
Integrating Unnormalised
Semi-Structured Data Sources

Sasivimol Kittivoravitkul and Peter Mc.Brien

Department of Computing, Imperial College London, London SW7 2AZ
sk297@doc.ic.ac.uk, pjm@doc.ic.ac.uk

http://www.doc.ic.ac.uk/automed

Abstract.

From Proc. CAiSE05

LNCS 3520, Pages 460-474

c©Springer-Verlag 2005

Semi-structured data sources, such as XML, HTML or CSV files,
present special problems when performing data integration. In addition to the hi-
erarchical structure of the semistructured data, the data integration must deal with
the redundancy in semi-structured data, where the same fact may be repeated in
a data source, but should map into a single fact in a global integrated schema. We
term semi-structured data containing such redundancy as being an unnormalised
data source, and we define a normal form for semi-structured data that may be
used when defining global schemas. We introduce special functions to relate ob-
ject identifiers used in the global data model to object identifiers in unnormalised
data sources, and demonstrate how to use these functions in query processing,
update processing and integration of these data sources.

1 Introduction

Areas of application development such as the WWW, electronic commerce, bioinfor-
matics and other scientific disciplines, have led to a growing demand for data represen-
tations that support complex, nested and rapidly evolving structures. Often applications
in these areas use a semistructured data (SSD) data model, such as XML, HTML or
one of a variety of flat-file formats (including CSV and TSV). With the proliferation of
distributed and heterogeneous SSD, there is a clear need for techniques to perform data
integration over these SSD sources, and provide a global unified view of the data.

One of the main tasks in data integration is to define the mappings between indi-
vidual data sources and the unified global view of those sources. Two basic approaches
for specifying this mapping are global-as-view (GAV) and local-as-view (LAV) [10].
The former approach defines the concepts in the global schema as views over the local
source schemas whereas the latter approach defines the sources as views over the global
schema. Recently, a new approach called both-as-view (BAV) [13] has been proposed
that specifies a bi-directional mapping between each source and the global schema.
Such bi-directional mappings allow data and queries to be translated in either direction
from the global schema to the sources, and vice versa. This is important, for example,
when integrating data in peer-to-peer contexts [14]. The use of BAV has been investi-
gated in the integration of structured data sources [11], and some work has been carried
out on integrating XML data sources [12, 20]. The work on the XML integration has
concentrated on specifying schema relationships and made strong assumptions about

〈root〉
〈student〉
〈name〉Ann〈/name〉
〈tutor〉Peter〈/tutor〉
〈course code=“DB”〉
〈dept〉CS〈/dept〉
〈lecturer〉Simon〈/lecturer〉
〈year〉1〈/year〉
〈grade〉A〈/grade〉
〈/course〉
〈course code=“Stat”〉
〈dept〉MA〈/dept〉
〈lecturer〉Jane〈/lecturer〉
〈year〉2〈/year〉
〈grade〉C〈/grade〉
〈/course〉
〈/student〉
〈student〉
〈name〉Mark〈/name〉
〈tutor〉Alex〈/tutor〉
〈course code=“DB”〉
〈dept〉CS〈/dept〉
〈lecturer〉Simon〈/lecturer〉
〈year〉1〈/year〉
〈grade〉B〈/grade〉
〈/course〉
〈/student〉
〈/root〉

(a) F1 XML file of undergraduates

[DB,CS,Ace]
student=Ann

level=UG
year=1
grade=A

[OS,CS,Ace]
student=Mark

level=UG
year=2

[Stat,MA,Biet]
student=Ann

level=UG
year=2
grade=C

student=Mary
level=PG
year=4
grade=A

(b) F2 Text file of
students

Fig. 1. Example unnormalised semistructured data sources

the data. In particular, they have assumed that there is no redundancy in the data to be
integrated.

Fig. 1(a) and 1(b) illustrate two SSD sources which both contain a degree of redun-
dancy, and which overlap with each other. Since they contain redundancy we call them
unnormalised SSD sources — more precisely we regard anything with less than the
SSD equivalent of second normal form as unnormalised. Fig. 1(a) contains an XML
file F1 with details of undergraduate students, where each course a student is sitting is
placed within the student element. For each course, there is a record of the department
that manages the course, the lecturer of that course, and the year of study and grade that
the student has achieved in the course. Note that there is redundancy in this SSD, since
the fact that the CS department runs the DB lectured by Simon is repeated for the two
occurrences of that course.

Fig. 1(b) illustrates a structured text file F2 containing information of courses taken
by undergraduate and postgraduate students. The information in Fig. 1(b) is similar to
that of the source in Fig. 1(a), but it is structured in different way i.e. student information

is nested within course information, and provided information about the department
building, which is not in F1. It avoids the redundancy of F1, in that the department of
each course is only recorded once, but has its own redundancy in that the level of a
student (UG or PG) is repeated for each course a student sits.

When integrating F1 and F2 we have to transform at least one of the files, and
in particular deal with inverting the hierarchy present in one file to match that of the
other. For example, if we choose in our global schema to model courses as containing
multiple students (i.e. the F2 view of the data) then when we transform F1 we would
want to have just one course department pair produced for each distinct code and dept
pairing that exists in F1: i.e. produce a set of records containing just two courses, DB
and Stat, with two students under the first, and one under the second. Further, for each
course, we would only want to have one dept value, but maintain the multiple year and
dept associated with each student.

In this paper, we extend the BAV approach to the integration of SSD sources by
relaxing assumptions or conditions in the preliminary work i.e. allowing unnormalised
SSD sources to be integrated. The highlight of our approach is a semistructured data
model which includes the notion of key constraints, and a mechanism to deal with
redundancy of the data that allows data to be correctly translated in both directions, that
is from sources to the global schema and vice versa. In contrast, most previous work in
semistructured data translation/transformation [3, 5, 15] has focused on retrieving data
from data sources to the global schema, and only defined a one way mapping where data
can be migrated from source to global schemas, but not vice versa. Popa et al. [16, 17]
proposed a framework that semi-automatically generates invertible mappings between a
relational source and an equivalent nested XML schema. Their mappings are not strictly
invertible, since when there is more than one source, the reverse mapping gives back not
only an original data but also information acquired by other sources. To our knowledge,
no previous work specifically deals with normalisation of SSD sources in the context
of data integration. Also, the subject of invertible mappings in SSD integration context
has not been fully addressed.

The paper is structured as follows. Section 2 reviews a SSD modelling language
called YATTA we shall use for representing SSD data sources. We use the YATTA model
as basis for defining normal forms of SSD in Section 3, based on the well known notions
of normal forms in relational models. This notion of second normal form is used as a
basis for specifying our mappings using the keys in Section 4. It should be noted that it
is only the global schema that must obey the second normal form, and the sources may
remain unnormalised if we want to take a simple union of data, or they must be in the
SSD equivalent of first normal form if actual data (as opposed to schema) integration
is to take place. Section 5 shows how queries and updates are processed using this
mapping approach. Our summary and conclusions are in Section 6.

2 The YATTA Data Model

We adopt the YAT for Transformation-based Approach (YATTA) model [2] to model
SSD sources. YATTA is a variation of the YAT model [4] that has two levels of abstrac-
tion, called the schema level the data level.

+

k ∗

k ?

root

{}
ug

name
string

tutor
string

{}
course

code
string

dept
string

lecturer
string

year
integer

grade
string

(a) YATTA schema S1

+

k ∗

k ?

root

{}
course

code
string

dept
string

building
string

{}
ug pg

name
string

level
string

year
integer

grade
string

(b) YATTA schema S2

Fig. 2. The YATTA schemas of the XML and text file Fig. 1(a) and 1(b)

A YATTA schema represents the structure of a SSD source. Each node in a YATTA

schema is labelled with a pair of strings, representing its name and data type. The
data type for a leaf node is one of the atomic types which are string, integer and real
whereas the data type for a non-leaf node is of type list or set, represented by ‘[]’
and ‘{}’. Fig. 2(a) and 2(b) represent YATTA schemas for the XML and text files in
Fig. 1(a) and 1(b).

Each YATTA schema edge between nodes 〈i,j〉 can be labelled with a cardinality
constraint that determines the number of times corresponding nodes j may occur under
each node i in a YATTA data tree, where ‘∗’ indicates zero or more occurrences, ‘+’
indicates one or more occurrences, ‘?’ indicates zero or one occurrence, and label ‘1’
indicates exactly one occurrence (and is implied if the edge is unlabelled). The symbol
‘k’ on an edge indicates that a j is a key node, the values of which must be distinct
from the values of other j nodes that appear as siblings of i. Hence k also implies the
‘1’ constraint. In S1, the key node of the course node is code, and says that each course
for a particular ug will have a distinct code value.

Unlike a YATTA schema, a YATTA data tree has no labels on its edges. Each node
is labelled by a tuple representing its name and value. The values of leaf nodes are
the actual data in a data source whereas the values for non-leaf nodes are assigned by
the system using integer identifiers (denoted by ‘&’ followed by a number e.g. ‘&0’).
The root node is always named root, and its identifier differentiates between particular
source files (such as D1) that obey a schema (such as S1).

Fig. 3(a) and 3(b) illustrate YATTA data trees of the XML and text files, and which
match the YATTA schemas S1 and S2. For each data tree node there is a corresponding
schema node with the same path, such that the data tree node value is compatible with
the data type of that schema node. For example, the path 〈〈root,ug,course,grade〉〉 in D1

leads to three grade data nodes. We will describe the extent of such nodes by listing
their values along with the identifiers of the parent, and hence 〈〈root,ug,course,grade〉〉
gives [{&3,‘A’},{&4,‘C’},{&5,‘B’}]. In the schema, the same path leads to a simple
string type node, which matches the type of the second value in each of the tuples in the
extent list.

The occurrences of the data node follow the cardinality specified by the symbols on
the incoming edges of the corresponding node in the schema. For example, in Fig. 3(a),

root
&0

ug
&1

ug
&2

name
‘Ann’

tutor
‘Peter’

course
&3

course
&4 name

‘Mark’
tutor

‘Alex’
course

&5

code
‘DB’

dept
‘CS’

lecturer
‘Simon’

year
1

grade
‘A’

code
‘Stat’

dept
‘MA’

lecturer
‘Jane’

year
2

grade
‘C’

code
‘DB’

dept
‘CS’

lecturer
‘Simon’

year
1

grade
‘B’

(a) D1 The data tree of the XML file

root
&0

course
&1

course
&2

course
&3

code
‘DB’

dept

‘CS’
building

‘Ace’

ug pg
&4

code
‘OS’

dept

‘CS’
building

‘Ace’

ug pg
&5

code
‘Stat’

dept

‘MA’
building

‘Beit’

ug pg
&6

ug pg
&7

name
‘Ann’

level
‘UG’

year
1

grade
‘A’

name
‘Mark’

level
‘UG’

year
2

name
‘Ann’

level
‘UG’

year
2

grade
‘C’

name
‘Mary’

level
‘PG’

year
4

grade
‘A’

(b) D2 The data tree of the text file F2

Fig. 3. Examples YATTA data trees for Fig. 1

each student has exactly one tutor, as specified by implied ‘1’ on the incoming edges
of tutor in S1, and each code of course only exists once for a particular undergraduate
student which is also defined name as a key node. The label ‘k’ on the incoming edges
of name and code in S1 means the two ug nodes always have different name and no
undergraduate student may take two courses with the same code.

3 Normal Forms for Semistructured Data Sources

In practice, many SSD sources have the property that each subrecord has a distinguish-
ing attribute or set of attributes that uniquely identifies the subrecord of a given record.
We now formalise this idea into the notion of normal forms for SSD that may be used
when defining global schemas to help avoid data redundancy, inconsistency and unde-
sirable updating anomalies in the integration.

Normal forms have been extensively investigated in the relational model [6] and
have recently been extended to SSD [1, 8, 19]. Both [1] and [8] defined a normal form
for XML, called XNF, but the two approaches differ. [1] proposed the concept of func-
tional dependency for XML, and defined BCNF for XML documents. In [8], an XML
document is in XNF if its specification does not contain potential redundancy w.r.t. a
specified set of constraints. Their definition is comparable to the requirement of 3NF
in the relational model. [19] defined a normal form for SSD represented in the XML
model, called NS-SS, which appears to be analogous to BCNF. In order to define NS-
SS, they introduced the concept of ‘extended functional dependency’, which extends
functional dependency in the relation model to support hierarchical data, and the notion
of key constraints.

The BCNF or 3NF proposed by [1, 8, 19] gives a well-designed data source, but
also increase the complexity in accessing a data source, and the use of SSD models is
to achieve flexibility i.e. not too rigid design. Thus we work with weaker normal forms,
comparable to first and second normal forms in the relational model, which are the
minimum to achieve data integration.

In the relational model, first normal form (1NF) states that each attribute of a
relation is functionally determined by its key value, and implies that each relation has
a key, and that the non-key attributes take single values. We will define 1NF in SSD as
saying that each non-root, non-leaf node in the schema contains at least one key child
leaf node (i.e. there is at least one k beneath each non-leaf node), and that all leaf nodes
do not use * or + cardinality constraints. This means that the non-key leaf nodes can be
identified by combining all the key nodes in the path to the non-key leaf node. Schema
S1 obeys our 1NF, and this means we can identify each ug and its tutor leaf node by
name values, and we can identify each course and its dept, lecturer, year and grade leaf
nodes, by the combination of its key node values i.e. code and name values. Note that
in order to truely integrate data, as opposed to just the schema holding the data, sources
must be in 1NF, since that allows us to identify data values by a natural key (NK)
(i.e. a set of values from the real world) rather than the artificial key (AK) (i.e. object
identifiers) used by the system.

In the relational model, second normal form (2NF) states that each attribute of
a relation is functionally determined by primary key, but not by any proper subset of
the key. In the YATTA model, this corresponds to the schema being in 1NF, with the
additional constraint that all of the key nodes are necessary to determine each non-key
node. S1 is not in 2NF, since dept and lecturer are determined by code alone, and not
code and name combined.

We can normalise schema S1 to that shown in Fig. 4, by forming a copy of the
course under the root, with just those non-key nodes which are determined by code
alone being moved to the new course node, the remaining nodes staying as they were
in S1.

In this paper, we call sources not in the 2NF, unnormalised data sources. As in the
relational model, the redundancy in unnormalised SSD sources leads to difficulties with
updates, and in integration also leads to inefficiencies since the mapping tables based on
the keys will contain redundant information. For example, to update the department for
the ‘DB’ course from ‘CS’ to ‘MA’ in Fig. 3(a), we are faced with either the problem
of searching the tree to find every course containing ‘DB’ and ‘CS’ (and changing it)
or the possibility of producing an inconsistent result, for example that the department
for ‘DB’ might be given as ‘MA’ in one record and ‘CS’ in another. The next section
explains how we write mapping rules that take account of this redundancy.

4 Mapping Semistructured Data Sources Using Natural Keys

The BAV approach integrates data sources by transforming source schemas into a global
schema through sequences of transformations called pathways. Each transformation
makes a ‘delta change’ to a schema, adding, deleting, or renaming a single schema
node. Each transformation contains a query that specifies the instances of a node in the

+ +

k k

k ?

root

{}
ug

{}
course

name
string

tutor
string

{}
course

code
string

dept
string

lecturer
string

code
string

year
integer

grade
string

(a) S1 in 2NF

root
&0

ug
&1

ug
&2

course
&6

course
&7

name
‘Ann’

tutor
‘Peter’

course
&3

course
&4 name

‘Mark’
tutor

‘Alex’

course
&5 code

‘DB’
dept

‘CS’
lecturer

‘Simon’
code
‘Stat’

dept
‘MA’

lecturer
‘Jane’

code
‘DB’

year
1

grade
‘A’

code
‘Stat’

year
2

grade
‘C’

code
‘DB’

year
1

grade
‘B’

(b) The corresponding YATTA data tree

Fig. 4. The 2NF of YATTA source in Fig. 3(a)

corresponding data tree. We use the BAV transformation rules for the YATTA model that
are defined in [2].

Suppose we want to integrate the 1NF SSD sources in Fig. 1(a) and 1(b). First we
design a global schema Sg, such as that in Fig. 5, and then give mapping rules that define
how each node of a global schema can be defined from the source schemas. Based on the
approach described in [2], when adding or deleting a node, we describe a scheme for the
node which contains the pathway to the node, the type of the node, and the cardinality of
the edge that leads to the node from its parent. For example, the scheme of the student
node in Sg is 〈〈root,student,set,+〉〉 and the name is 〈〈root,student,name,string,k〉〉.

+ +

k ?
∗

k ? +

k ? k

root

{}
student

{}
dept

name
string

level
string

tutor
string

{}
results

dname
string

building
string

{}
course

code
string

year
integer

grade
string

code
string

lecturer
string

Fig. 5. The global schema Sg

The schemas S1 and S2 are transformed into Sg by applying a pathway of YATTA

transformation rules, where each pathway consists of a growth phase in which nodes
in Sg that do not exist in the source schema are added, followed by a shrinking phase

in which nodes that exist in the source schema but not in Sg are deleted. When a new
node is added in the source schema, the query specifies how the instances of a node in
the corresponding data tree should be populated. When an existing node is deleted in
a schema, the query specifies how the instances of the node in the corresponding data
tree can be restored from the remaining nodes. The mapping of the data sources to the
global schema is therefore specified through the queries in a pathway.

To ensure that source data is correctly mapped with the global schema, the transfor-
mations must take into account the following issues:

Identifier Conflicts Different data sources might be given different identifiers for the
nodes representing the same thing, and the same identifier might be given for differ-
ent things. For example, the identifier ‘&1’ is assigned to the student node in S1 in
Fig. 3(a) and the course node in S2 in Fig. 3(b). Hence, in specifying the mapping,
a mechanism to resolve these conflicts is required.

Hierarchical structure The global schema might be structured in a different way from
the source schemas, as shown in the examples. In this case, the mapping therefore
involves preserving the relationships between data elements that are implied by the
hierarchical structure of the data source.

To resolve identifier conflicts, we apply the concept of a surrogate keys (SK) [7],
which provides a way of mapping between a NK used in the real world, and an AK
used by the system. This mapping is realised using two functions generateGID and
generateSID, which are used in the queries of the add and delete transformations, re-
spectively. The functions use the data values (NKs) to associate source identifiers sids

(AKs) with global identifiers gids, which are generated as surrogates.
The generateGID function takes a source schema name, a sid, a list of data values

and the name of a node that the transformation applied to. The function returns a new
OID (gid) for every distinct list of data values, and returns the same gid for the same
list of data values. Hence each gid serves as a surrogate for some set of data values.
When a global schema is in 2NF, these set of data values are the key values of the node
that a transformation applied to.

Conversely, the generateSID takes a source schema name, a list of data values and
the name of a node in the global schema. The function returns a source OIDs (sid) that
have been used in generating gid for the same global schema node. The generateSID
function can be thought of as the reverse of the generateGID function in the sense that
generateGID takes sid in the source and generates gid for the global view whereas
generateSID returns sid of the source.

For these functions to be applied in the pathway, the data sources and global schema
must be at least in 1NF. This allows the key values in the different sources to be mapped
to those of the global schema, thereby allowing data from those sources to be combined.
If data sources or global schema are not in 1NF, the integration will just take the union
of the respective sources, which is not a real data integration.

To illustrate the generateGID and generateSID functions, we explain how they are
used in the pathways S1→Sg and S2→Sg, an extract from which is shown below. Note
that S1 and S2 are in 1NF whereas Sg is in 2NF to avoid redundancy in the integrated
data. The student node in Sg is created by the add transformations 1 in S1→Sg and
5 in S2→Sg.

S1 → Sg

1 addYattaNode(〈〈root,student,set,+〉〉, [{r, generateGID(S1, u, [n], ‘student’)} |
{r, u} ← 〈〈root, ug〉〉; {u, n} ← 〈〈root, ug, name〉〉)])

2 addYattaNode(〈〈root,student,name,string, k〉〉, [{generateGID(S1, u, [n], ‘student’), n} |
{u, n} ← 〈〈root, ug, name〉〉])

3 addYattaNode(〈〈root,student,level,string,1〉〉, [{generateGID(S1, u, [n], ‘student’), ‘ug’} |
{u, n} ← 〈〈root, ug, name〉〉])

4 addYattaNode(〈〈root,student,tutor,string,?〉〉, [{generateGID(S1, u, [n], ‘student’), t} |
{u, n} ← 〈〈root, ug, name〉〉; {u, t} ← 〈〈root, ug, tutor〉〉])

S2 → Sg

5 addYattaNode(〈〈root,student,set,+〉〉, [{r, generateGID(S2, p, [n], ‘student’)} |
{r, c} ← 〈〈root, course〉〉; {c, p} ← 〈〈root, course, ug pg〉〉;
{p, n} ← 〈〈root, course, ug pg, name〉〉])

6 addYattaNode(〈〈root,student,name,string, k〉〉, [{generateGID(S2, p, [n], ‘student’), n} |
{c, p} ← 〈〈root, course, ug pg〉〉; {p, n} ← 〈〈root, course, ug pg, name〉〉])

The IQL [18] query in 1 finds in the generator {r,u} ←〈〈root, ug〉〉 the tuples
{&0, &1}, {&0, &2}, and {u,n} ←〈〈root, ug, name〉〉 the tuples {&1, ‘Ann’}, {&2,
‘Mark’}. Then the generateGID function is called with (S1,&1,[Ann],‘student’) and
(S1,&2,[Mark],‘student’). The function generates &101 and &102 as new global inte-
ger identifiers (gids) for each list of the data value, [‘Ann’] and [‘Mark’], which are
the key values of student in Sg. Hence the list [{&0,&101},{&0,&102}] will be as-
sociated with 〈〈root,student〉〉. A similar analysis for transformation 2 will give list
[{&101,‘Ann’},{&102,‘Mark’}] being associated with 〈〈root,student,name〉〉, and so
on for the remaining transformations. The mapping of sids to gids for the student
node through the values of the name node, which is the key node of student, is shown
in Fig. 6 (though at this stage, the S2 part of the graph should be ignored).

Similarly, the query in transformation 5 finds the tuples: {&0, &1}, {&0, &2},
{&0, &3} from {r,c} ←〈〈root, course〉〉, then the tuples {&1, &4}, {&2, &5}, {&3,
&6}, {&3, &7} from {c,p}←〈〈root, course, ug pg〉〉, and finally the tuples {&4,‘Ann’},
{&5,‘Mark’}, {&6,‘Ann’}, {&7,‘Mary’} from {p,n} ←〈〈root, course, ug pg, name〉〉.
This causes generateGID to receive (S2,&4,[Ann],‘student’), (S2,&5,[Mark],‘student’),
(S2,&6,[Ann],‘student’) and (S2,&7,[Mary],‘student’). Since the gids for [Ann] and
[Mark] already exist, the function returns &101 and &102 and generates a new gid

&103 for [Mary]. Transformation 5 gives a list [{&0,&101},{&0,&102}, {&0,&103}]
being associated with the scheme 〈〈root,student〉〉.

As illustrated in Fig. 6, the generateGID function groups together the ug and ug pg
nodes related to the same name, and creates a gid for each group. This resolves the
identifier conflicts among data sources and minimises the data redundancy in the inte-
gration. The data that is related to name such as tutor, is also put under the student
node related to such name as specified in the query in the transformation 4 . The gids

created by the generateGID function as well as its parameters can be stored as shown
in Fig. 7 and 8.

Below are the transformations in the shrinking phase of S1→Sg that remove the
tutor, name and ug nodes in S1(we omit details of how before these transformations,
grade, year, lecturer, dept, code and course are deleted). The generateSID function is

S1:ug

S2:ug pg

[name] Sg:student&1

&2

&4

&6

&5

&7

[‘Ann’]

[‘Mark’]

[‘Mary’]

&101

&102

&103

Fig. 6. The mapping between sids and gids of the student node

local schema sid NK name

S1 [&1] [‘Ann’] student
S1 [&2] [‘Mark’] student
S2 [&4] [‘Ann’] student
S2 [&5] [‘Mark’] student
S2 [&6] [‘Ann’] student
S2 [&7] [‘Mary’] student

. . . .

Fig. 7. sids and the data values

gid NK name

[&101] [‘Ann’] student
[&102] [‘Mark’] student
[&103] [‘Mary’] student

. . .

. . .

. . .

. . .

Fig. 8. gids and the data values

applied in this phase to allow the reverse transformation to recover the original data.
This reversibility ensures information preservation in the transformation. Importantly,
it allows data, queries and updates to be automatically migrated or translated in either
direction between source and the global schemas.
S1 → Sg

7 delYattaNode(〈〈root,ug,tutor,string,1〉〉, [{generateSID(S1, [n], ‘student’), t} |
{s, n} ← 〈〈root, student, name〉〉; {s, t} ← 〈〈root, student, tutor〉〉;
{s, ‘ug’} ← 〈〈root, student, level〉〉])

8 delYattaNode(〈〈root,ug,name,string, k〉〉, [{generateSID(S1, [n], ‘student’), n} |
{s, n} ← 〈〈root, student, name〉〉; {s, ‘ug’} ← 〈〈root, student, level〉〉])

9 delYattaNode(〈〈root,ug,set,+〉〉, [{r, generateSID(S1, [n], ‘student’)} |
{r, s} ← 〈〈root, student〉〉; {s, n} ← 〈〈root, student, name〉〉;
{s, ‘ug’} ← 〈〈root, student, level〉〉])

Transformation 7 removes the tutor node from ug. The query in the transformation
states that the values of tutor in S1 can be restored from tutor in Sg . It finds the tuples

{&101, ‘Ann’}, {&102, ‘Mark’}, {&103, ‘Mary’} from {s,n}←〈〈root, student, name〉〉,
then the tuples {&101, ‘Peter’}, {&102, ‘Alex’} from {s,t} ←〈〈root, student, tutor〉〉,
then the tuples {&101, ‘ug’}, {&102, ‘ug’} from {s,‘ug’}←〈〈root, student, level〉〉. The
generateSID function is called with (S1,[‘Ann’],‘student’) and (S1,[‘Mark’],‘student’).
The function then looks up the key values in the table of Fig. 7, and restores the values
of the ug node in S1 with &1 and &2, which are the sids related to ‘Ann’ and ‘Mark’ in
the source S1. The queries in 8 and 9 can be read in a similar manner.

5 Queries and Updates over the Mapping

After defining the mappings of data sources to the global schema, one may want to
query or update data sources through the global schema. The bi-directional mappings
allow queries and updates posed on the global schema to be automatically translated to
ones poses on data sources.

5.1 Query Translation

To translate a query Qg posed on the global schema to a query on data source Sx,
we need only consider delete transformations in the pathway Sg → Sx. Every deleted
construct appearing in the query Qg are substituted by the query in the transformations.
For example, suppose we pose the query Q1 on Sg asking for all students, which in the
IQL would take the form:

Q1 = [{x, y} | {x, y} ← 〈〈root, student, name〉〉]

The pathways Sg→S1 and Sg→S2 can be automatically derived from S1→Sg and
S2→Sg, respectively, by replacing delete for add, and replacing add for delete. Below
are the inverse steps 2 – 1 in transformations 1 – 4 , and 6 – 5 in transformations
5 – 6 .

Sg → S1

4 delYattaNode(〈〈root,student,tutor,string,?〉〉, [{generateGID(S1, u, [n], ‘student’), t} |
{u, n} ← 〈〈root, ug, name〉〉; {u, t} ← 〈〈root, ug, tutor〉〉])

3 delYattaNode(〈〈root,student,level,string,1〉〉, [{generateGID(S1, u, [n], ‘student’), ‘ug’} |
{u, n} ← 〈〈root, ug, name〉〉])

2 delYattaNode(〈〈root,student,name,string, k〉〉, [{generateGID(S1, u, [n], ‘student’), n} |
{u, n} ← 〈〈root, ug, name〉〉])

1 delYattaNode(〈〈root,student,set,+〉〉, [{r, generateGID(‘student’, u, [n])} |
{r, u} ← 〈〈root, ug〉〉; {u, n} ← 〈〈root, ug, name〉〉)])

Sg → S2

6 delYattaNode(〈〈root,student,name,string, k〉〉, [{generateGID(S2, p, [n], ‘student’), n} |
{c, p} ← 〈〈root, course, ug pg〉〉; {p, n} ← 〈〈root, course, ug pg, name〉〉])

5 delYattaNode(〈〈root,student,set,+〉〉, [{r, generateGID(S2, p, [n], ‘student’)} |
{r, c} ← 〈〈root, course〉〉; {c, p} ← 〈〈root, course, ug pg〉〉;
{p, n} ← 〈〈root, course, ug pg, name〉〉])

To translate the query Q1 into source ones, the construct 〈〈root, student, name〉〉 is
replaced by the queries q1 and q2 in transformations 2 in the pathway S1 → Sg and
6 in the pathway S2 → Sg, combined by the OR operator [9].

Q1 = [{x, y} | {x, y} ← (q1 OR q2)]

The query q1 returns a list [{&101,‘Ann’}, {&102,‘Mark’}] whereas the query q2

gives a list [{&101,‘Ann’}, {&102,‘Mark’}, {&103,‘Mary’}] as described in the previ-
ous section. Using union semantics for the OR operator, we therefore get are all students
from both data sources:

Q1 = [{&101, ‘Ann’}, {&102, ‘Mark’}, {&103, ‘Mary’}]

In this simple example, the generateGID function reduces the redundancy by ensur-
ing that ‘Ann’ is returned only once. Without the generateGID function, the name ‘Ann’
would appear three times as a result of different identifiers of student nodes in the data
sources.

In general, the generateGID function combines data that requires merging but has
different identifiers in the sources (e.g. student nodes with identifiers &2 and &5, which
are related to ‘Mark’), and avoids combining distinct data that has the same identifier in
different sources (e.g. course nodes with identifiers &2 in D1 and D2, which are related
to ‘Mark’ and ‘OS’, respectively). In addition, the function allows related information in
different sources to be brought together by the key values. For example, the information
about the department building and the lecturer are in different sources, but by posing
the query Q2 below on Sg,

Q2 = [{x, y, z, w} | {x, y} ← 〈〈root, dept, building〉〉;
{x, c} ← 〈〈root, dept, course〉〉;
{c, z} ← 〈〈root, dept, course, code〉〉;
{c, w} ← 〈〈root, dept, course, lecturer〉〉]

the query results in a list of the departments, the building names, the course codes,
and the lectures for the courses as shown below, since they are joined by the natural
keys identifying dept and course.

Q2 = [{‘CS’, ‘ACE’, ‘DB’, ‘Simon’}, {‘CS’, ‘ACE’, ‘OS’, ‘Void’},
{‘MA’, ‘Beit’, ‘Stat’, ‘Jane’}]

5.2 Update translation

Applying an update U requires giving the scheme of the construct to be updated, and the
new value of the construct tuple. For example, to change the tutor which is associated
to student with identifer &101 to ‘Fred’, the update statement can be written as:

U1 = update(〈〈root, student, tutor〉〉, {&101, ‘Fred’})

Translating updates posed on a global schema to ones on data sources is different
from translating queries described earlier. In update translation, all delete rules in path-
ways Sx → Sg that use the scheme of the construct to be updated should be retrieved.
For the example, only 7 in the pathway S1 → Sg matches the criteria for U1, since

its IQL query contains 〈〈root,student,tutor〉〉. The data source is then updated by pro-
cessing the queries accompanying the delete transformation using the new value of the
construct tuple. In the example, the query accompanying 7 in the pathway S1 → Sg is
processed using the new value {&101, ‘Fred’}. The association between the gid &101
and sid &1 is obtained by the generateSID function. The value {&1,‘Peter’} in the
〈〈root,ug,tutor〉〉 of S1 is then updated to {&1,‘Fred’}.

Note that there may be multiple source nodes to update for some update statements.
For example, with the update on Sg to change the department name of the course with
value &110 to ‘Math’ such as the following:

U2 = update(〈〈root, course, dept〉〉, {&110, ‘Math’})

There would be potentially several data source nodes that would be returned when
the rules contain 〈〈root,course,dept〉〉 are found.

6 Summary and Conclusions

In this paper we have considered the issue of normalisation of SSD as part of a data
integration process. We defined a SSD first normal form that allows us to identify data
values in sources by the use of a natural key, and hence perform data (as opposed to just
schema) integration. It is proposed that the global schema be in second normal form
to allow updates to data sources to be made in a consistent manner, and to minimise
the size of the mapping tables between source and global schema object identifiers.
The normal forms considered in this paper are weaker (and simpler) than those defined
in the literature, but if required, our approach could easily be extended to use higher
normal forms, such as those defined in [19]. However, 2NF is sufficient for our approach
to work, and provided a data source is not denormalised by the data integration rules
(i.e. brought down from a higher normal form to 2NF), then no update anomalies will
be introduced by the process of data integration.

We introduced the functions generateGID and generateSID, which use a natural
key to relate object identifiers in the 1NF (or higher) source schemas to identifiers
in the global schema, and showed how these functions are used in the bi-directional
transformation pathways of the BAV approach to data integration. The generateGID
function allows data from different sources that require merging/joining to be correctly
combined. It solves the identifier conflicts among local data sources, mapping them
to a single global schema identifier, by relating them via a natural key. This reduces
redundancy in the integrated schema, and allows updates to be performed without in-
troducing anomalies. The generateSID function allows the original data sources to be
restored. It ensures the pathways are reversible, and therefore allows updating from
the global schema to the sources, and allows data and queries to be migrated in both
directions — a functionality particularly important in peer-to-peer contexts.

Our approach has been implemented in the AutoMed data integration system (de-
tails of which may be found at (http://www.doc.ic.ac.uk/automed). The generateGID
and generateSID functions have been integrated into the query processor to allow the
system to correctly combine data from different sources, to support updating of data
sources and to enable the original data sources to be restored. For the future work,

we will be building larger case studies focusing on the integration of biological data
sources, which are often held in the form of flat files, HTML or XML.

References

1. M. Arenas and L. Libkin. A normal form for xml documents. ACM Transactions on
Database Systems, 29(1):195–232, 2004.

2. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. AutoMed: A
BAV data integration system for heterogeneous data sources. In Proc. CAiSE2004, volume
3084 of LNCS, pages 82–97. Springer-Verlag, 2004.

3. V. Christophides, S. Cluet, and J. Siméon. On wrapping query languages and efficient xml
integration. SIGMOD Rec., 29(2):141–152, 2000.

4. S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data conversion! In
Proc. SIGMOD’98, pages 177–188. ACM Press, 1998.

5. S. Cluet and J. Siméon. Data integration based on data conversion and restructuring. Tech-
nical report, Verso database group- INRIA, France, 1997.

6. C.J. Date. An Introduction to Database Systems. Addison-Wesley, 8th edition edition, 2004.
7. C.J. Date, H. Darwen, and D. McGoveran. Relational Database: Selected Writings 1994–

1997. Addison-Wesley, 1998.
8. D.W. Embley and W.Y. Mok. Developing xml documents with guaranteed “good” properties.

In Proc. 20th ER, pages 426–441, 2001.
9. E. Jasper, N. Tong, P.J. McBrien, and A. Poulovassilis. View generation and optimisation in

the AutoMed data integration framework. In Proc. Baltic DB&IS04, volume 672 of Scientific
Papers, pages 13–30. Univ. Latvia, 2004.

10. M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02, pages 233–
246. ACM, 2002.

11. P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In
Proc. CAiSE’99, volume 1626 of LNCS, pages 333–348. Springer, 1999.

12. P.J. McBrien and A. Poulovassilis. A semantic approach to integrating XML and structured
data sources. In Proc. CAiSE’01, volume 2068 of LNCS, pages 330–345. Springer, 2001.

13. P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema transformation
rules. In Proc. ICDE’03, pages 227–238. IEEE, 2003.

14. P.J. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using both as view
rules. In Proc. DBISP2P, at VLDB’03, Berlin, Germany, 2003.

15. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator sys-
tems. In Proceedings of the 22th International Conference on Very Large Data Bases, pages
413–424. Morgan Kaufmann Publishers Inc., 1996.

16. L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernandez, and R. Fagin. Translating web data. In
Proc 28th VLDB, pages 598–609, 2002.

17. L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernandez, and R. Fagin. Translating web data.
Technical report, Department of Computer Science, University of Toronto, 2002.

18. A. Poulovassilis. The automed intermediate query language. Technical report, Department
of Computer Science, Birkbeck College, 2001.

19. X. Wu, T.W. Ling, S.Y. Lee, M. Lee, and G. Dobbie. Nf-ss: A normal form for semistructured
schema. In ER 2001 Workshops, pages 292–305, 2001.

20. L. Zamboulis and A. Poulovassilis. Using automed for xml data transformation and in-
tegration. In Z. Bellahsene and P.J. McBrien, editors, Proc. DIWeb04, CAiSE Workshop
Proceedings Volume 3, pages 58–69, 2004.

