
View Generation and Optimisation in the

AutoMed Data Integration Framework

Edgar Jasper1, Nerissa Tong2, Peter Mc.Brien2, and Alexandra Poulovassilis1

1 School of Computer Science and Information Systems, Birkbeck College
2 Department of Computing, Imperial College

Abstract.

From: CAiSE Forum 2003,

J. Eder and T. Welzer (Eds),
Univ. of Maribor Press, Pages 29-32, 2003

In AutoMed, data integration is based on the use of re-

versible sequences of schema transformations. We discuss how views can

be generated from these sequences. We also discuss techniques for op-

timising the views, firstly by simplifying the transformation sequences,

and secondly by optimising the view definitions generated from them.

1 Introduction

Up to now, most data integration approaches have been either global as view
(GAV) or local as view (LAV) (see [2]). One disadvantage of GAV is that it
does not readily support the evolution of the local schemas. LAV isolates changes
to local schemas to impact only on the derivation rules defined for that schema.
However, LAV has problems if one needs to change the global schema, since all
the rules for defining local schemas as views of the global schema will need to be
reviewed. In [3], we presented a data integration framework based on reversible
sequences of schema transformations, called transformation pathways. We term
our approach both as view (BAV) since from these pathways it is possible to
extract both GAV and LAV views. Moreover, BAV allows the evolution of both
global and local schemas, since pathways can be incrementally modified.

We begin this short paper with a brief review of BAV in Section 2. In Sec-
tion 3 we discuss the generation of GAV and LAV views. It could be argued
that BAV pathways are likely to be more costly to reason with and process than
the corresponding LAV or GAV view definitions. However, in Section 2 we dis-
cuss how BAV pathways are amenable to considerable simplification. Moreover,
standard query optimisation techniques can be applied to the view definitions
derived from them, and we discuss these in Section 3. We refer the reader to the
full technical report [1] for more details and examples.

2 The BAV Integration Approach

We have implemented the BAV approach within the AutoMed system, more de-
tails of which can be found at http://www.doc.ic.uk/automed. AutoMed sup-
ports as its common data model a hypergraph-based data model (HDM)

2

and a set of primitive schema transformations defined for this model. Higher-
level data models and primitive schema transformations for them are defined in
terms of this lower-level common data model.

Schemas are incrementally transformed by applying to them a sequence of
primitive transformations t1, . . . , tr. Each primitive transformation ti makes a
‘delta’ change to the schema by adding, deleting or renaming just one schema
construct. Each add or delete transformation is accompanied by a query spec-
ifying the extent of the new or deleted construct in terms of the rest of the
constructs in the schema. This query is expressed in a functional intermediate
query language, IQL.

In order to integrate n local schemas, LS1, . . . , LSn, each LSi first needs to
be transformed into a “union-compatible” schema USi. These US1, . . . , USn are
syntactically identical, and this is asserted by creating a sequence of id transfor-
mation steps between each pair USi and USi+1, of the form id (USi :c, USi+1 :c)
for each schema construct (id is an additional type of primitive transformation,
and the notation USi :c distinguishes each schema’s c construct). These id trans-
formations are generated automatically by the AutoMed software. An arbitrary
one of the USi can then be selected for further transformation into a global
schema GS. This is where constructs sourced from different local schemas can
be combined together by unions, joins, outer-joins etc.

There may be information within a USi which is not semantically derivable
from the corresponding LSi. This is asserted by means of extend transformation
steps within the pathway LSi → USi. Conversely, not all of the information
within a local schema LSi need be transferred into USi and this is asserted by
means of contract transformation steps within LSi → USi. extend and contract

transformations behave in the same way as add and delete, respectively, except
that they indicate that their accompanying query may only partially construct
the extent of the new/removed construct. Moreover, their query may just be the
constant Void, indicating that the extent of the new/removed construct cannot
be derived even partially.

Each primitive transformation t has an automatically derivable reverse
transformation t. In particular, each add or extend transformation is reversed
by a delete or contract transformation with the same arguments, and vice versa,
while each rename or id transformation is reversed by another rename or id trans-
formation with the two arguments swapped. This holds for the primitive trans-
formations of any modelling language defined in AutoMed.

We have developed a Transformation Manipulation Language (TML)
to support analysis and simplification of BAV pathways. TML formalises a prim-
itive transformation step ti transforming a schema S to a schema S ′ as having
four conditions a+

i , b−i , c+
i , d−i . The positive precondition a+

i is the set of con-
structs that ti implies must be present in S. The negative precondition b−i is the
set of constructs that ti implies must not be present in S. The positive post-
condition c+

i is the set of constructs that ti implies must be present in S ′. The
negative postcondition d−i is the set of constructs that ti implies must not be
present in S′.

3

A pathway T is said to be well-formed if for each step ti in T : S′ = (S ∪
c+
i)− d−i , S = (S′ ∪ a+

i)− b−i , a+
i ⊆ S, b−i ∩ S = ∅, c+

i ⊆ S′ and d−i ∩ S′ = ∅.
Transformations may be swapped within T provided T remains well-formed.

In particular, a pair of consecutive transformations ti,ti+1 may be swapped to
ti+1,ti provided (a) ti does not add a construct required by ti+1, and ti+1 does not
add a construct required by ti, i.e. : (c

+
i −a+

i)∩a+
i+1 = ∅ and (a

+
i+1−c+

i+1)∩c+
i = ∅;

and (b) ti does not delete a construct required not to be present by ti+1, and ti+1

does not delete a construct required not to be present by ti, i.e. d−i ∩ b−i+1 = ∅.
Two transformations tx and ty in a well-formed pathway T are redundant

(resp. partially redundant) if T can be reordered such that tx and ty become
consecutive within it and T remains well-formed if they are then removed (resp.
replaced by a single transformation txy). The table below summarises the simpli-
fications that can be applied to T when a pair of such transformations is found to
operate on the same construct c. NWF denotes ‘not well-formed’ and [] denotes
removal of the pair. The table also applies to extend and contract transformation
steps by replacing add by extend, and delete by contract.

ty
add(c, q) delete(c, q) rename(c, c′)

add(c, q) NWF [] add(c′, q)
tx delete(c, q) [] NWF NWF

rename(c′, c) NWF delete(c′, q) []
rename(c′′, c) NWF delete(c′′, q) rename(c′′, c′)

3 Generating and Optimising Views

One of the strengths of BAV integration is that all primitive transformations
are automatically reversible. Thus, for any two schemas linked by a primitive
transformations, there exists a pathway between them and it does not matter in
which direction the pathway was originally created. Thus, from the one set of
pathways linking a set of schemas, we can derive both GAV and LAV views.

For GAV views, the pathways from the global schema GS to each local
schema LSi are retrieved from AutoMed’s metadata repository. View definitions
for each global schema construct are then derived incrementally by traversing
the tree. Initially, each construct’s view definition is just the construct itself.
Each node in the tree is then visited in a downwards direction. The only trans-
formations that need to be considered are those that delete, contract or rename

an extensional construct. These are relevant because the current view definitions
may query extensional constructs that no longer exist after such a transforma-
tion. In particular, if the transformation is a delete or a contract, occurrences in
the current view definitions of the deleted construct are substituted by the query
specified in the transformation. If the transformation is a rename occurrences of
the renamed construct are replaced by its former name.

When the tree branches, constructs of the parent schema at the branching
point are semantically identical to constructs with the same scheme within the
child schemas. The possibility of using any path is retained within the view

4

definitions by replacing each construct of the parent schema by a disjunction (OR)
of the corresponding constructs in the child schemas. Child schema constructs
may later be made Void by contract transformations occurring further down the
tree. The tree is traversed in this fashion from the root to the leaves until all the
nodes are visited. The resulting view definitions are the GAV definitions for the
global schema constructs over the local schemas.

For LAV views, the pathway from a local schema to the global schema is
processed as above to derive the view definitions. The process is simpler than
for GAV views because there is now only a single pathway being traversed, with
no branching. More generally, views can be derived for any schema in terms of
any set of other schemas provided that pathways linking all the schemas exist.

View definitions can be simplified after they have been generated. This saves
later work for the query optimiser when these definitions are substituted into
global queries for GAV query processing (which is what AutoMed supports).

The AutoMed query language, IQL, has bags (multi-sets) as its basic col-
lection type, and supports two kinds of operator for manipulating them: bag
union, ++, and also a family of operators all derived from one function fold.
fold applies a given function to each element of a bag and then ‘folds’ a binary
operator into the resulting values. For example, sum = fold (id) (+) 0 and
count = fold (lambda x.1) (+) 0. Selection, projection, join and group-by
operations can also be defined in terms of fold. Optimisations for fold apply to
all operators that can be defined in terms of it. Two particular optimisations can
be applied to view definitions generated from BAV pathways. Firstly, instances
of Void can be removed. Void is equivalent to the empty bag and thus:

fold f op e Void = fold f op e [] = e

Void ++ e = [] ++ e = e ++ [] = e ++ Void = e

Void OR e = e OR Void = e

Secondly, due to the step-wise fashion in which view definitions are generated,
loop fusion may also be applicable. This optimisation replaces two successive
iterations over a collection by one iteration provided the iterations satisfy certain
algebraic properties. We refer the reader to [4] for a discussion of IQL, and
for references to relevant work on fold-based functional query languages and
optimisation techniques for them.

References

1. E. Jasper, N. Tong, P. McBrien, and A. Poulovassilis. View generation and opti-

misation in the AutoMed data integration framework. Technical report, AutoMed

Project, 2003.

2. M. Lenzerini. Data integration: A theorectical perspective. In Proc. PODS02, pages

247–258, 2002.
3. P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema trans-

formation rules. In Proc. ICDE’03, 2003.
4. A. Poulovassilis. The AutoMed Intermediate Query Language. Technical report,

AutoMed Project, 2001.

