Functional Dependencies and Normalisation

P.J. McBrien

Imperial College London

Topic 17: Functional Dependencies

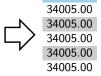
P.J. McBrien

Imperial College London

				ps	ank_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

				ba	ink_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A	۱. null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A	. null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A	. 5.50	1009	5600.00	1999-01-18

SELECT cash
FROM bank_data
WHERE sortcode=67



cash

				ba	ink_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A	۱. null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A	. null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A	. 5.50	1009	5600.00	1999-01-18

SELECT DISTINCT cash FROM bank_data WHERE sortcode=67

				ba	ınk_data				
no	sortcode	bname	cash	type	cname	rate?	<u>mid</u>	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A	۱. null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A	. null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A	. 5.50	1009	5600.00	1999-01-18

SELECT DISTINCT rate FROM bank_data WHERE account=107

Problems with Updates on Redundant Data

UPDATE bank_data
SET rate=1.00
WHERE mid=1007

				ba	ank_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	1.00	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon			Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

Problems with Updates on Redundant Data

UPDATE bank_data
SET rate=1.00
WHERE mid=1007

				ba	ank_data				
no	sortcode	bname	cash	type	cname	rate?	<u>mid</u>	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	1.00	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

SELECT DISTINCT cash FROM bank_data

sortcode=67

cash 34005.00 33005.00

WHERE

Problems with Updates on Redundant Data

UPDATE bank_data
SET rate=1.00
WHERE mid=1007

				ba	ank_data				
no	sortcode	bname	cash	type	cname	rate?	<u>mid</u>	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	1.00	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

SELECT DISTINCT rate FROM bank_data WHERE account=107

rate null 1.00

Functional Dependency

A functional dependency (fd) $X \to Y$ states that if the values of attributes X agree in two tuples, then so must the values in Y.

Using an FD to find a value

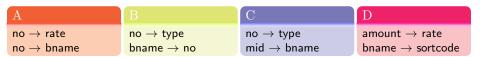
If the FD no \rightarrow rate holds then x in the table below must always take the value 5.25, but y and z may take any value.

bank_data								
no	<u>mid</u>	rate						
101	1001	5.25						
101	1008	x						
119	1009	y						
z	1010	5.25						

Quiz 17.1: FDs that hold in bank_data

				ba	ink_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A	. null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A	. null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A	. 5.50	1009	5600.00	1999-01-18

Which set of FDs below does not hold for the data



Quiz 17.2: Deriving FDs from other FDs

 $sortcode \rightarrow bname$ $no \rightarrow sortcode$ $no \rightarrow cname$ $no \rightarrow rate$ $mid \rightarrow no$

Given the FDs above, which FD below might not hold?

 $\begin{array}{ccc} A & & B \\ & \text{no} \rightarrow \text{bname} & & \text{nc} \end{array}$

 $\mathsf{no}, \mathsf{sortcode} \to \mathsf{cname}, \mathsf{sortcode}$

amount,tdate → amount

 $amount,tdate \rightarrow mid$

D

Armstrong's Axioms

X,Y and Z are sets of attributes, and XY is a shorthand for $X \cup Y$

Reflexivity

$$Y\subseteq X\models X{\rightarrow} Y$$

Such an FD is called a trivial FD

Applying reflexivity

If amount,tdate are attributes
By reflexivity

 $\mathsf{amount} \subseteq \mathsf{amount}, \mathsf{tdate} \models \mathsf{amount}, \mathsf{tdate} \to \mathsf{amount}$ $\mathsf{tdate} \subseteq \mathsf{amount}, \mathsf{tdate} \models \mathsf{amount}, \mathsf{tdate} \to \mathsf{tdate}$

Armstrong's Axioms

X,Y and Z are sets of attributes, and XY is a shorthand for $X \cup Y$

Augmentation

$$X \to Y \models XZ \to YZ$$

Applying augmentation

If no,cname,sortcode are attributes and no \rightarrow cname

By augmentation

 $no \rightarrow cname \models no, sortcode \rightarrow cname, sortcode$

X,Y and Z are sets of attributes, and XY is a shorthand for $X \cup Y$

Transitivity

$$X \to Y, Y \to Z \models X \to Z$$

Applying transitivity

If no \rightarrow sortcode and sortcode \rightarrow bname

By transitivity

 $no \rightarrow sortcode, sortcode \rightarrow bname \models no \rightarrow bname$

Armstrong's Axioms

Reflexivity: $Y \subseteq X \models X \to Y$

Augmentation: $X \to Y \models XZ \to YZ$ Transitivity: $X \to Y, Y \to Z \models X \to Z$

Union Rule

If
$$X \to Y, X \to Z$$

By augmentation

$$X \to Y \models XZ \to YZ$$

$$X \to Z \models X \to XZ$$

 $X \to Z \models X \to XZ$

By transitivity

$$X \to XZ, XZ \to YZ \models X \to YZ$$

If
$$X \to YZ$$

By reflexivity

$$YZ \models YZ \rightarrow Y, YZ \rightarrow Z$$

By transitivity

$$X \to YZ, YZ \to Y \models X \to Y$$

$$X \to YZ, YZ \to Z \models X \to Z$$

$$\therefore X \to Y, X \to Z \equiv X \to YZ$$

■ Note that the union rules means that we can restrict ourselves to FD sets containing just one attribute on the RHS of each FD without loosing expressiveness

Quiz 17.3: Deriving FDs from other FDs

Given a set $S = \{A \to BC, CD \to E, C \to F, E \to F\}$ of FDs

Which set of FDs below follows from S:

A

 $A \to BF, A \to CF, A \to ABCF$

В

 $A \to BD, A \to CF, A \to ABCF$

C

 $A \to BD, A \to BF, A \to ABCF$

D

 $A \rightarrow BD, A \rightarrow BF, A \rightarrow CF$

Pseudotransitivity Rule

Armstrong's Axioms

Reflexivity: $Y \subseteq X \models X \to Y$

Augmentation: $X \to Y \models XZ \to YZ$ Transitivity: $X \to Y, Y \to Z \models X \to Z$

Pseudotransitivity Rule

If $X \to Y, WY \to Z$

By augmentation

$$X \to Y \models WX \to WY$$

By transitivity

$$WX \to WY, WY \to Z \models WX \to Z$$

$$\therefore X \to Y, WY \to Z \models WX \to Z$$

Decomposition Rule

Armstrong's Axioms

Reflexivity: $Y \subseteq X \models X \to Y$

Augmentation: $X \to Y \models XZ \to YZ$ Transitivity: $X \to Y, Y \to Z \models X \to Z$

Decomposition Rule

If $X \to Y, Z \subseteq Y$

By reflexivity

 $Z \subseteq Y \models Y \to Z$

By transitivity

$$X \to Y, Y \to Z \models X \to Z$$

$$\therefore X \to Y, Z \subseteq Y \models X \to Z$$

Topic 18: FDs and Keys

P.J. McBrien

Imperial College London

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

Determining keys of a relation

```
Suppose branch(sortcode, bname, cash) has the FD set \{\text{sortcode} \rightarrow \text{bname}, \text{bname} \rightarrow \text{sortcode}, \text{bname} \rightarrow \text{cash}\}
```

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

Determining keys of a relation

```
Suppose branch(sortcode, bname, cash) has the FD set \{\text{sortcode} \rightarrow \text{bname}, \text{bname} \rightarrow \text{sortcode}, \text{bname} \rightarrow \text{cash}\}
```

 \blacksquare {sortcode, bname} is a super-key since {sortcode, bname} \rightarrow cash

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set $\{\text{sortcode} \rightarrow \text{bname}, \text{bname} \rightarrow \text{sortcode}, \text{bname} \rightarrow \text{cash}\}$

- \blacksquare {sortcode, bname} is a super-key since {sortcode, bname} \rightarrow cash
- **2** However, {sortcode, bname} is not a minimal key, since sortcode \rightarrow {bname, cash} and bname \rightarrow {sortcode, cash}

Super-keys and minimal keys

- If a set of attributes X in relation R functionally determines all the other attributes of R, then X must be a **super-key** of R
- If it is not possible to remove any attribute from X to form X', and X' functionally determine all attributes, then X is a **minimal key** of R

Determining keys of a relation

Suppose branch(sortcode, bname, cash) has the FD set $\{\text{sortcode} \rightarrow \text{bname}, \text{bname} \rightarrow \text{sortcode}, \text{bname} \rightarrow \text{cash}\}$

- \blacksquare {sortcode, bname} is a super-key since {sortcode, bname} \rightarrow cash
- However, {sortcode, bname} is not a minimal key, since sortcode \rightarrow {bname, cash} and bname \rightarrow {sortcode, cash}
- 3 sortcode and bname are both minimal keys of branch

Quiz 18.1: Deriving minimal keys from FDs

Suppose the relation R(A, B, C, D, E) has functional dependencies $S = \{A \rightarrow E, B \rightarrow AC, C \rightarrow D, E \rightarrow D\}$

Which of the following is a minimal key?

A	В	\bigcirc C	D
A	AB	BC	B

Quiz 18.2: Keys and FDs

Suppose the relation R(A, B, C, D, E) has minimal keys AC and BC

Which FD does not necessarily hold?

A	В	\bigcirc C	D
$ABC \rightarrow DE$	$AC \rightarrow BDE$	$AB \rightarrow DE$	$BC \to DE$

Closure of a set of attributes with a set of FDs

Closure X^+ of a set of attributes X with FDs S

- 1 Set $X^+ := X$
- 2 Starting with X^+ apply each FD $X_s \to Y$ in S where $X_s \subseteq X^+$ but Y is not already in X^+ , to find determined attributes Y
- $X^+ := X^+ \cup Y$
- If Y not empty goto (2)
- **5** Return X^+

Closure of attributes

Relation R(A,B,C,D,E,F) has FD set $S=\{A\to BC,CD\to E,C\to F,E\to F\}$ To compute A^+

- Start with $A^+ = A$, just $A \to BC$ matches, so Y = BC
- $\blacksquare A^+ = ABC$, just $C \to F$ matches, so Y = F
- $\blacksquare A^+ = ABCF$, no FDs apply, so we have the result

Closure of a set of attributes with a set of FDs

Closure X^+ of a set of attributes X with FDs S

- I Set $X^+ := X$
- 2 Starting with X^+ apply each FD $X_s \to Y$ in S where $X_s \subseteq X^+$ but Y is not already in X^+ , to find determined attributes Y
- $X^+ := X^+ \cup Y$
- If Y not empty goto (2)
- Return X^+

Closure of a set of attributes

Relation R(A,B,C,D,E,F) has FD set $S=\{A\to BC,CD\to E,C\to F,E\to F\}$ To compute AD^+

- Start with $AD^+ = AD$, just $A \to BC$ matches, so Y = BC
- $AD^+ = ABCD$, $CD \to E$, $C \to F$ matches, so Y = EF
- $\blacksquare AD^+ = ABCDEF$, no FDs apply, so we have the result

Quiz 18.3: Closure of Attribute Sets

Given a relation R(A,B,C,D,E,F) and FD set $S = \{A \rightarrow BC, C \rightarrow D, BA \rightarrow E, BD \rightarrow F, EF \rightarrow B, BE \rightarrow ABC\}$

Which closure of attributes of S does not cover R?

A	В	C	D
A^+	BC^+	BE^+	EF^+

Closure of the FD Set

■ The closure S^+ of a set of FDs S is the set of all FDs that can be inferred from S

Closure

- Two sets of FDs S, T are equivalent if $S^+ = T^+$
- For speed, we can ignore
 - trivial FDs (e.g. ignore $A \rightarrow A$)
 - LHS that are not minimal (e.g. ignore $AB \to C$ if $A \to C$)
 - flatten all FDs to have just one attribute in RHS (e.g. consider $A \to CD$ as $A \to C$ and $A \to D$)
- Apart from calculating equivalence, do not normally need to compute closure

Closure of the FD Set

- The closure S^+ of a set of FDs S is the set of all FDs that can be inferred from S
- Two sets of FDs S, T are equivalent if $S^+ = T^+$
- For speed, we can ignore
 - trivial FDs (e.g. ignore $A \to A$)
 - LHS that are not minimal (e.g. ignore $AB \to C$ if $A \to C$)
 - flatten all FDs to have just one attribute in RHS (e.g. consider $A \to CD$ as $A \to C$ and $A \to D$)
- Apart from calculating equivalence, do not normally need to compute closure

$$S = \{A \to B, A \to C, B \to A, B \to D\}$$

$$T = \{A \to B, A \to C, A \to D, B \to A\}$$

Closure of the FD Set

- The closure S^+ of a set of FDs S is the set of all FDs that can be inferred from S
- Two sets of FDs S, T are equivalent if $S^+ = T^+$
- For speed, we can ignore
 - trivial FDs (e.g. ignore $A \to A$)
 - LHS that are not minimal (e.g. ignore $AB \to C$ if $A \to C$)
 - flatten all FDs to have just one attribute in RHS (e.g. consider $A \to CD$ as $A \to C$ and $A \to D$)
- Apart from calculating equivalence, do not normally need to compute closure

$$S = \{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow D\}$$

$$S^{+} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\}$$

$$T = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A\}$$

Closure of the FD Set

- The closure S^+ of a set of FDs S is the set of all FDs that can be inferred from S
- Two sets of FDs S, T are equivalent if $S^+ = T^+$
- For speed, we can ignore
 - trivial FDs (e.g. ignore $A \to A$)
 - LHS that are not minimal (e.g. ignore $AB \to C$ if $A \to C$)
 - flatten all FDs to have just one attribute in RHS (e.g. consider $A \to CD$ as $A \to C$ and $A \to D$)
- Apart from calculating equivalence, do not normally need to compute closure

$$S = \{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow D\}$$

$$S^{+} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\}$$

$$T = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A\}$$

$$T^{+} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\}$$

Closure of the FD Set

- lacksquare The closure S^+ of a set of FDs S is the set of all FDs that can be inferred from S
- Two sets of FDs S, T are equivalent if $S^+ = T^+$
- For speed, we can ignore
 - trivial FDs (e.g. ignore $A \rightarrow A$)
 - LHS that are not minimal (e.g. ignore $AB \to C$ if $A \to C$)
 - flatten all FDs to have just one attribute in RHS (e.g. consider $A \to CD$ as $A \to C$ and $A \to D$)
- Apart from calculating equivalence, do not normally need to compute closure

$$\begin{split} S &= \{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow D\} \\ S^{+} &= \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\} \\ T &= \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A\} \\ T^{+} &= \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\} \\ \therefore S &\equiv T \end{split}$$

Minimal cover of a set of FDs

Minimal cover S_c of S

A minimal cover S_c of FD set S has the properties that:

- All the FDs in S can be derived from S_c (i.e. $S^+ = S_c^+$)
- It is not possible to form a new set S'_c by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

Minimal cover S_c of S

A minimal cover S_c of FD set S has the properties that:

- All the FDs in S can be derived from S_c (i.e. $S^+ = S_c^+$)
- It is not possible to form a new set S'_c by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S

$$S = \{A \rightarrow B, BC \rightarrow A, A \rightarrow C, B \rightarrow C\}$$

Minimal cover S_c of S

A minimal cover S_c of FD set S has the properties that:

- All the FDs in S can be derived from S_c (i.e. $S^+ = S_c^+$)
- \blacksquare It is not possible to form a new set S_c' by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S

$$S = \{A \rightarrow B, BC \rightarrow A, A \rightarrow C, B \rightarrow C\}$$
 Since $B \rightarrow C$
$$BC \rightarrow A \Rightarrow B \rightarrow A$$

$$S' = \{A \rightarrow B, B \rightarrow A, A \rightarrow C, B \rightarrow C\}$$

Minimal cover S_c of S

A minimal cover S_c of FD set S has the properties that:

- All the FDs in S can be derived from S_c (i.e. $S^+ = S_c^+$)
- It is not possible to form a new set S'_c by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S

$$S = \{A \to B, BC \to A, A \to C, B \to C\}$$
 Since $B \to C$
$$BC \to A \Rightarrow B \to A$$

$$S' = \{A \to B, B \to A, A \to C, B \to C\}$$
 Since $A \to B, B \to C \models A \to C$
$$A \to C \Rightarrow \emptyset$$

$$S_c = \{A \to B, B \to A, B \to C\}$$

Minimal cover S_c of S

A minimal cover S_c of FD set S has the properties that:

- All the FDs in S can be derived from S_c (i.e. $S^+ = S_c^+$)
- It is not possible to form a new set S'_c by deleting an FD from S_c or deleting an attribute from an FD in S_c , and S'_c can still derive all the FDs in S

$$S = \{A \to B, BC \to A, A \to C, B \to C\}$$
 Since $B \to C$ $BC \to A \Rightarrow B \to A$
$$S' = \{A \to B, B \to A, A \to C, B \to C\}$$

Since
$$A \to B, B \to C \models A \to C$$

 $A \to C \Rightarrow \emptyset$

$$S_c = \{A \to B, B \to A, B \to C\}$$

Since
$$B \to A, A \to C \models B \to C$$

 $B \to C \Rightarrow \emptyset$
 $S_c = \{A \to B, B \to A, A \to C\}$

$$S_c = \{A \to B, B \to A, A \to C\}$$

Worksheet: Minimal Cover (Step 3)

- $1 AB^+ = ABDEHGFC$
 - Try removing $AB \to D$: find $AB^+ = ABEH$, so can't remove.

Try removing $AB \to E$: find $AB^+ = ABDHEGFC$, so remove it from S'' to get S'''

Try removing $AB \to H$: find $AB^+ = ABDEGFHC$, so remove it from S''' to get $S'''' = \{AB \to D, EF \to A, FG \to C, D \to E, D \to G, EG \to B, EG \to F, F \to B, F \to H\}$

 $EF^+ = EFABHDGC$

Try removing $EF \to A$: find $EF^+ = EFBH$, so can't remove.

- 3 $FG^+ = FGCBH$ Try removing $FG \to C$: find $FG^+ = FGBH$, so can't remove.
- $D^+ = DEGBFHAC$

Try removing $D \to E$: find $D^+ = DG$, so can't remove.

Try removing $D \to G$: find $D^+ = DE$, so can't remove.

 $EG^+ = EGBFHADC$

Try removing $EG \to B$: find $EG^+ = EGFBHADC$, so remove it from S''''' to get S''''''

Try removing $EG \to F$: find $EG^+ = EG$, so can't remove.

6 $F^+ = FBH$

Try removing $F \to B$: find $F^+ = FH$, so can't remove.

Try removing $F \to H$: find $F^+ = FB$, so can't remove.

Thus $S^{\prime\prime\prime\prime\prime\prime}$ is a minimal cover

$$S_c = \{AB \rightarrow D, EF \rightarrow A, FG \rightarrow C, D \rightarrow EG, EG \rightarrow F, F \rightarrow BH\}$$

Topic 19: Normalisation

P.J. McBrien

Imperial College London

Using FDs to Formalise Problems in Schemas

				ba	ınk_data				
no	sortcode	bname	cash	type	cname	rate?	<u>mid</u>	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A	A. null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A	A. null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A	4. 5.50	1009	5600.00	1999-01-18

Using FDs to Formalise Problems in Schemas

				ba	ınk_data					
no	sortcode	bname	cash	type	cname		rate?	<u>mid</u>	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.		null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.		5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.		null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis,	Α.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.		null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.		null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis,	A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.		5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis,	Α.	5.50	1009	5600.00	1999-01-18

```
Formalise the intuition of redundancy by the statements of FDs
mid \rightarrow \{tdate, amount, no\},\
no \rightarrow \{type, cname, rate, sortcode\},\
\{cname, type\} \rightarrow no,
sortcode \rightarrow \{bname, cash\}
bname \rightarrow sortcode
```

Using FDs to Formalise Problems in Schemas

				ba	ank_data				
no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18

```
Formalise the intuition of redundancy by the statements of FDs
mid \rightarrow \{tdate, amount, no\},\
no \rightarrow \{type, cname, rate, sortcode\},\
\{cname, type\} \rightarrow no,
sortcode \rightarrow \{bname, cash\}
bname \rightarrow sortcode
```

1st Normal Form (1NF)

Every attribute depends on the key

1NF

Quiz 19.1: 1st Normal Form

				ba	ınk_data					
no	sortcode	bname	cash	type	cname		rate?	<u>mid</u>	amount	tdate
100	67	Strand	34005.00	current	McBrien, P.		null	1000	2300.00	1999-01-05
101	67	Strand	34005.00	deposit	McBrien, P.		5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.		null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis,	Α.	null	1004	-100.00	1999-01-11
103	34	Goodge St	6900.67	current	Boyd, M.		null	1005	145.50	1999-01-12
100	67	Strand	34005.00	current	McBrien, P.		null	1006	10.23	1999-01-15
107	56	Wimbledon	84340.45	current	Poulovassilis,	Α.	null	1007	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.		5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis,	Α.	5.50	1009	5600.00	1999-01-18
$mid \to \{tdate, amount, no\},$										
no –	→ {type, c	name, rate,	sortcode,							
{cna	me, type	ightarrow no,								

 $sortcode \rightarrow \{bname, cash\}$ $bname \rightarrow sortcode$

True

False

Prime and Non-Prime Attributes

Prime Attribute

An attribute A of relation R is **prime** if there is some minimal candidate key X of R such that $A \subseteq X$

Any other attribute $B \in Attrs(R)$ is **non-prime**

Prime and non-prime attributes of bank_data

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate) $\operatorname{Has} \operatorname{FDs} \operatorname{\mathsf{mid}} \to \{\operatorname{\mathsf{tdate}}, \operatorname{\mathsf{amount}}, \operatorname{\mathsf{no}}\}, \operatorname{\mathsf{no}} \to \{\operatorname{\mathsf{type}}, \operatorname{\mathsf{cname}}, \operatorname{\mathsf{rate}}, \operatorname{\mathsf{sortcode}}\},$ $\{cname, type\} \rightarrow no, sortcode \rightarrow \{bname, cash\}, bname \rightarrow sortcode\}$ Then

- 1 the only minimal candidate key is mid
- 2 the only prime attribute is mid
- non-prime attributes are no, sortcode, bname, cash, type, cname, rate, amount, tdate

Quiz 19.2: Prime and nonprime attributes

Given a relation R(A,B,C,D,E,F) and an FD set $A \to BCE, C \to D, BD \to F, EF \to B, BE \to A$

What are the nonprime attributes?

A

DEF

В

BC

CDF

CD

3NF

3rd Normal Form (3NF)

3rd Normal Form (3NF)

For every non-trivial FD $X \to A$ on R, either

- \mathbf{I} X is a super-key
- 2 A is prime

Every non-key attribute depends on the key, the whole key and nothing but the key

Failure of bank_data to meet 3NF

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

- Has the following FDs where the LHS is not a super-key: $no \rightarrow \{type, cname, rate, sortcode\}, \{cname, type\} \rightarrow no,$ $sortcode \rightarrow \{bname, cash\}, bname \rightarrow sortcode$
- Each of the above FD causes the relation not to meet 3NF since the RHS contains non-prime attributes

Quiz 19.3: 3rd Normal Form

Given a relation R(A, B, C, D, E, F) and an FD set $A \rightarrow BCE, C \rightarrow D, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

 $R_1(B, D, F), R_2(A, B, C, D, E)$

 $R_1(A, B, C, E, F), R_2(C, D)$

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

RCNE

Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form (BCNF)

For every non-trivial FD $X \to A$ on R, X is a super-key. Every attribute depends on the key, the whole key and nothing but the key

BCNF schema

branch(sortcode, bname, cash) with FDs sortcode \rightarrow {bname, cash}, bname \rightarrow sortcode is in BCNF since sortcode and bname are both candidate keys

account(no, type, cname, rate, sortcode) with FDs $no \rightarrow \{type, cname, rate, sortcode\}$, $\{cname, type\} \rightarrow no$ is in BCNF since no and cname, type are both candidate keys

movement(mid, amount, no, tdate) with FD $mid \rightarrow \{tdate, amount, no\}$ is in BCNF since mid is key

Lossless-join decomposition of relations

Lossless-join decomposition of a Relation

A lossless-join decomposition of a relation R with respect to FDs S into relations R_1, \ldots, R_n has the properties that:

- $Attrs(R_1) \cup \ldots \cup Attrs(R_n) = Attrs(R)$
- \blacksquare For all possible extents of R satisfying $S,\,\pi_{Attrs(R_1)}\,R\bowtie\ldots\bowtie\pi_{Attrs(R_n)}\,R=R$

Lossless-join decomposition of bank_data

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

- Has FDs mid \rightarrow {tdate, amount, no}, no \rightarrow {type, cname, rate, sortcode}, {cname, type} \rightarrow no, sortcode \rightarrow {bname, cash}, bname \rightarrow sortcode
- Decomposing bank_data into branch = π_{sortcode,bname,cash} bank_data account = π_{no,type,cname,rate,sortcode} bank_data movement = π_{mid,amount,no,tdate} bank_data satisfies the lossless-join decomposition property

Problems if not a lossless-join decomposition

If a decomposition of R into R_1, \ldots, R_n is not lossless, then some tuples spread over R_1, \ldots, R_n can result in phantom tuples appearing

$$R(A, B, C, D), S = \{A \rightarrow B, B \rightarrow CD\}$$

	R			\Box		R_1		R	\mathcal{L}_2	\Box	$\begin{array}{cccc} R_1 \bowtie R_2 \\ A & B & C & D \end{array}$			
A	B	C	D	\neg /	A	B	C	C	D	'√	A	B	C	D
1	1	2	6		1	1	2	2	6		1	1	2	6
2	2	3	4		2	2	3	3	4		2	2	3	4

Decomposition on an FD

If $R(A_1 ... A_n)$ has FD $A_i \to A_{i+1} ... A_n$ then decomposing on the FD to $R_1(A_1 \ldots A_i), R_2(A_i A_{i+1} \ldots A_n)$ is lossless

Problems if not a lossless-join decomposition

If a decomposition of R into R_1, \ldots, R_n is not lossless, then some tuples spread over R_1, \ldots, R_n can result in phantom tuples appearing

$$R(A, B, C, D), S = \{A \rightarrow B, B \rightarrow CD\}$$

	R			\square R_1				R_2			$R_1 \bowtie R_2$			
A	B	C	D	\neg	A	B	C	C	D	'√	A	B	C	D
1	1	2	6		1	1	2	2	6		1	1	2	6
2	2	3	4		2	2	3	3	4		2	2	3	4
3	3	3	5		3	3	3	3	5		3	3	3	5
											2	2	3	5
											3	3	3	4

Decomposition on an FD

If $R(A_1 ... A_n)$ has FD $A_i \to A_{i+1} ... A_n$ then decomposing on the FD to $R_1(A_1 \ldots A_i), R_2(A_i A_{i+1} \ldots A_n)$ is lossless

Quiz 19.4: Lossless join decomposition

Given a relation R(A,B,C,D,E,F) and an FD set $A \to BCE, C \to D, BD \to F, EF \to B, BE \to A$

Which is not a lossless-join decomposition of R

A

 $R_1(B, D, F), R_2(A, B, C, D, E)$

В

 $R_1(A, B, C, E, F), R_2(C, D)$

 \mathbf{C}

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

Worksheet: Lossless Join Decomposition

- \mathbb{I} R(A, B, C, D, E) has the FDs $S = \{AB \to C, C \to DE, E \to A\}$. Which of the following are lossless join decompositions?
 - $\mathbf{1}$ $R_1(A, B, C), R_2(C, D, E)$
 - $R_1(A, B, C), R_2(C, D), R_3(D, E)$
- \blacksquare Derive a lossless join decomposition into three relations of R(A, B, C, D, E, F)with FDs $S = \{AB \to CD, C \to E, A \to F\}$.
- \blacksquare Derive a lossless join decomposition into three relations of R(A, B, C, D, E, F)with FDs $S = \{AB \to CD, C \to E, F \to A\}$.

Topic 20: Generating 3NF and BCNF Schemas

P.J. McBrien

Imperial College London

Generating 3NF

Generating 3NF

- Given R and a set of FDs S, find an FD $X \to A$ that causes R to violate 3NF (i.e. for which A is not a prime attribute and X is not a superkey).
- 2 Decompose R into $R_a(Attr(R) A)$ and $R_b(XA)$ (Note because the two relations share X and $X \to A$ this is lossless)
- \blacksquare Project the S onto the new relations, and repeat the process from (1)

Note that step (2) ensures that the decomposition is lossless since joining R_a with R_b will share X, and $X \to A$

Canonical Example of 3NF Decomposition

Suppose R(A, B, C) has FD set $S = \{A \rightarrow B, B \rightarrow C\}$

- The only key is A, and so $B \to C$ violates 3NF (since B is not a superkey and C is nonprime).
- Decomposing R into $R_1(A, B)$ and $R_2(B, C)$ results in two 3NF relations.

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

```
\begin{aligned} \mathsf{bank\_data} \big( \mathsf{no}, \mathsf{sortcode}, \mathsf{bname}, \mathsf{cash}, \mathsf{type}, \mathsf{cname}, \mathsf{rate}, \mathsf{mid}, \mathsf{amount}, \mathsf{tdate} \big) \\ S &= \big\{ \mathsf{mid} \to \big\{ \mathsf{tdate}, \mathsf{amount}, \mathsf{no} \big\}, \, \mathsf{no} \to \big\{ \mathsf{type}, \mathsf{cname}, \mathsf{rate}, \mathsf{sortcode} \big\}, \\ &\quad \big\{ \mathsf{cname}, \mathsf{type} \big\} \to \mathsf{no}, \mathsf{sortcode} \to \big\{ \mathsf{bname}, \mathsf{cash} \big\}, \, \mathsf{bname} \to \mathsf{sortcode} \big\} \end{aligned}
```

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

```
\begin{aligned} & \mathsf{bank\_data}\big(\mathsf{no}, \mathsf{sortcode}, \mathsf{bname}, \mathsf{cash}, \mathsf{type}, \mathsf{cname}, \mathsf{rate}, \mathsf{mid}, \mathsf{amount}, \mathsf{tdate}\big) \\ & S = \{\mathsf{mid} \to \{\mathsf{tdate}, \mathsf{amount}, \mathsf{no}\}, \, \mathsf{no} \to \{\mathsf{type}, \mathsf{cname}, \mathsf{rate}, \mathsf{sortcode}\}, \\ & \{\mathsf{cname}, \mathsf{type}\} \to \mathsf{no}, \mathsf{sortcode} \to \{\mathsf{bname}, \mathsf{cash}\}, \, \mathsf{bname} \to \mathsf{sortcode}\} \end{aligned}
```

Since sortcode \to {bname, cash} and sortcode is not superkey and bname, cash nonprime, we should decompose bank_data into

- 1 branch(sortcode, bname, cash) with FDs sortcode \rightarrow {bname, cash}, bname \rightarrow sortcode
- 2 bank_data'(no, sortcode, type, cname, rate, mid, amount, tdate) with FDs mid \rightarrow {tdate, amount, no}, no \rightarrow {type, cname, rate, sortcode}, {cname, type} \rightarrow no

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

```
\begin{aligned} & \mathsf{bank\_data}\big(\mathsf{no}, \mathsf{sortcode}, \mathsf{bname}, \mathsf{cash}, \mathsf{type}, \mathsf{cname}, \mathsf{rate}, \mathsf{mid}, \mathsf{amount}, \mathsf{tdate}\big) \\ & S = \{\mathsf{mid} \to \{\mathsf{tdate}, \mathsf{amount}, \mathsf{no}\}, \, \mathsf{no} \to \{\mathsf{type}, \mathsf{cname}, \mathsf{rate}, \mathsf{sortcode}\}, \\ & \{\mathsf{cname}, \mathsf{type}\} \to \mathsf{no}, \mathsf{sortcode} \to \{\mathsf{bname}, \mathsf{cash}\}, \, \mathsf{bname} \to \mathsf{sortcode}\} \end{aligned}
```

Since sortcode \to {bname, cash} and sortcode is not superkey and bname, cash nonprime, we should decompose bank_data into

- 1 branch(sortcode, bname, cash) with FDs sortcode \rightarrow {bname, cash}, bname \rightarrow sortcode
- 2 bank_data'(no, sortcode, type, cname, rate, mid, amount, tdate) with FDs mid → {tdate, amount, no}, no → {type, cname, rate, sortcode}, {cname, type} → no

branch is in 3NF, but $no \rightarrow \{type, cname, rate, sortcode\}$ makes bank_data' violate 3NF, so we should decompose bank_data' into:

- 3 account(no, type, cname, rate, sortcode) with FDs no \rightarrow {type, cname, rate, sortcode}, {cname, type} \rightarrow no
- 4 movement(mid.amount, no, tdate) with FD mid \rightarrow {tdate, amount, no}

The relations branch, account, and movement are all in 3NF

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

$$S^+ = \{A \to B, A \to C, B \to A, B \to C, C \to A, C \to B\}$$

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- $\blacksquare S^+ = \{A \to B, A \to C, B \to A, B \to C, C \to A, C \to B\}$
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- $S^+ = \{ A \to B, A \to C, B \to A, B \to C, C \to A, C \to B \}$
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$
- The projection of S^+ onto R_b gives $S_b^+ = \{B \to C, C \to B\}$

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- $S^+ = \{A \to B, A \to C, B \to A, B \to C, C \to A, C \to B\}$
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$
- The projection of S^+ onto R_b gives $S_b^+ = \{B \to C, C \to B\}$
- Note that the union S_u of the two subsets of S^+ (i.e. $S_u = S_a^+ \cup S_b^+$) has the property that $S_u^+ = S^+$, and hence the decomposition preserves functional dependencies.

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

FD preserving decomposition

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- $\blacksquare S^+ = \{A \to B, A \to C, B \to A, B \to C, C \to A, C \to B\}$
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$
- The projection of S^+ onto R_b gives $S_b^+ = \{B \to C, C \to B\}$
- Note that the union S_u of the two subsets of S^+ (i.e. $S_u = S_a^+ \cup S_b^+$) has the property that $S_n^+ = S^+$, and hence the decomposition preserves functional dependencies.

There is always possible to decompose a relation into 3NF in a manner that preserves functional dependencies. Thus any good 3NF decomposition of a relation must also preserve functional dependencies.

Given a relation R(A,B,C,D,E,F) and an FD set $A \to BCE, C \to D, BD \to F, EF \to B, BE \to A$

Which decomposition preserves FDs?

A

 $R_1(B, D, F), R_2(A, B, C, D, E)$

В

 $R_1(A, B, C, E, F), R_2(C, D)$

 \mathbf{C}

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

Preserving FDs, lossless join, and 3NF

Given a relation R(A,B,C,D,E,F) and an FD set $A \to BCE,C \to D,BD \to F,EF \to B,BE \to A$

Decomposition	lossless join	3NF	Preserves FDs
$R_1(B,D,F), R_2(A,B,C,D,E)$	✓	X	Х
$R_1(A,B,C,E,F), R_2(C,D)$	✓	✓	X
$R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$	✓	✓	✓
$R_1(B, E, F), R_2(A, C, E), R_3(C, D)$	Х	1	X

Decomposing to 3NF

Since it is always possible to decompose a relation into a 3NF form that is both a lossless join decomposition, and preserves FDs, you should always do so.

Suppose the relation R(A,B,C,D,E) has functional dependencies $S = \{AC \to DBE, BC \to DE, B \to A, E \to D\}$ (and hence has minimal keys AC and BC)

Which is a lossless join decomposition to 3NF that preserves FDs?

 $R_a(B,C,E), R_b(A,B,C), R_c(D,E)$

В

 $R_a(A, B, C), R_b(A, C, D, E)$

 \mathbf{C}

 $R_a(A, C, D), R_b(A, C, E), R_c(A, B)$

D

 $R_a(A,C,E), R_b(B,D,E)$

Suppose the relation R(A,B,C,D,E) has functional dependencies $S = \{AC \to DBE, BC \to DE, B \to A, E \to D\}$ (and hence has minimal keys AC and BC)

Which is a lossless join decomposition to 3NF that preserves FDs?

 $R_a(B,C,E), R_b(A,B,C), R_c(D,E)$

В

 $R_a(A, B, C), R_b(A, C, D, E)$

 \mathbf{C}

 $R_a(A, C, D), R_b(A, C, E), R_c(A, B)$

D

 $R_a(A, C, E), R_b(B, D, E)$

Minimal Cover of S

Because $BC \to E, E \to D \models BC \to D$

$$S \equiv \{AC \to DBE, BC \to E, B \to A, E \to D\}$$

Suppose the relation R(A,B,C,D,E) has functional dependencies $S = \{AC \to DBE, BC \to DE, B \to A, E \to D\}$ (and hence has minimal keys AC and BC)

Which is a lossless join decomposition to 3NF that preserves FDs?

 $R_a(B,C,E), R_b(A,B,C), R_c(D,E)$

В

 $R_a(A, B, C), R_b(A, C, D, E)$

C

 $R_a(A,C,D), R_b(A,C,E), R_c(A,B)$

D

 $R_a(A,C,E), R_b(B,D,E)$

Minimal Cover of S

Because
$$BC \to E, E \to D \models BC \to D$$

$$S \equiv \{AC \rightarrow DBE, BC \rightarrow E, B \rightarrow A, E \rightarrow D\}$$

Because
$$AC \to E, E \to D \models AC \to D$$

$$S \equiv \{AC \rightarrow BE, BC \rightarrow E, B \rightarrow A, E \rightarrow D\}$$

Suppose the relation R(A,B,C,D,E) has functional dependencies $S = \{AC \to DBE, BC \to DE, B \to A, E \to D\}$ (and hence has minimal keys AC and BC)

Which is a lossless join decomposition to 3NF that preserves FDs?

$$R_a(B,C,E), R_b(A,B,C), R_c(D,E)$$

 $R_a(A, B, C), R_b(A, C, D, E)$

C $R_a(A, C, D), R_b(A, C, E), R_c(A, B)$

 $\frac{D}{R_a(A,C,E),R_b(B,D,E)}$

Minimal Cover of S

Because $BC \to E, E \to D \models BC \to D$

 $S \equiv \{AC \rightarrow DBE, BC \rightarrow E, B \rightarrow A, E \rightarrow D\}$ Because $AC \rightarrow E, E \rightarrow D \models AC \rightarrow D$

Because $AC \to B$, $BC \to E \models AC \to E$ $S \equiv S_c = \{AC \to B, BC \to E, B \to A, E \to D\}$

 $S \equiv \{AC \rightarrow BE, BC \rightarrow E, B \rightarrow A, E \rightarrow D\}$

Decomposition of Relations into BCNF

Generating BCNF

- **I** Given R and a set of FDs S, find an FD $X \to A$ that causes R to violate BCNF (*i.e.* for which X is not a superkey).
- \square Decompose R into $R_a(Attr(R) A)$ and $R_b(XA)$ (Note because the two relations share X and $X \to A$ this is lossless)
- 3 Project the S onto the new relations, and repeat the process from (1)

Difference between 3NF and BCNF

Suppose the relation address(no, street, town, county, postcode) has FDs $\{\text{no, street, town, county}\} \rightarrow \text{postcode, postcode} \rightarrow \{\text{street, town, county}\},$

- The relation is in 3NF (alternative keys no, street, town, county and no, postcode).
- The relation is not in BCNF since postcode \rightarrow {street, town, county} has a non-superkey as the determinant
 - Decompose the relation address on postcode \rightarrow {street, town, county} to: postcode(postcode, street, town, county) streetnumber(no, postcode)
 - Note FD $\{no, street, town, county\} \rightarrow postcode$ cannot be projected over the relations.

Worksheet: Decomposing to Normal Forms

$$S_c = \{AB \rightarrow D, EF \rightarrow A, FG \rightarrow C, D \rightarrow EG, EG \rightarrow F, F \rightarrow BH\}$$

- 1 Decompose the relation into 3NF
- 2 Decompose the relation into BCNF
- 3 Determine if your decompositions in (1) and (2) preserve FDs, and if they do not, suggest how to amend you schema to preserve FDs.

