
Baltic J. Modern Computing, Vol. 4 (2016), No. 3, pp. 466–482

OWLRel: Learning Rich Ontologies from

Relational Databases

Lama AL KHUZAYEM and Peter McBRIEN

Department of Computing, Imperial College London, London SW7 2AZ, UK

{l.al-khuzayem11,p.mcbrien}@imperial.ac.uk

Abstract. Mapping between ontologies and relational databases is a necessity in realising the Se-

mantic Web vision. Most of the work concerning this topic has either (1) extracted OWL schemas

using a limited range of OWL modelling constructs from relational schemas, or (2) extracted re-

lational schemas from OWL schemas, that represent the OWL schemas as much as possible. By

contrast, we propose a general framework that maps between relational databases and schemas

expressed in OWL 2. In particular, we regard the transformation from databases to ontologies

as being a two-phase process. Firstly, to convert the relational schemas into OWL schemas, and

then to enrich the OWL schemas with highly expressive axioms, based on analysing the schemas

and the data in the databases. Testing our data analysis heuristics on a number of databases, show

that they produce OWL schemas, that include more semantic information than found in their

respective relational schemas.

Keywords: Reverse Engineering Databases, Ontology Learning, OWL 2 Ontologies, Database-

to-Ontology Mapping, Data Analysis.

1 Introduction

The problem of bridging the gap between ontologies and relational databases is an

active area of research (Spanos et al., 2012). Almost 70% of current websites store

data in relational databases (Sequeda et al., 2012), and therefore being able to produce

ontologies from such databases is considered an important technology to support the

development of the Semantic Web. On the other hand, using relational databases for

storing and processing ontologies with large datasets is considered a good solution,

since the alternative of using Tableaux-based reasoners fails to scale to large datasets

(Al Khuzayem et al., 2013).

The work in this paper focuses on establishing bidirectional mappings between re-

lational schemas and ontologies expressed in OWL 2, the latest version of the web

ontology language (OWL) (W3C, 2009). Most previous work (except (Atzeni et al.,

2008; Dadjoo and Kheirkhah, 2015)) has performed the transformations at a high level

(HL), which involves specifying mappings from constructs in the relational model to

OWLRel: Learning Rich Ontologies from Relational Databases 467

ontological constructs, or vice versa. Moreover, most previous work has concentrated

on either transforming relational databases to ontologies, or transforming in the oppo-

site direction, without considering the provision of bidirectional mappings between the

two models.

By way of contrast, our novel approach, as part of a framework presented in Sec-

tion 2, generates a bidirectional transformation (BT) between databases and ontolo-

gies. This is performed by taking relational schemas and using them to generate BTs

to equivalent OWL schemas. In previous work (Al Khuzayem et al., 2013), we have

demonstrated the opposite direction; i.e., generated BTs to relational schemas from

OWL schemas. Our approach (which is implemented as a prototype called OWLRel1)

is distinguished from other work in the area by the following:

1. Transformation between relational and OWL schemas is expressed using direc-

tional both-as-view (BAV) mappings (McBrien and Poulovassilis, 2003), allowing

a precise definition of the equivalence between the schemas, that can map data back

and forth between them. Therefore, starting from a given schema Sowl and generat-

ing BAV transformations to schema Shdm2
(as illustrated in Figure 1), would result

in generating BAV transformations in the other direction as well i.e., from Shdm2

→ Sowl. Hence, the double sided arrows in Figure 1.

2. By transforming via an intermediate low-level language, such as the hypergraph

data model (HDM) (Poulovassilis and McBrien, 1998), we can reuse earlier work

on translating between relational and ER, ORM, UML and XML data models

(Boyd and McBrien, 2005; McBrien and Poulovassilis, 2001). The work of map-

ping between relational and OWL models presented here, allows OWL to be mapped

to other data models (via the relational model) as illustrated in Figure 1.

3. Our approach includes two aspects which must be taken into consideration in this

context (El Idrissi et al., 2013): human intervention and database content analysis.

Our approach uses a combination of schema and data analysis to propose semantic

information that is difficult to detect from the relational schema alone, and we rely

on the user for the validation of these proposals.

Relying on data analysis to discover implicit constructs, cannot always be reliable,

since adding or removing some data can easily disprove the discovered constructs. How-

ever, the larger the dataset, the more reliable the findings become.

Note that our work is referred to as reverse engineering databases in the database

community, while in the Semantic Web community, it is termed as ontology learning

(Cerbah, 2008) or semantic annotation (Astrova et al., 2007).

The remainder of this paper is structured as follows. Section 2 presents our frame-

work for mapping between the relational model and OWL, and Section 3 reviews the

HDM. Section 4 describes our automatic ontology extraction approach and in Section 5,

we demonstrate our ontology enrichment process. We evaluate the prototype tool OWL-

Rel in Section 6 followed by related work in Section 7. Finally, Section 8 concludes this

paper.

1 automed.doc.ic.ac.uk/releases/jars/OWLRel-rel-0-1.jar

468 Al Khuzayem and McBrien

❘■ ❄✻ ❘■ ❄✻ ✠✒

Intermodel
Transformations✲✛

Shdm2

id
→
✄✁

✄

✁

A

✄

E

B

✄

Shdm1

✄

✁

✄

✁

A

✄

E

B

✄

Sxml

<E>
<A>

</E>

Suml

E

A
B

Ser

E
A

B

Srel

E(A,B)

E.A → E.B

Sowl

E ⊑ owl:Thing

⊤ ⊑ ∀ EA.type

⊤ ⊑ ∀ EB.type

⊤ ⊑ ≤1 EA

⊤ ⊑ ≤1 EB

HasKey(E, EA)

Fig. 1. Transforming between the OWL Model and various Data Models via the HDM

2 The Framework

A general framework for expressing the mappings between relational and OWL models

is illustrated in Figure 2. Within this framework, two variants of the relational modelling

language, that may be subject to this transformation, are identified. Firstly, we identify

a ‘basic’ relational modelling language r, consisting of tables, keys and foreign keys.

The example schema Sr (listed in Figure 3) is expressed using this modelling language.

Secondly, we identify an enhanced relational modelling language r+, which in addi-

tion to tables, keys and foreign keys, uses triggers, views or constraints. Analogously,

we also identify two variants of the OWL 2 language. The first variant, o, is a subset

of the OWL 2 language, that previous approaches, e.g., Spanos et al. (2012), have tar-

geted when applying reverse engineering methods on relational models expressed in r.

This consists of the OWL 2 constructs: Class, ObjectProperty, DataProperty, SubClas-

sOf, AllValuesFrom, Cardinality, InverseOf, OneOf and HasKey. The example schema

So (listed in Figure 6) is expressed in such a restricted OWL 2 language. The second

variant, o+, is an enhanced OWL 2 language, containing rich axioms such as Transitive

property and PropertyChain as well as others. We refer to a schema using more complex

OWL 2 modelling constructs as So+ , and its equivalent relational schema Sr+ .

Previous approaches which transform relational schemas to OWL, start with schemas

in the basic relational model such as Sr, and transform them to equivalent schemas So.

Approaches that transform in the opposite direction, i.e., OWL to relational, start with

schemas such as So+ , and map them to schemas Sr+ .

Thus, previous work on transforming in each direction deals with modelling lan-

guages at different levels of complexity, as represented by the two horizontal axes in

Figure 2. These transformations are Information Preserving (IP) (Miller et al., 1994).

Previous approaches do not deal with the problem of transforming between the two

levels (along the vertical axes in Figure 2), which would not be IP.

OWLRel: Learning Rich Ontologies from Relational Databases 469

Fig. 2. A General Framework for Transforming between Relational and OWL

Our approach, instead, uses the HDM to represent the four modelling language

variants, where Shr is the HDM equivalent of Sr, Sho is the HDM equivalent of So,

and so on. We then focus on mapping between such HDM schemas. Our approach also

benefits from being able to be utilised in different types of applications:

1. Integrating existing databases and ontologies: Our approach can integrate ex-

isting relational and OWL schemas. Usually, the relational schema will be of the

form Sr and the OWL ontology So+ . We translate Sr → Shr → Sho and trans-

late So+ → Sho+ , and then have the task of reconciling the two schemas2 Sho and

Sho+ . This application will be left for future work.

2. Creating a database from an existing ontology: Transforming an OWL knowl-

edge base to a relational database can be implemented by following a transforma-

tion pathway in the order of So+ → Sho+ → Shr+ → Sr+ . In previous work (Al

Khuzayem et al., 2013), we have shown the details of this pathway, and suggested

two alternatives for implementing the expressive constructs of OWL 2 RL (Motik

et al., 2009), a profile of OWL 2, as triggers or constraints in the relational database.

3. Extracting a domain-specific ontology from an existing database: This appli-

cation is the focus of this paper, in which we implement a Sr → Shr → Sho →
Sho+ → So+ transformation pathway. The process of transforming Sr to Sho was

reported in previous work (Boyd and McBrien, 2005; Al Khuzayem and McBrien,

2012), so we concentrate on the process of Sho → Sho+ . Like any other work in the

area, we assume that the ontologies make the unique name assumption (UNA),

and that the databases are in third normal form (3NF). Approaches that perform

3NF normalisation exist in the literature (Yazici and Karakaya, 2007).

3 Preliminaries

An overview of the HDM (Poulovassilis and McBrien, 1998; Boyd and McBrien, 2005;

Smith and McBrien, 2006), and how the relational model is represented in the HDM is

shown here. An HDM schema S is defined as a tuple 〈Nodes,Edges, Cons, T ypes〉
where:

2 In principle this task could also be done using Sr and Shr+ , but these models do not include

the OWL constructs that need to be changed.

470 Al Khuzayem and McBrien

– Nodes is a set of nodes in the graph such that each node node:〈〈n, t〉〉 is identified

by its name n, and it is given an associated type t ∈ Types. A node can also be

referred to by a shorthand node:〈〈n〉〉.
– Types is a tuple that contains a finite set of types and a subset of the set of all

possible data values consistent with this type.

– Edges is a set of edges in the graph such that each edge has the following scheme:

edge:〈〈e1, 〈〈n1〉〉, 〈〈n2〉〉〉〉, where e1 is the edge’s name (can also be unnamed as “ ”)

and n1 and n2 are the two nodes that it connects.

– Schemes is the union of Nodes and Edges.

– Cons is a set of boolean-valued functions (constraints) where they form the HDM

constraint language. The set of constraints used in this paper are:

• cons:〈〈⊆, s1, s2〉〉 is the inclusion constraint which states that scheme s1 is al-

ways a subset of scheme s2.

• cons:〈〈6∩, s1, . . . , sn〉〉 is the exclusion constraint which states that all the asso-

ciate schemes are disjoint from each other.

• cons:〈〈∪, s1, . . . , sn, s〉〉 is the union constraint stating scheme s as the union of

schemes s1, . . . , sn.

• cons:〈〈✄, s1, . . . , sm, s〉〉 is the mandatory constraint stating that every com-

bination of the values that appears in schemes s1, . . . , sm must appear in the

edge s connecting those schemes.

• cons:〈〈✁, s1, . . . , sm, s〉〉 is the unique constraint stating that every combination

of the values that appears in schemes s1,. . .,sm must appear no more than once

in the edge s connecting those schemes.

• cons:〈〈
id
→, s1, s〉〉 is the reflexive constraint, stating that any value in s1 must

appear reflexively in the edge s that connects it to s1.

In addition to referring to schemes directly, constraints may also take joins, projec-

tions and selections of schemes as arguments.

3.1 Representing the Relational Model in the HDM

Table 1. Rules for Representing a Relational Schema as an HDM Schema (Sr → Shr)

Relational Construct HDM Representation

table〈〈T 〉〉 node:〈〈T, any〉〉
column〈〈T,C, N,U, t〉〉 node:〈〈T:C, t〉〉, edge:〈〈 ,T,T:C〉〉, cons:〈〈✄, 〈〈T:C〉〉, 〈〈 ,T,T:C〉〉〉〉,

cons:〈〈✁, 〈〈T〉〉, 〈〈 ,T,T:C〉〉〉〉
N = notnull cons:〈〈✄, 〈〈T〉〉, 〈〈 ,T,T:C〉〉〉〉
U = unique cons:〈〈✁, 〈〈T:C〉〉, 〈〈 ,T,T:C〉〉〉〉

primary key〈〈T, C〉〉 cons:〈〈
id
→, 〈〈T〉〉, 〈〈 ,T,T:C〉〉〉〉

primary key〈〈T, C1, C2〉〉 cons:〈〈
id
→, 〈〈T〉〉, 〈〈 ,T,T:C1〉〉 ✶ 〈〈 ,T,T:C2〉〉〉〉

foreign key〈〈FK, T, C, Tf , Cf 〉〉 cons:〈〈⊆, π〈〈T:C〉〉〈〈 ,T,T:C〉〉, π〈〈Tf :Cf〉〉
〈〈 ,Tf ,Tf :Cf〉〉〉〉

A method, summarised in Table 1, for mapping relational schemas to HDM was de-

fined in Poulovassilis and McBrien (1998) and Boyd and McBrien (2005). To illustrate

the method, consider the relational schemaSr, depicted in Figure 3 (where primary keys

OWLRel: Learning Rich Ontologies from Relational Databases 471

are underlined, and nullable column names are suffixed by a question mark), which rep-

resents a subset of the Northwind database3. Later we will show how this schema can

be transformed to the OWL schema listed in Figure 6.

Each table is represented as an HDM node (illustrated in Figure 4 by a black out-

lined circle) with HDM type any. For example, the Emp table is represented by the

HDM node node:〈〈Emp, any〉〉.

Each column is represented by a node that has an HDM type based on its relational

type. For example, column Emp.EID has the type INTEGER, so it is represented in the

HDM as node:〈〈Emp:EID, int〉〉. Moreover, Emp.EID will be connected via an HDM edge,

edge:〈〈 ,Emp,Emp:EID〉〉 (illustrated in Figure 4 with a thick black line), to the node that

represents the column’s table. Since column values only appear with an instance of

a table tuple, the edge has a mandatory constraint (illustrated with grey lines) from

the column node as cons:〈〈✄, node:〈〈Emp:EID〉〉, edge:〈〈 ,Emp,Emp:EID〉〉〉〉. Furthermore,

the unique constraint cons:〈〈✁, node:〈〈Emp〉〉, edge:〈〈 ,Emp,Emp:EID〉〉〉〉 ensures that each

column has a single value per row.

If a column is not nullable, then it must also have a mandatory constraint. Thus,

Emp.EID has cons:〈〈✄, node:〈〈Emp〉〉, edge:〈〈 ,Emp,Emp:EID〉〉〉〉.

If the column is key, then we state that the column’s edge is reflexive. This also

applies to column Emp.EID: cons:〈〈
id
→, node:〈〈Emp〉〉, edge:〈〈 ,Emp,Emp:EID〉〉〉〉.

Finally, foreign keys are represented as inclusion constraints. Thus, for the for-

eign key between Emp.RTo and Emp.EID, we create the following HDM constraint:

cons:〈〈⊆, node:〈〈Emp:RTo〉〉, node:〈〈Emp:EID〉〉〉〉.

The result of these transformations is an HDM graph (depicted in Figure 4) that is

a forest of two-level trees, with subset constraints linking the leaf nodes.

Ter

TID TDes RID

’20852’ ’Rockville’ 1

’30346’ ’Atlanta’ 4

’01833’ ’Georgetow’ 1

’01730’ ’Bedford’ 1

’06897’ ’Wilton’ 1

’02903’ ’Providence’ 1

’85014’ ’Phoenix’ 2

Emp

EID RTo?

1 2

2 NULL

3 2

4 2

5 2

6 5

7 5

ET

EID TID

1 ’06897’

2 ’01730’

2 ’01833’

3 ’30346’

4 ’20852’

5 ’02903’

6 ’85014’

Reg

RID RDes

1 ’Eastern’

2 ’Western’

3 ’Northern’

4 ’Southern’

Emp(RTo)
fk
⇒ Emp(EID)

ET(TID)
fk
⇒ Ter(TID)

ET(EID)
fk
⇒ Emp(EID)

Ter(RID)
fk
⇒ Reg(RID)

Fig. 3. Sr , Fragment of the Northwind Relational Database Schema and Data. Entries in the

Employee table are related to entries in the Territories table via ET. Each employee may option-

ally (indicated by a question mark) be recorded as reporting to another employee by the RTo.

Each territory is in exactly one Region.

4 The Automatic Relational to OWL Transformation

Our automatic ontology extraction approach is performed via a number of steps: i)

transform the relational constructs to HDM producing Shr, which was described in

3 https://northwinddatabase.codeplex.com/

472 Al Khuzayem and McBrien

Emp:

EID
int

✄

Emp
any

id
→

✄✁

Emp:

RTo
int

✁

✄

⊆

ET:
EID

int

✄

ET
any

ET:
TID

int

✄

⊇

id
→

✄✁
✶

✁

✄

✁

✄

Ter:
TDes

str

✄

id
→

✄✁

Ter
any

Ter:
TID

int

✄

⊆

Ter:

RID
int

✄

⊆
Reg:

RID
int

✄

Reg
any

id
→

✄✁

Reg:

RDes
str

✄

✁

✄

Fig. 4. Shr , HDM Representation of Schema Sr

Section 3.1, ii) perform intermodel transformations on the HDM schema producingSho

and finally, iii) translate the Sho to an OWL schema. The subsections below, explain the

final two steps.

4.1 The HDM Intermodel Transformations

Our HDM intermodel transformation process aims at overcoming the fundamental dif-

ferences between the relational and OWL modelling languages. We use a set of BAV

equivalence mappings presented in Boyd and McBrien (2005) to transform the HDM

schema, Shr (depicted in Figure 4) which represents the relational schema, to an equiv-

alent (in terms of information capacity) HDM graph which represents the OWL schema.

(A) Transform an attribute that is a foreign key, but not a primary key, into an Ob-

jectProperty. To be precise, if the relational schema contains R(KR,KS, . . .), S(KS, . . .),

R(KS)
fk
⇒ S(KS), then in OWL, we represent the KS attribute of R as a functional property

PRS between the two classes R and S.

This can be achieved using two BAV equivalence rules (shown below); Inclusion

Merge and Unique-Mandatory Redirection. First, applying the Inclusion Merge rule

on the foreign key represented by the inclusion constraint between node:〈〈ET:EID〉〉 and

node:〈〈Emp:EID〉〉, will result in merging those two nodes. The mandatory constraint

between the node:〈〈ET:EID〉〉 and the edge:〈〈 ,ET,ET:EID〉〉 is dropped, and any edges

or constraints that apply to node:〈〈ET:EID〉〉 are redirected to node:〈〈Emp:EID〉〉. Sub-

sequently, the Unique-Mandatory Redirection rule allows moving the newly redi-

rected edge (between node:〈〈ET〉〉 and node:〈〈Emp:EID〉〉), to become instead between

node:〈〈ET〉〉 and node:〈〈Emp〉〉. This is due to having unique and mandatory constraints

on edge:〈〈 ,ET,ET:EID〉〉. Because the redirected edge now connects two nodes repre-

senting classes, it represents an ObjectProperty. All other foreign keys of this type are

transformed similarly.

OWLRel: Learning Rich Ontologies from Relational Databases 473

1 inclusion merge(node:〈〈Emp:EID〉〉, edge:〈〈ET:EID,ET, ET:EID〉〉)

2 unique mandatory redirection(edge:〈〈ET Emp:EID, ET, Emp:EID〉〉, edge:〈〈ET Emp, ET, Emp〉〉)

(B) Transform an attribute that is a foreign key and a primary key as a Sub-

ClassOf axiom. To be precise, if the relational schema contains R(KR, . . .), S(KS, . . .),

R(KR)
fk
⇒ S(KS), then in OWL, we represent the KR attribute of R by making class R a

subclass of S.

This can be achieved by using the BAV equivalence rule, Identity Node Merge

which allows us to move a foreign key, represented as an inclusion constraint from the

column nodes to instead be between the class nodes and that will eventually be mapped

into a SubClassOf in the OWL model. The Northwind database, however, does not in-

clude an example of this particular case.

(C) Transform a many-to-many binary relationship table to an ObjectProperty. To

be precise, if the relational schema contains R(KR, . . .), S(KS, . . .), T(KR,KS), T(KR)
fk
⇒

R(KR), T(KS)
fk
⇒ S(KS), then in OWL, we represent the T and its attributes as a property

PT between classes R and S.

This can be achieved using the Identity Edge Merge rule (shown below), that al-

lows us to map two edges and a node in the HDM to a single edge representing an ob-

ject property in the OWL model. For instance, this rule allows us to replace node:〈〈ET〉〉,

edge:〈〈 ,ET,Emp〉〉 and edge:〈〈 ,ET,Ter〉〉 with a single edge:〈〈Emp Ter,Emp,Ter〉〉. This

newly created edge represents an ObjectProperty since it connects two class nodes.

3 identity edge merge(edge:〈〈ET Emp, ET, Emp〉〉, edge:〈〈ET Ter, ET,Ter〉〉)

(D) Transformation of attribute constraints. In general, relational nullable attributes,

represent things that may or may not exist in reality. Thus, we must rely on the user

to confirm whether a nullable attribute must exist in reality, in which case, we must

add a mandatory constraint to the HDM graph. For example, column Emp.RTo may

additionally have: cons:〈〈✄,Emp, 〈〈RTo,Emp,Emp〉〉〉〉 which will eventually be mapped

to a Cardinality in OWL. In the example, we have assumed that the user confirmed that

employees do not have to report to another employee, and thus omit the constraint.

Figure 5, illustrates the result of these transformations. Remaining nodes and edges

do not need to be transformed as they will be interpreted as classes, datatypes and data

properties in the OWL model, as will be described in the next section.

4.2 Transforming the HDM Schema to an OWL Ontology

We now explain how HDM schemas in ‘OWL Compatible’ form, such as Sho and Sho+ ,

can be translated to corresponding OWL files So and So+ , respectively. In Table 2, we

list some OWL 2 constructs and how we translate them into HDM. The four more

important transformations are:

1. HDM nodes without a type restriction are transformed to OWL classes. Thus, the

nodes node:〈〈Emp〉〉, node:〈〈Ter〉〉 and node:〈〈Reg〉〉 with HDM type any in Figure 5

are mapped to the OWL classes: Emp, Ter and Reg.

474 Al Khuzayem and McBrien

Emp:

EID
int

✄

Emp
any

id
→

✄✁

✁

✄

Ter
any

Ter:
TID

int

Ter:
TDes

str

✄

✁

id
→

✄✁

✄

✁

Reg:

RID
int

✄

Reg
any

id
→

✄✁

Reg:

RDes
str

✄

✁

✄

Emp Ter Ter Reg

Reg RDes

Ter TID

Ter TDes

RTo

Emp EID Reg RID

Fig. 5. Sho, HDM Representation of Schema So

2. HDM nodes with HDM types are transformed to datatypes. For example, the node

node:〈〈Emp EID〉〉 with HDM type int is mapped to xsd:integer.

3. Edges which connect two HDM nodes, both without type restrictions, are trans-

formed to object properties. For example, edge:〈〈Emp Ter,Emp,Ter〉〉 is mapped to

the ObjectProperty Emp Ter.

4. Edges which connect nodes without type restriction, to nodes with a type restric-

tion, are transformed to data properties. For example, the DataProperty Emp EID,

represents the edge:〈〈Emp EID,Emp,Emp:EID〉〉.

Subsequently, combinations of HDM constraints are considered to represent more

complex OWL 2 constructs, according to the mappings listed in Table 2. For instance,

the combination of the following constraints cons:〈〈✁,EID, 〈〈Emp EID,Emp,EID〉〉〉〉,

cons:〈〈✄,EID, 〈〈Emp EID,Emp,EID〉〉〉〉 and cons:〈〈
id
→,EID, 〈〈Emp EID,Emp,EID〉〉〉〉, gen-

erates HasKey(Emp,Emp EID). The complete OWL schema resulting from transform-

ing Sho is listed in Figure 6.

5 HDM Schema Enhancement

In this section, we outline our approach to enriching the ontology produced by the auto-

matic transformation from a relational database. This step is performed by an analysis

of the HDM schema Sho, and produces an enriched schema Sho+ . Our schema en-

hancement process uses schema analysis and data analysis techniques, which are well

known in the database community for discovering implicit constructs from relational

schemas and data (Cleve et al., 2011). Limited space permits us to list only a subset of

the complete set of rules used in our prototype implementation.

OWLRel: Learning Rich Ontologies from Relational Databases 475

Table 2. HDM Representations for Some OWL 2 Constructs

OWL 2 Construct DL Syntax HDM Representation

Class C node:〈〈C〉〉
SubClassOf (SCO) C1 ⊑ C2 cons:〈〈⊆,C1,C2〉〉
DisjointWith (DisW) C1 ⊑ ¬C2 cons:〈〈6∩,C1,C2〉〉
ObjectProperty (OP) P edge:〈〈P, C1,C2〉〉
DataProperty (DP) R edge:〈〈R,C1, rdfs:Literal〉〉
FunctionalProperty (FOP) ⊤ ⊑ (≤1 P) cons:〈〈✁,C1, 〈〈P, C1,C2〉〉〉〉
InverseFunctionalProperty (InvF) ⊤ ⊑ (≤1 P−) cons:〈〈✁,C2, 〈〈P, C1,C2〉〉〉〉

ReflexiveProperty (Refl) ⊤ ⊑ ∃ P.Self cons:〈〈
id
→,C1, 〈〈P,C1,C2〉〉〉〉

IrreflexiveProperty (Irre) ⊤ ⊑ ¬∃ P.Self cons:〈〈6∩,C1, π〈C1〉
σ〈C1=C2〉

〈〈P, C1,C2〉〉〉〉

SymmetricProperty (Symm) P ≡ P− cons:〈〈⊆, π〈C2,C1〉
〈〈P, C1,C2〉〉, 〈〈P,C1,C2〉〉〉〉

AsymmetricProperty (Asym) P ⊑ ¬P− cons:〈〈6∩, π〈C2,C1〉
〈〈P, C1,C2〉〉, 〈〈P,C1,C2〉〉〉〉

TransitiveProperty (Tran) P ◦ P ⊑ P cons:〈〈⊆, π〈P/P1.C1,P/P2.C2〉
P ⊲⊳ P, 〈〈P, C1,C2〉〉〉〉

PropertyChain (ProC) P1 ◦ . . . ◦ Pn ⊑ P cons:〈〈⊆, π〈P1.C1,Pn.Cn+1〉
P1 ⊲⊳ . . . ⊲⊳ Pn, 〈〈P,C1,Cn+1〉〉〉〉

InverseOf (InvO) P ≡ Q− cons:〈〈⊆, π〈C2,C1〉
〈〈P, C1,C2〉〉, 〈〈Q,C2,C1〉〉〉〉,

cons:〈〈⊆, π〈C1,C2〉
〈〈Q,C2,C1〉〉, 〈〈P, C1,C2〉〉〉〉

SubPropertyOf (SPO) P ⊑ Q cons:〈〈⊆, 〈〈P,C1,C2〉〉, 〈〈Q,C3,C4〉〉〉〉
Cardinality (Crd) = nP node:〈〈=nP〉〉, edge:〈〈P IE,=nP, owl:Thing〉〉,

cons:〈〈✁n,=nP, 〈〈P IE,=nP, owl:Thing〉〉〉〉,

cons:〈〈✄n,=nP, 〈〈P IE,=nP, owl:Thing〉〉〉〉,

cons:〈〈⊆, 〈〈P IE,=nP, owl:Thing〉〉, 〈〈P, C,D〉〉〉〉
MinCardinality (MinC) ≥ nP node:〈〈≥nP〉〉, edge:〈〈P IE,≥nP, owl:Thing〉〉,

cons:〈〈✁n,≥nP, 〈〈P IE,≥nP, owl:Thing〉〉〉〉,

cons:〈〈⊆, 〈〈P IE,≥nP, owl:Thing〉〉, 〈〈P, C1,C2〉〉〉〉
MaxCardinality (MaxC) ≤ nP node:〈〈≤nP〉〉, edge:〈〈P IE,≤nP, owl:Thing〉〉,

cons:〈〈✄n,≤nP, 〈〈P IE,≤nP, owl:Thing〉〉〉〉,

cons:〈〈⊆, 〈〈P IE,≤nP, owl:Thing〉〉, 〈〈P, C1,C2〉〉〉〉
UnionOf (UniO) C1 ⊔ C2 cons:〈〈∪,C1,C2〉〉
HasKey (Key) cons:〈〈✄,C1, 〈〈P, C1,C2〉〉〉〉, cons:〈〈✁,C1, 〈〈P,C1,C2〉〉〉〉,

cons:〈〈
id
→,C1, 〈〈P,C1,C2〉〉〉〉

5.1 Schema Analysis

In general, Schema Analysis (SA) can be anything from detecting similarities in names

or value domains (Cleve et al., 2011) to spotting specific structural patterns. In our case,

we use the structure of the schema to propose possible useful OWL 2 constructs. We

represent our heuristics as rules of the form pattern ❀ action, where pattern is a pattern

to match against the constructs of Sho, and action is either a set of BAV transformations

to apply to Sho, or instructions to perform further data analysis (which if positive, will

add BAV transformations to Sho). Below, we list some of the SA heuristics we have

implemented in our prototype.

Object Property Characteristics Heuristics: In OWL, the domain and range of

Symmetric and Transitive properties must match (Lacy, 2005). Hence, when we search

for such constraints on properties, we only need to consider a property P between a

class D and itself, or between D and a superclass C of D. In addition, we propose the

heuristic that Reflexive are most likely to occur on the same type of property, and hence

also search for such constraints.

Given the above, we now consider whether P is Functional or not. A Functional

property cannot be Transitive (Lacy, 2005), and is not useful if Reflexive (since it would

only relate instances to themselves). Finally, Symmetric properties are less likely to be

476 Al Khuzayem and McBrien

∃ RTo.⊤ ⊑ Emp (1)

⊤ ⊑ ∀ RTo.Emp (2)

⊤ ⊑ (≤1 RTo) (3)

∃ Emp EID.⊤ ⊑ Emp (4)

⊤ ⊑ ∀ Emp EID.xsd:integer (5)

⊤ ⊑ (≤1 Emp EID) (6)

∃ Emp Ter.⊤ ⊑ Emp (7)

⊤ ⊑ ∀ Emp Ter.Ter (8)

∃ Ter TID.⊤ ⊑ Ter (9)

⊤ ⊑ ∀ Ter TID.xsd:string (10)

⊤ ⊑ (≤1 Ter TID) (11)

∃ Ter TDes.⊤ ⊑ Territories (12)

⊤ ⊑ ∀ Ter TDes.xsd:string (13)

⊤ ⊑ (≤1 Ter TDes) (14)

∃ Ter Reg.⊤ ⊑ Ter (15)

⊤ ⊑ ∀ Ter Reg.Reg (16)

⊤ ⊑ (≤1 Ter Reg) (17)

∃ Reg RID.⊤ ⊑ Reg (18)

⊤ ⊑ ∀ Reg RID.xsd:integer (19)

⊤ ⊑ (≤1 Reg RID) (20)

∃ Reg RDes.⊤ ⊑ Reg (21)

⊤ ⊑ ∀ Reg RDes.xsd:string (22)

⊤ ⊑ (≤1 Reg RDes) (23)

HasKey(Emp, Emp EID) (24)

HasKey(Ter,Ter TID) (25)

HasKey(Reg,Reg RID) (26)

Emp ⊑ = 1 Reg RID (27)

Ter ⊑ = 1 Ter TDes (28)

Fig. 6. So, OWL Schema (in DL syntax) Representing Schema Sr

⊤ ⊑ ¬ ∃ RTo.Self (29)

RTo ⊑ ¬ RTo
−

(30)

RTo ◦ RTo ≡ Emp Emp (31)

⊤ ⊑ ∀ Emp Emp
−

.Emp (32)

⊤ ⊑ ∀ Emp Emp.Emp (33)

Emp Ter ◦ Ter Reg ≡ Emp Reg (34)

⊤ ⊑ ∀ Emp Reg
−

.Emp (35)

⊤ ⊑ ∀ Emp Reg.Reg (36)

RTo ◦ Emp Ter ≡ Emp Ter chain (37)

⊤ ⊑ ∀ Emp Ter chain
−

.Emp (38)

⊤ ⊑ ∀ Emp Ter chain.Reg (39)

RTo ◦ RTo
− ≡ Emp Emp chain (40)

⊤ ⊑ ∀ Emp Emp chain
−

.Emp (41)

⊤ ⊑ ∀ Emp Emp chain.Emp (42)

Fig. 7. Additional Axioms in Schema So+

Functional, since it would restrict the instances to be in pairs. Hence, we only search

for these three types of property constraints when the edge is non-functional:
SA1: edge:〈〈P,D,D〉〉 ∧ ¬ cons:〈〈✁,D,P〉〉 ❀

DAsymm(edge:〈〈P,D,D〉〉);DArefl(edge:〈〈P,D,D〉〉);DAtran(edge:〈〈P,D,D〉〉)

SA2: edge:〈〈P,C,D〉〉 ∧ ¬ cons:〈〈✁,C,P〉〉 ∧ cons:〈〈⊆,D,C〉〉 ❀

DAsymm(edge:〈〈P,C,D〉〉);DArefl(edge:〈〈P,C,D〉〉);DAtran(edge:〈〈P,C,D〉〉)

Note that DAsymm, DArefl, and DAtran are further data analysis heuristics that will be

described in the next section.

If circumstances where a property might be Symmetric or Reflexive, we consider

it sensible to also identify whether they are Asymmetric or Irreflexive properties. Here,

it is possible that the property might be Functional, so there is no restriction on the

property being Functional in the rules.
SA3: edge:〈〈P,D,D〉〉 ❀

DAasym(edge:〈〈P,D,D〉〉);DAirre(edge:〈〈P,D,D〉〉)

SA4: edge:〈〈P,C,D〉〉 ∧ cons:〈〈⊆,D,C〉〉 ❀

DAasym(edge:〈〈P,C,D〉〉);DAirre(edge:〈〈P,C,D〉〉)

Again, DAasym and DAirre are further data analysis heuristics that will be described in

the next section.

Property Chain Heuristics: PropertyChains of length two can, in principle, be

formed from any two HDM edges that represent object properties, when the two edges

share at least one common node. In the rules below, we identify cases in which a Prop-

OWLRel: Learning Rich Ontologies from Relational Databases 477

ertyChain is more likely to have interesting semantics that should be represented in the

OWL ontology.

SA5 detects that a Functional property Pc, between a node and itself, represents

a ‘child’ type relationship, and hence we can chain the property with itself to form a

PropertyChain Pg, representing a ‘grandchild’ type relationship (in the rules, the nota-

tion Pc/P1 indicates aliasing of Pc as P1 and similarly for the class C/C1).
SA5: edge:〈〈Pc,C,C〉〉 ∧ cons:〈〈✁,C,Pc〉〉 ❀

addEdge(〈〈Pg,C,C〉〉); addJoin(〈〈⊲⊳,Pc/P1,Pc/P2〉〉);
addProjection(〈〈π〈P1.C1,P2.C2〉

, 〈〈⊲⊳,Pc/P1,Pc/P2〉〉〉〉);

addCons(〈〈⊆, 〈〈π〈P1.C1,P2.C2〉
, 〈〈⊲⊳,Pc/P1,Pc/P2〉〉〉〉, 〈〈Pg,C,C〉〉〉〉)

For example, applying this rule to the HDM schema in Figure 5, the Functional

property RTo from Emp to Emp can be chained with itself to give a PropertyChain,

Emp Emp (shown in rules (31)–(33) depicted in Figure 7), that relates an employee

with his/her second-line managers.

SA6 detects that a Functional property Pa, from class D, represents a kind of ‘at-

tribute’ E of class D, and that if another class C is related to D by another property P,

then a PropertyChain Pda can be formed making E a ‘denormalised attribute’ of C.
SA6: edge:〈〈P,C,D〉〉 ∧ edge:〈〈Pa,D,E〉〉 ∧ cons:〈〈✁,D,Pa〉〉 ❀

addEdge(〈〈Pda,C,E〉〉); addJoin(〈〈⊲⊳,P,Pa〉〉);
addProjection(〈〈π〈P.C,Pa.E〉

, 〈〈⊲⊳,P,Pa〉〉〉〉);

addCons(〈〈⊆, 〈〈π〈P.C,Pa.E〉
, 〈〈⊲⊳,P,Pa〉〉〉〉, 〈〈Pda,C,E〉〉〉〉)

For example, we can create a PropertyChain, called Emp Reg (shown in rules (34)–

(36)), that concatenates Emp Ter and Ter Reg to relate employees to regions. The data

in the Northwind database, lead to such employees being related to only one region

(validating that it is an interesting type of property to detect).

SA7 detects that a Functional property Pa, from class C, represents a kind of ‘at-

tribute’ D of class C, and that if another class E is related to D by another property P,

then a PropertyChain Pca can be formed.
SA7: edge:〈〈Pa,C,D〉〉 ∧ edge:〈〈P,D,E〉〉 ∧ cons:〈〈✁,C,Pa〉〉 ❀

addEdge(〈〈Pca,C,E〉〉); addJoin(〈〈⊲⊳,Pa,P〉〉);
addProjection(〈〈π〈Pa.C,P.E〉

, 〈〈⊲⊳,Pa,P〉〉〉〉);

addCons(〈〈⊆, 〈〈π〈Pa.C,P.E〉
, 〈〈⊲⊳,Pa,P〉〉〉〉, 〈〈Pca,C,E〉〉〉〉)

For example, we can create a PropertyChain, called Emp Ter chain (shown in rules

(37)–(39)), that concatenates the two properties RTo and Emp Ter. This produces a

property that relates an employee with his/her manager’s territories.

SA8 detects that where a class C is related to another class D via a Functional prop-

erty P, we can treat D as being a ‘parent’ of C, and form a PropertyChain Ps between

the edge and its inverse, to represent instances of C that are ‘siblings’ of each other (in

the rules, the notation P/P1 indicates aliasing of P as P1).
SA8: edge:〈〈P,C,D〉〉 ∧ cons:〈〈✁,C,P〉〉 ❀

addEdge(〈〈Ps,C,C〉〉); addJoin(〈〈⊲⊳D,P/P1,P/P2〉〉);
addProjection(〈〈π〈P1.C,P2.C〉

, 〈〈⊲⊳D,P/P1,P/P2〉〉〉〉);

addCons(〈〈⊆, 〈〈π〈P1.C,P2.C〉
, 〈〈⊲⊳D,P/P1,P/P2〉〉〉〉, 〈〈Ps,C,C〉〉〉〉)

For example, chaining the property RTo with its inverse property RTo− results in a

self-referencing PropertyChain on Emp, called Emp Emp chain (shown in rules (40)–

478 Al Khuzayem and McBrien

(42)), which contains the employees that are related to each other through a particular

manager (i.e., colleagues).

Class Axioms Heuristic: If two classes, C1 and C2, have SubClassOf axioms with

the same class C, then C1 and C2 may intersect with each other, or they may be disjoint

and/or class C might be their union. These cases can be validated by data analysis.

SA9: cons:〈〈⊆,C1,C〉〉 ∧ cons:〈〈⊆,C2,C〉〉 ❀

DAdisj(node:〈〈C1〉〉, node:〈〈C2〉〉);DAunion(node:〈〈C1〉〉, node:〈〈C2〉〉, node:〈〈C〉〉);
DAinter(node:〈〈C1〉〉, node:〈〈C2〉〉, node:〈〈C〉〉)

5.2 Data Analysis

Data Analysis (DA) means mining the database content in order to detect possible,

useful, implicit properties (Cleve et al., 2011). Conducting a DA technique on its own

can be very expensive and time consuming. Therefore, instead of using DA per se, it

is usually applied as a confirmation mechanism for other detection techniques (Cleve

et al., 2011). In our case, we use it as a supplementary method to the SA technique.

Each DA heuristic rule has the form pattern : condition | probability ❀ action where

pattern is a pattern to match a DA instruction from SA, condition is a query to execute

against Sho that must return true, and probability is a query generating a number [0, 1].
We rely on a domain expert to validate that proposed additions in action to the ontology

are correct (guided by the probabilities associated with each rule).

Symmetric and Asymmetric Heuristics: DA heuristics such as DAsymm, DAasym,

DArefl, DAirre and DAtran all take the same general form. We illustrate the approach here

by presenting DAsymm and DAasym.

DAsymm(edge:〈〈P,C,D〉〉): {〈y, x〉|〈x, y〉 ∈ 〈〈P,C,D〉〉} − 〈〈P,C,D〉〉 = Ø | totalS−notS
totalS

❀

addCons(〈〈π〈D,C〉, 〈〈P,C,D〉〉〉〉); addCons(〈〈⊆, 〈〈π〈D,C〉, 〈〈P,C,D〉〉〉〉, 〈〈P,C,D〉〉〉〉)

DAasym(edge:〈〈P,C,D〉〉): notS > 0 ∧ totalS = 0 | 1 ❀

addCons(〈〈π〈D,C〉, 〈〈P,C,D〉〉〉〉); addCons(〈〈6∩, 〈〈π〈D,C〉, 〈〈P,C,D〉〉〉〉, 〈〈P,C,D〉〉〉〉)

where totalS is the number of symmetric instances of P calculated as:

totalS = 2.|{〈y, x〉|〈x, y〉 ∈ 〈〈P,C,D〉〉} ∩ 〈〈P,C,D〉〉|

and notS is the number of non-symmetric instances of P, calculated as:

notS = {{〈y, x〉|〈x, y〉 ∈ 〈〈P,C,D〉〉} − 〈〈P,C,D〉〉}.

For example, an instance of employee l via the Functional property RTo may re-

port to employee m (manager). The manager m, however, can not report back to l.
This means that the property is Asymmetric. Moreover, an employee can not report to

him/herself so, it is Irreflexive. These axioms have been added to the ontology as in the

DL rules (29)–(30) shown in Figure 7.

DisjointWith Heuristic: Any two HDM nodes representing classes that have dis-

joint sets of instances can lead to an OWL DisjointWith being proposed. The general

rule is of the form:

DAdisj(node:〈〈C1〉〉, node:〈〈C2〉〉): 〈〈C1〉〉 ∩ 〈〈C2〉〉 = Ø | 1 ❀

addCons(〈〈6∩,C1,C2〉〉)

OWLRel: Learning Rich Ontologies from Relational Databases 479

The Northwind database does not contain foreign keys that can be mapped to Sub-

ClassOf. However, if we envisage that the database contained: Places(PID,PName),

Ter(TID)
fk
⇒ Places(PID), Reg(RID)

fk
⇒ Places(PID) then, we would have two SubClas-

sOf axioms. Data analysis in this case, would reveal that classes Ter and Reg should be

disjoint.

6 Results and Discussion

The approach presented in this paper was implemented as a tool called OWLRel. It

builds on the AutoMed data integration system4 (Boyd et al., 2004), and hence can

work with databases in many formats (Postgres, Microsoft SQL Server . . . etc.).

6.1 The Test Databases

Both, the Northwind Database (part of which was used as the running example in this

paper) and the Mondial Database5 were tested on our system. Table 3 lists the schema

sizes of those two relational databases along with the Wine Database (OWLRelWine),

which was generated by our system from the Wine Ontology6 through the path So+ →
Sho+ → Shr+ → Shr → Sr. This path simply produces a database that is limited to

tables, columns, PKs and FKs. All other OWL axioms are ignored.

Table 3. RDB and OWL Schema Details. OWL Schema Construct Names are Abbreviated as

Listed in Table 2

RDB Schema (Sr) Details OWL Schema (So) Details

Schema Name Sr size Table Attribute PK FK Class OP DP FOP Key SCO SPO Crd

Northwind 127 13 88 13 13 11 11 75 9 11 0 0 15

Mondial 139 20 69 19 31 19 30 41 26 18 0 0 48

OWLRelWine 676 147 164 147 218 137 16 1 6 0 186 5 0

Wine - - - - - 138 16 1 6 0 200 5 -

Table 4. Number of Detected Axioms from the Enrichment Process. OWL Schema Construct

Names are Abbreviated as Listed in Table 2

So+ InvO Symm Asym Tran Refl Irre Crd MinC MaxC ProC DisW UniO

Northwind 0 0 1 0 0 1 6 1 1 17 0 0

Mondial 0 0 2 1 0 2 7 4 4 47 0 0

OWLRelWine 5 1 3 1 0 4 6 8 7 21 43 1

Wine 5 1 0 1 0 0 6 5 21 0 39 1

4 automed.doc.ic.ac.uk
5 http://www.dbis.informatik.uni-goettingen.de/Mondial/
6 http://www.w3.org/TR/owl-guide/wine.rdf

480 Al Khuzayem and McBrien

6.2 OWLRel’s Automatic Transformation Evaluation

Listed in Table 3, are the OWL schema details for the Northwind, the Mondial, the

reconstructed Wine (OWLRelWine) and the original Wine (Wine) ontologies.

To evaluate our automatic transformation, we compared the original Northwind and

Mondial databases to the ones that were created automatically from our system, by

the reverse transformation of their respective ontologies. By inserting the Northwind

and Mondial ontologies that resulted from the automatic transformation back into our

system following the path: So → Sho → Shr → Sr, we finished up with databases that

are identical to the original ones.

6.3 OWLRel’s Enrichment Evaluation

In Table 4, we list the number of axioms proposed from the schema enhancement

phase for all three databases mentioned earlier. Regarding the Northwind and Mon-

dial databases, we used basic human judgment to check whether a proposed axiom

was useful or not. If the data in the database is not complete, our system might detect

a wrong axiom. For example, our system suggested that a property like mergesWith

with domain and range Sea in the Mondial ontology is Asymmetric, while in reality

it should be Symmetric. Regarding the Wine database, we used the original Wine on-

tology (Wine) as a reference model and compared our reconstructed Wine ontology

(OWLRelWine) against it. Comparing OWLRelWine which resulted from the auto-

matic transformation, with the original Wine ontology after running the Pellet reasoner

(Sirin et al., 2007), produced 100% precision and 2.59% recall. After our schema en-

hancement phase, the precision dropped to 99.25%, but the recall ascended to 77.35%.

Although the precision had dropped, we consider that the extra axioms that our system

has generated are infact correct and useful. For example, the system detected the proper-

ties hasMaker, producesWine and locatedIn as both Irreflexive and Asymmetric which

in reality is true. Moreover, all proposed PropertyChain axioms were interesting. For in-

stance, the system proposed chaining the two properties, hasMaker and producesWine,

which resulted in a property containing wines produced by the same maker.

7 Related Work

Most of the approaches that extract a domain-specific ontology by reverse engineering

a database, such as: Sequeda et al. (2012), Astrova (2004) and Tirmizi et al. (2008),

suffer from one or more of the following problems (Spanos et al., 2012): 1) Do not map

highly expressive OWL features. 2) Miss interpret primary keys. 3) Do not properly

identify class hierarchies.

The survey (Spanos et al., 2012) points out that transforming a relational schema

on its own is not enough, and some sort of data inspection is needed in order to solve

problems 1 & 3. Problem 3 was addressed by the work of Astrova (2004) and Cerbah

(2008) in which they apply data mining techniques to detect class hierarchies. More-

over, primary keys have been interpreted in various ways in the OWL model. Some

approaches translate a PK into an InverseFunctional DataProperty with MinCardinality

OWLRel: Learning Rich Ontologies from Relational Databases 481

1, or use MinCardinality and MaxCardinality 1, or use Functional property and Cardinal-

ity 1. Only a few, like us, have considered using the HasKey construct such as Sequeda

et al. (2012) and Vysniauskas et al. (2011). Furthermore, eliciting the highly expres-

sive constructs of OWL, such as HasValue and Transitive and Symmetric properties,

was only considered by Astrova et al. (2007). However, their rules for generating these

constructs are ambiguous and do not rely on data analysis. In contrast to this, we have

proposed an approach that analyses the schema and the data to suggest possible highly

expressive OWL 2 features for a given RDBMS and represented primary keys using the

HasKey construct, thus providing solutions for problems 1 & 2 above.

Using an intermediate language when mapping between relational and OWL was

considered in the work of Atzeni et al. (2008) and Dadjoo and Kheirkhah (2015). The

former work, however, is the only work that provides a BT via an intermediate language.

Nevertheless, their work is restricted to OWL-Lite and does not consider data analysis.

8 Conclusions and Future Work

Approaches that transform relational databases to ontologies often drop many of the

expressive features of OWL. This is because, generally, relational databases are in a

basic form and thus, transforming them would produce an ontology with limited ex-

pressibility. In this paper, we have presented a conceptual framework and its current

implementation that maps a relational schema to an exact OWL schema and then en-

hance it with rich OWL 2 constructs, detected from schema and data analysis. We then

rely on the user for the verification of these features. Testing the approach on a number

of medium-sized databases showed very promising results. Future work will be directed

towards adding more heuristics, carrying-out more exhaustive evaluation and encorpo-

rating machine learning.

References

Al Khuzayem, L., Liu, Y. and McBrien, P. (2013), Transforming OWL 2 RL Schemas to

Relational Schemas with Open-world or Closed-world Semantics, Technical report,

AutoMed 38. http://www.doc.ic.ac.uk/automed/techreports/owl2rltorelational.ps.

Al Khuzayem, L. and McBrien, P. (2012), Knowledge Transformation using a Hyper-

graph Data Model, in ‘ICCSW’, pp. 1–7.

Astrova, I. (2004), Reverse Engineering of Relational Databases to Ontologies, in ‘The

Semantic Web: Research and Applications’, Springer, pp. 327–341.

Astrova, I., Korda, N. and Kalja, A. (2007), Rule-Based Transformation of SQL Rela-

tional Databases to OWL Ontologies, in ‘Proc. of the 2nd Inter. Conf. on Metadata

& Semantics Research’.

Atzeni, P., Del Nostro, P. and Paolozzi, S. (2008), Ontologies and Databases: Going

Back and Forth, in ‘Proc. of the 4th ODBIS’, Citeseer.

Boyd, M., Kittivoravitkul, S., Lazanitis, C., McBrien, P. and Rizopoulos, N. (2004),

AutoMed: A BAV Data Integration System for Heterogeneous Data Sources, in ‘Ad-

vanced Information Systems Engineering’, Springer, pp. 511–524.

482 Al Khuzayem and McBrien

Boyd, M. and McBrien, P. (2005), ‘Comparing and Transforming between Data Models

via an Intermediate Hypergraph Data Model’, DS IV, 69–109.
Cerbah, F. (2008), Mining the Content of Relational Databases to Learn Ontologies

with Deeper Taxonomies, in ‘Inter. Conf. on WI-IAT.’, Vol. 1, IEEE, pp. 553–557.
Cleve, A., Meurisse, J.-R. and Hainaut, J.-L. (2011), Database Semantics Recovery

through Analysis of Dynamic SQL Statements, in ‘Data Semantics XV’, Springer,

pp. 130–157.
Dadjoo, M. and Kheirkhah, E. (2015), ‘An Approach for Transforming of Relational

Databases to OWL Ontology’, International Journal of Web & Semantic Technology

(IJWesT) 06(01), 19–28.
El Idrissi, B., Baina, S. and Baina, K. (2013), Automatic Generation of Ontology from

Data Models: A Practical Evaluation of Existing Approaches, in ‘IEEE 7th Inter.

Conf. on RCIS’, pp. 1–12.
Lacy, L. (2005), OWL: Representing Information Using the Web Ontology Language,

Trafford Publishing, Victoria BC, Canada.
McBrien, P. and Poulovassilis, A. (2001), A Semantic Approach to Integrating XML

and Structured Data Sources, in ‘Proc. of CAiSE’, Vol. 2068 of LNCS, pp. 330–345.
McBrien, P. and Poulovassilis, A. (2003), Data Integration by Bi-Directional Schema

Transformation Rules, in ‘Proc. of ICDE’, IEEE, pp. 227–238.
Miller, R., Ioannidis, Y. and Ramakrishnan, R. (1994), ‘Schema Equivalence in Hetero-

geneous Systems: Bridging Theory and Practice’, IS 19(1), 3–31.
Motik, B., Grau, B., Horrocks, I., Wu, Z., Fokoue, A. and Lutz, C. (2009), ‘OWL 2

Web Ontology Language Profiles’. http://www.w3.org/2007/OWL/draft/ED-owl2-

profiles-20090420/all.pdf.
Poulovassilis, A. and McBrien, P. (1998), ‘A General Formal Framework for Schema

Transformation’, DKE 28(1), 47–71.
Sequeda, J., Arenas, M. and Miranker, D. (2012), On Directly Mapping Relational

Databases to RDF and OWL, in ‘Proc. of the 21st WWW’, pp. 649–658.
Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A. and Katz, Y. (2007), ‘Pellet: A Practical

OWLDL Reasoner’, WS 5(2), 51–53.
Smith, A. C. and McBrien, P. (2006), Inter Model Data Exchange of Type Information

via a Common Type Hierarchy, in ‘DISWEB’.
Spanos, D.-E., Stavrou, P. and Mitrou, N. (2012), ‘Bringing Relational Databases into

the Semantic Web: A Survey’, Semantic Web 3(2), 169–209.
Tirmizi, S. H., Sequeda, J. and Miranker, D. (2008), Translating SQL Applications to

the Semantic Web, in ‘DEXA’, Springer, pp. 450–464.
Vysniauskas, E., Nemuraite, L., Butleris, R. and Paradauskas, B. (2011), ‘Reversible

Lossless Transformation From OWL 2 Ontologies into Relational Databases’,

IJITCA 40(4), 293–306.
W3C (2009), ‘OWL 2 Web Ontology Language New Features and Rationale’.

http://www.w3.org/TR/2009/WD-owl2-new-features-20090611/.
Yazici, A. and Karakaya, Z. (2007), Computational Science – ICCS 2007: 7th Interna-

tional Conference, Beijing, China, May 27 - 30, 2007, Proceedings, Part II, Springer

Berlin Heidelberg, Berlin, Heidelberg, chapter JMathNorm: A Database Normaliza-

tion Tool Using Mathematica, pp. 186–193.

Received April 29, 2016 , accepted April 30, 2016

