Automatic Repeat Request

1

- Transmission of data requires series of PDUs to be sent
- PDU may be lost
- PDU may be corrupted

automatic repeat request (ARQ)

- Data link layer (transport layer, application layer, ...)
- Number PDUs, and add error checking
- Data in I-frames, Acknowledgement in ACK-frames

Two Approaches to ARQ

idle RQ

- Tx waits after each I(N) until it receives ACK(N) or NAK(N) or times out
- also called stop-and-wait or synchronous

continuous RQ

- Tx sends continuous stream of I-frames
- can send I(N+1) before receiving ACK(N)
- also called **asynchronous**

\Rightarrow time

D		
KX		
A U A		

R=N

Worksheet: Automatic Repeat Request

$$T_R = T_I + 2T_P + T_D + T_A$$

$$\rho_s = \frac{T_I}{T_I + 2T_P + T_D + T_A}$$

Idle RQ: Improving performance

$$\rho_s = \frac{T_I}{T_I + 2T_P + T_D + T_A}$$

Increase ρ_s ?

- reduce T_P by decreasing the distance between Tx and Rx
 - usually not possible
 - increase T_I by decreasing the bit rate
 - would not want to do this
 - tells us Idle RQ more efficient on slower channels
- increase T_I by increasing the number of bits per I-frame
 - larger I-frames more likely to suffer errors

Idle RQ: Example Protocol Efficiency Calculation

Compute the maximum data throughput of Idle RQ

- *10Mbs*⁻¹*communications system*
- I-frame size is 92 bits and the ACK-frame size is 8 bits
- via a satellite in orbit at 37,500km above the Earth's surface
- **propagation speed** $300 \times 10^6 m s^{-1}$

$$T_{I} = \frac{92}{10 \times 10^{6}} = 9.2 \times 10^{-6} s$$

$$T_{A} = \frac{8}{10 \times 10^{6}} = 0.8 \times 10^{-6} s$$
assume $T_{D} = 0$

$$T_{P} = \frac{2 \times 37.5 \times 10^{6}}{300 \times 10^{6}} = 0.25 s$$

$$\rho_{s} = \frac{9.2 \times 10^{-6}}{9.2 \times 10^{-5} + 2 \times 0.25 + 0.8 \times 10^{-6}} = 18.4 \times 10^{-6}$$
throughput $= \rho_{s}B = 18.4 \times 10^{-6} \times 10 M b s^{-1} = 184 b s^{-1}$

Overall Efficiency of Idle RQ

Three factors cause the raw bit-rate of a channel to be wasted (i=no I-frame bits, c=control bits in I-frame, a=no ACK-frame bits)

Wastage due to stop-and-wait protocol

$$\rho_s = \frac{T_I}{T_I + 2T_P + T_A + T_D}$$

• Wastage due to errors forcing retransmission

$$\rho_e = (1 - \text{BER})^{i+a} \qquad \rho_e \approx \frac{1}{1+p}$$

Wastage due to control information

$$\rho_c = \frac{i-c}{i+a}$$

• Overall efficiency $\rho_i = \rho_s \rho_e \rho_c$

Worksheet: Overall Efficiency of Idle RQ

I-frames of 10000 bits; hosts separated by 500km over a $1Mbs^{-1}$ link. The I-frames consist of 1000 bits of header and 9000 bits of data. The signal propagation speed is $200 \times 10^6 ms^{-1}$, and the BER is 10^{-5}

- 1. Calculate the probability that an I-frame is lost due to an error.
- 2. What is the *error efficiency* of the system ρ_e ?
- 3. What is the *stop-and-wait efficiency* of the system ρ_s ?
- 4. What is the *control information efficiency* of the system ρ_c ?
- 5. What is the overall efficiency of the Idle RQ protocol?

Idle RQ Error Handling: Loss of I-frame

Timeout T_O must be set at Tx

 $\blacksquare T_O > T_R$

Idle RQ Error Handling: Corrupt I-frame

NAK-frame speeds up retransmission of I-frame

Do not have to use NAK-frames

Idle RQ Error Handling: Loss of ACK-frame

Rx receives I(N+1) twice

Really do have to number I-frames!

Go-Back-N: Loss of I-frame

Go-Back-N: Loss of NAK-frame

Idle RQ: Rough Formula for Efficiency

 $r = \left\lceil \frac{T_R}{T_I} \right\rceil$ = number for frames sent in T_R p= probability frame suffers error error efficiency:

$$\rho_e \approx \frac{1}{1+p}$$

protocol efficiency:

$$\rho_s = \frac{1}{r}$$

combined efficiency:

$$\rho = \frac{1}{r+rp}$$

Go-back-N: Efficiency

$$\rho_s = 1$$

$$send r = \left\lceil \frac{T_R}{T_I} \right\rceil I \text{-frames for each erroneous I-frame}$$

$$\rho_e \approx \frac{1}{1+pr}$$

 ρ_c same as idle RQ

Example: Continuous RQ Go-Back-N protocols

If Continuous RQ Go-Back-N is being used, calculate the efficiency and throughput of a $10Mbs^{-1}$ satellite communication system with BER of 10^{-6} , a satellite height of 37,500km, propogation speed $300 \times 10^6 ms^{-1}$, I-frames 100 bits.

 $p = 1 - 0.9999 = 10^{-4}$ $T_{I} = \frac{100}{10 \times 10^{6}} = 10^{-5}s$ $T_{P} = \frac{2 \times 37.5 \times 10^{6}}{300 \times 10^{6}} = 0.25s$ assume $T_{D} = 0, T_{A} = 0$ $T_{R} = 10^{-5} + 2 \times 0.25 = 0.5s$ $r = \frac{0.5}{10^{-5}} = 50 \times 10^{3}$ $\rho_{g} = \frac{1}{1 + 10^{-4} \times 50 \times 10^{3}} = \frac{1}{6} = 0.17$ throughput = 1.7 Mbs⁻¹

Worksheet: Efficiency of Continuous RQ Go-Back-N

Go-Back-N system uses I-frames of 10000 bits; hosts separated by 500km over a $10Mbs^{-1}$ link. Signal propagation speed is $200 \times 10^6 ms^{-1}$.

- 1. If no errors occur, what is the throughput we can expect on the link?
- 2. If the BER is 10^{-5} , what is the probability of any one frame being lost?
- 3. What is the throughput with this BER?
- 4. What would have been the throughput if Idle RQ had been used?

Go-Back-N: Efficiency

Selective Repeat: Explicit Request

Selective Repeat: Implicit Retransmission

Selective Repeat: efficiency

protocol efficieny $\rho_s = 1$

error efficiency as idle request

$$\rho_e \approx \frac{1}{1+p}$$

 ρ_c same as idle RQ

Example: Continuous RQ Selective-Repeat protocols

If Continuous RQ selective repeat is being used, calculate the efficiency and throughput of a $10Mbs^{-1}$ satellite communication system with BER of 10^{-6} , a satellite height of 37,500km, propogation speed $300 \times 10^6 ms^{-1}$, I-frames 100 bits.

$$p = 1 - (1 - 10^{-6})^{100} = 10^{-4}$$
$$\rho_s = \frac{1}{1 + 10^{-4}} = 0.9999$$
$$\text{throughput} = 10.0 \text{ Mbs}^{-1}$$

Comparison of ARQ Protocols

	protocol	error	combined
	$ ho_s$	$ ho_e$	$ ho_s ho_e$
Idle RQ	$\frac{1}{r}$	$\frac{1}{1+p}$	$\frac{1}{r+rp}$
Go-Back-N	1	$\frac{1}{1+rp}$	$\frac{1}{1+rp}$
Selective Repeat	1	$\frac{1}{1+p}$	$\frac{1}{1+p}$

For all, control efficiency

$$\rho_c = \frac{i-c}{i+a}$$

Overall Efficiency for Go-Back-N

Duplex Operation

Can send ACK-frames for I-frame by piggybacking it to I-frame in opposite direction

Idle RQ: Window Size

Tx and Rx only need buffer one I-frame

Continuous RQ Go-Back-N: Window Size

Tx must buffer r I-frames

Continuous RQ Selective Repeat: Window Size

Tx and Rx must buffer r I-frames

Sliding Windows

Error	Send	Receive	S: Maximum sequence
protocol	window size	window size	number (counting from 1)
Idle RQ	1	1	2
Go-back-N	r	1	r+1
Selective repeat	r	r	2r

N does not need to be an infinite range

Use modulo S