P2P query reformulation over
Both-as-View data transformation rules

Peter MBrien' and Alexandra Poulovassitis

! Dept. of Computing, Imperial College, Univ. of Londquj, m@oc. i c. ac. uk
2 School of Computer Science and Information Systems, Birkbeck Gglleg
Univ. of London,ap@Ics. bbk. ac. uk

Abstract. The both-as-view (BAV) approach to data integration has the advan-
tage of specifying mappings between schemas in a bidirectional maanigat
once a BAV mapping has been established between two schemas, quayibs
exchanged in either direction between the schemas. By defining pub&mssh
shared between peers, this allows peers to exchange queries via agohieiica
without the requirement for any one peer to hold the public schema data.

In this paper we discuss the reformulation of queries over BAV transdtion
pathways, and demonstrate the use of this reformulation in two modesof qu
processing. In the first mode, public schemas are shared betweesrgpel queries
posed on the public schema can be reformulated into queries overt@asodaces
that have been mapped to the public schema. In the second, quenEsaceon
the schema of a data source, and are reformulated into queries oreradath
source via any public schema to which both data sources have beerdnapp

1 Introduction

In [MP03a] we presented thieoth-as-view (BAV) approach to data integration, and
compared it withglobal-as-view(GAV) and local-as-view(LAV) [Len02]. In BAYV,
schemas are mapped to each other using a sequence of schasfartnations which
we term a transformatiopathway. These pathways are reversible, in that a pathway
Sz — S, from a scheméb,, to a schemab, may be used to automatically derive the
pathwaysS, — S, andvice versaAlso, from BAV pathways it is possible to extract
GAV, LAV and GLAV mapping rules [JTMPO4]. The BAV approachdbeen imple-
mented as part of the AutoMed data integration at Birkbeaklarperial Colleges (see
http://ww. doc.ic. ac. uk/ aut oned).

As discussed in [MP02,MP03a], one advantage of BAV is thedatily supports
the evolution of global and local schemas, including theitaatdor removal of local
schemas. An evolution of a scherfiato S/, is expressed as a pathway — S, and
then pathways of the forri, — S, may be ‘redirected’ t&, by prefixing the reverse
of S, — S.,i.e.S, — S, t0S5, — S, to derive a pathway!, — S,. As we discussed
in [MPO3b], this feature makes BAV well-suited to the neefilpeer-to-peer (P2P)
data integration, where peers may join or leave the netwoakatime, or may change
their schemas or pathways between schemas.

Figure lillustrates via an example how centralised and R2#&idtegration differ in
BAV. In Figure 1(a), standard centralised data integratibthata sourcess, S, . . . into

Py
S3
-8t
Sp
g directory
P service
Py P P2P protocol
S, S
® 6 . .
o-ot 1O
S| | 8| |8 51 52
(a) Centralised (b) P2P

Fig. 1. Example of centralised versus P2P Data Integration in BAV

a global schem&), is specified by a set of pathwags — S, 52 — S, ... managed
centrally by the data integration system (some of the ta@nshtions(1)-23 used to
specify these example pathways will be listed later in thEepa In P2P data integration,
each peerP, manages the integration of a data soufgeas a pathways, — 5,
and there is a directory service and P2P protocol that alltv@speers to interatt
The shared global schema is callegublic schema emphasising that no single peer
controls the global schema but, by contrast, it is simply Bliply available schema
definition that any peers may use. Note that sameBAV pathway specification is
used to mapS, — S, in both the centralised and the P2P systems. The directory
service allows a peer to discover what public schef)asxist, and which peers support
pathways to that public schema. Key aspects of the P2P iaice [BLMROE]:

— PeerP, can request that ped?, executes a query posed on a public scheipa
and return the results tB,.

— PeerP, can request that pedr, sends it the pathway, — S, allowing P,
to itself construct a centralised data integration model tanprocess queries that
access data sourcég without incurring a load orP,.

One contribution of this paper is that we specify how, givepathwayS, — S,
and a query; posed onS,, ¢ can be reformulated using a combination of LAV and
GAV techniques into a query posed onS,. This is an advance on our previous work
which only showed how GAV or LAV views individually could besdved from BAV
pathways (we do not consider in this paper reformulationgign addition the GLAV
rules that could be extracted from the BAV pathway, and l¢haeas an area of future
work). A second contribution of this paper is that the P2Rqwol combined with the
reversibility of BAV pathways allows us to support two typesjuery processing:

— In public schema queryingwe simulate centralised data integration within a P2P
environment: a user at a peéy, poses a query on a public scheifig and P,

! For simplicity of presentation in this paper, we assume that each datessaacessed via one
peer, and each peer accesses only one data source. In factpooacpallow a many-many
relationship between data sources and peers.

asks each other peéy, supporting$,, to either (1) process the query and return the
result back taP,, or (2) send its pathway t§, to P, so thatP, can construct the
centralised data integration model and process the qusal.it

— In data source queryinga user at a pedP, poses a query on data sourc§, and
wishes it to be reformulated into a queyyon some other data sour®g. This is
achieved by using the pathway. — S, to reformulateg into a query onS,,. Then
P, is able to interact with other peers supporting the publfeeseas,, using the
public schema querying techniques already described.

Previous work on P2P data integration in the Piazza systesnubkad combina-
tions of LAV and GAV rules between schemas, and a combinaifoBAV and LAV
query processing techniques [HISTO3,HIMTO3]. Piazzaed#ffrom our approach in
that mappings must be specified directly between peers. Whitsapproach does not
preclude this, we also allow mappings to be specified to aipgbhema, making our
approach more scalable.

Other related work is [Nej03,LNWS03] which uses a superpesred network
topology to provide better scalability than pure peer-t@ipnetworks. Routing indexes
at superpeers store information about the metadata alm#alhe peers directly con-
nected to them, and aid in the forwarding of query requedistorrelevant peers.

The need for a superpeer is avoided in the local relationale®@GK02], where
peers are directly related by a combination of a domainimiahat specifies how the
data types of the peers are related, together with cooidim&drmulae that specify that
if one predicate is true in one peer, then another predisateé in another peer.

Our approach combines the respective advantages of theteers/by having virtual
public schemas — allowing peers to reuse the existing iategr of other peers with
public schemas — but having no physical superpeer nodesidmatact as a bottleneck
in the system — in particular, any peer can combine the iatémrs of other peers with
public schemas in order to form direct pathways betweenspfeerquery and update
processing.

In [CDD*03] GLAV rules [FLM99,MHO03] are used to specify the constaiof
each schema in terms of the constructs of some set of othespleemas. There is no
distinction between source and global schemas, and any euofliGLAV rules may
be specified between schemas. However, unlike BAV, [CD8] does not differentiate
between sound, complete and exact rules, as the GLAV ruéeslamys sound. CoDB
[FKLZ04] generalises this to allow sound and complete GLAlés to be specified.

The remainder of the paper begins with a review of the BAV diategration ap-
proach in Section 2 together with details of the data intiégmaexample sketched in
Figure 1. We then describe in Section 3 the process of quéoymelation over BAV
pathways, and illustrate how it supports public schemayingr In Section 4 we dis-
cuss how to improve support for data source schema quenyingre a certain degree
of pathway repair may be needed in order to fully support datace schema querying.

2 Overview of BAV data integration

The basis of the BAV approach to data integration is a lovelléypergraph-based
data model (HDM). Higher-level modelling languages are specified in termthisf

lower-level HDM. An HDM schema consists of a set of nodesesdand constraints,
and each modelling construct of a higher-level modellingylzage is specified as some
combination of HDM nodes, edges and constraints. For egod @f modelling con-
struct of a modelling language.g.Table, Column, Primary Key andForeign Key in
the relational model) there are available a set of primifgeema transformations for
adding such a construct to a schema, removing such a conswut a schema and,
in the case of constructs with textual names, renaming swdnstruct. Schemas are
incrementally transformed by applying to them a sequengwiafitive schema trans-
formations, each primitive transformation adding, delgtbr renaming just one schema
construct.

In general, schema constructs may be extensional i.e. hataaextent associ-
ated with them€.g. Table andColumn in the relational model) or may be constraints
(e.g.Primary Key andForeign Key in the relational model). In this paper we will re-
strict our discussion to the relational model, and henceresibnal schema constructs
consist of sets of values. The general form of a primitivegfarmation that adds an
extensional construet of type T to a scheméb' in order to generate new scherffa
is addT'(c, gs), whereggs is a query overS specifying the extent of in terms of the
existing constructs of. The semantics of this transformation are that

Vr.z €c— x€qs

In the AutoMed implementation of BAVjs is expressed in a functionadtermediate
query language(IQL) (see Section 2.1).

When it is not possible to specify the exact extent of the nemstactc be-
ing added in terms of the existing schema constructs, thaitpre transformation
extendT (¢, Range ¢; ¢,) must be used instead afid. This adds a new construct
of typeT to a schemd, generating a new schen$4. The queryg, over S states what
is the minimum extent of in S’; ¢; may be the constaivoid if no lower bound on the
extent can be specified. The queryover S states what is the maximal extent©in
S’, and may be the constaAny if no upper bound on the extent can be specffi€ar
non\oid ¢; thereforevz .z € ¢ «+— = € ¢;; and for nonAny ¢, Vz . x € ¢ — x € q,.
Also, addT'(c, gs) is equivalent taextendT’ (¢, Range ¢s gs)

In a similar fashion, the transformatiateleteT(c, ¢;) when applied to schems/
generates a new scherfavith the construct of typeT' removed. The extent efmay
be recovered using the quegy on S, andVz . x € ¢ < = € gg. Note therefore that
from a transformationleleteT'(c,qs) used to transform schenff to schemas we can
automatically infer thaaddT(c,qs) transformsS to S/, and vice versa. When it is not
possible to specify the exact extent of the consteumting deleted fron$’ in terms of
the remaining schema constructs, the transformataniract?’ (¢, Range ¢; ¢,,) must
be used instead afelete. This removes a construcbf typeT from schema’ to form
anew schem&. The queryy; overS states what is the minimum extentah S’, while
the queryg,, over S states what is the maximal extent«ih S’. Again,q; may beVoid
andq, may beAny. deleteT (¢, ¢s) is equivalent t&ontractT (¢, Range ¢s gs). Also,

2 syntactically,Range, Void and Any are all examples o€onstructors, which in this case
respectively take 2, 0 and 0 arguments. Constructors in functionaléeyas are analogous to
function symbols in logic languages.

from contractT'(¢, Range ¢; ¢,,) used to transform schem# to schemaS we can
infer thatextendT (¢, Range ¢; ¢,,) transformsS to S’, and vice versa.

Finally, the transformatiomenameT (¢, ¢’) causes a construet of type 7' in a
schemaS to be renamed te@’ in a new schema’, whereVx . x € ¢ « x € (.
Thus, fromrenameT (¢, ¢’) used to transforn$ to S’ we can infer thatenameT'(¢, ¢)
transformsS’ to S.

2.1 AutoMed'’s IQL Query Language

IQL is a comprehensions-based functional query langtiagesupports strings e.g.
‘Computer Science’, booleansTrue and False, real numbers, integers, tuples e.g.
{1,2,3}, and sets, bags and lists. There are several polymorphititjvé operators
for manipulating sets, bags and lists. The operatoiconcatenates two lists, and per-
forms bag union and set union on bags and sets, respectiiedyoperatoflatmap
applies a collection-valued functidrio each element of a collection and applies to
the resulting collections. For sets, it is defined reculgias follows, wherd] denotes
the empty set an@S5Cons x xs) denotes a set containing an elememtith xs being the

rest of the set (which may be empty):
flatmapf[] = []

flatmap f (SCons x xs) =(f x) ++(flatmap f xs)
Henceforth in this paper, we confine our discussion to ctiles that are sets.

The operatoflatmap can be used to specifyfomprehensionsover sets. These are
of the form[h | q1; ...; ¢,) whereh is an expression termed theadandg;, ..., ¢,
arequalifiers, with n > 0. Each qualifier is either filter or agenerator. A generator
has syntay<—e wheree is a set-valued expression anib apattern i.e. an expression
involving variables and tuple constructors only. The Valés of p are successively
bound by iterating througl. Any variables appearing in the hedd, inherit these
bindings. A filter is a boolean-valued expression, which hingssatisfied by the values
generated by the generators in order for these values tailoota to the final result
of the comprehension. Comprehensions are a convenientiénghsyntax and add no
extra expressiveness to languages such as IQL since thesjat@ into applications of
flatmap. We give the translation below for a set comprehension, e/edenotes a
sequence of qualifiers aifld] a set comprising a single elemént

[h | p<—e; Q] = flatmap (lambdap.[h | Q]) e
h] e Q] = ife = Truethen [h | Q] else []
[h] = [h]

IQL supports unification of variables appearing in the pagef generators within
the same comprehension. For example,
[{a,b,c,d,e} | {a,b,c} <—r;{d,c,e} <—5]
is equivalenttd{a, b, c,d,e} | {a,b,c} <—r;{d,c2,e} <—s;c =c2]

Several equivalences hold for these IQL operators, whidloviofrom their defi-
nition and from the interpretation assigned to ¥&d and Any constants. We list an

% We refer the reader to [JPZ03] for full details of the language and werfir discussion here
to just those aspects that are necessary for this paper. Such lasgubgeme query languages
such as SQL-92 and OQL in expressiveness [Bun94].

indicative subset in the Appendix, including specificalipse equivalences that we re-
fer to later in the paper. These equivalences assume thatssipns are well-typed
(which can be verified statically for IQL) and they are apgliey AutoMed’s query
optimiser in order to simplify IQL queries before evaluatio

2.2 An Example

Figure 2 shows four schema$, S2, Ss, S,. S1, S2, S3 are data source schemas while
S, is what in a centralised data integration system would bledal global schema

and in our P2P system is calledpablic schema The semantics of the application
domain are that atudent with namesname may repeatedly sit the exam forcaurse
(identified byccode, and each havingtitle) over any number of semesters, and achieve
an exammark on each exam sitting. However, for all attempts of the cquteestudent

will have the saméutor (tutors having been introduced at the start of 1994, alortly avi
coursework marlkewmark that students can attempt only once per course). Each gtuden
studies for onalegree. Each degree is identified bydrode, has a tittedname and

has an associataeplialification.

[Si studies(sname,ccode,sem,marktitle,dname)

|83 teach(sname,ccode, sem,mark,tname?)

degree(dcode,dname,qual) degree(dcode,dname)
ug(sname,dcode) student(sname,dcode)

| reg(sname,ccode,cwmark,tutor) | course(ccodetitle)

| sit(sname,ccode,sem,mark,cwmark?)

Fig. 2. Three data source$;, S2, S3, and a public scheméi,

Schemab), is a virtual schema modelling the application domain, angtthe infor-
mation about tutors and about the qualification associaidddegrees. Thewmark
is shown as optional (by a *?’ suffix) since it was only awardiexn 1994 onwards.
Schemas; represents a data source that holds information abouteswith accode
greater or equal to 500, and holds data in first normal formcgstiname is depen-
dent on jussname andtitle is dependent on jusicode). SchemaS; represents a data
source that holds information about courses witbcade less than 500, and is also
in first normal form, since it holds itname the tutor’'s name (an optional attribute),
which is dependent on jushame andccode. SchemaS; represents a data source that
details the tutors of courses, the coursework mark the stugiened for the course, and
the degrees students studied, and is held in third normiaddbr

Suppose we wish to transform data or queries betwggrand the other three
schemas. We consider below fragments of the pathvgays- S, andS; — S, in
order to illustrate the BAV approach and the use of IQL quewiihin transformations.
Within the pathwayS; — S, it is necessary to decompose ttedies table in.S; in
order to produce the separateurse table that is present ifi,. Here is the fragment of
that pathway:

(D extend Table({(course)), Range ([{c} | {s,c,t} <— {studies))]) Any)

(2) extendColumn({{course,ccode)), Range [{c, c} | {c} <— ((course))] Any)

(3 extendColumn({(course,title)), Range ([{c, ti} | {{s, c, t},ti} <— ((studies,title))]) Any)
(@) contractColumn({(studies,title)),

Range Void [{{s, ¢, t}, ti} | {s,c, t} <— ((studies)); {c, ti} <— ((coursetitle))])

Transformation(1) states that theourse table in.S, contains as its set of keys at
least thosecode attributes ofstudies in S (the first argument of thBange construc-
tor). We note here that the AutoMed representation of aioglat table models the table
itself by its set of primary key values, and models eachlattéa of the table by the
projection of the table onto the primary key attributes pluee [MP03a] for more
details of this).

Transformations2) and (3) add theccode andtitle columns tocourse. Again
these areextend transformations with upper bounkhy. The final transformation4)
removes thditle attribute of thestudies table and specifies the upper bound that the
title attribute inS,, places on the extent of thigle attribute inS;.

The pathwayS, — S, needs to specify that the tutbrame has no representation
in Sy, using transformatiof®) below. The remainder of the pathway is not required for
the examples that follow, and is therefore omitted from dscudission.

(B contractColumn(((teach,tname}), Range Void Any)

3 Query Reformulation over BAV Pathways

In this section, we discuss how query reformulation can letiaken over BAV path-
ways. We first illustrate how BAV pathways can be used for GAM &AV query re-
formulation, and hence can support GAV and LAV query procesdVe then present a
BAV-specific query reformulation algorithm which subsunassspecial cases GAV and
LAV query reformulation.

3.1 GAV query reformulation

GAV query reformulation is based on query unfolding. Forrapée, to evaluate a query
g on S, with respect taS;, we traverse the pathway, — S, (i.e. thereverseof the
pathwayS; — S, described earlier) replacing each scheme ithat appears in an
delete or contract transformation with the corresponding query of that transfation.
Example Query 1 To reformulate the query

q: = [{ti} | {c, ti} <— {(course, title)); c = 500]
first (4) is ignored (since its reverse is antend transformation), and thef®) unfolds
{(coursetitle)) giving:

[{ti} | {c,ti} <— Range([{c,ti} | {s,c,t,ti} <— {(studies, title))]) Any;c = 500]
Using the equivalence in Appendix A (a) and the third eqeimak in App. A (b) this
simplifies to:

Range[{ti} | {c,ti} <— [{c,ti} | {s,c,t,ti} <— ((studies, title))]; c = 500] Any
Using the last equivalence in App. A (d) this further simpfgito:

Range[{ti} | {s,c,t,ti} <— ((studies, title)); c = 500] Any

Transformationg2) and (1) have no further effect on this query, and thus this is the
transformed query that can execute on data sofirée

3.2 Enhanced GAV reformulation

The fact that BAV rules are stated on irreducible constro€i data model means that
GAV query reformulation can be used in some cases where \iliigr alata integration
approaches LAV query reformulation would have been necgsEaillustrate, consider
the pathwaySs; — S,, where the tableeg in S; hassname andccode as its key
attributes since it records the tutor for the course, whinésthot change for each sitting.
This table is mapped to the tald# in S, that hassname, ccode andsem as its key
attributes since students may (re)sit the examination @iaginy course once in any
semester. Recall that the tutors for courses were onlydotred fromsem 1 of 1994.
Below is the relevant fragment of the pathwgy — S,,. We note that transformatidg)
contains the expressidfonstl sc in the head of the comprehension. HeBanstl is
an IQL constructor (analogous to a Skolem function in logic languages), useeuse
it is not possible to derive theem attribute of(sit)) from ((reg)).
(6) extend Table({(sit)),

Range [{s, c, Constlsc} | {s,c} <— ((reg)); (Constlsc) >= '1994-1] Any)
(@ extendColumn({(sit,sname)), Range [{{s, c, t},s} | {s,c,t} <— ((sit)] Any)
(8 extendColumn({(sit,ccode})), Range [{{s,c, t},c} | {s,c,t} <— {sit)] Any)
(9) addColumn({(sit,cwmark)),

{{s,c,t},ew} | {s,c, t} <— ((sit); {{s,c},cw} <— ((reg,cwmark))])
@0 extendColumn({(sit,sem)), Range [{{s, c, t},t} | {s, c,t} <— {(sit)] Any)
@2 deleteColumn({(reg,sname)), [{{s, c},s} | {s,c} <— (reg)])

«

@2 deleteColumn(({(reg,code)), [{{s,c},c} | {s,c} <— (reg)])
@3 deleteColumn({(reg,cwmark)), [{{s, c},cw} | {{s,c, t},cw} <— ((sit,cwmark))])

@9 contractTable(((reg)), Range Void [{s,c} | {s,c,t} <— ((sit); t >=‘1994-17)

There are a family of constructo@onstl, Const2, ... Any expression of the form
Consti ey ...e, is only comparable with an expression constructed usingstime
constructor i.e. with an expression of the fo@onsti ¢} .. .e/,. Thus, an expression of
the formConstie; ... e, = Constie] ... €], evaluatestdrueif e; = e;- evaluates
to True for all j otherwise it evaluates téalse, and similarly for the other comparison
operators. Any other kind of comparison @bnst: returns the valuéNull, denoting
“unknown”. If Null is the value of a filter in a comprehension, then the result lval
a Range expression i.e. the second rule of comprehension traoslati Section 2.1
becomes:

[h | e; Q] =ife = Truethen [h | Q] elseif e = Falsethen [] else (Range Void [h | Q])
Example Query 2 Consider the following query posed 6fy:

g2 = [{s,c,ew} | {{s,c, t},cw} <— ((sit,cwmark)); t >= 1997-1']

Unfolding ((sit,cwmark)) using(9) we obtain:
[{s,c,cw} | {s,c, t,cw} <— [{s,c, t,cw} | {s,c, t} <— ((sit));
{{s,c},cw} <— ((reg, cwmark))]; t >="1997-1"]

4 Applications of the simplifications from Appendix A have no effect on thraastics of queries,
and we have used them here to improve the readability of our exampliesjuerpractice, the
AutoMed logical optimiser applies these kinds of simplifications just onder, tife query has
been fully reformulated.

which by an equivalence in App. A (d) simplifies to
[{s,c,cw} | {s,c,t} <— {(sit); {{s, c},cw} <— ((reg,cwmark)); t >="1997-1"]
Unfolding ((sit)) using(6) we obtain:
[{s,c,cw} | {s,c,t} <— Range[{s,c, Constlsc} |
{s,c} <— ((reg)); (Constl s c) >="1994-1"] Any;
{{s,c},cw} <— ((reg, cwmark)); t >="1997-1]
By the equivalences of App A (a) and (b), this simplifies to:
Range[{s,c,cw} | {s,c,t} <— [{s,c, Constlsc} |
{s,c} <— ((reg)); (Constl s c) >="1994-1";
{{s, c},cw} <— ((reg, cwmark)); t >="1997-1"] Any
Swapping the last two qualifiers of the outer comprehensind moving >= '1997-1’
into the inner comprehension (by equivalences in App A ()%
Range[{s,c,cw} | {s,c,t} <— [{s,c, Constl sc} |
{s,c} <— ((reg)); (Constl s ¢) >="1994-1"; (Constl s c) >="1997-1";
{{s, c},cw} <— ((reg, cwmark))] Any
which (by an equivalence in App A (d)) simplifies to
Range[{s,c,cw} | {s,c,t} <— [{s,c, Constl sc} |
{s,c} <— ((reg)); (Constl s c) >="1997-1"];
{{s,c},cw} <— ((reg, cwmark))] Any
At run time this gives the same result as the following qusigce Constl s ¢ >=
'1997-1" evaluates tdNull:
Range Void [{s,c,cw} | {s,c,t} <— [{s,c, Constl s c} |
{s,c} <— (reg)l; {{s,c},cw} <— (reg, cwmark))]
i.e. it returns as an upper bound the student names, colnsgbave taken and course-
work marks obtained fron$.

3.3 LAV query processing

The schema; contains &(studies,dname)) attribute, that corresponds §), to some
instances of the join betweefstudent,dcode)) and ((degree,dname)). This is ex-
pressed in BAV by the following fragment of the pathwsly — S),:
@9 extend Table({(student)), Range [{s} | {s,c,t} <— ((studies))] Any)
@8 addColumn({(student,sname)), [{s,s} | {s} <— ((student))])
@7 extendColumn({(student,dcode)), Range Void Any)
@8 extend Table({{degree)), Range [{d} | {s,d} <— ((student,dcode))] Any)
@9 addColumn(((degree,dcode)), [{d,d} | {d} <— (degree))])
@0 extendColumn(((degree,dname)), Range [{d,dn} | {s,d} <— ((student,dcode));
{{s,c,t},dn} <— ((studies,dname))] Any)
@2 contractColumn(((studies,dname)), Range Void
[{s,dn} | {s,d} <— ((student,dcode)); {d,dn} <— ((degree,dname))])
Example Query 3 Consider the following query of,,:
g3 =[{s} | {s,d} <— {(student,dcode));{d,dn} <— (degree,dname));dn =
‘CS’]
Using GAV, ((degree,dname)) would unfold using20 and((student,dcode}) would
then unfold usindl?, obtaining:

[{s} | {s,d} <— Range Void Any;
{d,dn} <— Range[{d,dn} | {s,d} <— Range Void Any;
{{s,c,t},dn} <— {(studies,dname))] Any;dn ='CS’]
which simplifies to jusRange Void Any, i.e. giving no answers.

However the querys on S, can yield answers using LAV query processing. There
are two main techniques for LAV query processing,itherse rulealgorithm [Qia96,DG97]
and thebucket algorithm [LRO96]. For simplicity we focus here on the formidsing
the inverse rule approach, the definition of a consteuzy a query of the forna | Q]
is inverted in a two-step process. First, replace each biaria () that does not appear
in h by a distinctConsti with arguments the variable(s) in For example@5 has two
such variables; andt which are replaced b§onst2 s andConst3 s respectively; while
in @2, there is one such variabte which is replaced bfonst8 s dn (see below). Next,
for each generatgr<—cs in Q, generate a query definirg in terms of[p | h <—c¢; Q']
where@’ consists of all the filters frond). To illustrate, we list below all the inverse
rules derived from the fragmed6—21 of the BAV pathwayS; — S,..

((studies)) =Range Void [{s, Const2 s, Const3 s} | {s} <— ((student))]

(student)) = [{s} | {s,s} <— ((student,sname))]

((student,dcode)) =Range Void [{Const4 s,d} | {d,d} <— ((degree,dcode))]

(degree)) = [{d} | {d,d} <— ((degree,dcode))]

((student,dcode)) =Range Void [{Const5 d dn,d} | {d,dn} <— ((degree,dname))]

((studies,dname)) =Range Void [{{Const5 d dn, Const6 d dn, Const7 d dn}, dn} |
{d,dn} <— ((degree,dname))]

((student,dcode)) =Range [{s, Const8 sdn} | {s,dn} <— ((studies,dname))] Any

((degree,dname)) =Range [{Const8 s dn,dn} | {s,dn} <— ((studies,dname}))] Any

Query processing that requires to use a particular cortstarccombine the direct

definition of the construct within the BAV pathway with alleghnverse rules for that

construct derived from the BAV pathway. This set of defim8aan be combined using

a merge function defined as follows, whergion andintersect are set union and set

intersection:

OBEGG®

O®

merge (Range el e2) (Rangeel’ e2’) =Range (unionelel’) (intersect e2 e2’)

Returning to our example, when a query is submitteslfand answers are required

from Sy, the rule€15,d6, 19,8,19,20,6:9,6:3 can be used. In particular, for processing
querygqs above, we have:

((student,dcode)) =merge(@?¢) = 61)and (degree,dname)) =merge R0 é1) =

Substitution now for({student,dcode)) and ((degree,dname)) in ¢ gives:

[{s} | {s,d} <— Range[{s, Const8 sdn} | {s,dn} <— ((studies, dname))] Any;
{d,dn} <— Range[{Const8 s dn,dn} | {s,dn} <— ((studies,dname))] Any;
dn ='CS/|

which simplifies to:

Range[{s} | {s,d} <— [{s, Const8 sdn} | {s,dn} <— ((studies, dname))];
{d,dn}<—[{Const8 sdn,dn} | {s,dn}<—((studies, dname))|; dn = 'CS’] Any

which when evaluated would give the same set of answers as:

Range[{s} | {s,d} <— ((studies, dname)); dn ='CS’] Any

3.4 P2P Query Reformulation on BAV pathways

Following the examples presented above, we now summarisebmbined GAV and
LAV query reformulation can be carried out over a BAV pathwély — S, with
the aim of obtaining the maximal information that would beible from the BAV
pathway by means of GAV and LAV query processing techniques.

Suppose we wish to reformulate a quergosed onS,. to be posed with respect to
Sy. (We note that, due to the reversibility of BAV pathways,nfra pathways, — .S,
it is also possible to reformulate a queyyposed onS, to be posed with respect to
S.. The process is exactly as described below except that niswith respect to the,
automatically derivablagversepathwayS, — S,.. This was the scenario illustrated in
the examples above, where pathways— .S, were used to reformulate queries 8p
so that they could be evaluated 6p.)

The first step is to construct a set of view definitioisdefining constructs iy, in
terms of constructs i¥,. This is undertaken by traversing the pathwy— 5,, and
at each transformation stepaking one of the following actions:

— if tis of the formrename(c, ¢’) the rulec = ¢’ is added to;

— if ¢ is of the formdelete(c, ¢) or contract(c, q), the rulec = ¢ is added to/;

— if ¢ is of the formadd(c, ¢), wheregq is a comprehension referencing schema con-
structsey, ..., ¢, in its generators, then invert the rute= ¢ (as described in
Section 3.3) to obtain a set of rules of the form= ¢; for 1 < ¢ < n such that the
only scheme referenced in eaghis ¢; add these rules tv;

— if ¢ is of the formextend(c, Range Void ¢,,), whereg,, is a comprehension as in the
case ofadd(c, q), then invert the rule =Range Void ¢, to obtain a set of rules of
the forme; =Range ¢; Any; add these rules tv;

— if t is of the formextend(c, Range ¢; Any), whereg, is a comprehension as in the
case ofadd(c, ¢), then invert the rule =Range ¢; Any to obtain a set of rules of
the forme; =Range Void ¢;; add these rules to;

— if t is of the formextend(c, Range ¢; ¢..), whereg, andg,, are comprehensions as
in the case o&dd(c, ¢), then invert the rule =Range ¢; ¢,, by inverting separately
¢, andg;, as in the previous two cases, to obtain frgma set of rules of the form
¢; =Rangeg; Any and fromg; a set of rules of the form; =Range Void ¢;; add
these rules to;

We note that the worst-case complexity of constructig O(N x M) whereN is the
number of primitive transformations in the pathway avidis the maximum number of
schema constructs appearing in comprehension expressions

Once constructed; can be used to reformulate a querposed onS,, with respect
to S,. We term a schema construcivhich appears it final otherwise it isnon-final.
The query reformulation algorithm is as follows, where thadtion N F'(¢) returns the
set of non-final schemes occurring in an IQL query

while NF(q) # 0
for each ¢c € NF(q)
e := Range Void Any
for each rule r € V such that head(r) = ¢
e := merge e body(r)
q:=c/elq
In other words, non-final constructs inare successively replaced by their defini-

tion in ¥V until there are no non-final constructs left. It is easy to thed this process
terminates: Leg be the graph obtained from by creating a node ig for each schema
construct in the head of a rule Wand an are: — ¢ in G if ¢/ appears in a rule defin-
ing ¢. The acyclicity ofg follows from the syntactic properties of BAV transformatio
sequences: aadd or extend transformation can only add a construct that does not
exist in the input schema, and the query within the transébion can only refer to
constructs existing in the input schemagelete or contract transformation can only
delete a scheme that exists in the input schema and the qiteig the transformation
can only refer to schemes existing in the output schema. 8gdkiclicity ofG the query
reformulation algorithm must terminate. The complexityttod query reformulation al-
gorithm is againD(NN x M). The resulting query would then be optimised, applying
equivalences such as those listed in Appendix A and illtesiran the earlier examples,
and evaluated.

4 Data Source Schema Query Processing

BAV pathways can in principle be used to map directly betwpear schemas in a
P2P data integration scenario, and the techniques we haeeald above can be used
to reformulate queries with respect to a BAV pathway betwiem peer data source
schemas. However, defining pairwise mappings between pégsdurce schemas does
not scale as the number of schemas grows. Thus, in AutoMedsewsapport P2P BAV
data integration vigublic schemas as already described in the Introduction.

A desirable property in data integration is that the mappdegween a pair of
schemasS, andS, should form ecomplete mapping in the sense that it identifies all
possible mappings between schema objects in schémasd S,. In our P2P frame-
work as described earlier, we can construct mappings betweleemass, andS, by
finding some shared or public scherfa for which we already know the pathways
Sy — S, andS, — S, and form a concatenation of these two pathways to form a
pathwayS, — S,,.

However, this pathway may not in general represent a comphetpping, sincé’,
might not contain a schema object to represent data assdeidth schema objects that
appear inS, andS, and for which a mapping could be specified inligect pathway
from S, to S,. Suppose that O, is a schema object ifi, andSO,, is a schema object
in S, for which a mapping betweefO, to SO, could be established, but that it is
currently absent due to the absence of a corresponding scbbéjact inS.. Then it
must be the case that the pathwgay— S, contains a transformation of the form:

(@) contractObj, (SO, Range Void Any)

expressing the fact thafO, cannot be derived or representedSn, and similarly,
S, — S, must contain a transformation of the form
(b) extendObj, (SO, Range Void Any)
expressing the fact th&tO,, cannot be derived or representedsin

However, the same paig),(b) of transformations would exist i§O,. could not be
derived or represented i, and.S,,, and SO, could not be derived or represented in
S, andS,. Hence, we can use the presence of pairs of transformatiathe dorm of
(a) and(b) to extract pairs of schema objects tiaight be mappable betwee$), and
Sy, and feed such pairs intosshema matchingprocess [RBO1] in order to derive any
mappings that exist between objects as yet unmappgd &nd.S,,. AutoMed supports
a suitable interactive schema matching tool [Riz04]. Tbisl tautomatically derives
possible matchings between pairs of schema objects, asawdhlie AutoMed trans-
formations representing their mapping. The user is therdsi confirm or manually
modify the matchings and generated transformations.

Thus, the procedure for constructing a complete mapping- .S, from two com-
plete mappings, — S, andS, — S, is:
(i) Form the set/ SO, of schema objects that appeardantract transformations in
S, — S., and the sel/ SO, of schema objects that appearexiend transformations
insS, —.S,.
(if) Perform a pairwise match of objects WSO, against objects i/ SO,. For each
positive match found, remove the transformation stepsatiatract/extend the matched
pair of objects, and replace with the transformations tbptesent the match found.

To illustrate, we return to our running example. Within tretpvaySs — S, there

are two transformations:
contractColumn({(degree,qual)), Range Void Any)

€3 contractColumn({{reg,tutor)), Range Void Any)

When deriving the pathway, — Ss from the pathwayS, — S, (which will
include transformatiof)) and the reverse of pathwa; — S, (transformation#®—
@ — the filled in circles indicate that the reverse of the listethsformation is being
used), a schema match table as follows is first formed:

Data Sources, Data SourceSs
Transformation Schema Object Transformation Schema Object
(5) ((teach,tname)) @ ((degree,qual)

&® (reg,tutor))

The schema matching process should then discovef(teath,tname)) and((reg,tutor))
match (specifically, that they are equivalent, with the exioa of the key used). Hence
transformationg5) and@3 can be removed and the following transformations added to
the end ofS, — Ss:
€4 addColumn({{reg,tutor)), [{{s, c},tu} | {{s,c,t},tu} <— (teach,tname})])

@5 deleteColumn({(teach,tname)), [{{s, c, Constlsc}, tu} |
{{s,c},tu} <— {(reg)); (Constlsc) >= ‘1994-1'))

5 Concluding remarks

The BAV approach has the advantage in a P2P data integragitings of allowing
bidirectional logical mappings to be specified betweengadke have shown how these

mappings can be used to support two types of query proceissaig2P data integration
system, where either queries are posed on the schema of adlatae at a peer or on
a virtual public schema. We have also shown how GAV and LAVrgqueformulation
can be combined over BAV pathways — specifically, for a cornprsions-based query
language — thus obtaining the maximal information from BAsthways that would
be derivable by means of GAV and LAV query processing tealnesq

We have focused here on query processing along a single BéWvag, which can-
not generate cyclic relationships between schema objectshance for which query
answering is decidable c.f. [HIST03]. The extension of P2Rryg processing along
a network of arbitrary BAV pathways is an area of ongoing waakd in particu-
lar we wish to investigate the applicability of the epistersemantics approach of
[CDD'03,CDLRO04] to our BAV setting.

References

[BGK*02] P.A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. MylopoulosSérafini, and
I. Zaihrayeu. Data management for peer-to-peer computing: a visionProc.
WebDB'02 pages 89-94, 2002.

[BLMRO6] Z. Bellah®ne, C. Lanzanitis, P.J. McBrien, and N. Rizopoulos. Querying dis-
tributed data in a super-peer based architecturePrbe. IWI2006 (in conjunction
with WWWO06)2006.

[Bun94] P. Buneman et al. Comprehension syn@GMOD Record23(1):87-96, 1994.

[CDD'03] D. Calvanese, E. Damagio, G. De Giacomo, M. Lenzerini, and RaRRaSemantic
data integration in P2P systems.Rrmoc. DBISP2P, at VLDB’032003.

[CDLRO04] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosatgit¢al foundations of
peer-to-peer data integration. Broc. PODS pages 241-251, 2004.

[DG97] O.M. Duschka and M.R. Genesereth. Answering recurgiieies using views. In
Proc. PODSpages 109-116. ACM, 1997.

[FKLZ04] E. Franconi, G. Kuper, A. Lopatenko, and |. Zaihray&ueries and updates in the
coDB peer-to-peer database systemPtac. VLDB pages 1277-1280, 2004.

[FLM99] M. Friedman, A. Levy, and T. Millstein. Navigational plans foatd integration. In
Proc. 16th National Conference on Artificial Intelligeng@ages 67-73. AAAI, 1999.

[HIMTO3] A.Y. Halevy, Z. G. lves, P. Mork, and |. Tatarinov. PiazZData management infras-
tructure for semantic web applications. Pmoc. WWW’'032003.

[HISTO3] A.Y. Halevy, Z. G. lves, D. Suciu, and |. Tatarinov. Sofemediation in peer data
management systems. Broc. ICDE’03 IEEE, 2003.

[JPZ03] E. Jasper, A. Poulovassilis, and L. Zamboulis. ProcesQhgjueries and migrating
data in the AutoMed toolkit. Technical Report No. 20, AutoMed, 2003.

[JTMPO4] E. Jasper, N. Tong, P.J. McBrien, and A. Poulovassilisw\generation and optimi-
sation in the AutoMed data integration framework Aroc. Baltic DB&IS04 volume
672 ofScientific Paperspages 13—-30. Univ. Latvia, 2004.

[Len02] M. Lenzerini. Data integration: A theoretical perspectivePtoc. PODS’02 pages
233-246. ACM, 2002.

[LNWSO03] A.Loser, W. Nejdl, M. Wolpers, and W. Siberski. Informatimtegration in schema-
based peer-to-peer networks.Rroc. CAISE’'03LNCS. Springer, 2003.

[LRO96] A. Levy, A. Rajamaran, and J. Ordille. Querying heterogerseinformation sources
using source description. roc 22nd VLDBpages 252—-262, 1996.

[MHO3] J. Madhavan and A.Y. Halevy. Composing mappings amorg saurces. IriProc.
VLDB’03, pages 572-583, 2003.

[MPO2] P.J. McBrien and A. Poulovassilis. Schema evolution in heteremyes database ar-
chitectures, a schema transformation approacHrot. CAISE’'02 volume 2348 of
LNCS pages 484-499. Springer, 2002.

[MP03a] P.J. McBrien and A. Poulovassilis. Data integration by bi-direaelischema trans-
formation rules. IrProc. ICDE’03 pages 227-238. IEEE, 2003.

[MPO3b] P.J. McBrien and A. Poulovassilis. Defining peer-to-peéa ddegration using both
as view rules. IrProc. DBISP2P, at VLDB’03pages 91-107, 2003.

[Nejo3] W. Nejdl et al. Super-peer-based routing and clustering strategies for RDF-based
peer-to-peer networks. IRroc. WWW’032003.

[PS96] A. Poulovassilis and C. Small. Algebraic query optimisation forlsega program-
ming languagesThe VLDB Journgl5(2):119-132, 1996.

[Qia96] X. Qian. Query unfolding. I®roc. ICDE pages 48-55. IEEE, 1996.

[RBO1] E.Rahm and P.A. Bernstein. A survey of approaches to attorschema matching.
VLDB Journa) 10:334-350, 2001.

[Riz04] N. Rizopoulos. Automatic discovery of semantic relationships eetwschema ele-
ments. InProc. of 6th ICEI$S2004.

Appendix A - Some IQL Equivalences

(a) The following equivalence states tlflatmap propagates through expressions of the
form Range el e2:

flatmapf (Range el e2) =Range (flatmapf el) (flatmap f €2)

(b) For anyf:

flatmapf [| = [], flatmap f Void = Void, flatmap f Any = Any

flatmap (lambda x.[]) e= [], flatmap (lambda x.Void) e = Void

flatmap (lambda x.Any) e = Any

(c) For any series of qualifiel® andQ’, patternp and expressios:

le| Qp<—[; Q] =1, [e| Q;p <— Void; Q'] = Void, [e | Q; p <— Any; Q'] = Any

e | Q; False; Q'] = []

(d) There are several other equivalences that can be useaohjpdifg comprehension
queries (see [PS96] for a comprehensive discussion). Fongbe,

[e| Qipl <—el;e2 Q| =[e| Q;e2;p <—el; Q']

[e| Q;elande2; Q'] = [e | Q;el;e2; Q']

The first of these holds provideeV (p1l) N FV(e2) = {}, whereFV(e) denotes the
set of free variables in an expressianFrom the second equivalence, it follows that if
el ande2 = Falsethenforany, Q,Q’, [e | Q;el;e2; Q'] =]

Similarly, if el impliese2, then forany, Q,Q’, [e | Q;el;e2; Q'] = [e | Q;el; Q']

The following equivalence simplifies a nested comprehensio
e|Qp<—[p|lp<—¢;Q]=[e|Qp<—¢;Q]

The following equivalence allows a filter to be moved insideeated comprehen-
sion provided thaEV(e’) C FV(p) and the patterp’ is more specific than the pattern
p i.e.p’ can be obtained from by means of some substitution. The filé&ris obtained
from e’ by substituting each variable fropin ¢’ by its counterpart ip’ (i.ee” is equiv-
alent to(lambda p.¢’) p’):
e|Qp<—[p"|QLe;QT=[e| Qp<—[p'| Qe"];Q]

(e) The following equivalences govern the simplificatiorgpressions involvinQange:
Range (Rangeele2) Any = Rangeel e2
Range Void (Rangeel e2) =Rangeele2

