Defining Peer-to-Peer Data Integration
using Both as View Rules

Peter MCBrien! and Alexandra Poulovassilis?

! Dept. of Computing, Imperial College London, pjm@doc.ic.ac.uk
2 School of Computer Science and Information Systems, Birkbeck College,
Univ. of London, ap@dcs.bbk.ac.uk

Abstract. The loose and dynamic association between peers in a peer-
to-peer integration has meant that, to date, implementations of peer-to-
peer systems have been based on the exchange of files identified with
a very limited set of attributes, and no schema is used to describe the
data within those files. This paper extends an existing approach to data
integration, called both-as-view, to be an efficient mechanism for defining
peer-to-peer integration at the schema level, and demonstrates how the
data integration can be used for the exchange of messages and queries
between peers.

1 Introduction

The Internet has made available to almost all computer users the basic physical
capability to exchange data. The challenge today is how to effectively harness
this physical connectivity in order to effectively share data between users in a
manner where their participation in data integration is not subject to centralised
control, but instead is conducted in a peer-to-peer (P2P) fashion.

In [MPO3] we described the both-as-view (BAV) approach to data integra-
tion, and compared it with the alternative approaches global-as-view (GAV)
and local-as-view (LAV) [Len02]. In BAV, schemas are mapped to each other
using a sequence of bidirectional schema transformations which we term a trans-
formation pathway. From these pathways it is possible to extract a definition of
the global schema as a view over the local schemas (i.e. GAV) and it is also pos-
sible to extract definitions of the local schemas as views over the global schema
(i.e. LAV). The BAV approach has been implemented as part of the AutoMed
data integration system being developed at Birkbeck and Imperial Colleges (see
http://www.doc.ic.ac.uk/automed).

As we discussed in [MP02,MP03], one advantage of BAV over GAV and LAV
is that it readily supports the evolution of both global and local schemas, includ-
ing the addition or removal of local schemas. Such evolutions can be expressed as
extensions to the existing pathways. New view definitions can then be regener-
ated from the new pathways as needed for query processing. This feature makes
BAYV very well suited to the needs of P2P data integration, where peers may join

or leave the network at any time, or may change their set of local schemas, pub-
lished schemas, or pathways between schemas. This paper describes how BAV
can be used in this setting.

Previous work on data integration in P2P environments has used combina-
tions of LAV and GAV rules between schemas and a combination of GAV and
LAV query processing techniques [HIST03,HIMTO03]. In our approach described
here, we specify a BAV pathway between any pair of schemas. Due to the implicit
presence of a GAV specification within such BAV pathways, and assuming no
cycles in the inter-connection network between schemas, query answering in our
approach is normally a simple matter of query unfolding using the GAV parts of
the BAV pathways. However, it would also be possible to extract the LAV parts
of the BAV pathways and use LAV query rewriting techniques.

A similar approach to ours is taken by [CDD¥03] in this proceedings, where
the GLAV rules [FLM99] are used to specify the constructs of each schema in
terms of the constructs of some set of other peer schemas, and hence it is possible
to write rules that specify the mapping in both directions between schemas.

Other complementary work to ours has been carried out within the Edutella
project [Nej03,LNWS03] which uses a superpeer based network topology to pro-
vide better scalability than pure peer-to-peer networks. RDF Schema is used as
the common data model for heterogeneous information sources. Routing indexes
at superpeers store information about the metadata available at the peers di-
rectly connected to them, and aid in the forwarding of query requests only to
relevant peers. Correspondence assertions between global and local schema con-
structs are stored at the superpeers, and these correspondence assertions could
be generated using the BAV techniques we describe here.

The need for a superpeer is avoided in the local relational model (LRM)
[BGK™02], where peers are directly related by a combination of a domain re-
lation that specifies how the data types of the peers are related, together with
coordination formulae that specify that if one predicate is true in one peer,
then another predicate is true in another peer. The BAV approach has previously
been shown to provide such a direct mapping between data sources [MP99a], and
between different data modelling languages [MP99b].

The approach we present in this paper combines the advantages of Piazza
and LRM, by having common virtual superpeer schemas — allowing peers to
reuse the existing integration of other peers with the superpeer schema — but
having no physical superpeer nodes that may act as a bottleneck in the system
— in particular, we show how any peer can combine the different integrations of
other peers with a superpeer schema in order to form direct pathways between
peers for query and update processing.

We begin the paper with an overview of the BAV data integration approach.
In Section 3 we describe how BAV can be extended to apply in a P2P setting,
having originally been developed for a federated or mediated architecture. Then
in Section 4 we describe one approach to P2P data integration using BAV,
showing how update and query requests can be exchanged between peers via

superpeer schemas. In Section 5 gives a more detailed comparison of our approach
with closely related work. Finally we give a summary and our conclusions.

2 An Overview of BAV Data Integration

The basis of the BAV approach to data integration is a low-level hypergraph-
based data model (HDM) and a set of primitive schema transformations
for schemas expressed in this HDM [PM98,MP99a]. Facilities are provided for
defining higher-level modelling languages and primitive schema transformations
for them in terms of this lower-level HDM. For example, previous work has shown
how relational, ER, UML, XML, RDF and semi-structured data models can
be defined in terms of the HDM [MP99b,MP01,WP03,Kit03]. For each type of
modelling construct of each modelling language (e.g. Relation, Attribute, Primary
Key and Foreign Key in a relational model; Element, Attribute and Parent-Child
relationship in XML) there will be a set of primitive schema transformations for
adding such a construct to a schema, removing such a construct from a schema
and, in the case of constructs with textual names, renaming such a construct.

Schemas are incrementally transformed by applying to them a sequence of
such primitive schema transformations ¢1,...,t.. Each primitive transformation
t; makes a ‘delta’ change to the schema by adding, deleting or renaming just one
schema construct.

The general form of a primitive transformation that adds a construct ¢ of
type T to a schema s in order to generate new schema s’ is addT'(c, ¢5), where
¢s is a query over s specifying the extent of ¢ in terms of the existing constructs
of s. The logical semantics of this kind of transformation are

V. c(x) < gs(x)

and for this reason we term add an exact transformation. In the AutoMed
system, ¢, is expressed in a functional intermediate query language (IQL)
[JPZ03], and we shall use IQL for example queries in this paper.

When it is not possible to specify the exact extent of the new construct ¢ being
added in terms of the existing schema constructs, the primitive transformation
extendT (¢, ¢s) must be used instead of add. The logical semantics of this kind of
transformation are

V. c(x) — qs(x)

and so we term extend a sound transformation. The query ¢; may just be the
constant Void, indicating that the extent of the new construct cannot be specified
even partially. In this case the query can be omitted from the transformation,
and a value of Void is implied.

In a similar manner, the exact transformation deleteT(c, ¢5) when applied to
schema s’ generates a new schema s with construct ¢ of type T removed. The
extent of ¢ may be recovered using the query g5 on s, and

Ve . ca) < q.(e)

Note that this implies that from a primitive transformation deleteT'(c,q;) used
to transform s’ — s we can automatically derive that addT'(c,qs) transforms
s — &', and wvice versa.

When it is not possible to specify the exact extent of the construct ¢ being
deleted from s’ in terms of the remaining schema constructs, the sound trans-
formation contractT'(c,qs) must be used instead of delete, where

Ve . c(x) — gs(x)

Again, it is possible that ¢, may just be Void, indicating that the extent of ¢
cannot be specified even partially, in which case it can be omitted from the
transformation. Note that from a primitive transformation contract'(c,qs) used
to transform s’ — s we can automatically derive that extendT'(c,qs) transforms
s — &', and wvice versa.

Finally, the transformation renameT (¢, ¢’) causes a construct ¢ of type T in
a schema s to be renamed to ¢’ in a new schema s’, where in logical terms

Vz . c(z) < d(x)

Note that this implies that from renameT (¢, ¢’) used to transform s — s’ we can
automatically derive that renameT (¢, ¢) transforms s’ — s, and vice versa.
GAV defines a global schema as a set of views v over the local schemas, and
LAV defines a local schema as a set of views v over a global schema. We relate v to
a set of BAV schema constructs by a rule of the form v(z) = co(x0), . - -, cn(Tn)
where co(xg), ..., cn(xyn) is a lossless decomposition of v(x). For example, as-
suming the specification of the relational data model in terms of the HDM we
gave in [MPO03], if v is a relation r(k,ay,...,a,) where k are its key attributes
and a1,...,a, its non-key attributes, then ¢y would be a Relation construct
r(k) and ¢y, ..., c, would be Attribute constructs r_a;(k,a1),...,r-a,(k,ay,).
In [JTMPO3] we discuss how LAV, GAV and GLAV views can be extracted
from a BAV pathway siocai — Sgiobal- For a GAV view v defining a construct
of Sgiobar in terms of constructs of sjocqr, the algorithm uses the add and ex-

tend transformations that create c1, ..., c,. If all these transformations are exact
then, in the terminology of [Len02], v is an exact view definition. If any one
of ¢1,...,c, is defined using a sound transformation, then v is a sound view

definition. For a LAV view v defining a construct of s;,¢,; in terms of constructs
of sg410bal, the same algorithm is applied to the reverse pathway sgiopai — Siocal
(which, in BAV, is automatically derivable from siocai — Sgiobar). The only dif-
ference is that what in the GAV case were sound view definitions will in the LAV
case be complete view definitions with respect to the global schema. Extrac-
tion of GLAV view definitions uses LAV view extraction and in addition also
uses the bodies of add and extend transformations to generate GLAV rules (see
[JTMPO03)).

3 Developing BAV for P2P Data Integration

When building an integrated database, one must consider both the logical in-
tegration of the schemas and their logical extents, and the operational inte-

gration of the actual data, defining where data is to be materialised (i.e. per-
manently stored) and where data will be virtual (i.e. may be queried, but not
permanently stored). We make the assumption that the logical extent of the lo-
cal schemas equates to the materialised data within such schemas. In past work
on data integration, there have been three basic approaches to the operational
integration of data:

— virtual global schema: in the federated database [SL90] and mediator
[Wie92] approaches, data is only materialised in local schemas. Any queries
on the global schema are answered by rewriting the queries to execute on one
or more local schemas, and the logical extent of the global schema equates
to results of those queries. Hence the operational extent of the global schema
is virtual, and equates to its logical extent.

— materialised global schema: in the data warehouse approach [JLVV02],
data is materialised in both local and global schemas, and queries on each
are answered directly from the data held within each schema. Hence the
operational extent of the global schema is fully materialised. However the
logical extent of the global schema is defined in the same way as for the
federated database approach.

— partial virtual global schema: in the workflow approach [vdAvHO02], the
global schema is implied by some message format standard, and the logical
extent of the global schema is the union of all the valid messages that all
the local schemas may generate in the format. The operational extent of the
global schema is simply those messages that are in transit at any one time.

In P2P networks, local schemas will be autonomous and membership of the
network is likely to be highly dynamic. Thus, maintaining a materialised global
schema is likely to be unachievable in practise, and even answering queries on the
global schema is difficult due to the varying nature of the local schemas. Hence
we regard the workflow model as the most promising for development as a basis
for P2P integration, but we use superpeer schemas (see Section 4 below) to
make explicit the notion of a global schema that is only implied in the workflow
approach. We do not assume physical superpeer nodes; rather, we rely on peers
publishing via a directory service such as UDDI [Bel02] their integration with
standard superpeer schemas that might be owned by any peer.

3.1 BAYV Sound Queries and Complete Queries

To use BAV for P2P data integration, it is now necessary that we are able write
transformation rules that capture the looser relationship between local and global
schemas. BAV sound transformation rules allow local schemas to provide a lower
bound on what data is available in the global schema, but up to now BAV did
not have a method of specifying that the logical extent of the global schema is
an upper bound on the logical extent of the local schema. For the purposes of
applying BAV to P2P data integration, we now extend it to support this facility.
In particular, we extend the extend and contract transformations discussed above
to take a second query as an argument:

The transformation extendT(c, ¢, ¢,) adds a new construct ¢ of type T to a
schema s to form a schema s’, where g; determines from s what is the minimum
extent of ¢ in s’ (and may be Void if no lower bound on the extent can be
specified) and ¢, determines from s what is the maximal extent of ¢ in s’ (and
may be Any if no upper bound on the extent can be specified). We write the
extent of ¢, Ext(c), specified by such a transformation as an interval [g;, ¢,]. In
logical terms it means that

Vo . c(x) — q(x) N Ve . c(z) = qu(z)

Note that the semantics of add are such that addT'(c, gs) = extendT (¢, gs, gs)-
Similarly, the transformation contractT (¢, ¢;, ¢,) removes a construct ¢ of type
T from a schema s’ to form a new schema s, where g; determines from s what
is the minimum extent of ¢ in s/, and ¢, determines from s what is the maximal
extent of ¢ in s’. As before, g; may be Void and ¢, may be Any. In logical terms
it means that
Vo . c(x) — q(x) N Va.c(x) — qu(x)

Note that the semantics of delete are such that deleteT (¢, ¢5) = contractT (¢, ¢, gs)-

We refer to the first query in an extend or contract transformation as defining
the sound extent of the construct, and the second query as defining the com-
plete extent; and the transformation as a whole is a sound-complete trans-
formation. In the terminology of [Len02], when used to generate GAV views the
first query generates sound views and the second query generates complete views.
When used to generate LAV views the first query generates complete views and
the second query sound views.

In general, a construct c in a global schema will be derived from a number of
local schemas 1, ..., with an extent [q;,, ¢u,] derived from each local schema.
Hence, there will be a number of lower bound queries over the local schemas,
qiy,---,4q1,, and a number of upper bound queries, gy, ..., qu,. The extent of
¢ will have a lower bound which is the union of all the lower bounds, and an
upper bound which is the intersection of all the upper bounds. Hence, writing
the extent of ¢ as an interval, we have Ext(c) = [, U...Uq,,qu, N-.-Nqu,].

4 P2P Data Integration via Superpeer Schemas

With the extentions proposed in the previous section, BAV could in principle be
used to map directly between peer schemas. However, defining pairwise mappings
between peer schemas does not scale as the number of schemas grows. Thus, we
explore in this section a method of undertaking P2P BAV data integration via
superpeer schemas. We also give a method for message exchange and query
processing in this P2P integration framework.

We assume that in a P2P network peers are able to create schemas and
make them available to the other peers (i.e. to publish them) — we term such
publicly available schemas superpeer schemas. We will see below how BAV
transformations with sound queries and complete queries within them give a
natural method for defining superpeer schemas.

In addition to such public schemas, peers may also manage one or more local
schemas, which may be either materialised or virtual. Each peer is able to create
transformation pathways between its own local schemas and superpeer schemas
made public by itself or other peers. Such pathways can be stored at the peer, but
we assume that peers are able to publish the fact that they support a pathway
to a superpeer schema (without necessarily publishing the actual pathway). A
superpeer schema has a logical extent that is the union of all the peer schemas
from which there exists a pathway to the superpeer schema.

Suppose now a peer P wishes to send a query or update request formulated
with respect to one of its local schemas, I, to other peers that have access to
data semantically related to [. P can find out to which superpeer schemas, s,
there exists in its own metadata repository a pathway [— s. P can also find
out which other peers support pathways to s. Suppose P’ is such a peer; then P
can request from P’ its set of pathways to s. Suppose I’ — s is one of this set of
pathways. P can then combine the reverse pathway s — [’ with its own pathway
I — s to obtain a pathway from [to I’ (consisting of [— s followed by s —).
P can then use this pathway to translate a query or update request expressed
on its own schema [to an equivalent query or update expressed on I’ which can
then be sent to P’ for processing.

4.1 Method for Generating Pathways

To integrate a peer schema ps; with a superpeer schema sps, the following steps
can be followed in order to generate a pathway ps; — sps:

1. Decide which constructs of sps have no relationship with ps; and use extend
transformations with a [Void,Any] extent to add these constructs.

2. For each remaining construct ¢ in sps, use extend transformations on ps; in
order to derive ¢ with a sound query that specifies how constructs in ps; can
be used to derive global instances of c.

3. Decide which constructs of ps; have no relationship with sps, and use contract
transformations with a [Void,Any] extent to remove these constructs.

4. For each remaining construct ¢ in ps;, use contract transformations on ps;
in order to derive ¢ with a complete query that specifies how constructs in
sps can be used to derive local instances of c.

4.2 An Example

The schemas in Figure 1 are adapted from the example given in [BGK*02]. Peer
schema PS; is the schema for a hospital’s patient database. Each patient is as-
signed a unique hospital identifier (hid) and a record is kept of their national
insurance number (ni), name, sex, age, and the name of their gp (General Prac-
titioner, or family doctor). Patients receive treatments. Each treatment has a
unique identifier (tid), and a record is kept of the patient (via their hid), date,
description and the Consultant who authorised the treatment.

Peer PS; is the schema for the database maintained by General Practitioner
Dr Davies. He identifies his patients by their ni number and records their first
name (fName), last name (IName), sex and address. His database also records in
the event table all treatments and consultations for each of his patients as plain
text descriptions within the field desc.

PS: hpatient(hid,ni,name,sex,age,gp)

treatment(tid, hid,date,desc,consultant) BN 1P atients(ni,name,sex.gp)
1 ni, /SeX,

PS; patient(ni,fName,IName,sex,address) Al e its e

event(ni,date,desc)

Fig. 1. Peer schemas

In Figure 1, a possible superpeer schema SPS; is given. Let us suppose that
the hospital owning PS; wishes to exchange the information in its hpatient table,
which we denote PS;.hpatient, with other peers. Any patient record in PS; might
be sent to another peer conforming to SPS;. Conversely, a patient record from
another peer conforming to SPS; might be imported into PS;. The BAV pathway
from PS; to SPS; is as follows:

PSl — SPSl

contractTable({(treatment, tid, hid, date, desc, consultant)), Void, Any)

extendTable({{allTreatments, ni, date, desc)), Void, Any)

contractAtt(((hpatient, age)), Void, Any)

contractAtt(({(hpatient, hid)), Void, Any)

extend Table(((allPatients, ni, name, sex, gp)), {(hpatient, ni, name, sex, gp)), Any)

contractTable({(hpatient, ni, name, sex, gp)), Void, ((allPatients, ni, name, sex, gp)))
The first two transformations above mean that no association is drawn be-
tween the PSi.treatment and SPS;.allTreatments tables. The next two transfor-
mations remove information about patients’ ages and hospital identifier from
the schema. Transformation (5) indicates that SPS;.allPatients is a superset of
PS; .hpatient, while the final transformation (6) indicates that PS;.hpatient is a
subset of SPS;.allPatients.

Also note that the contractTable and extendTable transformations are a short-
hand for a sequence transformations on the Rel construct and its associated Att
constructs. For example, contractTable is defined as follows, where k denotes the
sequence of primary key attributes of relation r:

contractTable({(r,a1,...,an)),q1,92) = contractRel({(r)), mrq1, Tkq2)

contractAtt(((r,a1)), Tk a, 91, Tk,a,92)

®E

@@E®

contractAtt({(r, an), Tk,a,91, Tk,a,d2)
The composite transformations extendTable, addTable and deleteTable are simi-
larly defined in terms of a sequence of extend, add and delete primitive transfor-
mations on the Rel construct and its associated Att constructs.

As we saw in Section 3.1 above, each BAV primitive transformation has an
automatically derivable reverse transformation, in that each add/extend transfor-
mation is reversed by a delete/contract transformation with the same arguments,
while each rename transformation is reversed by another rename transformation
with the two arguments swapped. Hence the BAV pathway SPS; — PS; is au-
tomatically derivable as the reverse of the above pathway PS; — SPSy:

SPSl — P51
@ cxtendTable(((hpatient, ni, name, sex, gp)), Void, ((allPatients, ni, name, sex, gp)))
@ contractTable(((allPatients, ni, name, sex, gp)), ((hpatient, ni, name, sex, gp)), Any)
@ cxtendAtt(((hpatient, hid)), Void, Any)
© cxtendAtt(((hpatient, age)), Void, Any)
@ contractTable(((all Treatments, ni, date, desc)), Void, Any)
@ cxtendTable(((treatment, tid, hid, date, desc, consultant)), Void, Any)

Similarly, let us suppose that Dr Davies maintaining PS, wishes to exchange
the information contained in his patient table with other peers. Any patient
record in PS; might be sent to another peer conforming to SPS;. Conversely, a
patient record from another peer conforming to SPS; might be imported into
PS,. The BAV pathway from PS, to SPS; is as follows:

PS2 — SPSl
contractTable(({(event, ni, date, desc)), Void, Any)
extendTable({{allTreatments, ni, date, desc)), Void, Any)
addAtt({(patient, gp)), [(x, ‘Davies’) | x « {(patient))])
addAtt({(patient, name)), [(x, concat(y1, ¢ ’,y2)) |
(x,y1) < (patient, fName}); (x,y2) « {(patient,IName}))
deleteAtt(((patient, fName)), [(x, substring(z, 0, pos(z, ‘ ’))) |
(x,z) « ((patient, name))]
deleteAtt(((patient, IName)), [(x, substring(z, pos(z,* ’) + 1)) |
(x,z) « ((patient, name))]
contractAtt({{patient, address)))
extend Table(((allPatients, ni, name, sex, gp)), {(patient, ni, name, sex, gp)), Any)
contractTable({{patient, ni, name, sex, gp)), Void, {(allPatients, ni, name, sex, gp)))
Again the pathway SPS; — PS, is automatically derivable as the reverse
of this. The pathway PS; — PS; is just the composition of PS; — SPS; and
SPS; — PS;. Similarly, the pathway PS, — PS; is the composition PS; — SPSy;
SPS; — PS; or, equivalently, the reverse of PS; — PS;

SO0

GE® © ©

Such BAV pathways between peers, going via common superpeer schemas,
can be used for translating messages between peers. Starting with a message
expressed with respect to a schema of one peer, say PSy, the transformations in
the pathway to a schema of another peer, say PS,, can be used to translate the
message so that it is expressed in terms of PS;. Messages may contain update
requests or query requests, both of which can be translated using the techniques
we described in [MP99a] in the context of federated database architectures but
which apply also in this context. The translation uses the queries present within
each transformation to incrementally rewrite the message, and we discuss it in
more detail now.

4.3 Sending Update Requests Over BAV Pathways

We assume that update requests to be sent from a data source S; to another
data source Sy will be of the form insert m, delete m, or update m for some
expression m. The message translation process has two aspects, the first per-
forming a logical translation of the message so that it may be applied to Ss,
and the second performing an operational interpretation of the message to
decide if it should be applied to Ss.

For the logical translation, we regard the data as having a lower bound d;
which is minimum set of values that should be inserted, deleted or updated,
and an upper bound d, which is the maximal set of values that should be
inserted, deleted or updated. We write this range as the interval [d;, d,]. When
some data d is to be sent from S7 to Sa, we begin with [d,d] appearing within
the message expression m. The translation then proceeds as follows for each
successive transformation ¢ in the transformation pathway S; — Ss:

1. if t = rename(c, '), rename all occurrences of ¢ in m by ¢/;

2. if t = add(c,q) and ¢ is not Void, add ¢ to m with range [g,q].

3. if t = extend(c, qi, qu) and g, is not Void, add ¢ to m with range [q;, ¢,]. The
value of its associated extent will be within [g;, g,,] but this is decided by the
operational aspect of the process.

4. if t = contract(c,qi, q,) or t = delete(c,q) and ¢ appears in m then remove
¢ from the m.

The operational aspect of the process determines how the values associated
with constructs that appear in extend transformations are handled: if the logical
value for a construct derived from a pathway is [g;, ¢,], the maximal interpre-
tation will give the construct the value ¢, and the minimal interpretation will
give the construct the value q;.

For sending data from a peer schema ps; to a peer schema ps; via a superpeer
schema sps, we define the superpeer minmax interpretation as taking the
minimal interpretation for deriving the extent of constructs in sps from ps;, and
then the maximal interpretation for deriving the extent of constructs in ps; from
sps. Intuitively, the superpeer minmax interpretation ensures that only definite
information from ps; is transmitted to psj;, and that all such information is
transmitted. Example 1 illustrates this process applied to a message to convert
an insert request expressed on PS; to an insert request expressed on PS;, using
the superpeer maxmin interpretation.

Example 1 Using pathways to update requests Suppose the update re-

quest insert hpatient(10000,'ZS341234P"," Joe Bloggs','M’,56,'Davies’) is to be sent

from PS; to PS,. Transformations (3) and (4) convert the record to
hpatient('ZS341234P",' Joe Bloggs','M’,'Davies')

making it union compatible with allPatients in schema SPS;. Transformation

(5) then states that this hpatient data is a lower bound of what should be in-

serted into allPatients in the superpeer schema SPS;, and using the superpeer

10

minmax interpretation, giving the range of values of the message in SPS; as:
[allPatients('ZS341234P"," Joe Bloggs',’'M’,'Davies'),
allPatients('ZS341234P’," Joe Bloggs','M’,'Davies')]
Transformation @ then states upper bound of the the patient record in PS»
is that of allPatients in SPS;. Transformation @ then inserts a Void value for
the patient’s address while transformations @, @ and @ break up and replace
the name attribute to make the record
patient('ZS341234P’,' Joe','Bloggs’,'M’,'Davies’,Void)
Finally, transformation @ removes the gp attribute; note that the query asso-
ciated with this transformation allows one to reject records which do not have
Void or ‘Davies’ as the gp attribute. This finally gives
insert patient('ZS341234P’,' Joe','Bloggs’,'M’,Void)
as the message that will be sent to PS,. If the address is nullable, then this
insertion can be applied at PS; without further processing. However if address
cannot be Null, the insertion will be rejected. A user must then be prompted to
find the value of the address attribute before the insertion can be performed.]

4.4 Sending Query Requests Over BAV Pathways

We assume that query requests to be sent from a data source S; to another data
source Sy will be of the form query e where e is some IQL expression expressed
on the constructs of S7. The message translation process again has two aspects,
the first performing a logical translation of the message so that is may be
applied to Ss, and the second performing an operational interpretation of
the message.

The logical translation of e proceeds as follows for each successive transfor-
mation ¢ in the pathway S; — Sa:

1. if t = rename(c, ¢’), rename all occurrences of ¢ in e by ¢’;

2. if t = add(c, q) or t = extend(c, qi, g,) ignore t as ¢ cannot appear within the
current query expression ¢;

. if t = del(c, q) replace all occurrences of ¢ in e by the interval g, g];

4. ift = contract(c, qi, g,) replace all occurrences of ¢ in e by the interval [q;, g.];

w

The operational aspect of the process determines how the interval queries
associated with constructs that appear in contract transformations are handled:
if an interval query is [g;, ¢, the maximal interpretation will select g,, and the
minimal interpretation will select ¢;.

For sending query requests from a peer schema ps; to a peer schema ps; via
a superpeer schema sps, we define the superpeer maxmin interpretation as
taking first the maximal interpretation for selecting queries over the intermediate
schema sps, and then the minimal interpretation for selecting queries over the
target schema ps;. Intuitively, the superpeer maxmin interpretation ensures that
only definite information from ps; will be used to answer the query request and
that all such information will be used.

11

Example 2 Using pathways to translate queries Suppose the following
query is to be sent from PS; to PS;:
[(x,n) | x < {(hpatient)); (x,s) < {(hpatient,sex));s = 'F’; (x,n) < ((hpatient, ni))]
Transformation (6) results in this query on the superpeer SPS;, where the
notation ¢; .. g2 denotes a pair of set-valued queries respectively returning a
lower and upper bound:
[(x,n) | x < Void..{(allPatients)); (x,s) < Void..{(allPatients, sex)); s = 'F';
(x,n) < Void..{(allPatients, ni}]
Retaining only the upper bound queries, by the superpeer maxmin interpre-
tation, gives:
[(x,n) | x « {(allPatients)); (x,s) « {(allPatients, sex));s = 'F;
(x,n) « {((allPatients, ni))
Transformation @ now results in this query on schema PS,:
[(x,n) | x < {(patient))..Any; (x,s) < ((patient, sex))..Any;s = "F';
(x,n) « ((patient, ni))..Any]
Retaining only the lower bound queries, by the superpeer maxmin interpre-
tation, gives this final query on PS,:
[(x,n) | x < {(patient)); (x,s) < ((patient,sex));s = 'F'; (x,n) « {(patient, ni))]
After this is evaluated at PS,, the resulting set of records can be translated
back to PS; using the translation scheme for update requests in Section 4.3. O

Example 3 Queries which cannot be answered As an example of P2P
query processing involving unavailable information suppose the following query
is to be sent from PS; to PSs:

[(x,n) | x « {(hpatient)); (x,a) « {(hpatient, age));a > 65; (x,n) « {(hpatient, ni))]

Transformations (3) and (6) result in this query on the intermediate schema
SPS:[I

[(x,n) | x < Void..{(allPatients)); (x,a) « Void..Any;a > 65;

(x,n) < Void..{(allPatients, ni})]

Applying the maxmin interpretation, this becomes:

[(x,n) | x « {(allPatients)); (x,a) <« Any;a > 65; (x,n) « ((allPatients, ni))]

Transformation @ results in this query on schema PSy:

[(x,n) | x < {(patient))..Any; (x,a) < Any;a = 'F’; (x,n) < {(patient, ni))..Any]

Applying the maxmin interpretation, this finally simplifies to:

[(x,n) | x «— ((patient)); (x,a) < Any;a = 'F'; (x,n) < ((patient, ni))]

The presence of Any in the above query implies an absence of information
and the query will evaluate to the empty set: as we would expect, no information
can be extracted from PS, for the original query since it involves people’s ages,
about which there is no information in SPSj. O

In general, a peer may wish to assemble results to a query from more than
one peer that can provide such results, or from all such peers. This is easily
supported in our framework:

Suppose a peer P wishes to send a query request formulated with respect to
one of its local schemas, [, to other peers that have access to data semantically

12

related to [. P can find out to which superpeer schemas, s, there exists in its
own metadata repository a pathway [— s. P can also find out which other
peers support pathways to s and request from them the pathways from their
local schemas to s. P can then construct a set of pathways from its local schema
[going via a superpeer schema s to other peers’ local schemas. A query request
can be sent individually to each of these local schemas and the data returned
merged at P in order to answer the original query expressed on [.

We note that multiple levels of superpeer schemas are possible with our
approach, c.f. [BRMO02], and the inter-connection network between schemas in
our P2P network may be a tree of arbitrary depth as opposed to having just
one level. At present we assume no cycles in this inter-connection network, and
it is an area of further work to explore what their impact would be on query
processing, c.f. [HIST03]. For translating update requests and data sent from one
peer schema [to another I’, we can use ‘minmax’ semantics with respect to the
lowest common ancestor superpeer schema, sps, of [and I’ while for translating
queries from [to I’ we can use 'maxmin’ semantics with respect to sps.

We finally note that the BAV approach can also handle OO models. Once a
BAV pathway has been specified between two schemas, any query that uses inher-
itance needs to be rewritten to make that inheritance explicit, before being trans-
lated using the techniques described above, and then making the inheritance im-
plicit again. For example, suppose we had a subclass of hpatient called inpatient in
PS; which inherits the attributes of hpatient. The query ((inpatient, name)) on PS;
would first be translated to [(x,y) | (x) < {((inpatient)); (x,y) < ((hpatient, name))]
before being translated using the techniques already described.

4.5 Changes to an Integration Network and Schema Evolution

The highly dynamic nature of P2P integration means that we must handle two
types of changes in an efficient manner. First, a peer might wish to change
what parts of one of its local schemas are taking part in an integration network.
Second, the local schemas or superpeer schemas may evolve, and thus we need
to reuse the old integration network to form a new one.

To handle alterations to what constructs of a local schema take part in an
integration network we simply need to keep a record of what actions were taken
when performing steps (1)—(4) in Section 4.1, and see if those actions need to be
reviewed. In particular, if it is decided that a superpeer construct is now to be
related to the peer schema, then the transformation for the construct covered by
step (1) would be replaced by one or more covered by step (2). If a construct in
the peer schema is then in part derivable from the superpeer schema, then the
transformation for the construct covered by step (3) would be replaced by one
or more covered by step (4).

In our running example, it might be decided to relate treatment informa-
tion held in PS; with that in SPS;. This will cause an update to pathway
PS; — SPS; to be made, replacing the subpathway where the treatment ta-
ble was contracted (transformations (D and (2)) by a new subpathway that
transforms PSj.treatment into SPS;.allTreatments as follows:

13

®

addAtt({(treatment, ni)), [(x,z) | (x,y) « {treatment, hid));
(y,2) ((hpatient. ni)])
deleteAtt({(treatment, hid)), [(x,2) | (x,y) < {(treatment, ni));
(2,y) {(hpatient, ni)])

contractAtt(((treatment, consultant)), Void, Any)

contractAtt(((treatment, tid)), Void, Any)

extendTable({{allTreatments, ni, date, desc)), ((treatment, ni, date, desc)), Any)

contractTable({{treatment, ni, date, desc)), Void, {(all Treatments, ni, date, desc)))
Evolution of peer or superpeer schemas can be handled using our existing
techniques for schema evolution in BAV [MP02]. The approach is that any evo-
lution of a schema should be described as a BAV pathway from the original
schema. It is then possible to reason about the composite pathway between
other schemas, the old schema and the new schema. For example, let us sup-
pose that a peer decides to publish a new version of SPS; called SPS] such
that allPatients now includes an attribute age. This may be expressed by the
single-transformation pathway SPS; — SPSj:

@2 extendAtt(((allPatients, age)), Void, Any)

Now if a peer schema PSj integrates with SPS] via pathway PS3 — SPS] it

is possible to exchange messages and data between PS; and PS; and the new
schema PS3 using the techniques already described.

PO ®

4.6 Optimising Pathways

Once schema evolution has taken place over a period of time, it is likely that
some degree of redundancy may exist in pathways. Also, given the use of the
pathway for certain types of query processing, some elements of the pathway
may be removed to optimise the processing of the pathway during query and
message reformulation between schemas.

Using the techniques of [Ton03], the pathways may be analysed to determine
if the integration of the peer schemas with superpeer schemas might be refined
after schema evolution. For example, considering the pathway PS; — SPS] which
now consists of @6 ~@1) ,(3) —(6) ,@2 , it can be shown that @2 may be reordered
to appear just before (6) if we change (5) to include the age attribute, and
change @2 to operate on the hpatient table instead of the allPatients table. A
suggestion can then be made to the peer managing P.S; that the age attribute of
hpatient might be included in the data integration since there is an apparently
redundant contract and extend of the ((hpatient, age)) construct.

Once a particular operational interpretation has been decided upon for a long
term exchange of messages between a set of peers, it also is possible to adapt
techniques in [Ton03] to simplify pathways to give a direct pathway between the
peer schemas. For example, if we have a large number of updates to send form
PS; to PS; under minmax semantics, we may reorder transformations from the
PS; — PS; so that we have the subpathway:

(5) extendTable(((allPatients, ni, name, sex, gp)), ((hpatient, ni, name, sex, gp)), Any)
@ extendTable(((patient, ni, name, sex, gp)), Void, ((allPatients, ni, name, sex, gp)))

14

Then taking the minimum extent of (5) (since it is originally before SPS;)
and the maximum extent of @@ (since it was originally after SPS;) gives the
simplified transformation:

@3 extendTable(((patient, ni, name, sex, gp)), Void, {(hpatient, ni, name, sex, gp)))

Note that this simplified pathway is only suitable for message exchange be-
tween the peers using minmax semantics; since it does not form a semantically
correct relationship between the peers. This is because it is incorrectly stating
the PS,:{(patient)) is a subset of PSy:{(hpatient)).

5 Comparison with Related Approaches

In the context of data integration, GLAV is regarded as subsuming the ex-
pressive capabilities of LAV and GAV. Thus we focus our comparison here on
examining how BAV compares with GLAV. In the original GLAV work [FLM99],
rules were permitted to have a conjunction of source schema relations in their
head. In [MHO3] this was extended to allow any query expressed in the source
schema query language to appear in the head of a GLAV rule. In [CDD"03], the
distinction between source and global schemas is removed, and any number of
GLAV rules may be specified between schemas, hence in part moving towards
the BAV approach of specifying rules for each schema being integrated. How-
ever, [CDD™'03] does not differentiate between sound, complete and exact rules,
as GLAV rules are always sound.

In [CDD*03], integrating schemas PSy, PS,, ...PS,, there might be GLAV
rules PSy < PS;, PSs3, ..., PS,, PSy « PSy,PSs, ..., PS,, etc. By contrast, BAV
can define a single network of transformations that integrates the peer schemas.
This may be done by direct association between peers or, as described in this pa-
per, via one or more superpeer schemas. One advantage of the BAV approach is
that it separates the logical specification of a mapping between schemas from the
procedural aspects of performing query or update processing over the mapping.
Another advantage of BAV is that it allows common concepts shared between
schemas to be explicitly stated. For example, if hospitals insisted that all pa-
tients register with a GP (i.e. hospital_patient C gp_patient), then in BAV we
could integrate hospital peer schemas to specify a superpeer schema containing
{(hospital_patient)), and integrate GP peer schemas to specify a superpeer schema
containing ((gp_patient)), and then relate the two superpeer schemas by:

extendTable({{gp_patient, . ..)), {hospital_patient, ...}, Any)
contactTable(((hospital_patient, . ..)), Void, {(gp-patient)))

By contrast in GLAV, each hospital would need to state a rule saying that
its patients were a subset of gp_patient, in effect repeating the definition of
gp-patient at every peer, and omitting the concept of hospital_patient.

6 Summary and Conclusions

We have defined in this paper an extension to the BAV data integration approach
to allow it to specify both sound queries and complete queries in transformations,

15

and have demonstrated how this extension may be used for P2P data integration.
The sound queries are used where a minimum answer is required, and serve as
the basis for moving data from peer schemas to superpeer schemas, and for
answering queries on a superpeer schema from a peer schema. The complete
queries are used where a maximal answer is required, and serve as the basis for
moving data from superpeer schemas to peer schemas, and for answering queries
on a peer schema from a superpeer schema. Hence we use ‘minmax’ semantics in
moving data from a peer schema via a superpeer schema to another peer schema,
and ‘maxmin’ semantics in moving queries over a similar path.

We have shown how the pathways are easy to update to reflect changes in
the P2P data integration, and our previous work [MP02] has demonstrated how
we handle schema evolution. Redundancy in the pathways between schemas may
be removed using the techniques described in [Ton03].

The BAV approach has been adopted within the AutoMed data integration
system (http://www.doc.ic.ac.uk/automed). All source schemas, intermedi-
ate schemas and global schemas, and the pathways between them are stored in
AutoMed’s metadata repository [BMT02], and a suite of tools have been devel-
oped for creating and editing a schema integration network, processing queries
(using GAV query processing) [JPZ03], and analysing the contents of schemas
to suggest integration rules. Future work will extend this suite of tools to sup-
port the new P2P extensions reported in this paper. We also plan to apply this
technology in the SeLeNe project (http://www.dcs.bbk.ac.uk/selene) which
is investigating techniques for semantic integration of RDF/S descriptions of
learning objects stored in P2P networks.

References

[Bel02] T. Bellwood et al. UDDI version 3.0. Technical report, UDDI.ORG, July
2002.

[BGK"02] P.A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Ser-
afini, and I. Zaihrayeu. Data management for peer-to-peer computing: a
vision. In Proceedings of WebDB02, pages 89-94, 2002.

[BMT02] M. Boyd, P.J. McBrien, and N. Tong. The automed schema integration
repository. In Proceedings of BNCODO02, volume 2405 of LNCS, pages 42—
45. Springer-Verlag, 2002.

[BRMO02] Z. Bellahsene, M. Roantree, and L. Mignet. A functional architecture for
large scale integration. Technical report, Univ. of Montpellier, 2002.

[CDD"03] D. Calvanese, E. Damagio, G. De Giacomo, M. Lenzerini, and R. Rosati.
Semantic data integration in P2P systems. In Proceedings of DBISP2P,
Berlin, Germany, 2003.

[FLM99] M. Friedman, A. Levy, and T. Millstein. Navigational plans for data inte-
gration. In Proc. of the 16th National Conference on Artificial Intelligence,
pages 67-73. AAAI, 1999.

[HIMTO03] A.Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data manage-
ment infrastructure for semantic web applications. In WWW 2003, 2003.

[HISTO03] A.Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in
peer data management systems. In Proceedings of ICDE0S. IEEE, 2003.

16

[JLVV02)

[JPZ03]

[JTMPO03]

[Kit03]

[Len02]

[LNWS03]

[MHO03]

[MP99a]

[MP99b]

[MPO1]

[MP02]

[MPO03]
[Nejo3]
[PMY8]
[SL9O]

[Ton03]

M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis. Fundamentals of
Data Warehouses. Springer-Verlag, 2nd edition edition, 2002.

E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL Queries and
Migrating Data in the AutoMed toolkit. Technical report, AutoMed TR
Number 20, 2003. Available fromhttp://www.doc.ic.ac.uk/automed/.

E. Jasper, N. Tong, P.J. McBrien, and A. Poulovassilis. View generation
and optimisation in the automed data integration framework. Technical
report, AutoMed TR Number 16, Version 3, 2003. Available from http:
//www.doc.ic.ac.uk/automed/.

S. Kittivoravitkul. Transformation-based approach for integrat-
ing semi-structured data. Technical report, AutoMed Project,
http://www.doc.ic.ac.uk/automed/, 2003.

M. Lenzerini. Data integration: A theoretical perspective. In Proceedings
of PODS 2002, pages 233-246. ACM, 2002.

A. Loser, W. Nejdl, M. Wolpers, and W. Siberski. Information integration
in schema-based peer-to-peer networks. In Proceedings of CAiISE 2003,
LNCS. Springer-Verlag, 2003.

J. Madhavan and A.Y. Halevy. Composing mappings among data sources.
In Proceedings of 29th Conference on VLDB, pages 572-583, 2003.

P.J. McBrien and A. Poulovassilis. Automatic migration and wrapping of
database applications — a schema transformation approach. In Proceedings
of ER99, volume 1728 of LNCS, pages 96—113. Springer-Verlag, 1999.

P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model
transformations. In Advanced Information Systems Engineering, 11th In-
ternational Conference CAiISE’99, volume 1626 of LNCS, pages 333-348.
Springer-Verlag, 1999.

P.J. McBrien and A. Poulovassilis. A semantic approach to integrating
XML and structured data sources. In Proceedings of 18th CAiSE, volume
2068 of LNCS, pages 330-345. Springer-Verlag, 2001.

P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous
database architectures, a schema transformation approach. In Advanced In-
formation Systems Engineering, 14th International Conference CAiSE2002,
volume 2348 of LNCS, pages 484-499. Springer-Verlag, 2002.

P.J. McBrien and A. Poulovassilis. Data integration by bi-directional
schema transformation rules. In Proceedings of ICDE0S. IEEE, 2003.

W. Nejdl et al. Super-peer-based routing and clustering strategies for RDF-
based peer-to-peer networks. In WWW 2003, 2003.

A. Poulovassilis and P.J. McBrien. A general formal framework for schema
transformation. Data and Knowledge Engineering, 28(1):47-71, 1998.

A. Sheth and J. Larson. Federated database systems. ACM Computing
Surveys, 22(3):183-236, 1990.

N. Tong. Database schema transformation optimisation techniques for the
automed system. In Proceedings of BNCOD, volume 2712 of LNCS, pages
157-171. Springer-Verlag, 2003.

[vdAvH02] W. van der Aalst and K. van Hee. Workflow Management: Models, Meth-

[Wie92]

[WPO03]

ods, and Systems. MIT Press, 2002.

G. Wiederhold. Mediators in the architecture of future information systems.
IEEE Computer, 25(3):38-49, March 1992.

D. Williams and A. Poulovassilis. Representing RDF and RDF
Schema in the HDM. Technical report, AutoMed Project,
http://www.doc.ic.ac.uk/automed/, 2003.

17

