
2 the only prime attribute is mid
3 non-prime attributes are no,sortcode,bname,cash,type,cname, rate,amount,tdate

Quiz 19.2: Prime and nonprime attributes

Given a relation $R(A, B, C, D, E, F)$ and an FD set
$A \rightarrow B C E, C \rightarrow D, B D \rightarrow F, E F \rightarrow B, B E \rightarrow A$

What are the nonprime attributes?

```
C
CDF
```

D
$C D$

3rd Normal Form (3NF)

3rd Normal Form (3NF)

For every non-trivial FD $X \rightarrow A$ on R, either
$1 X$ is a super-key
$2 . A$ is prime
Every non-key attribute depends on the key, the whole key and nothing but the key

Failure of bank_data to meet 3NF

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

- Has the following FDs where the LHS is not a super-key: no \rightarrow type, cname, rate, sortcode\}, \{cname, type\} \rightarrow no, sortcode \rightarrow \{bname, cash\}, bname \rightarrow sortcode
■ Each of the above FD causes the relation not to meet 3NF since the RHS contains non-prime attributes

Quiz 19.3: 3rd Normal Form

Given a relation $R(A, B, C, D, E, F)$ and an FD set
$A \rightarrow B C E, C \rightarrow D, B D \rightarrow F, E F \rightarrow B, B E \rightarrow A$
Which decomposition is not in 3NF?

A
$R_{1}(B, D, F), R_{2}(A, B, C, D, E)$
B
$R_{1}(A, B, C, E, F), R_{2}(C, D)$
C
$R_{1}(A, B, C, E, F), R_{2}(C, D), R_{3}(B, D, F)$

D
$R_{1}(B, E, F), R_{2}(A, C, E), R_{3}(C, D)$

Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form (BCNF)

For every non-trivial FD $X \rightarrow A$ on R, X is a super-key.
Every attribute depends on the key, the whole key and nothing but the key

BCNF schema

branch(sortcode, bname, cash) with FDs sortcode \rightarrow \{bname, cash $\}$, bname \rightarrow sortcode is in BCNF since sortcode and bname are both candidate keys
account(no, type, cname, rate, sortcode) with FDs no \rightarrow \{type, cname, rate, sortcode\}, \{cname, type\} \rightarrow no is in BCNF since no and cname, type are both candidate keys
movement(mid, amount, no, tdate) with FD mid \rightarrow \{tdate, amount, no $\}$ is in BCNF since mid is key

Lossless-join decomposition of relations

Lossless-join decomposition of a Relation

A lossless-join decomposition of a relation R with respect to FDs S into relations R_{1}, \ldots, R_{n} has the properties that:
$■ \operatorname{Attrs}\left(R_{1}\right) \cup \ldots \cup \operatorname{Attrs}\left(R_{n}\right)=\operatorname{Attrs}(R)$
■ For all possible extents of R satisfying $S, \pi_{\operatorname{Attrs}\left(R_{1}\right)} R \bowtie \ldots \bowtie \pi_{\operatorname{Attrs}\left(R_{n}\right)} R=R$

Lossless-join decomposition of bank_data

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)
$■$ Has FDs mid \rightarrow \{tdate, amount, no\}, no \rightarrow \{type, cname, rate, sortcode\}, \{cname, type $\} \rightarrow$ no, sortcode \rightarrow \{bname, cash\}, bname \rightarrow sortcode
■ Decomposing bank_data into branch $=\pi_{\text {sortcode, bname, cash }}$ bank_data account $=\pi_{\text {no, type, cname, }}$ rate,sortcode bank_data movement $=\pi_{\text {mid,amount,no,tdate }}$ bank_data satisfies the lossless-join decomposition property

Problems if not a lossless-join decomposition

If a decomposition of R into R_{1}, \ldots, R_{n} is not lossless, then some tuples spread over R_{1}, \ldots, R_{n} can result in phantom tuples appearing

$$
R(A, B, C, D), S=\{A \rightarrow B, B \rightarrow C D\}
$$

Decomposition on an FD

If $R\left(A_{1} \ldots A_{n}\right)$ has FD $A_{j} \rightarrow A_{j+1} \ldots A_{n}$ then decomposing on the FD to $R_{1}\left(A_{1} \ldots A_{j}\right), R_{2}\left(A_{j} A_{j+1} \ldots A_{n}\right)$ is lossless

Problems if not a lossless-join decomposition

If a decomposition of R into R_{1}, \ldots, R_{n} is not lossless, then some tuples spread over R_{1}, \ldots, R_{n} can result in phantom tuples appearing

$$
R(A, B, C, D), S=\{A \rightarrow B, B \rightarrow C D\}
$$

Decomposition on an FD

If $R\left(A_{1} \ldots A_{n}\right)$ has FD $A_{j} \rightarrow A_{j+1} \ldots A_{n}$ then decomposing on the FD to $R_{1}\left(A_{1} \ldots A_{j}\right), R_{2}\left(A_{j} A_{j+1} \ldots A_{n}\right)$ is lossless

Quiz 19.4: Lossless join decomposition

Given a relation $R(A, B, C, D, E, F)$ and an FD set
$A \rightarrow B C E, C \rightarrow D, B D \rightarrow F, E F \rightarrow B, B E \rightarrow A$
Which is not a lossless-join decomposition of R ?

A
$R_{1}(B, D, F), R_{2}(A, B, C, D, E)$
B
$R_{1}(A, B, C, E, F), R_{2}(C, D)$

$R_{1}(A, B, C, E, F), R_{2}(C, D), R_{3}(B, D, F)$
D
$R_{1}(B, E, F), R_{2}(A, C, E), R_{3}(C, D)$

Worksheet: Lossless Join Decomposition

$1 R(A, B, C, D, E)$ has the FDs $S=\{A B \rightarrow C, C \rightarrow D E, E \rightarrow A\}$. Which of the following are lossless join decompositions?
$1 R_{1}(A, B, C), R_{2}(C, D, E)$
$\simeq R_{1}(A, B, C), R_{2}(C, D), R_{3}(D, E)$
\square Derive a lossless join decomposition into three relations of $R(A, B, C, D, E, F)$ with FDs $S=\{A B \rightarrow C D, C \rightarrow E, A \rightarrow F\}$.
3 Derive a lossless join decomposition into three relations of $R(A, B, C, D, E, F)$ with FDs $S=\{A B \rightarrow C D, C \rightarrow E, F \rightarrow A\}$.

Topic 20: Generating 3NF and BCNF Schemas

P.J. McBrien
Imperial College London

Generating 3NF

Generating 3NF

1 Given R and a set of FDs S, find an FD $X \rightarrow A$ that causes R to violate 3NF (i.e. for which A is not a prime attribute and X is not a superkey).

2 Decompose R into $R_{a}(\operatorname{Attr}(R)-A)$ and $R_{b}(X A)$ (Note because the two relations share X and $X \rightarrow A$ this is lossless)
3 Project the S onto the new relations, and repeat the process from (1)
Note that step (2) ensures that the decomposition is lossless since joining R_{a} with R_{b} will share X, and $X \rightarrow A$

Canonical Example of 3NF Decomposition

Suppose $R(A, B, C)$ has FD set $S=\{A \rightarrow B, B \rightarrow C\}$
■ The only key is A, and so $B \rightarrow C$ violates 3NF (since B is not a superkey and C is nonprime).
■ Decomposing R into $R_{1}(A, B)$ and $R_{2}(B, C)$ results in two 3NF relations.

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate) $S=\{$ mid \rightarrow \{tdate, amount, no $\}$, no \rightarrow \{type, cname, rate, sortcode $\},$ \{cname, type $\} \rightarrow$ no, sortcode \rightarrow \{bname, cash $\}$, bname \rightarrow sortcode $\}$

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate) $S=\{$ mid \rightarrow tdate, amount, no $\}$, no \rightarrow \{type, cname, rate, sortcode $\},$ \{cname, type $\} \rightarrow$ no, sortcode \rightarrow \{bname, cash $\}$, bname \rightarrow sortcode $\}$

Since sortcode \rightarrow \{bname, cash\} and sortcode is not superkey and bname, cash nonprime, we should decompose bank_data into

1 branch(sortcode, bname, cash) with FDs sortcode \rightarrow \{bname, cash \}, bname \rightarrow sortcode

2 bank_data' (no, sortcode, type, cname, rate, mid, amount, tdate) with FDs mid \rightarrow \{tdate, amount, no\}, no \rightarrow \{type, cname, rate, sortcode $\}$, $\{$ cname, type $\} \rightarrow$ no

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate) $S=\{$ mid \rightarrow \{tdate, amount, no $\}$, no \rightarrow \{type, cname, rate, sortcode $\},$ \{cname, type $\} \rightarrow$ no, sortcode \rightarrow \{bname, cash $\}$, bname \rightarrow sortcode $\}$

Since sortcode \rightarrow \{bname, cash $\}$ and sortcode is not superkey and bname, cash nonprime, we should decompose bank_data into

1 branch(sortcode, bname, cash) with FDs sortcode \rightarrow \{bname, cash \}, bname \rightarrow sortcode

2 bank_data'(no, sortcode, type, cname, rate, mid, amount, tdate) with FDs mid \rightarrow \{tdate, amount, no\}, no \rightarrow \{type, cname, rate, sortcode $\}$, $\{$ cname, type $\} \rightarrow$ no
branch is in 3NF, but no \rightarrow \{type, cname, rate, sortcode $\}$ makes bank_data' violate 3 NF , so we should decompose bank_data' into:

3 account(no, type, cname, rate, sortcode) with FDs no \rightarrow \{type, cname, rate, sortcode\}, \{cname, type\} \rightarrow no

4 movement(mid.amount, no, tdate) with FD mid \rightarrow \{tdate, amount, no\}
The relations branch, account, and movement are all in 3NF

Preserving FDs during decomposition

FD preserving decomposition

A lossless decomposition of R with FDs S into R_{a} and R_{b} preserves functional dependencies S if the projection of S^{+}onto R_{a} and R_{b} is equivalent to S

Preserving FDs during decomposition

FD preserving decomposition

A lossless decomposition of R with FDs S into R_{a} and R_{b} preserves functional dependencies S if the projection of S^{+}onto R_{a} and R_{b} is equivalent to S

FD preserving decomposition

Suppose $R(A B C)$ with $S=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ is decomposed into $R_{a}(A B)$ and $R_{b}(B C)$.

Preserving FDs during decomposition

FD preserving decomposition

A lossless decomposition of R with FDs S into R_{a} and R_{b} preserves functional dependencies S if the projection of S^{+}onto R_{a} and R_{b} is equivalent to S

FD preserving decomposition

Suppose $R(A B C)$ with $S=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ is decomposed into $R_{a}(A B)$ and $R_{b}(B C)$.

■ $S^{+}=\{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow C, C \rightarrow A, C \rightarrow B\}$

Preserving FDs during decomposition

FD preserving decomposition

A lossless decomposition of R with FDs S into R_{a} and R_{b} preserves functional dependencies S if the projection of S^{+}onto R_{a} and R_{b} is equivalent to S

FD preserving decomposition

Suppose $R(A B C)$ with $S=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ is decomposed into $R_{a}(A B)$ and $R_{b}(B C)$.

■ $S^{+}=\{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow C, C \rightarrow A, C \rightarrow B\}$
■ The projection of S^{+}onto R_{a} gives $S_{a}^{+}=\{A \rightarrow B, B \rightarrow A\}$

Preserving FDs during decomposition

FD preserving decomposition

A lossless decomposition of R with FDs S into R_{a} and R_{b} preserves functional dependencies S if the projection of S^{+}onto R_{a} and R_{b} is equivalent to S

FD preserving decomposition

Suppose $R(A B C)$ with $S=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ is decomposed into $R_{a}(A B)$ and $R_{b}(B C)$.

■ $S^{+}=\{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow C, C \rightarrow A, C \rightarrow B\}$
■ The projection of S^{+}onto R_{a} gives $S_{a}^{+}=\{A \rightarrow B, B \rightarrow A\}$
■ The projection of S^{+}onto R_{b} gives $S_{b}^{+}=\{B \rightarrow C, C \rightarrow B\}$

Preserving FDs during decomposition

FD preserving decomposition

A lossless decomposition of R with FDs S into R_{a} and R_{b} preserves functional dependencies S if the projection of S^{+}onto R_{a} and R_{b} is equivalent to S

FD preserving decomposition

Suppose $R(A B C)$ with $S=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ is decomposed into $R_{a}(A B)$ and $R_{b}(B C)$.

■ $S^{+}=\{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow C, C \rightarrow A, C \rightarrow B\}$
■ The projection of S^{+}onto R_{a} gives $S_{a}^{+}=\{A \rightarrow B, B \rightarrow A\}$
■ The projection of S^{+}onto R_{b} gives $S_{b}^{+}=\{B \rightarrow C, C \rightarrow B\}$
■ Note that the union S_{u} of the two subsets of S^{+}(i.e. $S_{u}=S_{a}^{+} \cup S_{b}^{+}$) has the property that $S_{u}^{+}=S^{+}$, and hence the decomposition preserves functional dependencies.

Preserving FDs during decomposition

FD preserving decomposition

A lossless decomposition of R with FDs S into R_{a} and R_{b} preserves functional dependencies S if the projection of S^{+}onto R_{a} and R_{b} is equivalent to S

FD preserving decomposition

Suppose $R(A B C)$ with $S=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ is decomposed into $R_{a}(A B)$ and $R_{b}(B C)$.

■ $S^{+}=\{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow C, C \rightarrow A, C \rightarrow B\}$
■ The projection of S^{+}onto R_{a} gives $S_{a}^{+}=\{A \rightarrow B, B \rightarrow A\}$
■ The projection of S^{+}onto R_{b} gives $S_{b}^{+}=\{B \rightarrow C, C \rightarrow B\}$
■ Note that the union S_{u} of the two subsets of S^{+}(i.e. $S_{u}=S_{a}^{+} \cup S_{b}^{+}$) has the property that $S_{u}^{+}=S^{+}$, and hence the decomposition preserves functional dependencies.

3NF

There is always possible to decompose a relation into 3 NF in a manner that preserves functional dependencies. Thus any good 3NF decomposition of a relation must also preserve functional dependencies.

Quiz 20.1: Preserving FDs during Decomposition

Given a relation $R(A, B, C, D, E, F)$ and an FD set
$A \rightarrow B C E, C \rightarrow D, B D \rightarrow F, E F \rightarrow B, B E \rightarrow A$

Which decomposition preserves FDs?

A
$R_{1}(B, D, F), R_{2}(A, B, C, D, E)$
B
$R_{1}(A, B, C, E, F), R_{2}(C, D)$
C
$R_{1}(A, B, C, E, F), R_{2}(C, D), R_{3}(B, D, F)$

D
$R_{1}(B, E, F), R_{2}(A, C, E), R_{3}(C, D)$

Preserving FDs, lossless join, and 3NF

Given a relation $R(A, B, C, D, E, F)$ and an FD set
$A \rightarrow B C E, C \rightarrow D, B D \rightarrow F, E F \rightarrow B, B E \rightarrow A$

Decomposition	lossless join	3 NF	Preserves FDs
$R_{1}(B, D, F), R_{2}(A, B, C, D, E)$	\checkmark	\boldsymbol{x}	\boldsymbol{x}
$R_{1}(A, B, C, E, F), R_{2}(C, D)$	\checkmark	\checkmark	\boldsymbol{x}
$R_{1}(A, B, C, E, F), R_{2}(C, D), R_{3}(B, D, F)$	\checkmark	\checkmark	\checkmark
$R_{1}(B, E, F), R_{2}(A, C, E), R_{3}(C, D)$	\boldsymbol{x}	\checkmark	\boldsymbol{x}

Decomposing to 3 NF

Since it is always possible to decompose a relation into a 3NF form that is both a lossless join decomposition, and preserves FDs, you should always do so.

Quiz 20.2: Preserving FDs during Decomposition to 3NF

Suppose the relation $R(A, B, C, D, E)$ has functional dependencies $S=\{A C \rightarrow D B E, B C \rightarrow D E, B \rightarrow A, E \rightarrow D\}$ (and hence has minimal keys $A C$ and $B C$)

Which is a lossless join decomposition to 3NF that preserves FDs?

A
$R_{a}(B, C, E), R_{b}(A, B, C), R_{c}(D, E)$
C
$R_{a}(A, C, D), R_{b}(A, C, E), R_{c}(A, B)$

B

$R_{a}(A, B, C), R_{b}(A, C, D, E)$

D

$R_{a}(A, C, E), R_{b}(B, D, E)$

Quiz 20.2: Preserving FDs during Decomposition to 3NF

Suppose the relation $R(A, B, C, D, E)$ has functional dependencies $S=\{A C \rightarrow D B E, B C \rightarrow D E, B \rightarrow A, E \rightarrow D\}$ (and hence has minimal keys $A C$ and $B C$)

Which is a lossless join decomposition to 3NF that preserves FDs?

$R_{a}(B, C, E), R_{b}(A, B, C), R_{c}(D, E)$

$$
R_{a}(A, B, C), R_{b}(A, C, D, E)
$$

$R_{a}(A, C, D), R_{b}(A, C, E), R_{c}(A, B)$

D

$$
R_{a}(A, C, E), R_{b}(B, D, E)
$$

Minimal Cover of S

Because $B C \rightarrow E, E \rightarrow D \models B C \rightarrow D$
$S \equiv\{A C \rightarrow D B E, B C \rightarrow E, B \rightarrow A, E \rightarrow D\}$

Quiz 20.2: Preserving FDs during Decomposition to 3NF

Suppose the relation $R(A, B, C, D, E)$ has functional dependencies $S=\{A C \rightarrow D B E, B C \rightarrow D E, B \rightarrow A, E \rightarrow D\}$ (and hence has minimal keys $A C$ and $B C$)

Which is a lossless join decomposition to 3NF that preserves FDs?

$R_{a}(B, C, E), R_{b}(A, B, C), R_{c}(D, E)$

$$
R_{a}(A, B, C), R_{b}(A, C, D, E)
$$

$R_{a}(A, C, D), R_{b}(A, C, E), R_{c}(A, B)$

D

$$
R_{a}(A, C, E), R_{b}(B, D, E)
$$

Minimal Cover of S

Because $B C \rightarrow E, E \rightarrow D \models B C \rightarrow D$
$S \equiv\{A C \rightarrow D B E, B C \rightarrow E, B \rightarrow A, E \rightarrow D\}$
Because $A C \rightarrow E, E \rightarrow D \models A C \rightarrow D$
$S \equiv\{A C \rightarrow B E, B C \rightarrow E, B \rightarrow A, E \rightarrow D\}$

Quiz 20.2: Preserving FDs during Decomposition to 3NF

Suppose the relation $R(A, B, C, D, E)$ has functional dependencies $S=\{A C \rightarrow D B E, B C \rightarrow D E, B \rightarrow A, E \rightarrow D\}$ (and hence has minimal keys $A C$ and $B C$)

Which is a lossless join decomposition to 3NF that preserves FDs?

$R_{a}(B, C, E), R_{b}(A, B, C), R_{c}(D, E)$

$$
R_{a}(A, B, C), R_{b}(A, C, D, E)
$$

$R_{a}(A, C, D), R_{b}(A, C, E), R_{c}(A, B)$

D

$$
R_{a}(A, C, E), R_{b}(B, D, E)
$$

Minimal Cover of S

Because $B C \rightarrow E, E \rightarrow D \models B C \rightarrow D$
$S \equiv\{A C \rightarrow D B E, B C \rightarrow E, B \rightarrow A, E \rightarrow D\}$
Because $A C \rightarrow E, E \rightarrow D \models A C \rightarrow D$
$S \equiv\{A C \rightarrow B E, B C \rightarrow E, B \rightarrow A, E \rightarrow D\}$
Because $A C \rightarrow B, B C \rightarrow E \models A C \rightarrow E$
$S \equiv S_{c}=\{A C \rightarrow B, B C \rightarrow E, B \rightarrow A, E \rightarrow D\}$

Decomposition of Relations into BCNF

Generating BCNF

1 Given R and a set of FDs S, find an FD $X \rightarrow A$ that causes R to violate BCNF (i.e. for which X is not a superkey).

2 Decompose R into $R_{a}(\operatorname{Attr}(R)-A)$ and $R_{b}(X A)$ (Note because the two relations share X and $X \rightarrow A$ this is lossless)

3 Project the S onto the new relations, and repeat the process from (1)

Difference between 3NF and BCNF

Suppose the relation address(no, street, town, county, postcode) has FDs \{no, street, town, county\} \rightarrow postcode, postcode \rightarrow \{street, town, county\},

■ The relation is in 3NF (alternative keys no, street, town, county and no, postcode).
■ The relation is not in BCNF since postcode \rightarrow \{street, town, county $\}$ has a non-superkey as the determinant

- Decompose the relation address on postcode \rightarrow \{street, town, county $\}$ to: postcode(postcode, street, town, county) streetnumber(no, postcode)
■ Note FD \{no, street, town, county\} \rightarrow postcode cannot be projected over the relations.

Worksheet: Decomposing to Normal Forms

$S_{c}=\{A B \rightarrow D, E F \rightarrow A, F G \rightarrow C, D \rightarrow E G, E G \rightarrow F, F \rightarrow B H\}$
1 Decompose the relation into 3NF
$\boxed{2}$ Decompose the relation into BCNF
3 Determine if your decompositions in (1) and (2) preserve FDs, and if they do not, suggest how to amend you schema to preserve FDs.

