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Abstract

The aim of this work is to provide a robust way for
peers with heterogeneous data sources to exchange
information in an unreliable network. We address this
problem in two ways. Firstly, we define a set of
application-layer data exchange protocols to facilitate
the discovery of and the communication between peers.
Secondly, we provide a query processing component
with a cache-driven query processor that allows peers
on the network to cache queries and their results on
demand. The data caches are used to give partial
or complete answers to a query if the original data
sources are unavailable.

1. Introduction

P2P systems that go beyond simple file sharing and that
integrate schemas making use of the semantic infor-
mation contained in them are growing in number [1],
[2], [3], [4]. These systems allow structured global
repositories of data to be created. Such a repository
may be dynamic with peers leaving and joining the
P2P network all the time. They may also be made up
of heterogeneous data sources.

We can imagine, for example, a number of groups of
field researchers tracking the movements of migrating
animals in different regions of the world. They record
their observations on PDAs which have an intermittent
network link to a local base station where a database
of all results for a region is kept. The base station has
a permanent network connection to other base stations
around the world. The field researchers switch off their
PDAs when they are not in use resulting in peers
leaving and joining the network and the different base
stations do not necessarily use the same schema or data
modelling language to store their data, making the data
sources heterogeneous.

Our work has focused on addressing the issues above
by focusing on how robust data exchange may occur
between peers in a global P2P network. In particu-
lar, we have developed and demonstrated a technique
whereby peers with heterogeneous data sources can
integrate with each other and then exchange queries
and data in a robust way. The techniques and imple-
mentation are an extension to AUTOMED [5] and the
existing P2P protocols were developed to be robust
against peer and link failure, with particular emphasis
on supporting various query processing options and
data caching. As far as we are aware there is no other
work specifically aimed at providing robust data inte-
gration and exchange in heterogeneous P2P systems.

The remainder of this paper is structured as follows.
We give an overview of our P2P data integration and
exchange methodology in Section 2. We then present,
in Section 3, the set of protocols we developed to allow
data exchange to be performed over a P2P network.
Section 4 describes the cache-drive query processing
component which enables peers to cache queries and
their results, enabling the system to answer queries
when failures occur in the network. Section 5 offers
some conclusions and directions for further work.

2. P2P Data Integration and Exchange

In this section we will briefly discuss the integration
and exchange of heterogeneous data in a P2P network
and specifically how we do this with AUTOMED. We
can summarise the operation as follows: To perform a
data integration, an AUTOMED peerPn will integrate
a number of data sourcesDSa, DSb, . . . into some
global schemaGSn, and then transform that global
schema into one or more public schemasPSs, PSt, . . .

that are made available to other peers on the network.
An AUTOMED P2P network is thus formed by peers
which relate to each other via some common public
schemas.



This flexible method of describing the logical associa-
tion between peers, data sources and public schemas is
used in two operational ways to control the interaction
between peers:

• Px may send a query onPSs to peerPy, re-
questing thatPy evaluate the result.Py may then
transform the query into one on its local data
sources, and pass back the results toPx. For
exampleP1 may execute queries, evaluating the
results againstDS1 andDS2. It may then ask for
a remote execution of the query onP2, and obtain
an answer fromDS3.
In addition,Py may act as abroker , passing on
the query to any other peers it knows support
PSs, or any other public schemasPSt thatPy has
a pathway betweenPSs and PSt. For example,
the query fromP1 having been passed toP2 may
be transformed into a query onPS3, and then the
logical association withP3 is used to pose the
query onPS3 on P3, and obtain answers from
DS4 andDS5.

• Px may request thatPy send the pathways from
PSs to the local data sources ofPy over to Px.
Peer Px may store these pathways in its local
repository, and evaluate queries directly of the
remote data sources.
For example,P1 may ask for the pathway on
P2 from PS2 to DS3, and add that information
into its local repository. This means it may then
perform the translation of queries fromPS2 to
P2, placing no load onP2

The integration and exchange of data between hetero-
geneous sources requires somecommon data model
(CDM ) [6], capable of accurately expressing all the
information stored in each data source. The CDM
we use is thehypergraph data model (HDM ) [7],
[8]. The HDM is very flexible and has been used to
describe many of the most popular data modelling
languages (DMLs) in use today such as SQL, XML
and the ER model. However, we use the CDM only
when necessary. In the standardmediator approach to
data integration [9], data sources are always converted
into the CDM when used in a data integration system.
In our approach, we only convert into the CDM if the
data sources use different DMLs. Hence, we reduce the
complexity of the system by only converting between
DMLs where necessary.

Once any necessary conversion into the CDM has
been done, amapping languageis needed to create
mappings from each data source to aglobal schema.
We use theBoth-As-View (BAV ) [10] approach to data

Figure 1. The AutoMed P2P Protocol Suite

integration, which describesbi-directional mappings,
called transformation pathways, between schemas.
Hence, once we have a definition ofPSs → PSt, we
may automatically infer the mappingPSt → PSs, and
hence move data and queries between the two schemas.
As such, AUTOMED using a combination of BAV and
the HDM, provides a powerful framework on which to
do heterogeneous data integration in a P2P network [4].

3. Data and Meta-Data Exchange

Figure 1 illustrates the application-layer protocol suite
which allows AUTOMED peers to function in a P2P
network.

This protocol suite has the following components:

• The communication control layer provides an
abstraction of the standard TCP/IP transport lay-
ers. As a result, all the peer’s operations can be
performed without being aware of the underlying
transport protocol being used. The default trans-
port protocol is the connectionless UDP, although
this can be changed to the connection oriented
TCP if required.

• Themessaginglayer defines the application mes-
sage format, which encapsulates both the con-
trol information and the application data to be
exchanged between peers. The general message
format is described in Table 1.
Each message is represented as an XML docu-
ment, and the content field itself contains (sub)
XML documents that represents either meta-data
or a data object being exchanged.

• P2P adaptor layer consists of three protocols.
The hello protocol (HEP) is used by peers to
join the network. Peers can only start exchang-
ing public schemas and data when they have



Message
field

Description Usage

performative Action to be carried out
in the context of this
message

Used by the recipient to
determine the mode of
communication, e.g. uni-
cast or multicast, adver-
tising or requesting in-
formation

context What the content relates
to

Typically mapped to the
name of an application
process or component,
e.g. authentication, query
execution, and so on

sender Name of the sending
peer

Identifies the sender

receiver Name of the target peer Identifiers the receiver
mesgID Unique ID given to each

message
Randomly generated by
the sender and may be
reused by the receiver in
the inReplyTo field of its
replied message

inReplyTo Optional field which
specifies the value of
the mesgID field of the
received message

Taken from the value of
the mesgID of the re-
quest message

content Zero or more
(name,value) pairs

Can be used to store both
the primitive and object
data

Table 1. The Data Exchange Message Format

finished the HEP process. Theschema infor-
mation control protocol (SICP) is responsible
for distributing and managing the information
about public schemas, peer-to-schema associa-
tions, transformation pathways, and data models.
The query execution protocol (QEP) defines
standard functions for executing queries among
peers on the network.

• data exchange layer is the application layer
which uses the services provided by the data
integration and query processing components to
allow peers exchange data.

The P2P adaptor layer is responsible for defining
the standard protocols for establishing the P2P net-
work, exchanging public schema metadata, and rout-
ing queries. An AUTOMEDP2P network consists of
a set of peers connected via one or more directory
service peers. TheHello Protocol (HEP), is used by
peers to locate a directory service on the network for
registration. At start-up, a peer sends ahello (uni- or
multi-cast) message to discover a directory service in
its neighbourhood network. The designated directory
service peer (DSP) confirms its presence by replying
with a hello ack message. Once registered, a peer
periodically exchangeskeep alive messages with its
DSP to confirm that it is active.

The Schema Information Control Protocol (SICP)
defines a set of functions that enable a peer to publish
its public schemas and transformation pathways to the
directory service, so they can be looked up and ac-

quired by other peers. The SICP can only be initialised
after a peer has successfully registered itself to the net-
work. First, a peerPa may publish its public schemas
to the DSP using theschema advertise message. Next,
the DSP may forward toPa a pathway request mes-
sage asking for the transformation pathways to the data
sources which are attached to the published public
schemas. For each pathway thatPa has in the local
repository, it sends apathway reply message, which
has details about the pathway, back to the DSP.

Finally, the Query Execution Protocol (QEP) is
responsible for routing a query over the P2P network.
To do this, it defines three key functions:send query,
send group query, and execute query. The first two
functions are used to route a query from a query
(source) peer to one or a number of target peers.
A query is posed on a peer’s public schema. To
identify which peers to send the query to, the query
peer first determines the target schemas of the public
schema using the associated transformation pathways
as defined by the SICP. It then asks the DSP for the
identifiers of the peers that implement those target
schemas. Once the target peers have been identified,
the query peer then prepares the query message for
sending. Depending on the query semantics, a query
can be sent using either a serial or parallel method.
When a target peer has received a query message, it
can execute the query by using local data sources (if
any) and/or forwarding it to other target peers.

4. Query Processing

The main objective of the query processing component
of our system is to robustly process queries over a P2P
network. The main contribution of this part of our work
is a cache-driven query processor which is capable of:

• supporting both partial and complete answers to a
data query using a combination of live and cached
data thereby allowing queries to be answered even
if some of the data sources are unavailable when
the query is posed.

• adaptive query processing based on time and
freshness constraints.

Before describing how these capabilities are achieved,
we define our data caching model. A schema-based
cache is a store of results to specific queries posed on
a given public schema at a specific time. It is used for
fast look-up of already obtained query results without
the overhead of re-executing the query over the data
sources on the network. Formally, a data cacheC of



a public schemaPS consists of one or more cache
entriesc ∈ C of the form c = 〈PS, Q, R, T 〉 where
PS is the name of the public schema,Q is a query,
R is the result object, andT is the time at which the
cache entry is committed. We writec[PS] to refer to
the schema entry ofc, c[Q] the query entry ofc, etc.

4.1. Query Answering Based on Cached Data

Although it is likely that the data stored in a data cache
differ from the live data of the corresponding data
source, it is desirable in many applications to return
a result based on cached data rather than no result at
all, or to wait a very long time for a result.

To derive a cached result for a query, we analyse each
cached entryci to match it against a queryQ. In
principle, entryci satisfiesQ if ci[Q] shares withQ a
set of sub-goals and the predicates which are associated
to these sub-goals do not conflict. We then combine all
the matching entries to produce amaximal result for
the query. However, if there are no matches then we
conclude that the query could not be answered from
the cache.

The above technique is useful for answering a query
over the data cache of a given public schema on a
specificpeer. If we view the network as a whole then
there could be several instances of the data associated
with the same sub-goal existing on different peers.
To obtain the maximal result, as many of these data
caches as possible are interrogated, until either no more
cached entries can be found or we exhaust a time-out
that we place on query evaluation.

Consider the scenario shown in Figure 2 based on
the example in the introduction We will assume that
all base station A (BSA)’s data sources have been
integrated to form the public schemaPSA and base
station B (BSB)’s data sources have been integrated
to form the public schemaPSB. We will further
assume that a bidirectional BAV pathway has been
defined betweenPSA and PSB. BSA and BSB are
in intermittent contact with the PDAs in their region
which periodically store data in a cache on each of the
base stations.

A researcher atBSB wishes to get an update on the
movement of a particular animal population. She poses
a queryq on her local schema,SB. This is transformed
to a query onPSB using the pathwaySB → PSB. If
the data link betweenBSB andPDAB1 is up the query
is transformed to a query onSPDAB1

using the path-
way PSB → SPDAB1

. This query is then forwarded

Figure 2. Cache-driven Query Processing

to the PDA for execution. If the data link is down then
results from the cache onBSB are used. To get results
from BSA, q is transformed intoq′ expressed over the
public schemaPSA using the pathwayPSB → PSA.
A similar process to that described forBSB then occurs
at BSA. If the links to the PDAs are up we can get
live data, otherwise cached data is used. The query
could be propagated to a number of other base stations
in diverse geographical locations, if required. We see
in the next section how to control this propagation.
Finally, the results are combined to give a maximal
result. Assuming that there are some previously cached
results, we can answer the query even if the links to
all the PDAs are down.

As seen above, a user query is generally propagated
along to all the peers that either directly implement the
query schema or a schema, which is in the transforma-
tion pathway(s) of the public schema. Therefore, if the
query schema is popular and there are a large number
of peers implementing it then either the result set may
be very large or it will take a long time to process
the query. It may also be that peers are very far apart
or only connected with slow network connections. To
reduce the amount of time a query takes to return
a result, we introduce a user-configurablefreshness
filter which limits the age of the result entries. To
ensure that query processingalways terminates, we
define atime factor for each query. This effectively
limits the length of the query path. The next section
will explain these improvements in greater detail.

4.2. Constrained Queries

4.2.1. Timed Query. In the previous scenario, if the
researcher had an unlimited amount of time, she could
wait until the links to all the PDAs were up and get live
results. In reality however, there will generally be an



upper bound on thetotal processing timeof a query
and when this is exceeded the user must make do with
a cached result.

The total processing timeT (Q) is the sum of two time
factors. The first factor is the message timeTm(Q)
which is accumulated as a query is forwarded along its
execution path on the network. The second time factor
is node timeTn(Q) which is the time it takes to process
a query at each node. In general, it is only practical
to estimate the timeT (Q) for each query because
network conditions tend to vary over time.T (Q) can
be estimated using the timing values recorded from
past transactions. This estimation can be used to guide
the user when specifying the upper bound on the query
processing time of a query. We call a query, which
carries this upper bound atimed query.

To process a timed query, a peerP , first checks the
time bound against its local clock. If the bound has
been exceeded thenP will not proceed further and
will send atime-exceededresponse back to the source.
However, if there is time left thenP will attempt
to process the query by deciding which part of the
query is to be executed locally and which part will be
forwarded to another peer on the network. To execute
a P2P sub-query,P will keep a livenesstimer so that
if no results are returned before the timer is expired it
will resort to using the data cache to find an answer
for the query.

4.2.2. Freshness-constrained Query.A freshness
constraint concerns the age of a query result in the
cache. A freshness constraint is defined as a time
interval ∆t from ’now’ (relative to the query time)
during which certain data is valid. We can determine
how fresh a cached entryc is from the value of its
time stampc[T ]. If a data source also supports time-
stamping then the freshness constraint can also be used
to restrict the amount of live data we would like to
query from that source.

To process a freshness-constrained query, a peer node
applies afreshness filterto its data scanning operations
to retrieve only those tuples which are at most∆t old.

5. Conclusions

We have shown how we can set up a robust P2P data
exchange network where peers can define, publish and
integrate public schemas. We showed that this network
can then be used to ask queries over the public schemas
of the relevant peers and thereby exchange data. We

developed a cache-driven query processing component
to overcome query anomalies which may arise from
query execution failures or result unsatisfiability.

We have implemented a prototype of the system
described above by extending the AUTOMED soft-
ware platform (http://www.doc.ic.ac.uk/automed). So
far, our testing has been limited to laboratory experi-
ments, but we have successfully shown how our system
can be used to integrate and exchange data between
peers with heterogeneous data sources and overcome
peer and network failure by using the cache. We hope
to run larger scale experiments in the future.
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