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Abstract. This paper introduces an extension to the hypergraph data model used
in the AutoMed data intergration approach that allows constraints common in
static data modelling languages to be represented by a small set of primitive con-
straint operators. A set of equivalence rules are defined for this set of primitive
constraint operators, and demonstrated to allow a mapping between relational,
ER or UML models to be defined. The approach provides both a precise frame-
work in which to compare data modelling languages, and forms the platform for
further work in automating the process of transforming between different data
modelling languages.

1 Introduction

The AutoMed project has developed the first implementation [2, 7] of a data integra-
tion technique called both-as-view (BAV) [10], which subsumes the expressive power
of other published data integration techniques global-as-view (GAV), local-as-view
(LAV), and global-local-as-view (GLAV) [8].

The AutoMed system also distinguishes itself in being an approach which has a
clear methodology for handling a wide range of static data modelling languages in
the integration process [9], as opposed to the other approaches that assume integration
is always performed in a single common data model. This is achieved by allowing a
user to relate the modelling constructs of a higher level modelling language such as
ER model, relational model or UML, to the constructs in a single lower level common
data modelling language called the hypergraph data model (HDM) [14]. Figure 1
illustrates this concept being applied to three higher level models, all being related to
the same underlying HDM graph.

In [9] a general approach was proposed showing how the data aspects of the higher
level modelling languages were modelled as nodes and edges in the HDM, with the
constraints of the higher level modelling language being represented by writing con-
straint formulae over the HDM. This approach was implemented in AutoMed [2]. This
paper extends that approach to represent the high level modelling language constraints
using a proposed set of primitive constraint operators on the HDM. This paper also
shows how we may relate the ER, relational and UML higher level modelling lan-
guages – perform intermodel transformations – by the application of four types of
equivalence rules on the HDM and its primitive constraint operators. To date, work
on intermodel transformations has normally defined the conversion between specific
pairs of modelling languages. For example, there have been proposals for relational to
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Fig. 1. Multiple models based on the HDM

ER conversion [1, 12], ORM to UML and relational conversion [6], and relational to
generic object oriented conversion [4]. Our approach differs from this previous work in
that it uses the semantic definition of each modelling language in the HDM as a basis
for equivalence rules on the HDM to perform the conversion. Thus we provide a plat-
form for the conversion between any data modelling language, provided that we can
represent that modelling language in the HDM with the proposed primitive constraints
defined in this paper. This paper demonstrates the approach being applied to conversion
between ER, relational and UML static class modelling languages.

In addition to providing a mechanism for comparing the expressiveness of mod-
elling languages, the proposed primitive constraints and set of equivalence rules also
forms the basis for a method of automating the translation between modelling lan-
guages, based on descriptions of their constructs. This would involve further develop-
ment of an algorithm that would determine which equivalence rules need to be applied
to the HDM graph of one higher level model to form a valid HDM graph of another
higher level model.

The paper is structured as follows. Section 2 reviews how AutoMed describes higher
level data modelling languages by relating them to a graph structure. Then in Section 3
we propose a set of HDM constraint operators that form a language used to model the
constraints in higher level data modelling languages. Section 4 details how we approach
the transformation between modelling languages by applying equivalence rules to the
graph.

2 Describing a Data Modelling Language

In [9] a general technique was proposed for the modelling of any structured data mod-
elling language in the HDM. The premise of this approach is that in any data modelling
language, the various constructs of the language can be viewed as being a combina-
tion of sets of values, and constraints between these sets, in a graph based model. This
concept has been used in modelling relational models [17], and for OO and ER mod-
els [16], and is an intuitive assumption to make. A HDM model @ consists of a tupleA
Nodes B Edges B Cons C , where Nodes is a set of nodes of a graph, Edges is a set of nested



hyper-edges1, and Cons is a set of constraint expressions over the Nodes and Edges.
When used to describe a data source, each node has an extent that represents the set
of values from the data source that are associated with the node, and each edge also
has an extent, where the values the edge extent contains must also appear in the extent
of the nodes and edges that the edge connects. Details of the HDM are found in [14].
The HDM is a simplication of the hypergraph model in [13], which allowed nodes to
contain complete graphs.

It should be also noted that [16] argues for simplicity in modelling languages, and
so using the simple the HDM as the common data modelling language is an approach
that has been argued for before. However, it should be noted that what we are arguing
for in this paper is using the HDM as a method for comparing and transforming be-
tween various other data modelling languages, and not for using HDM as a modelling
language for new applications.
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Fig. 2. Example schemas

Figure 2 shows two data models, which are equivalent in the sense that they have
the same information capacity [11], yet are structured in different ways and in different
modelling languages. The schemas represent a record of y{zN|�}�~��	z s and the ���7|��py�~ s that
they sit, and the grade they obtain for those courses. Some students are undergraduates,
and each |�� has an associated personal programming tutor ���
z that other students do not
have. The use of underlining in both models indicate what are key attributes, and a ques-

1 A hyper-edge is an edge that connects more than two nodes in a graph, and a nested edge is
one which connects to another edge rather than just nodes.
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tion mark follows a nullable attribute. In the relational model, foreign keys are shown by
using a implication between the foreign key columns and the referenced table columns.
In the ER model this foreign key may either be represented as a relationship (for ex-
ample the foreign keys ��~�yF|�� zF�f������~���y{zN|�}�~��	zF�f������~ and �p~	yF|�� zF� ���1}�~������7|��py�~�� �F�1}�~
are represented in the ER �p~	yF|�� z relationship) or by a subset (for example the foreign
key |��#�f������~���y{zN|�}�~��	zF�f������~ is represented by a subset between the y{zN|�}�~��	z and |
�
entities).

When the HDM is used to model a higher level modelling language, each construct
in that language must be classified as being one of four types, each of which imply a
different representation in the HDM:

– A nodal construct is one that may appear in isolation in a model, such as a relationalz������ ~ or an ER model ~��
z?  z¢¡ . Using the AutoMed data integration system [2], such
constructs are defined by giving a prototype scheme that must contain the name
of a HDM node used to represent that construct. Hence we represent the relational
table y{zN|�}�~��
z by the scheme

A A y�zN|�}�~��
z�C C , and the table ��~�y�|�� z by
A A ��~�yF|�� z�C C , and the

ER entity y{zN|�}�~��
z by
A A y�zN|�}�~��
z�C C .

Figure 3 gives the HDM graphs that is implied by the definition above for the data
models given in Figure 2. In the HDM graphs, each relational model table and ER
model entity is represented by a HDM node of the same name, where HDM nodes
are shown as large white circles with a black outline.

– A link construct is one that associates other constructs with each other, and which
has an extent which is drawn from those constructs, such as an ER relationship
construct. In AutoMed we represent it by the scheme made up of the of the name of
the HDM edge used to represent the construct, together with constraint expressions
for the cardinality constraints, for example representing the ��~�y�|�� z relationship by
the scheme

A A ��~�yF|�� zFB�y�zN|�}�~��
zFB�£#¤f¥KB����7|��py�~�B?£;¤p¥¦C C . In the diagrams, HDM edges are
shown as thick black lines. The representation of the constraint part of the scheme
will be discussed in the next section.

– A link-nodal construct is one that has associated values, but may only exist when
associated with some other construct, such as attributes in the relational and ER
models. In AutoMed, we represent attributes in the relational model by a scheme
containing a HDM node that represents the construct it depends on, followed by the
name of the HDM node that it represents, followed by the constraint on whether
the attribute may be null. For example, the ������~ column of table y{zN|�}�~��	z is rep-
resented by the scheme

A A y�zN|�}�~��
zFBF������~�BF����zN��|��§� C C , as is the ������~ attribute of the
entity y{zN|�}�~��	z . In the HDM, this becomes a node

A A y{zN|�}�~��	z�¤4������~
C C to represent
values of the column/attribute, and the nameless edge

A A ¨ y{zN|�}�~��
z ¨ y�zN|�}�~��
z�¤<������~�C C
to represent the association of these values to table/entity

A A y�zN|�}�~��
z�C C . The fact that
column/attribute names are prefixed by the associated table/entity name reflects a
choice made when defining the construct in AutoMed. The user could alternatively
say that attribute names are globally unique, which would change the HDM graph
to have just one node

A A ������~�C C to represent both the
A A y�zN|�}�~��
zFBF������~�B��
��zN��|��§� C C andA A |��#B�������~�BF����zN��|��§� C C relational columns.

– A constraint construct is one that has no associated extent, but instead limits the
extent of the constructs it connects to. In AutoMed, we represent the foreign key
relationship by the scheme made up of a name for the constraint, the table and



column(s) that are the foreign key, and the table and column(s) of the referenced
table. For example, the foreign key between |�� and y{zN|�}�~��
z is represented by the
scheme

A A |
� ©"ª�BF|���B A A |��#B�������~
C C�B�y�zN|�}�~��
zFB A A y�zN|�}�~��
zFBF������~	C C�C C .
The ER model subset relationship is modelled as scheme giving the superset entity
followed by the subset entity. For example, the subset between |�� and y{zN|�}�~��
z is
represented by the scheme

A A y{zN|�}�~��	zFB�|
�«C C .

3 Modelling Constraints

We now introduce to the HDM a set of five primitive constraints, that may be used to
model the constraints of the higher level modelling language in an analogous manner to
how the nodes and edges of the HDM model other features of the higher level modelling
language. In the following descriptions, ¬ denotes any node, ­ any edge, and ¬®­ any
node or edge.

– Inclusion ¬®­ �d¯ ¬®­ � : The extent of node or edge ¬®­ � is a subset of node
or edge ¬°­ � . For example, the ER subset scheme

A A y{zN|�}�~��
zFBF|���C C is represented
by the constraint

A A |���C C ¯ A A y{zN|�}�~��	z�C C . In Figure 3(b) this constraint is shown in a
grey dashed box, that links the HDM nodes that represent the entities

A A |��«C C andA A y�zN|�}�~��
z�C C . In a similar way, the relational foreign key scheme
A A |�� ©"ª ¨ |
� ¨fA A |�� ¨������~
C C ¨ y{zN|�}�~��	z ¨pA A y�zN|�}�~��
zFBF������~�C C�C C is represented by a subset on the node repre-

senting the ������~ attribute
A A |��#¤4������~	C C ¯ A A y�zN|�}�~��
z�¤4������~
C C .

– Exclusion ±²´³ ¬®­ � ���	��¬®­�µ·¶ : The extents of a set of nodes or edges must be ex-
clusive. For example, it is often the case that the generalisation construct in an ER
modelling language implies the existence of an exclusion constraint between the
HDM nodes that represent the child entities of the generalisation. Our example
schemas do not include a use of this constraint.

– Mandatory ¬®­n¸¹­ : node or edge ¬®­ is connected by edge ­ , and every in-
stance in the extent ¬®­ must appear at least once in the extent of ­ . For example,
the relational �
��zN��|��§� constraint on columns implies that the mandatory constraintsA A ��~�y�|�� z�C C7¸ A A ¨ �p~	yF|�� z ¨ ��~�y�|�� z�¤ �F�1}�~	C C and

A A ��~�y�|�� z�C C1¸ A A ¨ ��~�yF|�� z ¨ �p~	yF|�� z�¤<������~
C C apply be-
tween the node that represents a table �p~	yF|�� z and the edges that partially represents
the columns.
Note that there is no such constraint on �7����}�~ since it is a nullable column. The
mandatory constraint also applies to all nodes that partially represent the column,
forcing them to be in the edge that completes the representation of the column. For
example, on the columns on the ��~�y�|�� z table have the constraints

A A ��~�y�|�� z�¤ �F�1}�~
C C3¸A A ¨ �p~	yF|�� z ¨ ��~�y�|�� z�¤ �F�1}�~	C C , A A �p~	yF|�� z�¤<������~	C CF¸ A A ¨ �p~	yF|�� z ¨ ��~�y�|�� z�¤4������~
C C and
A A �p~	yF|�� z�¤ �;����}�~	C C¸ A A ¨ �p~	yF|�� z ¨ ��~�y�|�� z�¤ �7����}�~
C C .

In Figure 3 the mandatory constraint is shown in the same type of graphical notation
as an inclusion constraint, but it should be noted that ¬®­9¸º­s»t­9¼º¬®­ , and that
the left and right nodes of the constraint box correspond to the left and right side
of the enclosed operator. Therefore the

A A �F�;|���y�~�¤ }�~��
z�C C to
A A ¨ �F�;|���y�~ ¨ ���7|��py�~�¤ }�~��	z�C C

mandatory constraint is drawn using ¼ in the constraint box.
– Unique ¬®­½¼¾­ : The node or edge ¬®­ is connected by edge ­ , and no instance

in the extent ¬®­ may appear more than once in the extent of ­ . For example, this



constraint holds for all relational columns (forcing them not to be multivalued).
Thus the columns of ��~�y�|�� z have

A A �p~	yF|�� z�C C¿¼ A A ¨ ��~�y�|�� z ¨ �p~	yF|�� z�¤ ���1}�~	C C , A A ��~�y�|�� z�C C¿¼A A ¨ �p~	yF|�� z ¨ ��~�y�|�� z�¤4������~	C C , and
A A ��~�yF|�� z�C C¿¼ A A ¨ �p~	yF|�� z ¨ ��~�y�|�� z�¤ �7����}�~	C C . Again note that

¬®­½¼9­À»t­Á¸9¬®­ .
– Identity ¬®­ idÂ ¬®­�ÃpÄ : If an instance of ¬®­ appears in ¬°­�Ã�Ä , then one of those

instances must be an identity tuple: i.e. if
A¢Å � B��	���FB Å µ C of ¬®­ appears in a tu-

ple of ¬®­ Ã�Ä , then one of those tuples is
A�A�Å � B��	����B Å µ¿CFB Å � B	�����	B Å µ�C . The primary

key construct of the relational modal specifies a natural join between its key at-
tributes and gives the extent we associate with identifying the table. For example,
the primary key of

A A ��~�y�|�� z�C C would be represented in the HDM by
A A ��~�y�|�� z�C C idÂ³ A A ¨ ��~�y�|�� z ¨ �p~	yF|�� z�¤ ���1}�~	C C&Æ¢Ç A A ¨ �p~	yF|�� z ¨ ��~�y�|�� z�¤4������~	C C?¶ .

Combinations of these constraints may be used to represent constraints in the higher
level modelling language. For example, cardinality constraints may be represented by
a combination of Mandatory and Unique as follows:

None ��¬®­ has £#¤f¥ occurrences in ­¬®­½¸9­ ��¬®­ has È�¤p¥ occurrences in ­¬®­½¼9­ ��¬®­ has £;¤fÈ occurrences in ­¬®­½¸9­ÊÉ^¬°­Ë¼9­s��¬®­ has È�¤fÈ occurrences in ­
Most of these constraint operators have been used before in the context on mod-

elling single modelling languages. In particular, mandatory and unique constraints have
been used in a hypergraph model for relational schemas in [17], and inclusion con-
straints appear in [15]. We believe that the identity constraint is new, and has the special
property that is may be applied to state that the values involved in a mapping are iden-
tical to each other when they appear in the mapping. In combination with manadatory
and unique, it allows for the description of keys in a data modelling language. For ex-
ample, the relational model in Figure 3(a) uses ¸ , ¼ and idÂ between node

A A y{zN|�}�~��	z�C C
and edge

A A ¨ y{zN|�}�~��	z ¨ y{zN|�}�~��	z�¤4������~
C C to represent that
A A y{zN|�}�~��	z�¤4������~
C C is the key fromA A y{zN|�}�~��
z�C C . By contrast, in HDM graph for a UML model in Figure 6(b) has no idÂ be-

tween
A A y�zN|�}�~��
z�C C and edge

A A ¨ y{zN|�}�~��
z ¨ y�zN|�}�~��
z�¤<������~�C C since there is no concept of key
in UML.

4 Inter Model Transformations

We now introduce four general purpose equivalence mappings that may be used on our
HDM constraint operators, and which allow us to transform between different mod-
elling languages. In particular, the relational HDM model in Figure 3(a) may be trans-
formed into the ER HDM model in Figure 3(b) by applying a sequence of transforma-
tions using the equivalence relationships in Figure 4.

1. The Inclusion Merge equivalence in Figure 4 (a) allows us to merge the two nodesÌ
and Í together because

Ì
is a subset of Í and there is a mandatory constraint

from
Ì

to an edge ­ . The mandatory constraint is dropped as we merge
Ì

and
Í and the edge ­ now identifies the elements of Í that were in

Ì
. Any edges or

constraints that applied to Í remain.
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Fig. 4. Equivalence Relationships Between Constraints

Applying this to Figure 3(a) we see that node A=
A A �p~	yF|�� z�¤<������~
C C is a subset of

B=
A A y{zN|�}�~��	z�¤4������~
C C , and there is a mandatory constraint from

A A ��~�y�|�� z�¤4������~
C C to
the edge E=

A A ¨ ��~�yF|�� z ¨ �p~	yF|�� z�¤<������~
C C , so we can merge the two nodes together. A
similar argument allows us to merge

A A ��~�y�|�� z�¤ �F�1}�~
C C and
A A ���7|��py�~�¤ �F�1}�~�C C and the two

applications result in Figure 5(a). These transformations do not loose information,
since the edge

A A ¨ �p~	yF|�� z ¨ y�zN|�}�~��
z�¤4������~�C C identifies the subset of
A A y{zN|�}�~��
z�¤<������~
C C

that was
A A ��~�y�|�� z�¤4������~
C C , and the edge

A A ¨ ��~�y�|�� z ¨ �F�;|���y�~�¤ ���1}�~�C C identifies the subset
of
A A �F�;|���y�~�¤ ���1}�~�C C that was

A A ��~�y�|�� z�¤ �F�1}�~
C C .
2. The Identity Node Merge in Figure 4(b) allows us to merge the two nodes

Ì
and

Í together because they are identical.
Ì idÂ ¸d¼¾­ taken together mean that every

instance of the edge ­ is an identity mapping for
Ì

, and there is exactly one such



mapping in ­ for every element of
Ì

. As each element in ­ is an identity mapping
each element in

Ì
must be in Í . Conversely because we also have ÍÙ¸d­ , each

element in Í must be in
Ì

, and so
Ì »tÍ and Í idÂ ­ . Incidentally ÍÁ¼ Ì is also

implied.
Ì

and Í can therefore be merged together and the edge ­ dropped.
This identity mapping comes about by the way some modelling languages identify
a certain attribute as being an entity’s identifying attribute (such as the primary key
constraint in the relational model).
In Figure 5(a) we can use identity node merge to merge nodes A=

A A |
��¤<������~�C C and
B=
A A |
�1C C . Note that the constraint

A A |��#¤4������~�C C ¯ A A y�zN|�}�~��
z�¤4������~�C C is not lost, but
becomes

A A |
�1C C ¯ A A y�zN|�}�~��
z�¤<������~�C C . Figure 5(b) is partially derived by applying
this merge.

3. The Unique-Mandatory Redirection equivalence in Figure 4(d) allows us to move
an edge ­ from node

Ì
to node Í because both

Ì
and Í have a unique and manda-

tory constraint on the common edge ­�Ú&Û . These constraints together are equivalent
to stating that there is a one to one correspondence between the elements of

Ì
andÍ so whatever is related to an element of

Ì
through ­ is equally related to the

corresponding element in Í . Moving the edge requires us to rewrite the elements
of the edge, replacing in each the value that came from

Ì
with the corresponding

value from Í (via ­ Ú&Û ).
In Figure 5(a) We can therefore move the edge E=

A A ¨ ��~�y�|�� z ¨ y{zN|�}�~��
z�¤<������~
C C from
node A=

A A y{zN|�}�~��
z�¤<������~
C C to B=
A A y{zN|�}�~��
z�C C , becoming edge ­ÝÜ = A A ¨ �p~	yF|�� z ¨ y�zN|�}�~��
z�C C ,

because of the constraints on the edge ­�Ú&Û =
A A ¨ y{zN|�}�~��
z�¤<������~ ¨ y{zN|�}�~��
z�C C (note thatA A y�zN|�}�~��
z�¤<������~	C C×¼ A A ¨ y�zN|�}�~��
z ¨ y{zN|�}�~��	z�¤4������~	C C is implied by the other constraints

present on the edge). Similarly we may move edge
A A ¨ ��~�y�|�� z ¨ �F�;|���y�~�¤ z{~FÞ
z�C C to be-

come
A A ¨ ��~�y�|�� z ¨ �F�;|���y�~�C C . Applying these two edge redirections in addition to the

previous identity node merge in item (2) results in Figure 5(b).
4. The Identity Edge Merge in Figure 4(c) allows us to replace the node

Ì
and edges

­ � �	���?­ µ with the single edge
Ì

. The idÂ ¸ß¼ between
Ì

and the natural join of­ � �	���?­ µ mean that for each element of
Ì

there is exactly one element in each
edge ­ � �	����­ µ . We populate the new hyper edge

Ì
between Í � �����?Í µ using the

corresponding values in Í � ���	��Í µ from each element of the node
Ì

. Because of
the identity mapping there is no information in the node

Ì
that is not in this new

edge.
In Figure 5(b) we can use this to replace the node

Ì
=
A A ��~�yF|�� z�C C with the edgeÌ Ü = A A �p~	yF|�� z ¨ y�zN|�}�~��
z ¨ ���7|��py�~
C C in Figure 3(a). In this case the new edge is binary

because the natural join was between two edges. Note that as part of this pro-
cess, the edge

A A ¨ �p~	yF|�� z ¨ ��~�y�|�� z�¤ �7����}�~�C C from
A A ��~�yF|�� z�C C to

A A ��~�y�|�� z�¤ �7����}�~�C C becomesA A ¨pA A �p~	yF|�� z ¨ y�zN|�}�~��
z ¨ �F�7|���y�~
C C ¨ ��~�yF|�� z�¤ �7����}�~�C C .
5. The last step requires us to move

A A |
�1C C ¯ A A y{zN|�}�~��
z�¤<������~
C C to
A A |��«C C ¯ A A y{zN|�}�~��	z�C C .

Even though there is a unique and mandatory constraint on each end of the edgeA A ¨ y{zN|�}�~��	z ¨ y{zN|�}�~��
z�¤<������~
C C , we cannot simply redirect the constraint as we would
do for an edge. To do that, we would require an identity redirection equivalence
rule (which would be perfectly valid). We can, however, compose this identity redi-
rection equivalence rule using two applications of the identity node merge.
First we apply identity node merge to

A A y�zN|�}�~��
z�C C and
A A y{zN|�}�~��
z�¤<������~
C C , merging

them into
A A y�zN|�}�~��
z�C C . This in itself results in the subset constraint being rewritten



to conform with Figure 3(b). Now we just have
A A y{zN|�}�~��
z�¤<������~
C C missing, which we

recover by applying identity node merge in reverse. As this is an equivalence, there
is nothing to stop us creating a new node

A A y�zN|�}�~��
z�¤<������~�C C with the same extent
as
A A y�zN|�}�~��
z�C C and creating the edge

A A ¨ y�zN|�}�~��
z ¨ y{zN|�}�~��	z�¤4������~
C C with the idÂ ¸Á¼
constraints. In doing so we choose to leave

A A |��«C C ¯ A A y{zN|�}�~��	z�C C where it is, and the
final result is the same HDM graph as in Figure 3(b), which is the HDM graph of
the equivalent ER model.

4.1 Non-Equivalent Models

The example in Figure 2 was deliberately chosen to illustrate how we could draw an
equivalence between models with the same information capacity. In practice, mod-
elling languages have different expressive powers, and hence there may be no equiv-
alent model. For example, changing the cardinality constraint in Figure 2(b) of y{zN|
à}�~��	z being associated with result from £#¤f¥ to È�¤p¥ would result in a ¸ being added
between

A A y{zN|�}�~��	z�C C and
A A ��~�y�|�� z ¨ y{zN|�}�~��
z ¨ ���7|��py�~
C C in Figure 3(b). If we were to reverse

the process outlined in section 4 with this extra constraint in place then we would run
into a problem. The reversed edge redirection from

A A ¨ �p~	yF|�� z ¨ y�zN|�}�~��
z�C C in Figure 5(b)
to
A A ¨ ��~�yF|�� z ¨ y{zN|�}�~��	z�¤4������~
C C in Figure 5(a) carries the mandatory constraint introduced

by È�¤f¥ . When we come to reverse the inclusion merge that merged
A A ��~�y�|�� z�¤4������~
C C ¯A A y{zN|�}�~��
z�¤<������~
C C to enable the relationship between

A A ��~�y�|�� z�C C and
A A y�zN|�}�~��
z�¤<������~
C C to

be represented as a foreign key we loose
A A y{zN|�}�~��
z�¤<������~
C Cá¸ A A �p~	yF|�� z�C C . This is pre-

cisely because the relational schema in Figure 2(a) does not express the fact that everyy{zN|�}�~��	z�â4������~ must be referenced by at least one ��~�y�|�� z�â4������~ . This lost constraint is,
therefore, not a weakness in the approach but an example of the approach formally iden-
tifying what information from the ER schema cannot be represented in the relational
model. In this particular case, we may repair the relational model by the additional of
the foreign key constraint y�zN|�}�~��
zF�f������~��ã�p~	yF|�� zF�4������~ .

4.2 Equivalence between OO and non-OO models

Object orientation introduces the concept of there being an unique object identifier
(OID) that is associated to instances of a class, and that OID is not represented as an
attribute. Thus when we look at the HDM representation of UML shown in Figure 6,
although similar to those for the earlier relational and ER models, there is no use of
the idÂ constraint made between nodes representing the UML class, such as

A A y�zN|�}�~��
z�C C ,
and

A A ¨ y{zN|�}�~��	z ¨ y{zN|�}�~��
z�¤<������~
C C . This is because
A A y�zN|�}�~��
z�C C has as its extent the object

identifiers of the student UML class, whilst
A A y�zN|�}�~��
z�¤<������~�C C has as its extent the names

of students.
When transforming between UML and ER or relational models, we must take at-

tributes of the UML class, and use them to identify instances of the UML class. In our
example, we may transform the HDM representation of the UML model into the HDM
representation of the ER model by the following steps (which form a general template
for OO to non-OO model conversion):
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(a) After two applications of inclusion removal
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(b) After two applications of mandatory-unique redirection, and one identity node merge

Fig. 5. Example of application of equivalences
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(b) HDM graph for UML model

Fig. 6. UML model for example schema

1. First introduce a unique constraint on the identifying attribute of a class. In the
example, this would mean introducing a unique constraint from

A A y�zN|�}�~��
z�¤4������~�C C toA A ¨ y{zN|�}�~��	z ¨ y{zN|�}�~��
z�¤<������~
C C , to indicate that there is a one to one mapping between
class

A A y�zN|�}�~��
z�C C and attribute
A A y{zN|�}�~��
z�¤<������~
C C .

2. Use mandatory-unique direction to change the association of edges with the node
representing the class to instead associate with the identifying attribute. In the ex-
ample, we would redirect

A A�ç ��y ¨ y�zN|�}�~��
z ¨ �p~	yF|�� z�C C from
A A y{zN|�}�~��
z�C C to

A A y{zN|�}�~��	z�¤4������~
C C ,
making it become

A A�ç ��y ¨ y�zN|�}�~��
z�¤<������~ ¨ ��~�y�|�� z�C C , and redirect
A A ¨ y{zN|�}�~��	z ¨ y{zN|�}�~��	z�¤§  }«C C

from
A A y�zN|�}�~��
z�C C to

A A y�zN|�}�~��
z�¤<������~�C C , making it become
A A ¨ y{zN|�}�~��	z�¤4������~ ¨ y{zN|�}�~��	z�¤§  }«C C .

3. Rename the
A A y�zN|�}�~��
z�C C node to

A A y�zN|�}�~��
z�¤ �«  }«C C .
4. Use the inverse of identity node merge to extract a new

A A y�zN|�}�~��
z�C C node with the
same extent as

A A y{zN|�}�~��
z�¤<������~
C C , taking with it all the previous associations ofA A y�zN|�}�~��
z�¤<������~�C C . At this stage we will have the HDM shown in Figure 7.
5. Use inclusion merge to eliminate the

A A |��«C C subclass, and then use mandatory-
unique direction to move

A A |
��¤<���	z�C C to be associated with
A A y�zN|�}�~��
z�C C . Finally use



inverse of inclusion merge, and then inverse identity node merge to create the struc-
ture shown in Figure 3(b) for

A A |
�1C C and
A A y�zN|�}�~��
z�C C .

At the end of this process, the
A A y{zN|�}�~��	z�¤ �«  }«C C node can be discarded, since it rep-

resents the object identifier of the UML model, that is not relevant in the ER model. A
similar mapping process may be applied for the ���7|��py�~ and ��~�y�|�� z classes. The ��~�yF|�� z
class will be mapped to a HDM form similar to the relational table ��~�y�|�� z , which can
be mapped to the ER ��~�y�|�� z relation by the process already described at the start of this
section. Note that this mapping shows that the semantic difference between the ER and
UML models is that the ER model includes a statement of which attributes identify
entities (which UML does not), and the UML model includes a hidden OID attribute
(which the ER model does not have).
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��
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�

` H Z J�æ	H�I
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�

i _ D P Z J
��

i _ D P Z J x[ J	LNM

��
�

Fig. 7. UML to ER mapping after conversion of the student class

5 Future Work

Currently we are compiling the minimal list of atomic constraints needed to represent
all the constructs in all the common modelling languages, and the minimal set of equiv-
alence rules that will allow us to manually convert a schema from one modelling lan-
guage to another. The work reported to date results from our examination of relational,
UML and ER models, and this will be extended to cover the ORM [6], object relational,
YAT [3] (semi-structured), XML Schema data models.

Once this work is complete, we will develop an algorithm to automate the conver-
sion process, by searching for constructs in the target modelling language that can be
constructed from the source schema’s HDM in such a way as to minimise the number



of constraints left in the HDM that have no corresponding target language construct.
When there are no constraints left, the resulting target schema should be equivalent to
the source schema. Otherwise semantic information is lost in the conversion, and the
unmatchable constraints will tell us precisely what information has been lost.

We believe that the framework we have presented in this paper will be of use in
formally comparing modelling languages and their expressibility, and that the proposed
algorithm development will be of use in data integration.
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