Net wor k Wor ki ng G oup M Crispin
Request for Coments: 1064 SUMEX- Al M
July 1988

I NTERACTI VE MAI L ACCESS PROTOCOL - VERSI ON 2

Status of this Mno

Thi s RFC suggests a nethod for workstations to dynam cally access
mail froma mail box server ("repository”). This RFC specifies a
standard for the SUVEX-AI M community and a proposed experinmenta
protocol for the Internet community. Discussion and suggestions for
i mprovenent are requested. Distribution of this neno is unlimted.

I nt roducti on

The intent of the Interactive Mail Access Protocol, Version 2 (I MAP2)
is to allowa wirkstation or simlar small machine to access

el ectronic mail froma mail box server. |IMAP2 is the protocol used by
the SUVMEX-AIM MMD (MM Distributed) mail system

Al t hough different in many ways from POP2 (RFC 937), | MAP2 may be

t hought of as a functional superset of POP2, and the POP2 RFC was
used as a nodel for this RFC. There was a cogni zant reason for this;
RFC 937 deals with an identical problemand it was desirable to offer
a basis for conparison.

Li ke POP2, | MAP2 specifies a neans of accessing stored nmail and not
of posting mail; this function is handled by a mail transfer protocol
such as SMIP (RFC 821). A conparison with the DVSBP protocol of
PCVAI L can be found at the end of "System Mddel and Phil osophy”
section.

This protocol assunes a reliable data stream such as provided by TCP
or any simlar protocol. Wen TCP is used, the | MAP2 server |istens
on port 143.

System Model and Phil osophy
El ectronic mail is a primary nmeans of conmunication for the wdely

spread SUMEX- Al M conmunity. The advent of distributed workstations
is forcing a significant rethinking of the mechani sns enpl oyed to

manage such mail. Wth nmai nfranes, each user tends to receive and
process mail at the conputer he used nost of the tine, his "primary
host". The first inclination of many users when an i ndependent

wor kstation is placed in front of themis to begin receiving mail at
t he workstation, and, in fact, many vendors have inpl enent ed

Crispin [Page 1]

RFC 1064 | MAP2 July 1988

facilities to do this. However, this approach has several
di sadvant ages:

(1) Workstations (especially Lisp workstations) have a software
design that gives full control of all aspects of the systemto the
user at the console. As a result, background tasks, |ike
receiving mail, could well be kept fromrunning for |ong periods
of time either because the user is asking to use all of the

machi ne’ s resources, or because, in the course of working, the
user has (perhaps accidentally) manipul ated the environnment in
such a way as to prevent nmail reception. This could lead to
repeated failed delivery attenpts by outside agents.

(2) The hardware failure of a single workstation could keep its
user "off the air"” for a considerable tine, since repair of

i ndi vi dual workstation units mght be delayed. G ven the grow ng
nunber of workstations spread throughout office environnents,

qui ck repair would not be assured, whereas a centralized mainfrane
is generally repaired very soon after failure.

(3) It is nmore difficult to keep track of nmiling addresses when
each person is associated with a distinct nachine. Consider the
difficulty in keeping track of a |large nunber of postal addresses
or phone nunbers, particularly if there was no single address or
phone nunber for an organi zation through which you could reach any
person in that organization. Traditionally, electronic mail on

t he ARPANET i nvol ved renenberi ng a nane and one of several "hosts"
(machi nes) whose nane reflected the organization in which the

i ndi vi dual worked. This was suitable at a tinme when nost

organi zations had only one central host. It is |less satisfactory
t oday unl ess the concept of a host is changed to refer to an
organi zational entity and not a particul ar machi ne.

(4) It is very difficult to keep a nultitude of heterogeneous

wor kst ati ons working properly with conplex mailing protocols,
making it difficult to nove forward as progress is made in

el ectroni ¢ communi cati on and as new standards energe. Each system
has to worry about receiving incomng mail, routing and delivering
outgoing mail, formatting, storing, and providing for the
stability of mail boxes over a variety of possible filing and
mai | i ng protocols.

Consequently, while the workstation may be viewed as an |Internet host
in the sense that it inplements IP, it should not be viewed as the
entity which contains the user’s mail box. Rather, a nmail server
machi ne (sonetinmes called a "repository”) should hold the mail box,
and the workstation (hereafter referred to as a "client") should
access the mail box via mail transactions. Because the mail server

Crispin [Page 2]

RFC 1064 | MAP2 July 1988

machi ne woul d be isolated fromdirect user manipulation, it could
achi eve high software reliability easily, and, as a shared resource,
it could achieve high hardware reliability, perhaps through
redundancy. The mail server could be used fromarbitrary | ocations,
allowing users to read mail across canpus, town, or country using
nore and nore commonly available clients. Furthernore, the sanme user
may access his mail box fromdifferent clients at different tinmes, and
mul ti pl e users may access the sanme nmail box sinultaneously.

The mail server acts an an interface anong users, data storage, and
other mailers. The mail access protocol is used to retrieve
nmessages, access and change properties of nessages, and manage
mai | boxes. This differs fromsone approaches (e.g., Unix mail via
NFS) in that the nmail access protocol is used for all nessage
mani pul ations, isolating the user and the client fromall know edge
of how the data storage is used. This nmeans that the mail server can
utilize the data storage in whatever way is nost efficient to

organi ze the mail in that particular environnent, w thout having to
worry about storage representation conpatibility across different
machi nes.

In defining a mail access protocol, it is inmportant to keep in m nd

that the client and server forma macrosystem in which it should be
possible to exploit the strong points of both while conpensating for
each other’s weaknesses. Furthernore, it’s desirable to allow for a
growt h path beyond the hoary text-only RFC 822 protocol. Unlike
POP2, I MAP2 has extensive features for renpte searching and parsing
of nmessages on the server. For exanple, a free text search
(optionally in conjunction with other searching) can be nade

t hroughout the entire mail box by the server and the results nmade
avai l able to the client wthout the client having to transfer the
entire mail box and searching itself. Since renote parsing of a
nmessage into a structured (and standard format) "envel ope” is
avai l able, a client can display envel ope information and i npl enent
commands such as REPLY wi t hout havi ng any understandi ng of how to
parse RFC 822, etc. headers.

Additionally, I MAP2 offers several facilities for managi ng a mail box
beyond the sinple "del ete nmessage"” functionality of POP2.

In spite of this, IMAP2 is arelatively sinple protocol. Although
servers should inplenent the full set of | MAP2 functions, a sinple
client can be witten which uses IMAP2 in nuch the way as a POP2
client.

| MAP2 differs fromthe DVSP protocol of PCMAIL (RFC 1056) in a nore

fundanental manner, reflecting the differing architectures of MM D
and PCMAIL. PCMAIL is either an online ("interactive node"), or

Crispin [Page 3]

RFC 1064 | MAP2 July 1988

offline ("batch node") system MMDis primarily an online systemin
which real -tine and sinmultaneous mail access were consi der ed
i mportant.

In PCMAIL, there is a long-termclient/server relationship in which
sone nail box state is preserved on the client. There is a

regi stration of clients used by a particular user, and the client
keeps a set of "descriptors" for each nessage which sumarize the
nmessage. The server and client synchronize their states when the
DMSP connection starts up, and, if a client has not accessed the
server for a while, the client does a conplete reset (reload) of its
state fromthe server

In MMD, the client/server relationship lasts only for the duration
of the I MAP2 connection. All mailbox state is maintained on the
server. There is no registration of clients. The function of a
descriptor is handled by a structured representation of the nessage
"envel ope". This structure makes it unnecessary for a client to know
anyt hi ng about RFC 822 parsing. There is no synchronization since
the client does not renenber state between | MAP2 connections. This
is not a problemsince in general the client never needs the entire
state of the mailbox in a single session, therefore there isn’t nuch
overhead in fetching the state information that is needed as it is
needed.

There are al so sone functional differences between | MAP2 and DVSP
DMSP has explicit support for bulletin boards which are only handl ed
implicitly in IMAP2. DWMSBP has functions for sending nessages,
printing nmessages, |isting mail boxes, and changi ng passwords, all of
whi ch are done outside of I MAP2. DMSP has 16 binary flags of which 8
are defined by the system |MAP has flag nanmes; there are currently
5 defined systemflag nanmes and a facility for sonme nunber (30 in the
current inplenmentations) of user flag nanmes. | MAP2 has a
sophi sti cated nessage search facility in the server to identify

i nteresting nessages based on dates, addresses, flag status, or
textual contents w thout conpelling the client to fetch this data for
every nessage.

It was felt that maintaining state on the client is advantageous only
in those cases where the client is only used by a single user, or if
there is sonme nmeans on the client to restrict access to another
user’s data. It can be a serious disadvantage in an environnent in
which multiple users routinely use the same client, the sanme user
routinely uses different clients, and where there are no access
restrictions on the client. It was also observed that nost user nmail
access is to a relatively snmall set of "interesting" nessages, which
were either "new' mail or nmail based upon sone user-sel ected
criteria. Consequently, | MAP2 was designed to easily identify those

Crispin [Page 4]

RFC 1064 | MAP2 July 1988

"interesting” nmessages so that the client could fetch the state of
t hose nessages and not those that were not "interesting".

The Pr ot ocol

The | MAP2 protocol consists of a sequence of client commands and
server responses, Wth server data interspersed between the
responses. Unlike nost Internet protocols, comands and responses
are tagged. That is, a comand begins with a unique identifier
(typically a short al phanunmeric sequence such as a Lisp "gensyni
function woul d generate e.g., A0001, A0002, etc.), called a tag. The
response to this command is given the sane tag fromthe server
Additionally, the server may send an arbitrary amount of "unsolicited
data", which is identified by the special reserved tag of "*". There
i s anot her special reserved tag, "+", discussed bel ow

The server nust be listening for a connection. Wen a connection is
opened the server sends an unsolicited OK response as a greeting
message and then waits for commands. Wen commands are received the
server acts on them and responds with responses, often interspersed
wi t h dat a.

The client opens a connection, waits for the greeting, then sends a
LOG N command with user nane and password argunents to establish

aut hori zation. Follow ng an OK response fromthe server, the client
t hen sends a SELECT command to access the desired mail box. The
user’s default mail box has a special reserved name of "I1NBOX" which
i s independent of the operating systemthat the server is inplenented
on. The server will generally send a list of valid flags, nunber of
nmessages, and nunber of nessages arrived since |ast access for this
mai | box as unsolicited data, followed by an OK response. The client
may term nate access to this nmail box and access a different one with
anot her SELECT comrand.

The client reads mail box information by nmeans of FETCH commands. The
actual data is transmtted via the unsolicited data nmechani sm (that
is, FETCH should be viewed as poking the server to include the
desired data along with any other data it wishes to transmt to the
client). There are three major categories of data which may be

f et ched.

The first category is that data which is associated with a nessage as
an entity in the mailbox. There are presently three such itens of
data: the "internal date", the "RFC 822 size", and the "flags". The
internal date is the date and tinme that the nessage was placed in the
mai | box. The RFC 822 size is subject to deletion in the future; it
is the size in bytes of the nessage, expressed as an RFC 822 text
string. Current clients only use it as part of a status display

Crispin [Page 5]

RFC 1064 | MAP2 July 1988

line. The flags are a list of status flags associated with the
nmessage (see below). Al of the first category data can be fetched
by using the macro-fetch word "FAST"; that is, "FAST" expands to
"(FLAGS | NTERNALDATE RFC822. Sl ZE)"

The second category is that data which describes the conposition and
delivery information of a nessage; that is, information such as the
nmessage sender, recipient lists, nessage-1D, subject, etc. This is
the information which is stored in the nessage header in RFC 822
format message and is traditionally called the "envel ope". [Note:
this should not be confused wth the SMIP (RFC 821) envel ope, which
is strictly limted to delivery information.] |MAP2 defines a
structured and unanbi guous representation for the envel ope which is
particularly nice for Lisp-based parsers. A client can use the

envel ope for operations such as replying and not worry about RFC 822
at all. Envelopes are discussed in nore detail below The first and
second category data can be fetched together by using the macro-fetch
word "ALL"; that is, "ALL" expands to "(FLAGS | NTERNALDATE
RFC822. SI ZE ENVELOPE) ".

The third category is that data which is intended for direct hunman
view ng. The present RFC 822 based | MAP2 defines three such itens:
RFC822. HEADER, RFC822. TEXT, and RFCB22 (the latter being the two
former appended together in a single text string). Fetching "RFC322"
is equivalent to typing the RFC 822 representation of the nessage as
stored on the mail box without any filtering or processing.

Typically, a client will "FETCH ALL" for sone or all of the nessages
in the mail box for use as a presentation nenu, and when the user
W shes to read a particular nessage will "FETCH RFC822. TEXT" to get

t he nessage body. A nore primtive client could, of course, sinply
"FETCH RFC822" a |la POP2-type functionality.

The client can alter certain data (presently only the flags) by neans
of a STORE conmmand. As an exanple, a nessage is deleted froma
mai | box by a STORE command whi ch includes the \DELETED flag as one of
the flags being set.

O her client operations include copying a nessage to anot her mail box
(COPY command), permanently renoving del eted nmessages (EXPUNGE
command), checking for new nessages (CHECK command), and searchi ng
for nmessages which match certain criteria (SEARCH comrand).

The client term nates the session with the LOGOUT command. The
server returns a "BYE" followed by an "OK".

Crispin [Page 6]

RFC 1064 | MAP2 July 1988

A Typical Scenario

dient Server
{Wait for Connection}
{ Open Connecti on} -->
<-- * OK I MAP2 Server Ready
{wWait for command}
A001 LOA N Fred Secret -->
<-- A001 K User Fred logged in
{Wait for command}
A002 SELECT | NBOX -->
<-- * FLAGS (Meeting Notice \Answered
\ Fl agged \ Del et ed \ Seen)
<-- * 19 EXI STS
<-- * 2 RECENT
<-- A0002 K Sel ect conplete
{Vait for conmmand}

A003 FETCH 1:19 ALL -->
<-- * 1 Fetch (......)
<-- * 18 Fetch (......)
<-- * 19 Fetch (......)

<-- A003 K Fetch conplete
{wait for command}
A004 FETCH 8 RFC822. TEXT -->
<-- * 8 Fetch (RFC822. TEXT {893}
...893 characters of text...

)
<-- A004 K Fetch conplete
{wait for command}

A005 STORE 8 +Flags \Deleted -->
<-- * 8 Store (Flags (\Del eted
\ Seen))
<-- AOO5 K Store conplete
{wait for command}
A006 EXPUNGE -->
<-- * 19 EXI STS
<-- * 8 EXPUNGE
<-- * 18 EXI STS
<-- A006 Expunge conpl ete
{wait for command}
A007 LOGOUT -->
<-- * BYE | MAP2 server quitting
<-- A007 K Logout conplete
{d ose Connection} --><-- {C ose connection}
{Go back to start}

Crispin [Page 7]

RFC 1064 | MAP2 July 1988

Conventi ons

The following terns are used in a neta-sense in the syntax
speci fication bel ow

An ASCI|-STRING is a sequence of arbitrary ASCI| characters.
An ATOM i s a sequence of ASCI| characters delimted by SP or CRLF

A CHARACTER is any ASCI| character except """", "{", CR LF, "%,
or "\".

A CRLF is an ASCII carriage-return character foll owed i medi ately
by an ASCI| |inefeed character.

A NUMBER i s a sequence of the ASCI| characters which represent
deci mal nunerals ("0" through "9"), delimted by SP, CRLF, ",", or

A SP is the ASCI| space character

A TEXT_LINE is a human-readabl e sequence of ASCI| characters up to
but not including a term nating CRLF.

One of the nost conmmon fields in the I MAP2 protocol is a STRI NG

whi ch may be an ATOM QUOTED- STRI NG (a sequence of CHARACTERs i nsi de
doubl e-quotes), or a LITERAL. A literal consists of an open brace
("{"), a nunber, a close brace ("}"), a CRLF, and then an ASClII -
STRING of n characters, where n is the value of the nunber inside the
brace. In general, a string should be represented as an ATOM or
QUOTED- STRING i f at all possible. The semantics for QUOTED STRI NG or
LI TERAL are checked before those for ATOM therefore an ATOM used in
a STRING may only contain CHARACTERs. Literals are nost often sent
fromthe server to the client; in the rare case of a client to server
literal there is a special consideration (see the "+ text" response
bel ow) .

Anot her inportant field is the SEQUENCE, which identifies a set of
nmessages by consecutive nunbers from1l to n where n is the nunber of
nmessages in the mail box. A sequence may consi st of a single nunber,
a pair of nunbers delimted by colon indicating all nunbers between
t hose two nunbers, or a list of single nunbers and/or nunber pairs.
For exanple, the sequence 2,4:7,9,12:15 is equivalent to
2,4,5,6,7,9,12,13,14,15 and identifies all of those nessages.

Crispin [Page 8]

RFC 1064 | MAP2 July 1988

Definitions of Commands and Responses

Summary of Commands and Responses

Commands [] Responses
________ || e e oo - -
tag NOOP |] tag OK text
tag LOA@ N user password |] tag NO text
tag LOGOUT |] tag BAD text
tag SELECT mai |l box |] * message_nunber data
tag CHECK [] * FLAGS flag |ist
t ag EXPUNGE |] * SEARCH sequence
tag COPY sequence mai |l box |] * BYE text
tag FETCH sequence data |] * K text
tag STORE sequence data val ue |] * NO t ext
t ag SEARCH sear ch_program |] * BAD text

| | + text

Commuands
tag NOOP

The NOOP conmand returns an K to the client. By itself, it does
not hi ng, but certain things nmay happen as side effects. For
exanpl e, server inplementations which inplicitly check the mail box
for newmail may do so as a result of this conmand. The primary
use of this conmand is to for the client to see if the server is
still alive (and notify the server that the client is still alive,
for those servers which have inactivity autol ogout tiners).

tag LOA@ N user password
The LOG N command identifies the user to the server and carries
t he password authenticating this user. This information is used
by the server to control access to the nail boxes.

EXAMPLE: A001 LOG@ N SM TH SESAME | ogs in as user SMTH with
passwor d SESAME.

tag LOGOUT
The LOGOUT command indicates the client is done with the session.
The server sends an unsolicited BYE response before the (tagged)
X response, and then cl oses the connecti on.

tag SELECT mai |l box

The SELECT command sel ects a particular nmail box. The server nust

Crispin [Page 9]

RFC 1064 | MAP2 July 1988

check that the user is permtted read access to this mail box.

Prior to returning an OK to the client, the server nust send an
unsolicited FLAGS and <n> EXI STS response to the client giving the
flags list for this mailbox (sinply the systemflags if this
mai | box doesn’t have any special flags) and the nunber of nessages
in the mailbox. It is also recomended that the server send a <n>
RECENT unsolicited response to the client for the benefit of
clients which make use of the nunber of new nessages in a mail box.

Mul ti pl e SELECT commands are permitted in a session, in which case
the prior mail box is deselected first.

The default mailbox for the SELECT command is I NBOX, which is a
speci al nane reserved to nean "the primary mail box for this user
on this server”. The format of other nmil box nanmes is operating
system dependent (as of this witing, it reflects the fil enane
path of the nmailbox file on the current servers).

EXAMPLE: A002 SELECT | NBOX sel ects the default mail box.
tag CHECK
The CHECK command forces a check for new nessages and a rescan of

the mail box for internal change for those inplenmentations which
allow nultiple sinmultaneous read/wite access to the sane mail box

(e.g., TOPS-20). It is recommend that periodic inplicit checks
for new mail be done by servers as well. The server should send
an unsolicited <n> EXI STS response prior to returning an K to the
client.

t ag EXPUNGE

The EXPUNCGE conmmand pernmanently renoves all nessages with the
\DELETED flag set in its flags fromthe mailbox. Prior to
returning an OK to the client, for each nessage which is renoved,
an unsolicited <n> EXPUNGE response is sent indicating which
nmessage was renoved. The nessage nunber of each subsequent
nmessage in the mailbox is imediately decrenented by 1; this neans
that if the last 5 nessages in a 9-nessage nail file are expunged
you Wi ll receive 5 "* 5 EXPUNGE" responses. To ensure nmail box
integrity and server/client synchronization, it is recomended
that the server do an inplicit check prior to comrencing the
expunge and agai n when the expunge is conpleted. Furthernore, if
the server allows multiple sinultaneous access to the sanme nai
file the server nmust lock the mail file for exclusive access while
an expunge i s taking place.

Crispin [Page 10]

RFC 1064 | MAP2 July 1988

EXPUNGE is not allowed if the user does not have wite access to
this mail box.

tag COPY sequence mail box

The COPY conmand copi es the specified nessage(s) to the specified
destination mailbox. |If the destination mailbox does not exist,
the server should create it. Prior to returning an OK to the
client, the server should return an unsolicited <n> COPY response
for each nmessage copied. A copy should set the \SEEN flag for al
nmessages whi ch were successfully copied (provided, of course, that
the user has wite access to this mail box).

EXAMPLE: A003 COPY 2:4 MEETI NG copi es nessages 2, 3, and 4 to
mai | box " MEETI NG'

COPY is not allowed if the user does not have wite access to the
destinati on mail box.

tag FETCH sequence data

The FETCH conmand retrieves data associated with a nmessage in the
mai | box. The data itens to be fetched nmay be either a single atom
or an S-expression list. The currently defined data itens that
can be fetched are:

ALL Macro equi val ent to:
(FLAGS | NTERNALDATE RFC822. SI ZE ENVELCPE)

ENVELOPE The envel ope of the nessage. The envelope is
conputed by the server by parsing the RFC 822
header into the conponent parts, defaulting
various fields as necessary.

FAST Macr o equi val ent to:
(FLAGS | NTERNALDATE RFC822. Sl ZE)

Crispin [Page 11]

RFC 1064 | MAP2 July 1988

FLAGS The flags which are set for this nessage.
This may include the follow ng system fl ags:

\ RECENT Message arrived since
| ast read of this mail
file

\ SEEN Message has been read

\ ANSWERED Message has been answered

\ FLAGGED Message is "flagged" for
urgent/special attention

\ DELETED Message is "deleted" for
removal by | ater EXPUNGE

| NTERNALDATE The date and tine the nessage was witten to
t he mail box.

RFC822 The nmessage in RFC 822 fornmat.
RFC822. HEADER The RFC 822 format header of the nessage.

RFC822. SI ZE The nunber of characters in the nessage as
expressed in RFC 822 format.

RFC822. TEXT The text body of the nmessage, omtting the
RFC 822 header.

EXAMPLES:

A003 FETCH 2:4 ALL
fetches the flags, internal date, RFC 822 size, and envel ope
for nessages 2, 3, and 4.

A004 FETCH 3 RFC822
fetches the RFC 822 representation for nessage 3.

A0O05 FETCH 4 (FLAGS RFC822. HEADER)
fetches the flags and RFC 822 format header for nessage 4.

tag STORE sequence data val ue

The STORE command alters data associated with a nessage in the
mai | box. The currently defined data itens that can be stored are:

FLAGS Repl ace the flags for the nessage with the
argunment (in flag list format).

+FLAGS Add the flags in the argunent to the
message’s flag |ist.

Crispin [Page 12]

RFC 1064 | MAP2 July 1988

- FLAGS Renove the flags in the argunent fromthe
nmessage’'s flag |ist.

STORE is not allowed if the user does not have wite access to
this mail box.

EXAMPLE: A003 STORE 2: 4 +FLAGS (\ DELETED)
mar ks nmessages 2, 3, and 4 for deletion.

tag SEARCH search criteria

The SEARCH command searches the mail box for nessages which match
the given set of criteria. The unsolicited SEARCH <l#nunber>
response fromthe server is a list of nessages which express the
intersection (AND function) of all the messages. The currently
defined criteria are:

ALL Al'l nessages in the mail box; the default
initial criterion for AND ng.

ANSVERED Messages with the \ ANSWERED fl ag set.

BCC string Messages which contain the specified string
in the envel ope’s BCC field.

BEFCORE dat e Messages whose internal date is earlier than
t he specified date.

BODY string Messages which contain the specified string
in the body of the nessage.

CC string Messages which contain the specified string
in the envelope’s CC field.

DELETED Messages with the \DELETED fl ag set.

FLAGCGED Messages with the \ FLAGCGED fl ag set.

KEYWORD f | ag Messages with the specified flag set.

NEW Messages which have the \RECENT flag set but
not the \SEEN flag. This is functionally
equi val ent to "RECENT UNSEEN'.

QLD Messages whi ch do not have the \ RECENT fl ag
set .

Crispin [Page 13]

RFC 1064 | MAP2 July 1988

ON date Messages whose internal date is the sane as
t he specified date.

RECENT Messages whi ch have the \ RECENT fl ag set.

SEEN Messages whi ch have the \ SEEN fl ag set.

SI NCE dat e Messages whose internal date is later than

t he specified date.

SUBJECT string Messages which contain the specified string
in the envel ope’ s SUBJECT fiel d.

TEXT string Messages which contain the specified string.

TO string Messages which contain the specified string in
the envel ope’s TO field.

UNANSWERED Messages which do not have the \ ANSWERED f | ag
set.

UNDELETED Messages whi ch do not have the \ DELETED fl ag
set.

UNFLAGGED Messages which do not have the \ FLAGGED fl ag
set.

UNKEYWORD fl ag Messages which do not have the specified flag
set.

UNSEEN Messages which do not have the \ SEEN flag set.
EXAMPLE: A003 SEARCH DELETED FROM "SM TH' SI NCE 1- OCT- 87

returns the nmessage nunbers for all del eted nessages from Smth
that were placed in the mail file since Cctober 1, 1987.

Crispin [Page 14]

RFC 1064 | MAP2 July 1988

Responses
tag OK text

This response identifies successful conpletion of the conmand with
the indicated tag. The text is a |ine of human-readabl e text

whi ch may be useful in a protocol telenetry |log for debuggi ng

pur poses.

tag NO text

This response identifies unsuccessful conpletion of the command
with the indicated tag. The text is a |line of human-readabl e text
whi ch probably shoul d be di splayed to the user in an error report
by the client.

tag BAD t ext

This response indicates faulty protocol received fromthe client
and indicates a bug in the client. The text is a line of human-
readabl e text which should be recorded in any telenmetry as part of
a bug report to the maintainer of the client.

* nunber nessage_data

Thi s response occurs as a result of several different commuands.
The nessage_data is one of the follow ng:

EXI STS The specified nunber of nessages exists in the mail box.

RECENT The specified nunber of nessages have arrived since the
last tinme this mail box was read.

EXPUNGE The specified nessage nunber has been permanently
renmoved fromthe mail box, and the next nessage in the
mai | box (if any) becones that nessage nunber.

STORE dat a

Functionally equivalent to FETCH, only it happens as a
result of a STORE command.

FETCH dat a
This is the principle neans by which data about a
nmessage is returned to the client. The data is in a
Li sp-1i ke S-expression property list form The current
properties are:

ENVEL OPE An S-expression format |ist which describes the

Crispin [Page 15]

RFC 1064

Crispin

FLAGS

| MAP2 July 1988

envel ope of a nessage. The envel ope is conputed
by the server by parsing the RFC 822 header into
t he conponent parts, defaulting various fields
as necessary.

The fields of the envelope are in the follow ng

order: date, subject, from sender, reply-to, to,
cc, bcc, in-reply-to, and nessage-id. The date,

subject, in-reply-to, and nessage-id fields are

strings. The from sender, reply-to, to, cc,

and bcc fields are lists of addresses.

An address is an S-expression format |ist which
describes an electronic mail address. The fields
of an address are in the follow ng order:

per sonal nane, source-route (a.k.a. the
at-domain-list in SMIP), mail box nane, and

host nane.

Any field of an envel ope or address which is

not applicable is presented as the atom NI L.

Note that the server nmust default the reply-to

and sender fields fromthe fromfield; a client is
not expected to know to do this.

An S-expression format list of flags which are set
for this message. This may include the follow ng
system f | ags:

\ RECENT Message arrived since | ast
read of this mail file

\ SEEN Message has been read

\ ANSVWERED Message has been answered

\ FLAGCGED Message is "flagged" for
urgent/special attention

\ DELETED Message is "deleted" for

renoval by | ater EXPUNCE

| NTERNALDATE A string containing the date and tinme the

RFC822

nessage was witten to the nail box.

A string expressing the nessage in RFC 822
format.

RFC822. HEADER A string expressing the RFC 822 format

RFC822. SI ZE

header of the nessage

A nunber indicating the nunber of

[Page 16]

RFC 1064 | MAP2 July 1988

characters in the nessage as expressed
in RFC 822 format.

RFC822. TEXT A string expressing the text body of the
nmessage, omtting the RFC 822 header.

* FLAGS flag_list

This response occurs as a result of a SELECT command. The fl ag
list are the list of flags (at a mninmum the systemdefined
flags) which are applicable for this mail box. Flags other than
the systemflags are a function of the server inplenentation.

* SEARCH nunber (' s)

This response occurs as a result of a SEARCH command. The
nunber (s) refer those nessages which match the search criteria.
Each nunber is delimted by a space, e.g., "SEARCH 2 3 6".

* BYE text

This response indicates that the server is about to close the
connection. The text is a |ine of human-readabl e text which
shoul d be displayed to the user in a status report by the client.
This may be sent as part of a normal |ogout sequence, or as a
pani ¢ shut down announcenent by the server. It is also used by
some servers as an announcenent of an inactivity autol ogout.

* K text

This response indicates that the server is alive. No special
action on the part of the client is called for. This is presently
only used by servers at startup as a greeting nessage indicating
that they are ready to accept the first coomand. The text is a
line of human-readabl e text which may be | ogged in protocol
telenetry.

* NO t ext
Thi s response indicates sone operational error at the server which
cannot be traced to any protocol command. The text is a |line of
human- r eadabl e text which should be | ogged in protocol telemetry
for the maintainer of the server and/or the client. No known
server currently outputs such a response.

* BAD text

Thi s response indicates sone protocol error at the server which

Crispin [Page 17]

RFC 1064 | MAP2 July 1988

cannot be traced to any protocol command. The text is a line of
human- r eadabl e text which should be | ogged in protocol telenetry
for the maintainer of the server and/or the client. This
general ly indicates a protocol synchronization problemon the part
of the client, and exam nation of the protocol telenetry is

advi sed to determ ne the cause of the problem

+ text

This response indicates that the server is ready to accept the
text of aliteral fromthe client. Normally, a conmand fromthe
client is a single text line. |If the server detects an error in
the command, it can sinply discard the remainder of the line. It
cannot do this in the case of conmands which contain literals,
since a literal can be an arbitrarily I ong anmount of text, and the
server may not even be expecting a literal. This mechanismis
provided so the client knows not to send a literal until the
server definitely expects it, preserving client/server
synchroni zati on.

In actual practice, this situation is rarely encountered. 1In the
current protocol, the only client command likely to contain a
literal is the LOG@ N command. Consider a situation in which a
server validates the user before checking the password. |If the
password contains "funny" characters and hence is sent as a
literal, then if the user is invalid an error would occur before
t he password i s parsed.

No such synchroni zation protection is provided for literals sent
fromthe server to the client, for performance reasons. Any
synchroni zation problens in this direction would be due to a bug
in the client or server and not for sone operational problem

Crispin [Page 18]

RFC 1064 | MAP2 July 1988

Sanpl e | MAP2 sessi on

The following is a transcript of an actual | MAP2 session. Server
output is identified by "S:" and client output by "U". 1In cases
where lines were too long to fit within the boundaries of this
docunent, the line was continued on the next |line preceded by a tab.

S: * OK SUMEX-AIM Stanford. EDU Interim Mail Access Protocol |
Service 6.1(349) at Thu, 9 Jun 88 14:58:30 PDT
a00l1 login crispin secret
a002 OK User CRISPIN |l ogged in at Thu, 9 Jun 88 14:58:42 PDT,
j ob 76
a002 sel ect inbox
* FLAGS (Bugs SF Party Skating Meeting Flames Request Al
Question Note \ XXXX \YYYY \ Answered \ Fl agged \ Del et ed
\ Seen)
* 16 EXI STS
* 0 RECENT
a002 OK Sel ect conplete
a003 fetch 16 all
* 16 Fetch (Flags (\Seen) Internal Date " 9-Jun-88 12:55:
RFC822. Si ze 637 Envel ope ("Sat, 4 Jun 88 13:27:11 PDT"
"I NFO- MAC Mai | Message" (("Larry Fagan" N L "FAGAN'
"SUVEX- AIM Stanford. EDU")) (("Larry Fagan" N L "FAGAN'
"SUMEX- AIM Stanford. EDU")) (("Larry Fagan" N L "FAGAN'
"SUMEX- AIM Stanford. EDU")) ((NIL NIL "rindfl El SCH'
"SUMEX- AIM Stanford. EDU')) NIL NIL NIL
"<12403828905. 13. FAGAN@UNMEX- Al M St anf or d. EDU>"))
a003 K Fetch conpl eted
a004 fetch 16 rfc822
* 16 Fetch (RFC822 {637}
Mai | - From RI NDFLEI SCH created at 9-Jun-88 12:55:43
Mai | - From FAGAN created at 4-Jun-88 13:27:12
Date: Sat, 4 Jun 88 13:27:11 PDT
From Larry Fagan <FAGAN@SUVEX- Al M St anford. EDU>
To: rindfl EIl SCHGBUMEX- Al M St anf or d. EDU
Subj ect: I NFO- MAC Mai| Message
Message- | D: <12403828905. 13. FAGAN@SUVEX- Al M St anf or d. EDU>
ReSent - Date: Thu, 9 Jun 88 12:55:43 PDT
ReSent - From TC Ri ndfl ei sch <Ri ndf | ei sch@UVEX- Al M St anf or d. EDU>
ReSent - To: Yeager @UMEX- Al M St anf or d. EDU
Cri spi n@UVEX- Al M St anf or d. EDU
ReSent - Message- | D:
<12405133897. 80. RI NDFLEI SCH@UVMEX- Al M St anf or d. EDU>

wo 0o

NCLH®

The file is <info-mc>usenetv4-55. arc
Larry

WOnun W VHLLOLONLLWNONnCWn

Crispin [Page 19]

RFC 1064 | MAP2 July 1988

)

pa004 K Fetch conpl et ed

a005 | ogout

* BYE DEC-20 | MAP Il server term nating connection

a005 OK SUMEX- Al M Stanford. EDU Interim Mail Access Protocol
Servi ce | ogout

Crispin [Page 20]

RFC 1064 | MAP2 July 1988

| mpl enent ati on Di scussi on

As of this witing, SUVEX has conpleted an | MAP2 client for Xerox
Lisp machines witten in hybrid Interlisp/ ConmonLi sp and is beta-
testing a client for TI Explorers witten entirely in ConmonLi sp.
SUMEX has al so conpleted a portable | MAP2 client protocol l|ibrary
nodule witten in C This library, with the addition of a small main
program (primarily user interface) and a TCP/IP driver, becane a

rudi mentary renote system mail -readi ng program under Unix. The first
production use of this library will be as a part of a Macll client

whi ch i s under devel opnent.

As of this witing, SUVEX has conpleted | MAP2 servers for TOPS-20
witten in DEC 20 assenbly | anguage and 4.2/3 BSD Unix witten in C
The TOPS-20 server is fully conpatible with M\ 20, the standard
TOPS-20 mai |l system and requires no special action or setup on the
part of the user. The I NBOX under TOPS-20 is the user’s MAIL. TXT
The TOPS-20 server al so supports multiple sinultaneous access to the
same mai |l box, including sinultaneous access between the | MAP2 server
and MV 20. The 4.2/3 BSD Uni x server requires that the user use
mai |l .txt format which is conpatible only with SRI Mw 32 or Col unbi a
MW C. The 4.2/ 3 BSD Uni x server only allows sinmnmultaneous read
access; wite access nust be exclusive.

The Xerox Lisp client and DEC- 20 server have been in production use
for over a year; the Unix server was put into production use a few
nont hs ago. | MAP2 has been used to access mail boxes at renote sites
froma | ocal workstation via the Internet. For exanple, fromthe
Stanford | ocal network the author has read his mailbox at a MI net
site.

Thi s specification does not nmake any formal definition of size
restrictions, but the DEC-20 server has the following limtations:

| ength of a mailbox: 7,077,888 characters
maxi mum nunber of nessages: 18,432 nessages

| ength of a conmand |ine: 10,000 characters

| ength of the |ocal host nane: 64 characters

l ength of a "short" argunment: 39 characters
length of a "long" argunent: 491,520 characters
maxi mum anount of data output in a single fetch:
655, 360 characters

To date, nobody has run up against any of these limtations, many of
whi ch are substantially |arger than nost current user nmail reading
progr ans.

There are several advantages to the schene of tags and unsolicited

Crispin [Page 21]

RFC 1064 | MAP2 July 1988

responses. First, the infanous synchronization problens of SMIP and
simlar protocols do not happen with tagged commands; a conmand is
not considered satisfied until a response with the sane tag is seen.
Tagging allows an arbitrary amount of other responses ("unsolicited"
data) to be sent by the server with no possibility of the client

| osi ng synchroni zation. Conpare this with the problens that FTP or
SMIP clients have with continuation, partial conpletion, and
commentary reply codes.

Anot her advantage is that a non-lockstep client inplenmentation is
possi ble. The client could send a command, and entrust the handling
of the server responses to a different process which would signal the
client when the tagged response cones in. Under certain

ci rcunst ances, the client could even have nore than one conmand

out st andi ng.

It was observed that synchronization problenms can occur with literals
if the literal is not recognized as such. Fortunately, the cases in
whi ch this can happen are relatively rare; a mechani sm (the speci al
"+" tag response) was introduced to handle those few cases which
coul d happen. The proper way to address this problemin all cases is
probably to nove towards a record-oriented architecture instead of
the text stream nodel provided by TCP.

Unsolicited data needs sone discussion. Unlike nost protocols, in
whi ch the server nerely does the client’s bidding, an | MAP2 server
has a sem -aut ononous role. By nmeans of sending "unsolicited data",

the server is in effect sending a command to the client -- to update
and/ or extend its (inconplete) nodel of the mailbox with new
information fromthe server. In this viewoint, a "fetch" conmand is

nmerely a request to the server to include the desired data in any

ot her "unsolicited" data the server nmay send, and a server

acknow edgenent to the "fetch"” is a statenent that all the requested
data has been sent.

In terms of inplenentation, the client may have a | ocal cache of data
fromthe mail box. This cache is inconplete, and at startup is enpty.
A listener processes all unsolicited data, and updates the cache
based on this data. |If a tagged response arrives, the |istener

unbl ocks the process which sent the tagged request.

Perhaps as a result of opening a mail box, unsolicited data fromthe
server arrives. The first piece of data is the nunber of nessages.
This is used to size the cache; note that by sending a new "nunber of
nmessages” unsolicited data nessage the cache would be re-sized (this
is hownewy arrived mail is handled). |If the client attenpts to
access information fromthe cache, it will encounter enpty spots
which will trigger "fetch" requests. The request would be sent, sone

Crispin [Page 22]

RFC 1064 | MAP2 July 1988
unsolicited data including the answer to the fetch will flow back,
and then the "fetch" response will unblock the client.

People fam liar wi th demand-paged virtual nenory operating system

design wll recognize this nodel as being very simlar to page-fault
handl i ng on a demand- paged system

Crispin [Page 23]

RFC 1064 | MAP2 July 1988

For mal Synt ax

The foll ow ng syntax specification uses the augnmented Backus- Naur
Form (BNF) notation as specified in RFC 822 with one exception; the
delimter used with the "#" construct is a single space (SP) and not

a conmma.

addr ess c:= "(" addr_nane SP addr_adl SP addr_mail box SP
addr _host ")"

addr _adl c:=nil [string

addr _host :=nil [string

addr _mai | box c:=nil /[string

addr _nane c:=nil [string

check : 1= " CHECK"

copy ;1= "COPY" SP sequence SP nail box

dat a c:= ("FLAGS" SP flag |ist / "SEARCH' SP 1#nunber /
"BYE' SP text _line / "OK'" SP text_line /
"NO'" SP text _line / "BAD' SP text_line)

dat e o= string in form"dd-mmyy hh: nm ss-zzz"

envel ope .= "(" env_date SP env_subject SP env_from SP
env_sender SP env_reply-to SP env_to SP
env_cc SP env_bcc SP env_in-reply-to SP
env_nessage-id ")"

env_bcc c:=nil [/ "(" 1*address ")"

env_cc c:=nil /["(" 1*address ")"

env_date c1= string

env_from c:=nil [/ "(" 1*address ")"

env_in-reply-to ::=nil / string

env_nessage-id ::=nil / string

env_reply-to c:=nil [/ "(" 1*address ")"

env_sender c:=nil /["(" 1*address ")"

Crispin [Page 24]

RFC 1064

env_subj ect
env_to
expunge

fetch

fetch_att

flag_list
l'iteral

[ogin

| ogout
mai | box
neg_copy

nsg_dat a

nNeg_exi sts
nsg_expunge

nsg_fetch

nsg_recent
nsg_num

ni

noop

passwor d

Crispin

| MAP2 July 1988

nil / string
nil / "(" 1*address ")"
" EXPUNGE"

"FETCH' SP sequence SP ("ALL" / "FAST" /
fetch_att / "(" 1#fetch_att ")")

"ENVELOPE" / "FLAGS" / "I NTERNALDATE" /
"RFC822" |/ "RFC822. HEADER' / "RFC822. Sl ZE" /
"RFC822. TEXT"

ATOM /[" (" 1#ATOM ")"

“{" NUMBER "}" CRLF ASCl |- STRI NG

"LOG@ N' SP userid SP password

" LOGOUT"

"I NBOX" / string

" CoPY™

(msg_exists / nmsg_recent / nsg_expunge /
nsg _fetch / nsg_copy)

"EXI STS"
" EXPUNGE"
("FETCH' / "STORE") SP "(" 1#("ENVELOPE" SP

envel ope / "FLAGS' SP "(" 1#(recent fl ag
flag_list) ")" / "I NTERNALDATE" SP date /

"RFC822" SP string / "RFC822. HEADER' SP string /

"RFC822. SI ZE' SP NUMBER / "RFC822. TEXT" SP
string) ")"

" RECENT"
NUVBER
NI L™

" NOOP"

string

[Page 25]

RFC 1064 | MAP2 July 1988

recent _fl ag : 1= "\ RECENT"
r eady o= "+" SP text _line
request ::=tag SP (noop / login / |logout / select / check /

expunge / copy / fetch / store / search) CRLF
response :=tag SP ("OK" / "NO' / "BAD') SP text_line CRLF

sear ch ;1= "SEARCH' SP 1#("ALL" / "ANSWERED" /
"BCC' SP string / "BEFORE" SP string /
"BODY" SP string / "CC' SP string / "DELETED' /
"FLAGGED' / "KEYWORD' SP atom/ "NEW / "OLD' /
"ON' SP string / "RECENT" / "SEEN' /
"SINCE" SP string / "TEXT" SP string /
"TO'" SP string / "UNANSWERED' / "UNDELETED" /
"UNFLAGGED' / "UNKEYWORD' / "UNSEEN'")

sel ect : .= "SELECT" SP mail box

sequence .= NUMBER / (NUMBER "," sequence) / (NUMBER ":"
sequence)

store i1 = "STORE" SP sequence SP store_att

store_att c:= ("+FLAGS" SP flag list / "-FLAGS' SP flag list /

"FLAGS" SP flag_Ilist)
string .= atom/ """" 1*character """" [litera

"\ ANSVERED' SP "\ FLAGGED' SP "\ DELETED' SP

system fl ags

"\ SEEN'
t ag ;.= atom
unsolicited o= "*" SP (msg_num SP nsg_data / data) CRLF
userid c1= string
Acknowl edgenent s
Bill Yeager and Rich Acuff both contributed inval uabl e suggestions in

t he evolution of IMAP2 fromthe original | MAP. The SUMEX | MAP2
software was witten by Mark Crispin (DEC 20 server, Xerox Lisp
client, Cclient), Frank Glrmurray (Conmon Lisp client), Christopher
Lane (Xerox Lisp client), and Bill Yeager (Unix server). Any

m stakes or flaws in this | MAP2 protocol specification are, however
strictly nmy own.

Crispin [Page 26]

