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This paper presents a new approach to schema evolution,
which combines the activities of schema integration and schema evolu-
tion into one framework. In previous work we have developed a general
framework to support schema transformation and integration in hetero-
geneous database architectures. Here we show how this framework also
readily supports evolution of source schemas, allowing the global schema
and the query translation pathways to be easily repaired, as opposed to
having to be regenerated, after changes to source schemas.

1 Introduction

Common to many methods for integrating heterogeneous data sources is the re-
quirement for logical integration [21, 9] of the data, due to variations in schema
design for the same universe of discourse. Logical integration requires facilities
for transforming and integrating a set of source schemas into a global schema,
and for translating queries posed on the global schema to queries over the source
schemas. In previous work [14, 15, 19, 17, 16] we have developed a general frame-
work which provides these facilities. In this paper we consider the problem of
evolving the global schema, and repairing the query translation pathways, as
source schemas evolve.

Other heterogeneous database systems, such as TSIMMIS [6], InterViso [22],
IM [13], and Garlic [20], are what may be termed query-oriented. They pro-
vide mechanisms by which users define global schema constructs as views over
source schema constructs (or vice versa in the case of IM). More recent work on
automatic wrapper generation [23, 7, 2, 8] and agent-based mediation [3] is also
query-oriented. In contrast, our approach is schema transformation-oriented. We
provide a flexible framework by which transformations on schemas can be speci-
fied. These transformations are then used to automate the translation of queries
between global and source schemas. Clio [18] also fits into this category, using
the specification of correspondences between constructs as a basis for translating
data. However it is limited in the range of transformations it can perform.
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Our transformation-oriented approach provides a set of primitive schema
transformations each of which makes a ‘delta’ change to the schema, adding,
deleting or renaming just one schema construct. These primitive transformations
are incrementally composed into more complex schema transformations. As we
will see below, an advantage of our approach over query-oriented approaches is
that it allows systematic repair of global schemas as source schemas evolve.

Much of the previous work on schema evolution has presented approaches in
terms of just one data model e.g. [1, 4, 5, 11]. In contrast, we represent higher-
level data modelling languages in terms of an underlying hypergraph-based data
model [17]. Thus, the techniques for handling source schema evolutions that
we propose in this paper can be applied to any of the common data modelling
languages. In [12] it was argued that a uniform approach to schema evolution
and schema integration is both desirable and possible, and this is our view also.
The higher-order logic language SchemaLog was used to define the relationship
between schemas, contrasting with our approach which uses a simple set of
schema transformation primitives augmented with a first-order query language.
A particular advantage of our approach is that we clearly distinguish between
equivalent and non-equivalent constructs in different schemas, and hence are
able to distinguish between queries that can and cannot be translated between
the two schemas. This ability to specify capacity-augmentations is also present
in the approach of [4], but that work is specific to object-oriented schemas and
not readily transferable to other data models.

The remainder of this paper is as follows. Section 2 reviews the hypergraph
data model that underpins our approach. Section 3 shows how global schemas
and global query translation can be repaired in the face of source schema evo-
lution, considering in particular the evolution of a source schema into a seman-
tically equivalent, semantically contracted, or semantically expanded schema.
Section 4 shows how the same approach can be used to repair global schemas
defined using higher-level modelling languages. Section 5 gives our conclusions.

2 Review of Our Framework

A schema in the hypergraph data model (HDM) is a triple 〈Nodes,Edges,

Constraints〉. Nodes and Edges define a labelled, directed, nested hypergraph.
It is ‘nested’ in the sense that edges may link any number of both nodes and
other edges (necessary in order to support higher-level constructs such as com-
posite attributes and attributes on relations [19]). It is a directed hypergraph
because edges link sequences of nodes or edges. A query q over a schema S

= 〈Nodes,Edges, Constraints〉 is an expression whose variables are members
of Nodes∪Edges. Constraints is a set of boolean-valued queries over S. Nodes
have unique names. Edges and constraints have an optional name associated
with them. The nodes and edges of a schema are identified by their scheme.
For a node this is of the form 〈〈nodeName〉〉 and for an edge it is of the form
〈〈edgeName, scheme1, scheme2, . . . , schemen〉〉.
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Fig. 1. Two HDM source schemas, and a global schema

Figure 1 illustrates three HDM schemas that we will use as a running example
in this paper. Schema S1 contains information about staff, whether or not they
are of manager grade, the skills of each member of staff, and the department
in which they work. Each department belongs to a division. The node mgrade
is constrained to have a two-valued extent {T,F}. Instances of 〈〈staff〉〉 who are
managers are linked to T by an instance of 〈〈 ,staff,mgrade〉〉 while other staff are
linked to F. (The underscore means the edge has no name).

Schema S2 is drawn from the same domain, and contains information about
staff, their departments, and the division that each department belongs to. How-
ever, S2 differs from S1 in several ways: the edge between 〈〈staff〉〉 and 〈〈dept〉〉 has
a different name in the two schemas, although its ‘real-world’ semantics are the
same; S2 does not contain information about staff skills; S2 contains informa-
tion about the site that each division is located at; S2 represents the information
about managers in a different manner to S1, using a node 〈〈boss〉〉 to hold in-
stances of staff which are managers, together with a constraint that states that
all instances of manager are also instances of staff.

Schema S is an integration of S1 and S2, with the edge within of S2 having
been renamed to works in, and the node boss of S2 being used to record informa-
tion about which staff members are managers, rather than the node mgrade of
S1. We will shortly see how S1 and S2 are integrated into S using our framework.

The HDM is equipped with a set of primitive transformations on schemas.
Three primitive transformations are available for adding a node n, edge e, or con-
straint c to an HDM schema, S: addNode(n, q), addEdge(e, q), and addCons(c).
Here, q is a query on S which defines the extent of a new node or edge in terms of
the extents of the existing constructs of S (so adding this new construct does not
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change the information content of the schema). Similarly, the following primitive
transformations delete a node, edge or constraint: delNode(n, q), delEdge(e, q),
and delCons(c). Here, q is a query on S which defines how the extent of the
deleted construct can be reconstructed from the extents of the remaining schema
constructs (so deleting this construct does not change the information content
of the schema). There are also two primitive transformations for renaming a
node or an edge: renNode(〈〈n〉〉, 〈〈nnew〉〉) and renEdge(〈〈n, s1, . . . , sm〉〉, 〈〈n

new〉〉)
(where s1, . . . , sm are the schemes linked by edge n).
In [16] we defined four more low-level transformations to also allow transfor-

mations between semantically overlapping schemas rather than just between se-
mantically equivalent schemas: extendNode(n) is equivalent to addNode(n, void),
where the void query component indicates that the new node cannot be derived
from the existing schema constructs; extendEdge(e) is similarly equivalent to
addEdge(e, void); contractNode(n) is equivalent to delNode(n, void), where the
void query component indicates that the removed node cannot be derived from
the remaining schema constructs; and contractEdge(e) is similarly equivalent to
delEdge(e, void).

Example 1 Building the global schema S. Schemas S1 and S2 are trans-
formed into S by the two composite transformations listed below.
In step 1 , the query {x | x ∈ 〈〈staff〉〉; 〈x,T〉 ∈ 〈〈 ,staff,mgrade〉〉} states

how to populate the extent of the new node 〈〈boss〉〉 from the extents of the
existing schema constructs (indicating that 〈〈boss〉〉 adds no new information to
the schema). In particular, the extent of 〈〈boss〉〉 is those instances of 〈〈staff〉〉
linked to the value T of 〈〈mgrade〉〉 by an instance of the 〈〈 ,staff,mgrade〉〉 edge.
In 3 , the query {x,T | x ∈ 〈〈boss〉〉} ∪ {x,F | x ∈ 〈〈staff〉〉 − 〈〈boss〉〉} states

how the extent of the deleted edge 〈〈 ,staff,mgrade〉〉 can be recovered from the
remaining schema constructs (indicating that this edge is a redundant construct).
In particular, an instance 〈x,T〉 is created for each manager x and an instance
〈x,F〉 is created for each staff member x who is not a manager.
In 5 , the query {T,F} states how the extent of the deleted node mgrade can

be recovered, in this case by a simple enumeration of its two values.
The rest of the steps are straight-forward:

transformation S1→S

1 addNode 〈〈boss〉〉 {x | 〈x,T〉 ∈ 〈〈 ,staff,mgrade〉〉}
2 addCons 〈〈boss〉〉 ⊆ 〈〈staff〉〉
3 delEdge 〈〈 ,staff,mgrade〉〉 {x,T | x ∈ 〈〈boss〉〉} ∪ {x,F | x ∈ 〈〈staff〉〉 − 〈〈boss〉〉}
4 delCons 〈〈mgrade〉〉= {T,F}
5 delNode 〈〈mgrade〉〉 {T,F}
6 extendNode 〈〈site〉〉
7 extendEdge 〈〈located at,division,site〉〉

transformation S2→S

8 renEdge 〈〈within,staff,dept〉〉 works in
9 extendNode 〈〈skill〉〉
10 extendEdge 〈〈 ,staff,skill〉〉
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Schema transformations defined on the HDM, or on higher-level modelling
languages defined in terms of the HDM, are automatically reversible [16]. In
particular, every add transformation step is reversible by a del transformation
with the same arguments. For example, the reverse transformations from S to
S1 and from S to S2 are automatically generated from the two transformations
given in Example 1 and are as follows, where each step t is the reverse of step t

in Example 1:

transformation S→S1

7 contractEdge 〈〈located at,division,site〉〉

6 contractNode 〈〈site〉〉

5 addNode 〈〈mgrade〉〉 {T,F}

4 addCons 〈〈mgrade〉〉= {T,F}

3 addEdge 〈〈 ,staff,mgrade〉〉 {x,T | x ∈ 〈〈boss〉〉} ∪ {x,F | x ∈ 〈〈staff〉〉 − 〈〈boss〉〉}

2 delCons 〈〈boss〉〉 ⊆ 〈〈staff〉〉

1 delNode 〈〈boss〉〉 {x | 〈x,T〉 ∈ 〈〈 ,staff,mgrade〉〉}

transformation S→S2

10 contractEdge 〈〈 ,staff,skill〉〉

9 contractNode 〈〈skill〉〉

8 renEdge 〈〈works in,staff,dept〉〉 within

In [16] we show how this reversibility of schema transformations allows auto-
matic query translation between schemas. In particular, if a schema S is trans-
formed to a schema S′ by a single primitive transformation step, the only cases
that need to be considered in order to translate a query Q posed on S to a query
Q′ posed on S′ are ren transformations, in which case the renaming needs to
be applied in reverse, and del transformations, in which case occurrences in Q

of the deleted construct need to be substituted by the query q specified in the
transformation. For sequences of primitive transformations, these substitutions
are successively applied in order to obtain the final translated query Q′.
This translation scheme can be applied to each of the constructs of a global

schema in order to obtain the possible derivations of each construct from the
set of source schemas. These derivations can then be substituted into any query
over the global schema in order to obtain an equivalent query over the source
schemas [10]. To illustrate, consider the following query on schema S, which finds
the skills of staff members working within divisions based at the London site:
{sk | 〈s, sk〉 ∈ 〈〈 ,staff,skill〉〉; 〈s, dep〉 ∈ 〈〈works in,staff,dept〉〉;

〈dep, div〉 ∈ 〈〈part of,dept,division〉〉;
〈div, ‘London’〉 ∈ 〈〈located at,division,site〉〉}

Applying our translation scheme to this query, gives the following query over the
constructs of S1 and S2, where we distinguish the constructs of these schemas
by the suffixing them by 1 or 2, respectively:
{sk | 〈s, sk〉 ∈ 〈〈 ,staff,skill〉〉1 ∪ void;

〈s, dep〉 ∈ 〈〈works in,staff,dept〉〉1 ∪ 〈〈within,staff,dept〉〉2;
〈dep, div〉 ∈ 〈〈part of,dept,division〉〉1 ∪ 〈〈part of,dept,division〉〉2;
〈div, ‘London’〉 ∈ void ∪ 〈〈located at,division,site〉〉2}
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The first line of the query indicates that 〈s, sk〉 may only be retrieved from the
〈〈 ,staff,skill〉〉 edge in S1, the second line indicates that 〈s, dep〉 may be retrieved
from either 〈〈works in,staff,dept〉〉 in S1 or from 〈〈within,staff,dept〉〉 in S2, the third
line that 〈dep, div〉 may be retrieved from 〈〈part of,dept,division〉〉 in S1 or S2, and
the last line that 〈div, ‘London’〉 may be retrieved from 〈〈located at,division,site〉〉
in S2. Standard optimisation techniques can now be applied to this translated
query, in order to generate a reasonable query plan for execution.

3 Handling Evolution of Source Schemas

We turn now to the main theme of this paper, namely how global schemas can
be repaired (as opposed to regenerated) in order to reflect changes in source
schemas, and how query translation operates over the repaired global schema.
Although our examples assume HDM schemas and queries/constraints expressed
in a comprehension language, the treatment is fully general and applies to higher-
level schema constructs and other query formalisms. We discuss this issue further
in Section 4, by illustrating the approach applied to UML models.
Let us suppose then that there are n source schemas S1, ..., Sn which have

been transformed and integrated into a global schema S. There are thus available
n transformations T1 : S1 → S, ..., Tn : Sn → S. From these, the reverse
transformations T1 : S → S1, ..., Tn : S → Sn are automatically generated and
can be used to translate queries posed on S to queries on S1, ..., Sn.
The source schema evolution problem that we consider is illustrated in Fig-

ure 2 and is as follows: if some source schema Si evolves, to S′
i say, how should

S be repaired to reflect this change and how should queries on the repaired S

now be translated in order to operate on S ′
i rather than on Si?

S1 S
′
i Si Sn

S

T1

3
T

′
i

¸
Ti

K
Tn

k

t¾

Fig. 2. Evolution of a source schema Si

The first step is to specify the change from Si to S′
i by a transformation. The

second step is to analyse this transformation. Without loss of generality, we need
only consider changes on Si that consist of a single primitive transformation step
t being applied to give S′

i, since changes that are composite transformations can
be handled as a sequence of primitive transformations. A new transformation
pathway T ′

i from S′
i to S can be automatically generated as T ′

i = t;Ti (and so
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T ′
i from S to S′

i is T ′
i = Ti; t). How we now handle T ′

i depends on what type of
transformation t was:

1. If t was an add, delete or rename transformation, then the new schema S ′
i will

be equivalent Si. In this case, all information in the global schema S that was
derivable from Si may now be derived from S′

i, and no changes are required
to S. Section 3.1 illustrates such an equivalence preserving transformation
for our example. The only issue is that T ′

i might be simplifiable, which we
consider in Section 3.2.

2. If t was a contract transformation, then there will be some information which
used to be present in Si that will no longer be available from S ′

i. In Sec-
tion 3.3 we discuss the circumstances in which this will require S to also be
contracted.

3. If t was an expand transformation, then the relationship of the new construct
with what is already present in S needs to be investigated, and we discuss
this in Section 3.4.

A final point to note is that this treatment also covers the case where a new
schema Sn+1 is added to the set of source schemas from which S is derived, in
that the original schema Sn+1 can be regarded as an empty schema which is
successively expanded with new constructs. Similarly, our treatment covers the
removal of a source schema Si, since its constructs can be successively contracted
to leave an empty schema.

3.1 Equivalence-preserving transformations

Suppose that t is an equivalence-preserving transformation, so that S ′
i is equiva-

lent to Si. Then T ′
i and T ′

i as defined above provide a new automatic translation
pathway between S and the new source schema S ′

i.

Example 2

Suppose that it has been decided to evolve schema S1 in Figure 1 to a new
equivalent schema Sa

1 which models the notion of a manager in the same way as
S2 (see Figure 3(a)). This can be achieved by the following composite transfor-
mation:

transformation S1→Sa
1

11 addNode 〈〈boss〉〉 {x | 〈x,T〉 ∈ 〈〈 ,staff,mgrade〉〉}
12 addCons 〈〈boss〉〉 ⊆ 〈〈staff〉〉
13 delEdge 〈〈 ,staff,mgrade〉〉 {x,T | x ∈ 〈〈boss〉〉} ∪ {x,F | x ∈ 〈〈staff〉〉 − 〈〈boss〉〉}
14 delCons 〈〈mgrade〉〉= {T,F}
15 delNode 〈〈mgrade〉〉 {T,F}

The reverse transformation, 15 , 14 , 13 , 12 , 11 , from Sa
1 to S1 is automati-

cally generated. This is prefixed to the transformation S1 → S of Example 1 to
give the new transformation from Sa

1 to S:
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Fig. 3. Evolution of source schemas

transformation Sa
1→S

15 addNode 〈〈mgrade〉〉 {T,F}

14 addCons 〈〈mgrade〉〉= {T,F}

13 addEdge 〈〈 ,staff,mgrade〉〉 {x,T | x ∈ 〈〈boss〉〉} ∪ {x,F | x ∈ 〈〈staff〉〉 − 〈〈boss〉〉}

12 delCons 〈〈boss〉〉 ⊆ 〈〈staff〉〉

11 delNode 〈〈boss〉〉 {x | 〈x,T〉 ∈ 〈〈 ,staff,mgrade〉〉}
1 addNode 〈〈boss〉〉 {x | 〈x,T〉 ∈ 〈〈 ,staff,mgrade〉〉}
2 addCons 〈〈boss〉〉 ⊆ 〈〈staff〉〉
3 delEdge 〈〈 ,staff,mgrade〉〉 {x,T | x ∈ 〈〈boss〉〉} ∪ {x,F | x ∈ 〈〈staff〉〉 − 〈〈boss〉〉}
4 delCons 〈〈mgrade〉〉= {T,F}
5 delNode 〈〈mgrade〉〉 {T,F}
6 extendNode 〈〈site〉〉
7 extendEdge 〈〈located at,division,site〉〉

Conversely, the new transformation from S to Sa
1 is automatically obtained

by appending steps 11–15 to the transformation S → S1 of Example 1. This
new transformation can now be used to automatically translate queries posed
on S to queries on Sa

1 rather than on S1.

3.2 Removing redundant transformation steps

In composite transformations such as those above there may be pairs of primitive
transformation steps which are inverses of each other and which can be removed
without altering the overall effect of the transformation. In particular, a com-
posite transformation T ; t;T ′; t;T ′′, where T, T ′, T ′′ are arbitrary sequences of
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primitive transformations, t is primitive transformation and t is its inverse, can
be simplified to T ;T ′;T ′′ provided that there are no references within T ′ to the
construct being renamed, added or deleted by t. For example, in the transfor-
mation Sa

1 → S, steps 11 and 1 can be removed, followed by 12 and 2 , 13
and 3 , 14 and 4 , and 15 and 5 , obtaining the following expected simplified
transformation:

transformation Sa
1→S

6 extendNode 〈〈site〉〉
7 extendEdge 〈〈located at,division,site〉〉

Renaming transformations may also be redundant, and hence removable. For
example, ren c c′; del c′ ≡ del c, since there is no point in renaming c only to
delete it. Similarly add c′; ren c′ c ≡ add c and ren c′ c′′; ren c′′ c ≡ ren c′ c.

3.3 Contraction transformations

Suppose Si is transformed to S′
i by a primitive transformation t of the form

contract c. The new transformation pathway from S to S ′
i is Ti; contract c. Any

sub-queries over S that translate to the construct c of Si will now correctly be
replaced by the value void over S ′

i.

However, after a series of contractions on source schemas, the global schema
S may eventually contain constructs that are no longer supported by any source
schema. How can S be repaired so that it no longer contains such unsupported
constructs? One way is by dynamic repair during query processing: if a sub-query
posed on a construct of S returns void for all possible local sub-queries, then that
construct can be removed from S. Note that if this construct participates in any
edges in S, then these must be removed first (if the construct has already been
removed from all the source schemas, then so must any edges that it participated
in there, and so such edges will also be redundant in S).

Another way to repair S if it contains constructs that are no longer supported
by any source schema is by static repair. With this approach, we can first use
Ti to trace how the removed construct c of Si is represented in S — call this
global representation global(c). The transformations Tj j 6= i can be used to
trace how global(c) is represented in all the other source schemas Sj , j 6= i. If
all of these source constructs have void extents, then global(c) can be removed
from S (again taking care to precede the removal of a construct by removal of
any edges that it participates in).

Example 3 illustrates how the removal of a construct from one source schema
may or may not still allow the construct to be derived from another source
schema.

Example 3 Contractions of source schemas.

Suppose the owner of schema Sa
1 has decided not to export information about

departments. Schema Sb
1 illustrated in Figure 3(b) is derived from Sa

1 as follows:
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transformation Sa
1→Sb

1

16 contractEdge 〈〈works in,staff,dept〉〉
17 contractEdge 〈〈part of,dept,division〉〉
18 contractNode 〈〈dept〉〉

Adopting a static repair approach to repairing S involves checking the trans-
formation paths of the contracted constructs dept, works in and part of from S

to Sb
1 and S2, and would discover that all of them still map to a non-void extent

in S2. Thus, S would not be changed. With a dynamic repair approach, it would
be found that queries on S over dept, works in or part of can still be posed on S2

and so S would again not be changed.
Suppose now that S2 is also transformed in a similar manner, resulting in Sa

2

illustrated in Figure 3(c):

transformation S2→Sa
2

19 contractEdge 〈〈within,staff,dept〉〉
20 contractEdge 〈〈part of,dept,division〉〉
21 contractNode 〈〈dept〉〉

At this stage the transformations from S to Sb
1 and Sa

2 are as follows:

transformation S→Sb
1

7 contractEdge 〈〈located at,division,site〉〉

6 contractNode 〈〈site〉〉
16 contractEdge 〈〈works in,staff,dept〉〉
17 contractEdge 〈〈part of,dept,division〉〉
18 contractNode 〈〈dept〉〉

transformation S→Sa
2

10 contractEdge 〈〈 ,staff,skill〉〉

9 contractNode 〈〈skill〉〉

8 renEdge 〈〈works in,staff,dept〉〉 within
19 contractEdge 〈〈within,staff,dept〉〉
20 contractEdge 〈〈part of,dept,division〉〉
21 contractNode 〈〈dept〉〉

Adopting a static repair approach again means checking the transformation
paths of the contracted constructs dept, works in and part of from S to Sb

1 and
Sa

2 . In this case all three of them map to a void extent in both source schemas.
Thus, they are removed from S, obtaining the schema Sa illustrated in Figure 4.
The corresponding contract steps are also removed, as are any prior renamings
of these constructs, from the transformations from Sa to the source schemas Sb

1

and Sa
2 (in the reverse transformations the corresponding extend steps would be

removed). With a dynamic repair approach, it would be found that queries over
dept, works in and part of on S translate to void on all source schemas, and the
same actions would be taken. With both approaches, the resulting transforma-
tion from Sa to Sb

1 is 7 , 6 and from Sa to Sa
2 is 10 , 9 .
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We note that it is not actually wrong in our framework for a construct from
a global schema to map to a void extent in all source schemas — for example,
a new source schema may later be added that does support an extent for this
construct, and this is likely to be a common situation in mediator architectures.
Sub-queries over such constructs would merely translate to void.

3.4 Extension transformations

Suppose Si is transformed to S′
i by a primitive transformation t of the form

extend c, meaning that a new construct c is now supported by S ′
i that is not

derivable from Si. Naively, the new transformation pathway from S to S ′
i is

Ti; extend c. However, this may be incorrect and there are four alternatives to
be considered:

1. c does not appear in S but can be derived from S by some transformation T .
In this case, S is transformed to a new global schema S ′ that contains c by
appending T to the transformation from each local schema to the original
S. The transformation pathway from S ′ to S′

i then simplifies to just Ti i.e.
T and extend c are inverses of each other and can be removed.

2. c does not appear in S, and cannot be derived from S.
In this case, S is transformed to a new global schema S ′ that contains c by
appending the step extend c to the transformation from each local schema to
the original S. The reverse transformation from S ′ to S′

i thus consists of an
initial contract c step. This matches up with the newly appended extend c
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step. This pair of steps must be removed in order for the new extent of c in
S′

i to be usable by queries posed on S ′.
3. c appears in S and has the same semantics as the newly added c in S ′

i.
In this case there must be a transformation step contract c in the original
transformation from S to Si. This matches up with the newly appended
extend c in the transformation from S to S ′

i. This pair of steps must be
removed in order for the new extent of c in S ′

i to be usable by queries posed
on S.

4. c appears in S but has different semantics to the newly added c in S ′
i.

In this case there must again be a transformation step contract c in the
original transformation from S to Si. Now, the new construct c in S ′

i needs
to be renamed to some name that does not appear in S, c′, say. The resulting
transformation from S to S′

i is Ti; extend c′; ren c′c, and the situation reverts
to case 2 above.

In 1 to 4 above, determining whether the new construct c can or cannot be
derived from the existing constructs of S requires domain knowledge (as does
specifying the transformation T in 1) e.g. from a human expert or a domain
ontology. After this is determined, the repair steps on S and the transformation
pathways can be performed automatically.
By analogy to our remark at the end of Section 3.3 (that it is not compulsory

to repair the global schema after a series of contractions have left a global schema
construct unsupported by any source schema), it is similarly not compulsory to
extend the global schema after a new construct is added to a source schema in
cases 2 and 4 above. If this is the choice, then the extend c step is not appended
to the transformations from the source schemas to the global schema, and the
final extend c step remains in the transformation from S to S ′

i.

Example 4 Extensions of source schemas.

Suppose that the owner of Sa
2 (Figure 3(c)) has decided to extend it into a

new schema Sb
2 containing information about staff members’ skills and their sex.

This can be achieved by the following transformation:

transformation Sa
2→Sb

2

22 extendNode 〈〈skill〉〉
23 extendEdge 〈〈 ,staff,skill〉〉
24 extendNode 〈〈sex〉〉
25 extendEdge 〈〈 ,staff,sex〉〉

Comparing Sb
2 with Sa (Figure 4(a)), it is apparent that the constructs in-

troduced by 22 and 23 already appear in Sa. For these two constructs a choice
must be made between cases 3 and 4 above. Let us suppose that both constructs
have the same semantics in Sa and Sb

2, so that case 3 holds. Examining the
transformations Sa → Sa

2 and Sa
2 → Sb

2, the redundant pair 9 and 22 can be
eliminated, as can the redundant pair 10 and 23 . This results in the following
transformation from Sa to Sb

2:
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transformation Sa→Sb
2

24 extendNode 〈〈sex〉〉
25 extendEdge 〈〈 ,staff,sex〉〉

Suppose now that the constructs introduced by 24 and 25 are entirely new
ones, so that case 2 above applies. Then Sa is extended to Sb using these same
two extend steps. The two redundant contract/extend pairs are then removed
from the transformation Sb → Sb

2, giving the expected identity transformation
from Sb

2 and Sb.

4 Handling Higher-Level Modelling Languages

In [17] we showed how higher-level modelling languages L can be expressed using
the HDM, representing each construct c in L as a set of constructs c1, . . . , cn in
the HDM. We then showed how add, del and ren primitive transformations on
c can be automatically derived as sequences of primitive HDM transformations
on c1, . . . , cn. In particular, we showed how primitive transformations for UML
schemas such as addClass, delClass, addAttribute, delAttribute, addAssociation,

delAssociation, addGeneralisation, delGeneralisation, are defined in terms of the
set of primitive transformations on HDM schemas presented in Section 2. Thus,
the schema evolution methodology presented in Section 3 transfers directly to
this higher semantic level.
To illustrate this, Figure 5(a) shows a UML class diagram U1 which is se-

mantically equivalent to the HDM schema S1 of Figure 1(a). The nodes 〈〈staff〉〉,
〈〈dept〉〉 and 〈〈division〉〉 are represented as classes, and 〈〈mgrade〉〉 and 〈〈skill〉〉 as
attributes of staff. The 〈〈works in,staff,dept〉〉 and 〈〈part of,dept,division〉〉 edges are
represented as associations. Figure 5(d) shows a UML class diagram U which is
semantically equivalent to the HDM schema S of Figure 1(c). The node 〈〈boss〉〉
from S is represented as a class in U , and the constraint boss ⊆ staff is repre-
sented by the generalisation hierarchy between staff and boss. Transforming U1

to U may be achieved by the following steps:

transformation U1→U

U1 addClass boss {x | x ∈ staff; 〈x,T〉 ∈ staff.mgrade}
U2 addGeneralisation (staff,boss)
U3 delAttribute staff.mgrade {x,T | x ∈ boss} ∪ {x,F | x ∈ staff;x 6∈ boss}
U4 extendAttribute division.site

Note that each of the steps in U1 → U equates with one or more of the steps in
S1 → S. In particular, U1 adding UML class boss is equivalent to 1 , U2 adding
the UML generalisation is equivalent to 2 , U3 deleting a UML attribute is
equivalent to 3 and 4 , and U4 extending the UML schema with an attribute
is equivalent to 6 and 7 .
Figure 5(b) shows a schema Ua

1 which is semantically equivalent to Sa
1 . The

following is an equivalence-preserving transformation from U1 to Ua
1 (again, the

steps in this transformation can be equated with those in S1 → Sa
1 ):
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Fig. 5. Transformations on UML class diagrams

transformation U1→Ua
1

U5 addClass boss {x | x ∈ staff; 〈x,T〉 ∈ staff.mgrade}
U6 addGeneralisation (staff,boss)
U7 delAttribute staff.mgrade {x,T | x ∈ boss} ∪ {x,F | x ∈ staff;x 6∈ boss}

Since all UML schema transformations are equivalent to some HDM schema
transformation, our analysis from Section 3 can be applied to the evolution of
source schemas expressed in UML. For example, since U1 → Ua

1 is an equivalence-
preserving transformation, then the steps of U1 → Ua

1 allow any query on U

that used to execute on U1 to instead execute on Ua
1 using the transformation

pathway U → U1;U1 → Ua
1 = U4, U3, U2, U1, U5, U6, U7. Applying the removal

of redundant pairs of transformations in Section 3.2 to the higher level of UML
simplifies U → Ua

1 to just U4.
Our analysis of contraction and extension of HDM source schemas can also

be applied at the UML level in the obvious way. For example, the following UML
contraction from Ua

1 to U b
1 is equivalent to the HDM contraction Sa

1 → Sb
1:

transformation Ua
1→U b

1

U8 contractAssociation works in
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U9 contractAssociation part of
U10 contractClass dept

Thus, after Ua
1 has evolved to U b

1 , the same analysis as in Section 3.3 applies,
where dept, works in and part of in U will map to void in U b

1 , but still map to an
non-void extent in U2 (the unillustrated UML equivalent of S2). The remaining
examples of Sections 3.3 and 3.4 transfer to this UML level in a similar way.

5 Concluding Remarks

In this paper we have shown how our framework for schema transformation pro-
vides a uniform approach to handling both schema integration and schema evolu-
tion in heterogeneous database architectures. Source schemas are integrated into
a global schema by applying a sequence of primitive transformations to them.
The same set of primitive transformations can be used to specify the evolution
of a source schema into a new schema. We have shown how the transformations
between the source schemas and the global schema can be used to systematically
repair the global schema and the query translation pathways as source schemas
evolve, considering in particular the evolution of a source schema into a seman-
tically equivalent, semantically contracted, or semantically expanded schema.
The first two cases can be handled totally automatically, and the third case
semi-automatically.
Our framework is based on a low-level hypergraph-based data model whose

primitive constructs are nodes, edges, and constraints. In previous work we have
shown how this HDM supports the representation and transformation of a wide
variety of higher-level data modelling languages. Our use of the relatively simple
HDM means that our approach to schema evolution is straightforward to analyse
while at the same time being applicable to real-world modelling situations using
more complex data models for database schemas. We are currently implementing
the schema transformation, integration and evolution functionality described
here within the AutoMed project (http://www.doc.ic.ac.uk/automed/).
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