
Data Integration by
Bi-Directional Schema Transformation Rules

Peter Mc.Brien Alexandra Poulovassilis

Dept. of Computing,
Imperial College,
London SW7 2BZ
pjm@doc.ic.ac.uk

School of Computer Science
and Information Systems,

Birkbeck College,
Univ. of London,
ap@dcs.bbk.ac.uk

Abstract

In this paper we describe a new approach to data

integration which subsumes the previous approaches of

local as view (LAV) and global as view (GAV).
Our method, which we term both as view (BAV), is
based on the use of reversible schema transformation

sequences. We show how LAV and GAV view defi-

nitions can be fully derived from BAV schema trans-

formation sequences, and how BAV transformation se-

quences may be partially derived from LAV or GAV

view definitions. We also show how BAV supports

the evolution of both global and local schemas, and we

discuss ongoing implementation of the BAV approach

within the AutoMed project.

1 Introduction

Data integration is a process by which several
databases, which associated local schemas, are in-
tegrated to form a single virtual database with an as-
sociated global schema. Up to now, data integration
approaches have been either global as view (GAV)
or local as view (LAV) [12]. Examples of the GAV
approach are TSIMMIS [4], InterViso [26] and Garlic
[25] while examples of the LAV approach are IM [14]
and Agora [15].
In this paper, we present a unifying framework for

GAV and LAV, based on the use of reversible schema
transformations. An important feature of our approach
is that it is possible to extract a definition of the global
schema as a view over the local schemas, and it is also
possible to extract definitions of the local schemas as
views over the global schema. Hence we term our ap-
proach both as view (BAV). As we will see in this
paper, one advantage of our BAV approach over GAV

and LAV is that it readily supports the evolution of
both global and local schemas.

Before introducing BAV, we briefly review GAV and
LAV via an example which we will be referring to
again throughout the paper. Figure 1 shows two lo-
cal schemas S1 and S2, and an integration of these
schemas into a global schema Sg.

Schema S1 is a database of past and present under-
graduate students at a university, and also records the
member of staff who was their undergraduate tutor.
The ug relation holds student records identified by the
key attribute id (key attributes are shown underlined).
The optional attribute left is the date the student left
the university (optional attributes are suffixed with a
#). The attribute sno is a foreign key indicating which
member of staff in the tutor relation is the student’s
tutor (foreign keys are shown in italics).

Schema S2 is a database of past and present PhD
students at the university, and also records which mem-
ber(s) of staff are the graduate supervisor(s) of the stu-
dent. A PhD student keeps the same id if they previ-
ously studied an undergraduate course at the univer-
sity.

Schema Sg is designed for use by the office handling
enquiries for references about students, and needs to
have within the student relation all current and past
students, with the last degree that they studied, and
when they left the university. The office also needs a
record of the members of staff who last had contact
with each student, as they will be asked to complete
any requested references.

In GAV, the constructs of a global schema are
described as views over the local schemas. These
view definitions are used to rewrite queries over a
global schema into distributed queries over the local
databases. In our example, using a calculus-like nota-

1



Sg student(id,name,left#,degree)
monitors(sno,id)
staff(sno,sname,dept#)

S1 ug(id,name,left#,degree,sno)
tutor(sno,sname)

S2 phd(id,name,left#,title)
supervises(sno,id)
supervisor(sno,sname,dept)

Figure 1. Example global and local schemas

tion, the constructs of Sg can be defined as follows
1:

G1 student(id, name, left, degree) = {x, y, z, w |
〈x, y, z, w, 〉 ∈ ug ∧ 〈x, , , 〉 6∈ phd
∨ 〈x, y, z, 〉 ∈ phd ∧ w = ‘phd’}

G2 monitors(sno, id) = {x, y |
〈x, , , , y〉 ∈ ug ∧ 〈x, , , 〉 6∈ phd
∨ 〈x, y〉 ∈ supervises}

G3 staff(sno, sname, dept) = {x, y, z |
〈x, y〉 ∈ tutor ∧ 〈x, , 〉 6∈ supervisor
∨ 〈x, y, z〉 ∈ supervisor}

In LAV, the constructs of the local schemas are de-
fined as views over the global schema, and process-
ing queries over the global schema involves rewriting
queries using views [13]. In our example, schema S1

can be defined by derivation rules L1 and L2 below,
and schema S2 by derivation rules L3, L4 and L5:

L1 tutor(sno, sname) = {x, y |
〈x, y, 〉 ∈ staff ∧ 〈x, z〉 ∈ monitors
∧ 〈z, , ,w〉 ∈ student ∧ w 6= ‘phd’}

L2 ug(id, name, left, degree, sno) = {x, y, z, w, v |
〈x, y, z, w〉 ∈ student ∧ 〈v, x〉 ∈ monitors
∧ w 6= ‘phd’}

L3 phd(id, name, left, title) = {x, y, z, w |
〈x, y, z, v〉 ∈ student ∧ v = ‘phd’
∧ w = null}

L4 supervises(sno, id) = {x, y |
〈x, y〉 ∈ monitors ∧ 〈x, , , z〉 ∈ student
∧ z = ‘phd’}

L5 supervisor(sno, sname, dept) = {x, y, z |
〈x, y, z〉 ∈ staff ∧ 〈x,w〉 ∈ monitors
∧ 〈w, , , v〉 ∈ student ∧ v = ‘phd’}

1We use a calculus-like notation for our examples in this pa-
per because this is syntactically close to our actual intermedi-
ate query language, which is a comprehensions-based functional
query language [21]. Such languages subsume high-level query
languages such as SQL and OQL in expressiveness [3, 7].

In rule L3, note the use of null for the value of the
title, since no information can be derived from Sg re-
garding the topic title of a phd student’s thesis. We
will later give a more precise method of reasoning about
such information, using the distinguished constant void

to differentiate information that is not derivable from
information that is actually recorded as null .
Note that rule L1 does not define the complete ex-

tent of the relation tutor in S1, but just those tuples of
tutor which can be derived from Sg. In particular, any
staff member who supervises PhD students and tutors
undergraduates will not appear in this view. This is a
subtle aspect of the LAV approach, since in general it
is not possible to take any Sg and provide views that
can identify the source of all of the data. In the ter-
minology of [11], this means L1 is a complete LAV
rule. A similar argument holds for L2. Both L1 and
L2 could become sound LAV rules by the removal of
the w 6= ‘phd’ term, since they would then derive a su-
perset of the source relations. Rules L3, L4 and L5 are
exact LAV rules, since they exactly derive the source
relations from the global schema. In this particular
example there is no possible exact LAV rule for L1, as
there is no way of distinguishing those members of staff
who supervise PhD students and undergraduates from
those staff who supervise PhD students only. A similar
argument for holds for why no exact definition of L2 is
possible. A similar categorisation into sound, complete
and exact is possible for GAV rules, but in practice it
is usually assumed that the rules are exact in GAV.
A variation of LAV called GLAV [8] allows for

the head of the view definition rules in GLAV to
contain conjunctions of source relations as opposed
to the single relations allowed by LAV, and to con-
tain variables that do not appear in the body of
the rule. This would be required if S2 had defined
supervises(sno,title), where a GLAV rule could provide a
definition phd(id, name, left, title) ∧ supervises(sno, title)
without providing values to the title attribute. By con-
trast, a LAV approach would require that title appear
in the global schema merely to allow the definition of
this join.2

The principal disadvantage of GAV is that it does
not readily support the evolution of the local schemas.
For example, adding an age attribute to the phd rela-
tion in S2 would invalidate view definitions G1 and G2

above. Since this maintenance problem worsens as the
number of source databases increases, GAV has been

2If we do not allow the use of null values, then L3 would not
be valid. In that case a LAV rule defining phd would force the
title attribute of S2 to appear in Sg , regardless as to whether
it is otherwise required to be in the global schema. However,
removing the term w = null from L3 would result in a valid
GLAV rule.

2



criticised as not scaling well.
LAV isolates changes to local schemas to impact

only on the derivation rules defined for that schema.
Hence, adding the extra age attribute to phd would
only effect rule L3 above. However, LAV has problems
if one needs to change the global schema, since all the
rules for defining local schemas as views of the global
schema will need to be reviewed.
The remainder of this paper discusses how our BAV

method may be used as a unifying framework for LAV
and GAV, and how several practical advantages result.
In Section 2, we present our BAV integration method.
In Section 3, we show how BAV can capture all the
semantic information that is present in LAV or GAV
derivation rules. In particular, we show how to derive
exact or complete LAV or GAV rules from BAV rules.
Section 4 discusses how BAV supports the evolution
of both global and local schemas. Section 5 discusses
implementation of the BAV approach within the ongo-
ing AutoMed project. Section 6 gives our concluding
remarks and directions of further work.

2 The BAV Integration Method

In previous work [22, 17] we have developed a gen-
eral framework to support schema transformation and
integration in heterogeneous database architectures.
The framework consists of a low-level hypergraph-
based data model (HDM) and a set of primitive
schema transformations defined for this model. Higher-
level data models and primitive schema transforma-
tions for them are defined in terms of this lower-level
common data model.
In our framework, schemas are incrementally trans-

formed by applying to them a sequence of primitive
transformation steps t1, . . . , tn. Each primitive trans-
formation ti makes a ‘delta’ change to the schema,
adding, deleting or renaming just one schema con-
struct. Each add or delete step is accompanied by
a query specifying the extent of the new or deleted
construct in terms of the rest of the constructs in the
schema.
In [16, 22] we showed how our primitive transforma-

tions are rich enough to express all of the transforma-
tions commonly used in the integration of ER schemas,
and we formally derived precisely what, if any, con-
straints on the actual data sources these transforma-
tions are conditional upon.
One advantage of using a low-level common data

model such as the HDM is that semantic mismatches
between modelling constructs are avoided. Another
advantage is that it provides a unifying semantics for
higher-level modelling constructs. In particular, in [18]

we described how our framework can be applied to dif-
ferent high-level modelling languages such as relational,
ER and UML. In [19] we showed how XML data sources
can also be handled within our framework.

2.1 A simple relational data model

For our purposes in the present paper, we assume
that all schemas are specified in the very simple rela-
tional data model we define below. But our discussion
here is equally applicable to any data modelling lan-
guage supported by our framework.
In our simple relational model, schemas are con-

structed from primary key attributes, non-primary key
attributes, and the relationships between them. The
underlying graph representation of a relation R with
primary key attributes k1, . . . , kn and other attributes
a1, . . . , am is:

+ ® s

a1 a2

. . .

am

R, k1, . . . , kn

Thus the relation staff of Sg is modelled as by the Rel
scheme 〈〈staff,sno〉〉 with unary-tuple instances (since
in this case n = 1), together with two Att schemes
〈〈staff,sname〉〉 and 〈〈staff,dept〉〉 with binary-tuple in-
stances. Thus we write x ∈ 〈〈staff,sno〉〉 to find in-
stances of the key, and 〈x, y〉 ∈ 〈〈staff,sname〉〉 and
〈x, y〉 ∈ 〈〈staff,dept〉〉 to find values of the non-key at-
tributes for this key.
The set of primitive transformations for schemas ex-

pressed in this data model is as follows:

• addRel(〈〈R, k1, . . . , kn〉〉, q) adds to the schema a
new relation R with primary key attribute(s)
k1, . . . , kn, n ≥ 1.

The query q specifies the set of primary key values
in the extent of R in terms of the already existing
schema constructs (this will be a set of n-tuples).

• addAtt(〈〈R,a〉〉,c,q) adds to the schema a non-
primary key attribute a for relation R. The pa-
rameter c can be either null or notnull.

The query q specifies the extent of the binary re-
lationship between the primary key attribute(s) of
R and this new attribute a in terms of the already
existing schema constructs (this extent will be a
set of pairs).

• delRel(〈〈R,k1, . . . , kn〉〉,q) deletes from the schema
the relation R with primary key attribute(s)

3



k1, . . . , kn (provided all its non-primary key at-
tributes have first been deleted).

The query q specifies how the set of primary key
values in the extent of R can be restored from the
remaining schema constructs.

• delAtt(〈〈R,a〉〉,c,q) deletes from the schema the
non-primary key attribute a of relation R.

The query q specifies how the extent of the binary
relationship between the primary key attribute(s)
of R and a can be restored from the remaining
schema constructs.

All primitive transformation rules have a optional
additional argument which specifies a constraint on the
data that must hold if the transformation is to apply.
In the case of our relational model, this can be used to
enforce any foreign key constraints that are required to
hold. Each of the above primitive transformations, t,
has an automatically derivable reverse transformation,
t, defined as follows:

t : Sx → Sy t : Sy → Sx

addRel(〈〈R,
→

kn〉〉, q) delRel(〈〈R,
→

kn〉〉, q)
addAtt(〈〈R, a〉〉, c, q) delAtt(〈〈R, a〉〉, c, q)

delRel(〈〈R,
→

kn〉〉, q) addRel(〈〈R,
→

kn〉〉, q)
delAtt(〈〈R, a〉〉, c, q) addAtt(〈〈R, a〉〉, c, q)

Here, the notation
→

kn is an abbreviation for the se-
quence of attributes k1, . . . , kn, and we will use similar
abbreviations for sequences of attributes in the remain-
der of the paper.
In [17] we show how this reversibility of schema

transformations allows automatic query translation be-
tween schemas. In particular, for the simple relational
data model above, if a schema S is transformed to a
schema S′ by a single primitive transformation step,
the only cases that need to be considered in order to
translate a query Q posed on S to a query Q′ posed on
S′ are if the transformation step is a delRel or delAtt,
in which case occurrences in Q of the deleted construct
need to be substituted by the query q specified in the
transformation. For sequences of primitive transfor-
mations, these substitutions are successively applied in
order to obtain the final translated query Q′.
This translation scheme can be applied to each of

the constructs of a global schema in order to obtain
the derivation of each construct from a set of local
schemas. These derivations can then be substituted
into any query over the global schema in order to obtain
an equivalent query distributed over the local schemas
[10], as in the GAV approach.

The above translation scheme can equivalently be
applied to each of the constructs of a local schema in
order to obtain its derivation from a global schema, as
in the LAV approach.

2.2 Integrating S1 and S2 into Sg

Using the above set of primitive transformations on
our simple relational data model, Table 1 lists the
transformation steps necessary to integrate the local
schemas S1 and S2 into the global schema Sg.

An implicit first step in this integration process is to
combine the local schemas into a single schema S1∪S2

whose constructs are precisely those of S1 and S2. In
our particular example, there are no commonly-named
relations in S1, S2 and Sg, and so for simplicity we
just use the relation names directly in Table 1. In
general, each construct from a local schema would be
tagged with a unique schema identifier, as would the
constructs in the target global schema. Note, if re-
quired, this implicit step can be formalised in our ap-
proach using a series of extend steps (see below) to add
to S2 the constructs of S1, and to add to S1 the con-
structs of S2.

Table 1 uses two more primitive transformations to
the ones we defined in Section 2.1: conRel and conAtt.
These behave in the same way as delRel and delAtt ex-
cept that they indicate that their accompanying query
q may only partially restore the extent of the deleted
construct; hence we may say that they are complete in
the same sense as LAV/GAV rules are complete. These
two contract (abbreviated as con) transformations have
corresponding reverse transformations extRel and ex-
tAtt respectively, which behave in the same way as
addRel and addAtt except that they indicate their ac-
companying query q may only partially construct the
extent of the new construct. For these contract and
extend (abbreviated as ext) transformations, the query
q may be just the distinguished constant void, which
indicates that there is no information about how to de-
rive the extent of the deleted/new construct from the
rest of the schema constructs, even partially.

This distinction between partial and complete
derivations allows a precise statement to be made of the
relationship between the source and target schemas,
since it provides a means of stating how much infor-
mation is known about a particular schema construct.
To illustrate, suppose that we wanted to add a relation
cs(id) containing all students that study in the com-
puter science department, and that we knew that all
students with degree=‘G500’ study computer science,
as do some students with degree=‘GG15’ (and that no
other students study computer science):

4



1. addRel(〈〈cs,id〉〉, {x | 〈x, y〉 ∈ 〈〈ug,degree〉〉 ∧ y =
‘G500’}) would be incorrect, since it states that
cs contains just those students on G500, and no
other students.

2. extRel(〈〈cs,id〉〉, {x | 〈x, y〉 ∈ 〈〈ug,degree〉〉 ∧ y =
‘G500’}) would be correct, since it states that cs
contains those students on G500, plus some others
which we have no way of determining.

3. extRel(〈〈cs,id〉〉,void) would be incorrect, since it
states that we have no way of determining any
of the students that belong to cs, when in fact we
know that all G500 students belong to cs.

If instead it was the case that only students with
G500 study computer science, then (1) would be cor-
rect. Alternatively, if instead some G500 and some
GG15 students study computer science, then (3) would
be correct. To make this incompleteness of knowl-
edge explicit in query processing, an annotation par-

tial can be attached to a query or sub-query to in-
dicate that it returns a partial result. Thus {x |

〈x, y〉 ∈ 〈〈ug,degree〉〉 ∧ y = ‘G500’}
partial

means that
{x | 〈x, y〉 ∈ 〈〈ug,degree〉〉 ∧ y = ‘G500’} returns in-
stances which may be only a subset of the complete
answer.

Returning now to Table 1, we see that the transfor-
mation steps 1 to 8 incrementally define the con-
structs of Sg from the constructs of S1 and S2. This
can be regarded as the GAV aspect of our framework.

Steps 9 to 23 then incrementally remove the con-
structs of S1 and S2 from this intermediate schema, fi-
nally leaving only the constructs of Sg, as desired. The
queries accompanying steps 9 to 15 show how the
constructs of S1 can be restored from those of Sg, and
the queries accompanying steps 16 to 23 show how
the constructs of S2 can be restored from Sg. This can
be regarded as the LAV aspect of our framework.

Generally, this is the form that schema transfor-
mation/integration takes in our framework, namely a
growing phase in which new schema constructs are
added, and a shrinking phase in which redundant con-
structs are deleted.

Note that 8 has the optional constraint allowed
in our transformation rules, which enforces the foreign
keys of the monitors relation in Sg. Similarly 16 has a
constraint to enforce the foreign key constraints of the
supervises table.

3 Correspondence between BAV and
GAV/LAV

In this section we examine in more detail the corre-
spondence between BAV and GAV, and between BAV
and LAV. We first show how a GAV or LAV definition
can be converted into a partial BAV definition. We
then show how a complete GAV or LAV definition can
be derived from a BAV definition.

BAV thus combines the benefits of both GAV and
LAV in the sense that any reasoning or processing
which is possible with the view definitions of GAV or
LAV will also be possible with the BAV definition.

Given its expressiveness, it could be argued that
data integration using the BAV approach is more com-
plex than with GAV or LAV. However, by specify-
ing well-known schema equivalences as BAV transfor-
mation macros the production of BAV definitions is
greatly simplified, and we conclude this section with a
discussion of this issue.

In what follows, we will need to use the fact that
a relation R with primary key attributes k1, . . . , kn

and other attributes a1, . . . , am, has a lossless-join de-
composition into m relations, each containing key at-
tributes k1, . . . , kn and one of the other attributes
a1, . . . , am. Hence we can rewrite any derivation rule
of the form

R(
→

kn,
→
am) = {

→
xn,

→
ym | E}

as m+ 1 equivalent derivation rules:

R(
→

kn) = {
→
xn | E}

R(
→

kn, a1) = {
→
xn, y1 | E}
...

R(
→

kn, am) = {
→
xn, ym | E}

(Note that some sub-expressions of the expression E

may be logically redundant for some of the above
derivation rules, and can be automatically removed by
standard query simplification techniques.) The origi-
nal derivation rule for the relation R can thus be rep-
resented by the following sequence of primitive trans-
formation steps, where the function D(E) rewrites the
expression E so that any relations it references are de-
composed in the same way as R:

addRel(〈〈R,
→

kn〉〉, {
→
xn | D(E)})

addAtt(〈〈R, a1〉〉, {
→
xn, y1 | D(E)})

...

addAtt(〈〈R, am〉〉, {
→
xn, ym | D(E)})

In what follows, we will refer to this equivalence be-
tween derivation rules for relations and sequences of

5



1 addRel(〈〈student,id〉〉, {x | x ∈ 〈〈ug,id〉〉 ∨ x ∈ 〈〈phd,id〉〉})
2 addAtt(〈〈student,name〉〉,notnull, {x, y | 〈x, y〉 ∈ 〈〈ug,name〉〉 ∧ x 6∈ 〈〈phd,id〉〉

∨ 〈x, y〉 ∈ 〈〈phd,name〉〉})
3 addAtt(〈〈student,left〉〉,null, {x, y | 〈x, y〉 ∈ 〈〈ug,left〉〉 ∧ x 6∈ 〈〈phd,id〉〉 ∨ 〈x, y〉 ∈ 〈〈phd,left〉〉})
4 addAtt(〈〈student,degree〉〉,notnull, {x, y | 〈x, y〉 ∈ 〈〈ug,degree〉〉 ∧ x 6∈ 〈〈phd,id〉〉

∨ x ∈ 〈〈phd,id〉〉 ∧ y = ‘phd’})
5 addRel(〈〈staff,sno〉〉, {x | x ∈ 〈〈tutor,sno〉〉 ∨ x ∈ 〈〈supervisor,sno〉〉})
6 addAtt(〈〈staff,sname〉〉,notnull, {x, y | 〈x, y〉 ∈ 〈〈tutor,sname〉〉 ∧ x 6∈ 〈〈supervisor,sno〉〉

∨ 〈x, y〉 ∈ 〈〈supervisor,sname〉〉})
7 addAtt(〈〈staff,dept〉〉,null, {x, y | 〈x, y〉 ∈ 〈〈supervisor,dept〉〉

∨ x ∈ 〈〈tutor〉〉 ∧ x 6∈ 〈〈supervisor,sno〉〉 ∧ y = null})
8 addRel(〈〈monitors,sno,id〉〉, {x, y | 〈y, x〉 ∈ 〈〈ug,sno〉〉 ∧ y 6∈ 〈〈phd,id〉〉 ∨ 〈x, y〉 ∈ 〈〈supervises,sno,id〉〉},

〈x, y〉 ∈ 〈〈monitors,sno,id〉〉 → x ∈ 〈〈staff,sno〉〉 ∧ y ∈ 〈〈student,id〉〉)
9 conAtt(〈〈tutor,sname〉〉,notnull, {x, y | 〈x, y〉 ∈ 〈〈staff,sname〉〉 ∧ x ∈ 〈〈tutor,sno〉〉})
10 conRel(〈〈tutor,sno〉〉, {x | x ∈ 〈〈staff,sno〉〉 ∧ 〈y, x〉 ∈ 〈〈ug,sno〉〉})
11 conAtt(〈〈ug,name〉〉,notnull, {x, y | 〈x, y〉 ∈ 〈〈student,name〉〉 ∧ x ∈ 〈〈ug,id〉〉})
12 conAtt(〈〈ug,left〉〉,null, {x, y | 〈x, y〉 ∈ 〈〈student,left〉〉 ∧ x ∈ 〈〈ug,id〉〉})
13 conAtt(〈〈ug,degree〉〉,notnull, {x, y | 〈x, y〉 ∈ 〈〈student,degree〉〉 ∧ x ∈ 〈〈ug,id〉〉})
14 conAtt(〈〈ug,sno〉〉,notnull, {x, y | 〈y, x〉 ∈ 〈〈monitors,sno.id〉〉 ∧ x ∈ 〈〈ug,id〉〉})
15 conRel(〈〈ug,id〉〉, {x | x ∈ 〈〈student,id〉〉 ∧ 〈x, ‘phd’〉 6∈ 〈〈student,degree〉〉})
16 delRel(〈〈supervises,sno,id〉〉, {x, y | 〈x, y〉 ∈ 〈〈monitors,sno,id〉〉 ∧ y ∈ 〈〈phd,id〉〉},

〈x, y〉 ∈ 〈〈supervises,sno,id〉〉 → x ∈ 〈〈supervisor,sno〉〉 ∧ y ∈ 〈〈phd,id〉〉)
17 delAtt(〈〈supervisor,sname〉〉,notnull, {x, y | 〈x, y〉 ∈ 〈〈staff,sname〉〉 ∧ x ∈ 〈〈supervisor,sno〉〉})
18 delAtt(〈〈supervisor,dept〉〉,notnull, {x, y | 〈x, y〉 ∈ 〈〈staff,dept〉〉 ∧ x ∈ 〈〈supervisor,sno〉〉})
19 delRel(〈〈supervisor,sno〉〉, {x | x ∈ 〈〈staff,sno〉〉 ∧ 〈x, y〉 ∈ 〈〈staff,dept〉〉 ∧ y 6= null})
20 delAtt(〈〈phd,name〉〉,notnull, {x, y | 〈x, y〉 ∈ 〈〈student,name〉〉 ∧ x ∈ 〈〈phd,id〉〉})
21 delAtt(〈〈phd,left〉〉,null, {x, y | 〈x, y〉 ∈ 〈〈student,left〉〉 ∧ x ∈ 〈〈phd,id〉〉})
22 conAtt(〈〈phd,title〉〉,notnull, void)
23 delRel(〈〈phd,id〉〉, {x | x ∈ 〈〈student,id〉〉 ∧ 〈x, ‘phd’〉 ∈ 〈〈student,degree〉〉})

Table 1. A complete BAV speci£cation of the integration of S1 and S2 into Sg

primitive transformation steps as the decomposition
rule.

3.1 Deriving BAV from GAV

A GAV definition can be used to derive some of the
information present in the BAV definition, as follows:
First, each GAV derivation rule has the decomposi-

tion rule applied to it. Thus, in our running example,
rule G1 generates steps 1 – 4 , G2 generates 8 , and
G3 generates 5 – 7 .
Next, each construct c of type T in the source

schema is removed using a transformation step of the
form conT (c,void). This indicates that the construct is
being removed, but (as a consequence of GAV) there
is an absence of information about how to restore its
extent. In our running example, this means that steps
9 –23 are partially derived as:

9 conAtt(〈〈tutor,sname〉〉,notnull,void)

...
22 conAtt(〈〈phd,title〉〉,notnull, void)
23 conRel(〈〈phd,id〉〉,void)

The box placed around the circle of a transforma-
tion step indicates that the same construct is derived
as in Table 1, but the query only returns a partial re-
sult compared to that in Table 1. For example, 9 has
a void query, as so clearly returns a partial result com-
pared 9 . By contrast, 22 is completely defined by
virtue of the fact that it was defined with a void query
in the complete BAV integration, and hence no box is
placed around the circle.

3.2 Deriving BAV from LAV

A LAV definition can also be used to derive some of
the information present in the BAV definition:
Starting with the set of LAV rules, the decomposi-

tion rule is applied to each of them. In our running

6



example, LAV rules L1 to L5 generate 23– 9 , the re-
verse transformation steps of 9 –23 . However, in this
case, all the BAV transformation steps generated must
be extend rather than add ones, since with LAV it may
be the case that not all the information in a local con-
struct is derivable from the global schema:

23 extRel(〈〈phd,id〉〉, {x | x ∈ 〈〈student,id〉〉
∨ 〈x, ‘phd’〉 ∈ 〈〈student,degree〉〉})

...
10 extRel(〈〈tutor,sno〉〉,

{x | x ∈ 〈〈staff,sno〉〉 ∧ 〈y, x〉 ∈ 〈〈ug,sno〉〉})
9 extAtt(〈〈tutor,sname〉〉,notnull, {x, y |

〈x, y〉 ∈ 〈〈staff,sname〉〉 ∧ x ∈ 〈〈tutor,sno〉〉})

Note that in this case 10 and 9 remain unboxed, by
virtue of the fact that the inversion of contract trans-
formations 10 and 9 are the extend transformations
shown above with the same queries.

Next, a sequence of BAV steps analogous to 8 –
1 is generated as a sequence of contract steps, the
difference from the BAV specification being that each
step is accompanied by a void query:

8 conRel(〈〈monitors,sno,id〉〉,void)
...
2 conAtt(〈〈student,name〉〉,notnull,void)
1 conRel(〈〈student,id〉〉,void)

3.3 Deriving GAV from BAV

In any BAV transformation which defines a global
schema Sg from local schemas S1, ..., Sn, it is possi-
ble to identify the transformation steps that define the
constructs of Sg by taking the subset, G, of the add
and ext transformation steps in the total transforma-
tion sequence from S1 ∪ . . . ∪ Sn to Sg.

The GAV derivation rules can then be constructed
by taking each addRel/extRel step in G, together with
all addAtt/extAtt steps for the same relation, and ap-
plying the decomposition rule in reverse (i.e. joining
the relations 〈〈R, a1〉〉, . . . , 〈〈R, am〉〉 to restore R). If the
GAV rule is composed from solely addRel/addAtt BAV
rules it will be exact, otherwise it will be complete.

For the example in Table 1, the steps that form G are
1 – 8 . Taking 1 as one example of an addRel step,
there are three steps 2 – 4 which add attributes to
the student relation. This automatically gives the fol-
lowing definitions of the constituent parts of student:

〈〈student,id〉〉 = {x | x ∈ 〈〈ug,id〉〉 ∨ x ∈ 〈〈phd,id〉〉}
〈〈student,name〉〉 = {x, y |

〈x, y〉 ∈ 〈〈ug,name〉〉 ∧ x 6∈ 〈〈phd,id〉〉
∨ 〈x, y〉 ∈ 〈〈phd,name〉〉}

〈〈student,left〉〉 = {x, y |
〈x, y〉 ∈ 〈〈ug,left〉〉 ∧ x 6∈ 〈〈phd,id〉〉
∨ 〈x, y〉 ∈ 〈〈phd,left〉〉}

〈〈student,degree〉〉 = {x, y |
〈x, y〉 ∈ 〈〈ug,degree〉〉 ∧ x 6∈ 〈〈phd,id〉〉
∨ x ∈ 〈〈phd,id〉〉 ∧ y = ‘phd’}

The student relation can now be recomposed using
the decomposition rule in reverse, to get a definition of
the student relation in BAV constructs:

student(id,name,left,degree) = {x, y1, y2, y3 |
(x ∈ 〈〈ug,id〉〉 ∨ x ∈ 〈〈phd,id〉〉) ∧
(〈x, y1〉 ∈ 〈〈ug,id〉〉 ∧ x 6∈ 〈〈phd,id〉〉
∨ 〈x, y1〉 ∈ 〈〈phd,name〉〉) ∧
(〈x, y2〉 ∈ 〈〈ug,left〉〉 ∧ x 6∈ 〈〈phd,id〉〉
∨ 〈x, y2〉 ∈ 〈〈phd,left〉〉) ∧
(〈x, y3〉 ∈ 〈〈ug,degree〉〉 ∧ x 6∈ 〈〈phd,id〉〉
∨ x ∈ 〈〈phd,id〉〉 ∧ y3 = ‘phd’)}

The ug and phd relations are then recomposed from
the BAV constructs that appear on the RHS of the
rule. After some logical simplification, this gives a rule
that is equivalent to G1:

student(id,name,left,degree) = {x, y1, y2, y3 |
〈x, y1, y2, y3〉 ∈ ug ∧ 〈x, y1, y2, y3〉 6∈ phd
∨ 〈x, y1, y2, 〉 ∈ phd ∧ y3 = ‘phd’)}

By a similar process, G2 can be derived from 8

and G3 from 5 – 7 .

3.4 Deriving LAV from BAV

In any BAV transformation which defines a global
schema Sg from local schemas S1, ..., Sn, it is pos-
sible to identify the transformation steps that define
the constructs of some local schema Si by taking the
subset, L, of the del and con transformations on con-
structs of Si. Construction of the LAV view definitions
from L proceeds in a similar fashion to how the GAV
view definitions were constructed from G in the previ-
ous subsection. If the LAV rule is composed from solely
delRel/delAtt BAV rules it will be exact, otherwise it
will be complete.
For the example, in Table 1, the steps forming L for

schema S1 are 9 –15 . Rule L1 can then be derived
from 9 –10 and rule L2 from 11 –15 .

7



3.5 Using BAV transformation macros

Although the BAV transformations of Table 1 form a
complete definition of the integration of S1 and S2 into
Sg, it could be argued that this has been achieved at
a greater complexity compared to using GAV or LAV
alone. Indeed we have shown how some transforma-
tions of the BAV pathway can derive GAV rules, and
other distinct transformations derive LAV rules, and
thus is could be argued that we are using the two ap-
proaches in parallel. There are two arguments against
this statement. Firstly, BAV defines the integration
with more precision than just GAV and BAV in par-
allel, since BAV differentiates between completely de-
fined and partially defined constructs, rather than ex-
act and complete rules (which in general define many
constructs together). Secondly, the complexity may
be greatly reduced by specifying well-known schema
equivalences as BAV transformation macros [24].
We argue that it is possible to specify BAV transfor-
mations with as much ease as LAV or GAV derivation
rules. The approach involves two phases:

1. Applying well-known schema equivalences from
the schema integration literature [1] to make
relations from different local databases union-
compatible; this includes renaming attributes to
be the same in any relations to be unioned.

2. Applying a union operation to integrate the re-
lations into a global schema construct, possibly
with a bias to prefer values from a particular local
database where there is conflict between the two.

To illustrate, Table 2 shows the integration of S1

and S2 into Sg using this approach, where steps 24 –
27 are from phase 1 and 28 –30 are from phase 2.
The schema transformations undertaken by each step
are as follows:

24 Perform a lossless decomposition of ug in S1 so
that the sno attribute is held in a separate relation
tutors. Note that the new tutors relation is union-
compatible with supervises from S2.

25 Extend tutor in S1 with an attribute dept, always
with value null (since there is no record of depart-
ments in S1). This makes the tutor relation union-
compatible with supervisor from S2.

26 Contract the title attribute from phd, since this is
not required in the global schema.

27 Add an attribute degree with value ‘phd’ to phd in
S2, making the assumption that all PhD students

are registered for a PhD degree. This transforma-
tion combined with 24 and 26 makes the ug and
phd relations union-compatible.

28 Define the student relation as a union of ug and
phd, but if the same key appears in both relations
keep only the attribute values that appear in phd.
We term this a right union.

29 Define the staff relation as a right union of tutor
and supervisor.

30 Define the monitors relation as a right union of
tutors and supervises.

The macro used in 24 , which implements the de-
composition of a table by moving one of its attributes
Att out into a new table Rel, is defined as follows:

decompose(Rel,Att)=
addRel(Rel, {x, y | 〈y, x〉 ∈ Att}))
delAtt(Att, {x, y | 〈y, x〉 ∈ NewRel})

The body of this macro forms a ‘template’ such that
Rel can be substituted by the scheme of any relation,
and Att by the scheme of any attribute. In particular,
step 24 above expands to:

31 addRel(〈〈tutors,sno,id〉〉,
{x, y | 〈y, x〉 ∈ 〈〈ug,sno〉〉}

32 delAtt(〈〈ug,sno〉〉,notnull
{x, y | 〈y, x〉 ∈ 〈〈tutors,sno,id〉〉})

The macro used in 28 –30 is defined as follows:

rightUnion(RU,R1,C1,R2,C2)=

addRel(Rel,{
→
xn | 〈

→
xn〉 ∈ R1 ∨ 〈

→
xn〉 ∈ R2}

for i=1 to AttCount(RU)

addAtt(Att(RU, i),{
→
xn, ai |

〈
→
xn, ai〉 ∈ Att(R1, i) ∧ 〈

→
xn〉 6∈ R2

∨ 〈
→
xn, ai〉 ∈ Att(R2, i)}

conRel(R1,{
→
xn | 〈

→
xn〉 ∈ RU ∧ C1}

for i=1 to AttCount(RU)

conAtt(Att(R1, i),{
→
xn, ai |

〈
→
xn, ai〉 ∈ Att(RU, i) ∧ 〈

→
xn〉 ∈ R1}

delRel(R2,{
→
xn | 〈

→
xn〉 ∈ RU ∧ C2}

for i=1 to AttCount(RU)

delAtt(Att(R2, i),{
→
xn, ai |

〈
→
xn, ai〉 ∈ Att(RU, i) ∧ 〈

→
xn〉 ∈ R2}

This forms what we term a right union relation,
RU, between two union-compatible relations R1 and
R2, where tuples from R1 appear only if the key values
of that tuple do not appear as a tuple in R2. Defined

8



24 decompose(〈〈ug,sno〉〉,〈〈tutors,sno,id〉〉)
25 extAtt(〈〈tutor,dept〉〉,notnull, {x, y | x ∈ 〈〈tutor,sno〉〉 ∧ y = null})
26 conAtt(〈〈phd,title〉〉,notnull, void)
27 addAtt(〈〈phd,degree〉〉,notnull, {x, y | x ∈ 〈〈phd,id〉〉 ∧ y = ‘phd’})
28 rightUnion(〈〈student,id〉〉, 〈〈ug,id〉〉, 〈x, y〉 ∈ 〈〈student,degree〉〉 ∧ y 6= ‘phd’,

〈〈phd,id〉〉, 〈x, y〉 ∈ 〈〈student,degree〉〉 ∧ y = ‘phd’)
29 rightUnion(〈〈staff,sno〉〉, 〈〈tutor,sno〉〉, 〈x, y〉 ∈ 〈〈staff,dept〉〉 ∧ y = null ,

〈〈supervisor,sno〉〉, 〈x, y〉 ∈ 〈〈staff,dept〉〉 ∧ y 6= null)
30 rightUnion(〈〈monitors,sno,id〉〉, 〈〈ug,sno〉〉, 〈y, x〉 ∈ 〈〈monitors,sno,id〉〉 ∧ x 6∈ 〈〈phd,id〉〉,

〈〈supervises,sno,id〉〉, 〈x, y〉 ∈ 〈〈monitors,sno,id〉〉 ∧ y ∈ 〈〈phd,id〉〉)

Table 2. A complete BAV macro-based speci£cation of the integration of S1 and S2 into Sg

in the relational algebra, RU = (R1− (R1n R2)) ∪ R2,
where n is a semi-join on the key attributes. The func-
tion AttCount(Rel) returns the number of non-primary
key attributes of Rel. The function Att(Rel, n) returns
the nth attribute of Rel (where for the sake of argu-
ment alphabetical ordering on their names can be used
to sort the attributes). The constraint C1 holds for
each tuple of RU that can be determined to have orig-
inated from R1, and the constraint C2 holds for each
tuple that can be determined to have originated from
R2.
The transformation steps of Table 1 can, to a large

extent, be generated from these macro definitions. As
one might expect, the transformations are not precisely
the same since the macro-based approach generates a
few extra steps. None-the-less, the two integrations in
Table 1 and Table 2 are logically equivalent.
In particular, 28 will expand to generate several

of the transformation steps in Table 1. The addRel
statement in the right-union macro will generate 1 .
Since the attributes of student in alphabetical order are
degree, left and name, the first for loop of the macro
will generate 4 , 3 and 2 . The conRel statement
generates 15 , and the second for loop generates 13 ,
12 and 11 . The delRel statement generates 23 , and
the final for loop generates a step 33 not in Table 1:

33 delAtt(〈〈phd,degree〉〉,notnull, {x, y |
〈x, y〉 ∈ 〈〈student,degree〉〉 ∧ x ∈ 〈〈phd,id〉〉})

plus two steps 21 and 20 from Table 1.
Note that step 33 ‘cancels out’ step 27 , in the

sense that 27 introduced an attribute into the phd re-
lation to make it union-compatible with ug, and there-
fore there was an extra attribute to remove from phd
than was the case in Table 1. Using the rightUnion
macro on 29 and 30 will produce similar ‘extra’ trans-
formations to balance 25 and 31 .
We conclude by noting that a leftUnion macro would

be defined by exchanging R1 and R2 in the body of the

rightUnion macro. An ‘ordinary’ union macro would be
defined in a similar manner to rightUnion, except for
omitting the 〈

→
xn〉 6∈ R2 constraint, and changing the

delRel and delAtt to conRel and conAtt.

4 Schema Evolution

We next discuss how BAV supports the evolution
of both global and local schemas, allowing the trans-
formation pathways and schemas to be incrementally
modified as opposed to having to be regenerated.

4.1 Evolution of a global schema

Suppose that n local schemas S1, ..., Sn have been
integrated into a global schema Sg. Let us consider the
evolution of the global schema Sg to S′

g. The first step
is to define this evolution as a schema transformation
in our framework. We consider first how to handle evo-
lutions consisting of a single primitive transformation.
Suppose that Sg has evolved to S′

g by a primi-

tive transformation t. If T old was the transformation
from S1 ∪ . . . ∪ Sn to Sg, the new transformation from
S1 ∪ . . . ∪ Sn to S′

g can automatically be generated by

suffixing t to T old:

Tnew = T old; t

There are three cases to consider for t:

1. If t is an add or del transformation, then S ′
g will

be semantically equivalent to Sg. Any information
available from Sg is also available from S′

g, and
there is nothing further that needs to be done to
Tnew.

2. If t is a contract transformation, then there will
be some information that used to be present in Sg

that will no longer be available from S ′
g. Thus, it

9



may be the case that there is now no representa-
tion of some local schema construct(s) within S ′

g.
Nothing further needs to be done to T new.

3. If t is an extend transformation with a void accom-
panying query, then the relationship of the new
construct to S1 . . . Sn needs to be examined as it
may actually be partially or completely derivable
from S1 . . . Sn by some transformation. This re-
quires domain knowledge e.g. from a human ex-
pert or an ontology.

If the new construct is not derivable, then nothing
further needs to be done to T new. If it is derivable,
then t, the last transformation step in T new, needs
to be replaced by a more informative extend or add
step (as per our discussion in Section 2.2).

Thus, we see that the first of these two cases is han-
dled totally automatically. The third requires domain
knowledge, but is still handled as a simple evolution of
the transformation pathway between S1 ∪ . . .∪ Sn and
Sg.
Evolutions of Sg consisting of a sequence of primitive

transformation steps can be handled by applying the
above treatment to each step.

4.2 Evolution of a local schema

This is a little more complex since it may require
the global schema to be changed. Suppose that some
Si evolves, to S′

i say, by a primitive transformation t

(again, we need only consider evolutions consisting of a
single primitive transformation, and composite trans-
formations can be handled as a series of primitive trans-
formation steps).
If T old was the transformation from S1 ∪ . . . ∪ Si ∪

. . . ∪ Sn to Sg, a new transformation from S1 ∪ . . . ∪
S′

i ∪ . . . ∪ Sn to Sg can be automatically generated by
prefixing the reverse of t to T old:

Tnew = t;T old

Again there are three cases to consider for t:

1. If t is an add or del transformation, then the new
schema S′

i will be semantically equivalent to Si.
Thus any information in Sg derived from Si can
now be derived from S′

i and no changes are re-
quired to Sg or Tnew.

2. If t is a contract transformation, then some infor-
mation that used to be present in Si will no longer
be available from S′

i. In particular, it may now be
the case that Sg contains constructs about which
no information is derivable from any local schema

— this can be determined automatically by inspec-
tion of T new. Any such constructs can be removed
from Sg, and the corresponding extend steps from
each of the local schemas removed from T new.

3. If t is an extend transformation, then the rela-
tionship of the new construct to Sg needs to be
examined, as the new construct may actually be
derivable from Sg by some transformation. This
requires domain knowledge.

If the new construct is indeed derivable, then the
transformation that does so, T say, is appended
to Tnew, in order to add the new construct to Sg.
The resulting transformation T new;T is equal to
t;T old;T which just simplifies to T old.

If the new construct is not derivable, then an ex-
tend step is appended to T new, in order to add
the new construct to Sg. This step matches up
with the contract transformation in t. This pair of
steps are now removed in order for the new extent
of the new construct in S′

i to be usable by queries
posed on the global schema, leaving the original
transformation T old.

Again, the first two of the above cases can be
handled totally automatically and the third semi-
automatically — [20] gives further details of the second
and third cases.
The above treatment also applies in the case that a

new schema Sn+1 is added to the set of local schemas
from which Sg was derived, since Sn+1 can be treated
as an empty schema which is successively expanded
with new constructs. Similarly, the treatment covers
the removal of a local schema Si since its constructs can
be successively contracted to leave an empty schema.

5 Implementation

We are currently implementing the BAV integra-
tion approach described here within the ongoing Au-
toMed project at Birkbeck and Imperial Colleges (see
http://www.doc.ic.ac.uk/automed/). Figure 2 il-
lustrates the main components of the AutoMed system.
The Model Definitions Tool allows the modelling

constructs and primitive transformations of high-level
modelling languages to be specified in terms of those of
the lower-level hypergraph data model (HDM). These
definitions are stored in the Model Definitions Reposi-
tory (MDR) [2].
The Schemas & Transformations Repository (STR)

stores the schemas of data sources, intermediate
schemas, global schemas, and the transformation path-
ways between them [2]. The Schema Transformation &

10



Model Definitions
Repository

• high-level constructs

• high-level transformations

-¾

-
Model

Definition
Tool

-¾

Schema
Transformation
& Integration

Tool ¾

Schema Evolution
Tool

Global Query
Optimiser

Global Query
Processor

Schemas & Transformations
Repository

-¾
• source schemas

• intermediate schemas

• integrated schemas

• transformation pathways

data
source

-¾

6?

Figure 2. The AutoMed Architecture

Integration Tool allows the creation of new intermedi-
ate or global schemas together with the corresponding
transformation pathways.

The Global Query Processor undertakes execution
of global queries using the schemas and transforma-
tion pathways in the STR. Currently we are adopting
a GAV approach to query processing [10], but from our
earlier discussion in Section 3.4 a LAV approach would
also be possible. We are using a functional query lan-
guage as our intermediate query language (IQL) [21].
Global queries are translated into this IQL and are then
reformulated to operate on the data sources, using the
GAV views derived from the schema transformation
pathways. After optimisation of the global query, sub-
queries of it are translated into the query languages
supported by the data sources, and are submitted to
the sources for evaluation. Any further query post-
processing is undertaken by the IQL evaluator.

The Schema Evolution Tool supports the evolution
of schemas and transformation pathways in the MDR,
as described in Section 4 above. These evolved path-
ways may in some cases be amenable to simplification.
For example, a composite transformation T ; t;T ′; t;T ′′,
where T, T ′, T ′′ are arbitrary sequences of primitive
transformations, t is primitive transformation and t

is its inverse, can be simplified to T ;T ′;T ′′ provided
that there are no references within T ′ to the con-
struct being renamed, added or deleted by t. Renam-
ing transformations may also be redundant, and hence
removable. For example, ren c c′; del c′ ≡ del c,
add c′; ren c′ c ≡ add c, ren c′ c′′; ren c′′ c ≡ ren c′ c.
This kind of simplification is automatically carried out
by the Schema Evolution Tool [27]. More generally,
these same simplifications can be applied to any schema
transformation pathway generated (either automati-
cally or manually) by the Schema Transformation &
Integration Tool.

As well as implementing the above components, we
are currently investigating techniques for automatic or
semi-automatic generation of model definitions in the
MDR and transformation pathways in the STR. For
the former, we are developing a framework for defining
correspondences between different high-level data mod-
els. For the latter we are investigating data mining [5]
and schema matching approaches [23, 9]. We are also
extending the scope of AutoMed to semi-structured
data (XML, formatted files) and unstructured text. Fi-
nally, we are investigating materialised (as opposed to
just virtual) data integration using AutoMed schema
transformations, and in particular issues of incremen-
tal view maintenance and data lineage tracing [6].

6 Conclusions

In this paper we have presented a new approach to
data integration which we term both as view (BAV).
BAV is based on the use of reversible schema trans-
formation sequences. We have shown that LAV and
GAV view definitions can be fully derived from BAV
transformation sequences, and that BAV transforma-
tion sequences can be partially derived from LAV or
GAV view definitions.
BAV thus combines the benefits of GAV and LAV

in the sense that any reasoning or processing which is
possible with GAV or LAV view definitions will also be
possible with the BAV specification.
A key advantage of BAV is that it readily supports

the evolution of both local and global schemas, allowing
transformation pathways and schemas to be incremen-
tally modified as opposed to having to be regenerated.
Our original motivation for developing the BAV ap-

proach was as a general framework for schema trans-
formation and integration, which was sufficiently ex-
pressive to capture all of the schema transformations

11



proposed in the literature and used in practical schema
integration, as well as having a formal basis. Thus, it
may be argued that the transformation pathways re-
sulting from BAV are likely to be more fine-grained,
and hence more costly to reason with and process (e.g.
in query optimisation and query processing) than the
corresponding LAV or GAV view definitions. However,
as we discussed in the previous section, BAV trans-
formation pathways are amenable to considerable sim-
plification. Furthermore, standard query optimisation
techniques can be applied to the view definitions de-
rived from BAV transformation pathways. Thus, we
believe that query processing in AutoMed will not be
significantly slower than in other LAV or GAV systems.
We are currently implementing the BAV integration

approach within the ongoing AutoMed project, and
this is one of the questions to be verified by practi-
cal experimentation. Our major application testbed in
AutoMed is bioinformatics, and in particular the se-
mantic integration of genomic data sources.
We are currently working on a number of other di-

rections: development of graphical end-user tools for
model definition and schema integration; techniques
for automatic or semi-automatic generation of model
definitions and schema transformation pathways; ex-
tension of the approach to support integration of semi-
structured and unstructured information; and exten-
sion of the approach to materialised data integration.

References

[1] C. Batini, M. Lenzerini, and S. Navathe. A compara-
tive analysis of methodologies for database schema in-
tegration. ACM Comput. Surv., 18(4):323–364, 1986.

[2] M. Boyd, P. McBrien, and N. Tong. The automed
schema integration repository. In Proc. BNCOD02,
LNCS 2405, pages 42–45, 2002.

[3] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Prin-
ciples of programming with complex objects and col-
lection types. Theoretical Computer Science, 149(1):3–
48, 1995.

[4] S. Chawathe et al. The TSIMMIS project: Integra-
tion of heterogeneous information sources. In Proc.
10th Meeting of the Information Processing Society of
Japan, pages 7–18, October 1994.

[5] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning
approach. In ACM SIGMOD, 2001.

[6] H. Fan and A. Poulovassilis. Tracing data lineage us-
ing schema transformation pathways. In Workshop
on Knowledge Transformation for the Semantic Web
(with ECAI’02), 2002.

[7] L. Fegaras and D. Maier. Towards an effective calculus
for object query languages. In ACM SIGMOD, pages
47–58, 1995.

[8] M. Friedman, A. Levy, and T. Millstein. Navigational
plans for data integration. In Proc.16th National Conf.
on AI, pages 67–73. AAAI Press, 1999.

[9] M. A. Hernandez, R. J. Miller, and L. M. Haas. Clio:
A semi-automatic tool for schema mapping. In ACM
SIGMOD, 2001.

[10] E. Jasper. Global query processing in the AutoMed
heterogeneous database environment. In Proc. BN-
COD02, LNCS 2405, pages 46–49, 2002.

[11] M. Lenzerini. Data integration: A theorectical per-
spective. In Proc. PODS02, pages 247–258, 2002.

[12] A. Levy. Logic-based techniques in data integration. In
J. Minker, editor, Logic Based Artificial Intelligence.
Kluwer Academic Publishers, 2000.

[13] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In Proc. PODS’95,
pages 95–104. ACM Press, May 1995.

[14] A. Levy, A. Rajamaran, and J.Ordille. Querying het-
erogeneous information sources using source descrip-
tion. In Proc. VLDB’96, pages 252–262, 1996.

[15] I. Manolescu, D. Florescu, and D. Kossmann. An-
swering XML queries on heterogeneous data sources.
In Proc. VLDB’01, pages 241–250, 2001.

[16] P. McBrien and A. Poulovassilis. A formalisation of
semantic schema integration. Information Systems,
23(5):307–334, 1998.

[17] P. McBrien and A. Poulovassilis. Automatic migration
and wrapping of database applications — a schema
transformation approach. In Proc. ER’99, LNCS
1728, pages 96–113, 1999.

[18] P. McBrien and A. Poulovassilis. A uniform approach
to inter-model transformations. In Proc. CAiSE’99,
LNCS 1626, pages 333–348, 1999.

[19] P. McBrien and A. Poulovassilis. A semantic approach
to integrating XML and structured data sources. In
Proc. CAiSE’01, LNCS 2068, pages 330–345, 2001.

[20] P. McBrien and A. Poulovassilis. Schema evolution in
heterogeneous database architectures, a schema trans-
formation approach. In Proc. CAiSE’02, LNCS 2348,
pages 484–499, 2002.

[21] A. Poulovassilis. The AutoMed Intermediate Query
Language. Technical report, AutoMed Project, 2001.

[22] A. Poulovassilis and P. McBrien. A general for-
mal framework for schema transformation. Data and
Knowledge Engineering, 28(1):47–71, 1998.

[23] E. Rahm and P. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal, 10:334–
350, 2001.

[24] N. Rizopoulos. A database integration tool. Technical
report, Imperial College, 2001.

[25] M. Roth and P. Schwarz. Don’t scrap it, wrap it!
A wrapper architecture for data sources. In Proc.
VLDB’97, pages 266–275, Athens, Greece, 1997.

[26] M. Templeton, H.Henley, E.Maros, and D. V. Buer.
InterViso: Dealing with the complexity of federated
database access. The VLDB Journal, 4(2):287–317,
1995.

[27] N. Tong. Database schema transformation optimisa-
tion techniques for the AutoMed system. Technical
report, AutoMed Project, 2002.

12


