
P2P query reformulation over
Both-as-View data transformation rules

Peter Mc.Brien1 and Alexandra Poulovassilis2

1 Dept. of Computing, Imperial College, Univ. of London,pjm@doc.ic.ac.uk
2 School of Computer Science and Information Systems, Birkbeck College,

Univ. of London,ap@dcs.bbk.ac.uk

Abstract. The both-as-view (BAV) approach to data integration has the advan-
tage of specifying mappings between schemas in a bidirectional manner,so that
once a BAV mapping has been established between two schemas, queriesmay be
exchanged in either direction between the schemas. By defining public schemas
shared between peers, this allows peers to exchange queries via a publicschema
without the requirement for any one peer to hold the public schema data.
In this paper we discuss the reformulation of queries over BAV transformation
pathways, and demonstrate the use of this reformulation in two modes of query
processing. In the first mode, public schemas are shared between peers and queries
posed on the public schema can be reformulated into queries over any data sources
that have been mapped to the public schema. In the second, queries areposed on
the schema of a data source, and are reformulated into queries on another data
source via any public schema to which both data sources have been mapped.

1 Introduction

In [MP03a] we presented theboth-as-view (BAV) approach to data integration, and
compared it withglobal-as-view(GAV) and local-as-view(LAV) [Len02]. In BAV,
schemas are mapped to each other using a sequence of schema transformations which
we term a transformationpathway. These pathways are reversible, in that a pathway
Sx → Sy from a schemaSx to a schemaSy may be used to automatically derive the
pathwaySy → Sx andvice versa. Also, from BAV pathways it is possible to extract
GAV, LAV and GLAV mapping rules [JTMP04]. The BAV approach has been imple-
mented as part of the AutoMed data integration at Birkbeck and Imperial Colleges (see
http://www.doc.ic.ac.uk/automed).

As discussed in [MP02,MP03a], one advantage of BAV is that itreadily supports
the evolution of global and local schemas, including the addition or removal of local
schemas. An evolution of a schemaSx to S′

x is expressed as a pathwaySx → S′

x, and
then pathways of the formSx → Sy may be ‘redirected’ toS′

x by prefixing the reverse
of Sx → S′

x, i.e.S′

x → Sx to Sx → Sy to derive a pathwayS′

x → Sy. As we discussed
in [MP03b], this feature makes BAV well-suited to the needs of peer-to-peer (P2P)
data integration, where peers may join or leave the network at any time, or may change
their schemas or pathways between schemas.

Figure 1 illustrates via an example how centralised and P2P data integration differ in
BAV. In Figure 1(a), standard centralised data integrationof data sourcesS1, S2, . . . into

S1 S2 S3

Sp

1 – 4

�

5

6

6 –23

K

(a) Centralised

P1

P3

P2

directory
service

+ P2P protocol

S1

Sp

1 – 4 6

S2

Sp

56

S3

Sp

6 –23 ?

(b) P2P

Fig. 1.Example of centralised versus P2P Data Integration in BAV

a global schemaSp is specified by a set of pathwaysS1 → Sp, S2 → Sp, . . . managed
centrally by the data integration system (some of the transformations 1 –23 used to
specify these example pathways will be listed later in the paper). In P2P data integration,
each peerPx manages the integration of a data sourceSx as a pathwaySx → Sp,
and there is a directory service and P2P protocol that allowsthe peers to interact1.
The shared global schema is called apublic schema, emphasising that no single peer
controls the global schema but, by contrast, it is simply a publicly available schema
definition that any peers may use. Note that thesameBAV pathway specification is
used to mapSx → Sp in both the centralised and the P2P systems. The directory
service allows a peer to discover what public schemasSp exist, and which peers support
pathways to that public schema. Key aspects of the P2P protocol are [BLMR06]:

– PeerPx can request that peerPy executes a query posed on a public schemaSp,
and return the results toPx.

– PeerPx can request that peerPy sends it the pathwaySy → Sp, allowing Px

to itself construct a centralised data integration model and to process queries that
access data sourceSy without incurring a load onPy.

One contribution of this paper is that we specify how, given apathwaySx → Sy

and a queryq posed onSy, q can be reformulated using a combination of LAV and
GAV techniques into a queryq′ posed onSx. This is an advance on our previous work
which only showed how GAV or LAV views individually could be derived from BAV
pathways (we do not consider in this paper reformulation using in addition the GLAV
rules that could be extracted from the BAV pathway, and leavethat as an area of future
work). A second contribution of this paper is that the P2P protocol combined with the
reversibility of BAV pathways allows us to support two typesof query processing:

– In public schema queryingwe simulate centralised data integration within a P2P
environment: a user at a peerPx poses a query on a public schemaSp, andPx

1 For simplicity of presentation in this paper, we assume that each data source is accessed via one
peer, and each peer accesses only one data source. In fact, our approach allow a many-many
relationship between data sources and peers.

asks each other peerPy supportingSp to either (1) process the query and return the
result back toPx, or (2) send its pathway toSp to Px so thatPx can construct the
centralised data integration model and process the query itself.

– In data source queryinga user at a peerPx poses a queryq on data sourceSx and
wishes it to be reformulated into a queryq′ on some other data sourceSy. This is
achieved by using the pathwaySx → Sp to reformulateq into a query onSp. Then
Px is able to interact with other peers supporting the public schemaSp, using the
public schema querying techniques already described.

Previous work on P2P data integration in the Piazza system has used combina-
tions of LAV and GAV rules between schemas, and a combinationof GAV and LAV
query processing techniques [HIST03,HIMT03]. Piazza differs from our approach in
that mappings must be specified directly between peers. Whilst our approach does not
preclude this, we also allow mappings to be specified to a public schema, making our
approach more scalable.

Other related work is [Nej03,LNWS03] which uses a superpeer based network
topology to provide better scalability than pure peer-to-peer networks. Routing indexes
at superpeers store information about the metadata available at the peers directly con-
nected to them, and aid in the forwarding of query requests only to relevant peers.

The need for a superpeer is avoided in the local relational model [BGK+02], where
peers are directly related by a combination of a domain relation that specifies how the
data types of the peers are related, together with coordination formulae that specify that
if one predicate is true in one peer, then another predicate is true in another peer.

Our approach combines the respective advantages of these systems by having virtual
public schemas — allowing peers to reuse the existing integration of other peers with
public schemas — but having no physical superpeer nodes thatmay act as a bottleneck
in the system — in particular, any peer can combine the integrations of other peers with
public schemas in order to form direct pathways between peers for query and update
processing.

In [CDD+03] GLAV rules [FLM99,MH03] are used to specify the constructs of
each schema in terms of the constructs of some set of other peer schemas. There is no
distinction between source and global schemas, and any number of GLAV rules may
be specified between schemas. However, unlike BAV, [CDD+03] does not differentiate
between sound, complete and exact rules, as the GLAV rules are always sound. CoDB
[FKLZ04] generalises this to allow sound and complete GLAV rules to be specified.

The remainder of the paper begins with a review of the BAV dataintegration ap-
proach in Section 2 together with details of the data integration example sketched in
Figure 1. We then describe in Section 3 the process of query reformulation over BAV
pathways, and illustrate how it supports public schema querying. In Section 4 we dis-
cuss how to improve support for data source schema querying,where a certain degree
of pathway repair may be needed in order to fully support datasource schema querying.

2 Overview of BAV data integration

The basis of the BAV approach to data integration is a low-level hypergraph-based
data model (HDM). Higher-level modelling languages are specified in terms ofthis

lower-level HDM. An HDM schema consists of a set of nodes, edges and constraints,
and each modelling construct of a higher-level modelling language is specified as some
combination of HDM nodes, edges and constraints. For each type of modelling con-
struct of a modelling language (e.g.Table, Column, Primary Key andForeign Key in
the relational model) there are available a set of primitiveschema transformations for
adding such a construct to a schema, removing such a construct from a schema and,
in the case of constructs with textual names, renaming such aconstruct. Schemas are
incrementally transformed by applying to them a sequence ofprimitive schema trans-
formations, each primitive transformation adding, deleting or renaming just one schema
construct.

In general, schema constructs may be extensional i.e. have adata extent associ-
ated with them (e.g.Table andColumn in the relational model) or may be constraints
(e.g.Primary Key andForeign Key in the relational model). In this paper we will re-
strict our discussion to the relational model, and hence extensional schema constructs
consist of sets of values. The general form of a primitive transformation that adds an
extensional constructc of type T to a schemaS in order to generate new schemaS′

is addT (c, qS), whereqS is a query overS specifying the extent ofc in terms of the
existing constructs ofS. The semantics of this transformation are that

∀x . x ∈ c↔ x ∈ qS

In the AutoMed implementation of BAV,qS is expressed in a functionalintermediate
query language(IQL) (see Section 2.1).

When it is not possible to specify the exact extent of the new construct c be-
ing added in terms of the existing schema constructs, the primitive transformation
extendT (c, Range ql qu) must be used instead ofadd. This adds a new constructc
of typeT to a schemaS, generating a new schemaS′. The queryql overS states what
is the minimum extent ofc in S′; ql may be the constantVoid if no lower bound on the
extent can be specified. The queryqu overS states what is the maximal extent ofc in
S′, and may be the constantAny if no upper bound on the extent can be specified2. For
non-Void ql therefore,∀x . x ∈ c← x ∈ ql; and for non-Any qu, ∀x . x ∈ c→ x ∈ qu.
Also, addT (c, qS) is equivalent toextendT (c, Range qS qS)

In a similar fashion, the transformationdeleteT (c, qs) when applied to schemaS′

generates a new schemaS with the constructc of typeT removed. The extent ofc may
be recovered using the queryqS on S, and∀x . x ∈ c ↔ x ∈ qS . Note therefore that
from a transformationdeleteT (c,qS) used to transform schemaS′ to schemaS we can
automatically infer thataddT (c,qS) transformsS to S′, and vice versa. When it is not
possible to specify the exact extent of the constructc being deleted fromS′ in terms of
the remaining schema constructs, the transformationcontractT (c, Range ql qu) must
be used instead ofdelete. This removes a constructc of typeT from schemaS′ to form
a new schemaS. The queryql overS states what is the minimum extent ofc in S′, while
the queryqu overS states what is the maximal extent ofc in S′. Again,q1 may beVoid
andqu may beAny. deleteT (c, qS) is equivalent tocontractT (c, Range qS qS). Also,

2 Syntactically,Range, Void and Any are all examples ofconstructors, which in this case
respectively take 2, 0 and 0 arguments. Constructors in functional languages are analogous to
function symbols in logic languages.

from contractT (c, Range ql qu) used to transform schemaS′ to schemaS we can
infer thatextendT (c, Range ql qu) transformsS to S′, and vice versa.

Finally, the transformationrenameT (c, c′) causes a constructc of type T in a
schemaS to be renamed toc′ in a new schemaS′, where∀x . x ∈ c ↔ x ∈ c′.
Thus, fromrenameT (c, c′) used to transformS toS′ we can infer thatrenameT (c′, c)
transformsS′ to S.

2.1 AutoMed’s IQL Query Language

IQL is a comprehensions-based functional query language3. It supports strings e.g.
’Computer Science’, booleansTrue and False, real numbers, integers, tuples e.g.
{1,2,3}, and sets, bags and lists. There are several polymorphic primitive operators
for manipulating sets, bags and lists. The operator++ concatenates two lists, and per-
forms bag union and set union on bags and sets, respectively.The operatorflatmap

applies a collection-valued functionf to each element of a collection and applies++ to
the resulting collections. For sets, it is defined recursively as follows, where[] denotes
the empty set and(SCons x xs) denotes a set containing an elementx with xs being the
rest of the set (which may be empty):
flatmap f [] = []
flatmap f (SCons x xs) =(f x) ++(flatmap f xs)
Henceforth in this paper, we confine our discussion to collections that are sets.

The operatorflatmap can be used to specifycomprehensionsover sets. These are
of the form[h | q1; . . . ; qn] whereh is an expression termed theheadandq1, . . . ,qn

arequalifiers, with n ≥ 0. Each qualifier is either afilter or agenerator. A generator
has syntaxp<−e wheree is a set-valued expression andp is apattern i.e. an expression
involving variables and tuple constructors only. The variables of p are successively
bound by iterating throughe. Any variables appearing in the head,h, inherit these
bindings. A filter is a boolean-valued expression, which must be satisfied by the values
generated by the generators in order for these values to contribute to the final result
of the comprehension. Comprehensions are a convenient high-level syntax and add no
extra expressiveness to languages such as IQL since they translate into applications of
flatmap. We give the translation below for a set comprehension, where Q denotes a
sequence of qualifiers and[h] a set comprising a single elementh:
[h | p <− e; Q] ≡ flatmap (lambda p.[h | Q]) e

[h | e; Q] ≡ if e = True then [h | Q] else []
[h |] ≡ [h]

IQL supports unification of variables appearing in the patterns of generators within
the same comprehension. For example,
[{a, b, c, d, e} | {a, b, c}<− r; {d, c, e}<− s]
is equivalent to[{a, b, c, d, e} | {a, b, c}<− r; {d, c2, e}<− s; c = c2]

Several equivalences hold for these IQL operators, which follow from their defi-
nition and from the interpretation assigned to theVoid andAny constants. We list an

3 We refer the reader to [JPZ03] for full details of the language and confine our discussion here
to just those aspects that are necessary for this paper. Such languages subsume query languages
such as SQL-92 and OQL in expressiveness [Bun94].

indicative subset in the Appendix, including specifically those equivalences that we re-
fer to later in the paper. These equivalences assume that expressions are well-typed
(which can be verified statically for IQL) and they are applied by AutoMed’s query
optimiser in order to simplify IQL queries before evaluation.

2.2 An Example

Figure 2 shows four schemasS1, S2, S3, Sp. S1, S2, S3 are data source schemas while
Sp is what in a centralised data integration system would be called aglobal schema
and in our P2P system is called apublic schema. The semantics of the application
domain are that astudent with namesname may repeatedly sit the exam for acourse
(identified byccode, and each having atitle) over any number of semesters, and achieve
an exammark on each exam sitting. However, for all attempts of the course, the student
will have the sametutor (tutors having been introduced at the start of 1994, along with a
coursework markcwmark that students can attempt only once per course). Each student
studies for onedegree. Each degree is identified by adcode, has a titledname and
has an associatedqualification.

S1 studies(sname,ccode,sem,mark,title,dname)

S2 teach(sname,ccode,sem,mark,tname?)

S3 degree(dcode,dname,qual)
ug(sname,dcode)
reg(sname,ccode,cwmark,tutor)

Sp degree(dcode,dname)
student(sname,dcode)
course(ccode,title)
sit(sname,ccode,sem,mark,cwmark?)

Fig. 2.Three data sourcesS1, S2, S3, and a public schemaSp

SchemaSp is a virtual schema modelling the application domain, omitting the infor-
mation about tutors and about the qualification associated with degrees. Thecwmark
is shown as optional (by a ‘?’ suffix) since it was only awardedfrom 1994 onwards.
SchemaS1 represents a data source that holds information about courses with accode
greater or equal to 500, and holds data in first normal form (sincedname is depen-
dent on justsname andtitle is dependent on justccode). SchemaS2 represents a data
source that holds information about courses with accode less than 500, and is also
in first normal form, since it holds intname the tutor’s name (an optional attribute),
which is dependent on justsname andccode. SchemaS3 represents a data source that
details the tutors of courses, the coursework mark the student gained for the course, and
the degrees students studied, and is held in third normal formal.

Suppose we wish to transform data or queries betweenSp and the other three
schemas. We consider below fragments of the pathwaysS1 → Sp andS2 → Sp in
order to illustrate the BAV approach and the use of IQL queries within transformations.
Within the pathwayS1 → Sp it is necessary to decompose thestudies table inS1 in
order to produce the separatecourse table that is present inSp. Here is the fragment of
that pathway:

1 extendTable(〈〈course〉〉, Range ([{c} | {s, c, t} <− 〈〈studies〉〉]) Any)

2 extendColumn(〈〈course,ccode〉〉, Range [{c, c} | {c} <− 〈〈course〉〉] Any)

3 extendColumn(〈〈course,title〉〉, Range ([{c, ti} | {{s, c, t}, ti} <− 〈〈studies,title〉〉]) Any)

4 contractColumn(〈〈studies,title〉〉,
Range Void [{{s, c, t}, ti} | {s, c, t} <− 〈〈studies〉〉; {c, ti} <− 〈〈course,title〉〉])

Transformation 1 states that thecourse table inSp contains as its set of keys at
least thoseccode attributes ofstudies in S1 (the first argument of theRange construc-
tor). We note here that the AutoMed representation of a relational table models the table
itself by its set of primary key values, and models each attributea of the table by the
projection of the table onto the primary key attributes plusa (see [MP03a] for more
details of this).

Transformations 2 and 3 add theccode and title columns tocourse. Again
these areextend transformations with upper boundAny. The final transformation4
removes thetitle attribute of thestudies table and specifies the upper bound that the
title attribute inSp places on the extent of thetitle attribute inS1.

The pathwayS2 → Sp needs to specify that the tutortname has no representation
in Sp, using transformation5 below. The remainder of the pathway is not required for
the examples that follow, and is therefore omitted from our discussion.
5 contractColumn(〈〈teach,tname〉〉, Range Void Any)

3 Query Reformulation over BAV Pathways

In this section, we discuss how query reformulation can be undertaken over BAV path-
ways. We first illustrate how BAV pathways can be used for GAV and LAV query re-
formulation, and hence can support GAV and LAV query processing. We then present a
BAV-specific query reformulation algorithm which subsumesas special cases GAV and
LAV query reformulation.

3.1 GAV query reformulation

GAV query reformulation is based on query unfolding. For example, to evaluate a query
q on Sp with respect toS1, we traverse the pathwaySp → S1 (i.e. thereverseof the
pathwayS1 → Sp described earlier) replacing each scheme inq that appears in an
delete or contract transformation with the corresponding query of that transformation.
Example Query 1: To reformulate the query

q1 = [{ti} | {c, ti}<− 〈〈course, title〉〉; c = 500]

first 4 is ignored (since its reverse is anextend transformation), and then3 unfolds
〈〈course,title〉〉 giving:

[{ti} | {c, ti}<− Range([{c, ti} | {s, c, t, ti}<− 〈〈studies, title〉〉]) Any; c = 500]

Using the equivalence in Appendix A (a) and the third equivalence in App. A (b) this
simplifies to:

Range[{ti} | {c, ti}<− [{c, ti} | {s, c, t, ti}<− 〈〈studies, title〉〉]; c = 500] Any

Using the last equivalence in App. A (d) this further simplifies to:
Range[{ti} | {s, c, t, ti}<− 〈〈studies, title〉〉; c = 500] Any

Transformations2 and 1 have no further effect on this query, and thus this is the
transformed query that can execute on data sourceS1

4.

3.2 Enhanced GAV reformulation

The fact that BAV rules are stated on irreducible constructsof a data model means that
GAV query reformulation can be used in some cases where with other data integration
approaches LAV query reformulation would have been necessary. To illustrate, consider
the pathwayS3 → Sp, where the tablereg in S3 hassname andccode as its key
attributes since it records the tutor for the course, which does not change for each sitting.
This table is mapped to the tablesit in Sp that hassname, ccode andsem as its key
attributes since students may (re)sit the examination partof any course once in any
semester. Recall that the tutors for courses were only introduced fromsem 1 of 1994.
Below is the relevant fragment of the pathwayS3 → Sp. We note that transformation6
contains the expressionConst1 s c in the head of the comprehension. Here,Const1 is
an IQLconstructor (analogous to a Skolem function in logic languages), used because
it is not possible to derive thesem attribute of〈〈sit〉〉 from 〈〈reg〉〉.
6 extendTable(〈〈sit〉〉,

Range [{s, c, Const1 s c} | {s, c} <− 〈〈reg〉〉; (Const1 s c) >= ‘1994-1’] Any)
7 extendColumn(〈〈sit,sname〉〉, Range [{{s, c, t}, s} | {s, c, t} <− 〈〈sit〉〉] Any)

8 extendColumn(〈〈sit,ccode〉〉, Range [{{s, c, t}, c} | {s, c, t} <− 〈〈sit〉〉] Any)

9 addColumn(〈〈sit,cwmark〉〉,
[{{s, c, t}, cw} | {s, c, t} <− 〈〈sit〉〉; {{s, c}, cw} <− 〈〈reg,cwmark〉〉])

10 extendColumn(〈〈sit,sem〉〉, Range [{{s, c, t}, t} | {s, c, t} <− 〈〈sit〉〉] Any)

11 deleteColumn(〈〈reg,sname〉〉, [{{s, c}, s} | {s, c} <− 〈〈reg〉〉])
12 deleteColumn(〈〈reg,code〉〉, [{{s, c}, c} | {s, c} <− 〈〈reg〉〉])
13 deleteColumn(〈〈reg,cwmark〉〉, [{{s, c}, cw} | {{s, c, t}, cw} <− 〈〈sit,cwmark〉〉])
14 contractTable(〈〈reg〉〉, Range Void [{s, c} | {s, c, t} <− 〈〈sit〉〉; t >= ‘1994-1’])

There are a family of constructorsConst1, Const2, . . . Any expression of the form
Consti e1 . . .en is only comparable with an expression constructed using thesame
constructor i.e. with an expression of the formConsti e′1 . . .e′n. Thus, an expression of
the formConsti e1 . . . en = Consti e′1 . . . e′n evaluates toTrue if ej = e′j evaluates
to True for all j otherwise it evaluates toFalse, and similarly for the other comparison
operators. Any other kind of comparison ofConsti returns the valueNull, denoting
“unknown”. If Null is the value of a filter in a comprehension, then the result will be
a Range expression i.e. the second rule of comprehension translation in Section 2.1
becomes:

[h | e; Q] ≡ if e = True then [h | Q] elseif e = False then [] else (Range Void [h | Q])
Example Query 2: Consider the following query posed onSp:

q2 = [{s, c, cw} | {{s, c, t}, cw}<− 〈〈sit,cwmark〉〉; t >= ‘1997-1’]
Unfolding 〈〈sit,cwmark〉〉 using 9 we obtain:

[{s, c, cw} | {s, c, t, cw}<− [{s, c, t, cw} | {s, c, t}<− 〈〈sit〉〉;
{{s, c}, cw}<− 〈〈reg, cwmark〉〉]; t >= ’1997-1’]

4 Applications of the simplifications from Appendix A have no effect on the semantics of queries,
and we have used them here to improve the readability of our example queries. In practice, the
AutoMed logical optimiser applies these kinds of simplifications just once, after the query has
been fully reformulated.

which by an equivalence in App. A (d) simplifies to
[{s, c, cw} | {s, c, t}<− 〈〈sit〉〉; {{s, c}, cw}<− 〈〈reg, cwmark〉〉; t >= ’1997-1’]

Unfolding 〈〈sit〉〉 using 6 we obtain:
[{s, c, cw} | {s, c, t}<− Range[{s, c,Const1 s c} |

{s, c}<− 〈〈reg〉〉; (Const1 s c) >= ’1994-1’] Any;
{{s, c}, cw}<− 〈〈reg, cwmark〉〉; t >= ’1997-1’]

By the equivalences of App A (a) and (b), this simplifies to:
Range[{s, c, cw} | {s, c, t}<− [{s, c,Const1 s c} |

{s, c}<− 〈〈reg〉〉; (Const1 s c) >= ’1994-1’];
{{s, c}, cw}<− 〈〈reg, cwmark〉〉; t >= ’1997-1’] Any

Swapping the last two qualifiers of the outer comprehension,and movingt >= ’1997-1’
into the inner comprehension (by equivalences in App A (d)) gives:

Range[{s, c, cw} | {s, c, t}<− [{s, c,Const1 s c} |
{s, c}<− 〈〈reg〉〉; (Const1 s c) >= ’1994-1’; (Const1 s c) >= ’1997-1’];

{{s, c}, cw}<− 〈〈reg, cwmark〉〉] Any
which (by an equivalence in App A (d)) simplifies to

Range[{s, c, cw} | {s, c, t}<− [{s, c,Const1 s c} |
{s, c}<− 〈〈reg〉〉; (Const1 s c) >= ’1997-1’];

{{s, c}, cw}<− 〈〈reg, cwmark〉〉] Any
At run time this gives the same result as the following query,sinceConst1 s c >=
’1997-1’ evaluates toNull:

Range Void [{s, c, cw} | {s, c, t}<− [{s, c,Const1 s c} |
{s, c}<− 〈〈reg〉〉]; {{s, c}, cw}<− 〈〈reg, cwmark〉〉]

i.e. it returns as an upper bound the student names, courses they have taken and course-
work marks obtained fromS3.

3.3 LAV query processing

The schemaS1 contains a〈〈studies,dname〉〉 attribute, that corresponds inSp to some
instances of the join between〈〈student,dcode〉〉 and 〈〈degree,dname〉〉. This is ex-
pressed in BAV by the following fragment of the pathwayS1 → Sp:
15 extendTable(〈〈student〉〉,Range [{s} | {s, c, t}<− 〈〈studies〉〉] Any)
16 addColumn(〈〈student,sname〉〉, [{s, s} | {s}<− 〈〈student〉〉])
17 extendColumn(〈〈student,dcode〉〉,Range Void Any)
18 extendTable(〈〈degree〉〉,Range [{d} | {s, d}<− 〈〈student,dcode〉〉] Any)
19 addColumn(〈〈degree,dcode〉〉, [{d, d} | {d}<− 〈〈degree〉〉])
20 extendColumn(〈〈degree,dname〉〉,Range [{d, dn} | {s, d}<− 〈〈student,dcode〉〉;
{{s, c, t}, dn}<− 〈〈studies,dname〉〉] Any)

21 contractColumn(〈〈studies,dname〉〉,Range Void

[{s, dn} | {s, d}<− 〈〈student,dcode〉〉; {d, dn}<− 〈〈degree,dname〉〉])
Example Query 3: Consider the following query onSp:

q3 =[{s} | {s, d} <− 〈〈student,dcode〉〉; {d, dn} <− 〈〈degree,dname〉〉; dn =
‘CS’]

Using GAV,〈〈degree,dname〉〉would unfold using20 and〈〈student,dcode〉〉would
then unfold using17 , obtaining:

[{s} | {s, d}<− Range Void Any;
{d, dn}<− Range[{d, dn} | {s, d}<− Range Void Any;
{{s, c, t}, dn}<− 〈〈studies, dname〉〉] Any; dn = ’CS’]

which simplifies to justRange Void Any, i.e. giving no answers.

However the queryq3 onSp can yield answers using LAV query processing. There
are two main techniques for LAV query processing, theinverse rulealgorithm [Qia96,DG97]
and thebucket algorithm [LRO96]. For simplicity we focus here on the former. Using
the inverse rule approach, the definition of a constructc by a query of the form[h | Q]
is inverted in a two-step process. First, replace each variable in Q that does not appear
in h by a distinctConsti with arguments the variable(s) inh. For example,15 has two
such variables,c andt which are replaced byConst2 s andConst3 s respectively; while
in 21 , there is one such variabled, which is replaced byConst8 s dn (see below). Next,
for each generatorp<−cs in Q, generate a query definingcs in terms of[p | h<−c;Q′]
whereQ′ consists of all the filters fromQ. To illustrate, we list below all the inverse
rules derived from the fragment15–21 of the BAV pathwayS1 → Sp.
15.1 〈〈studies〉〉 =Range Void [{s,Const2 s,Const3 s} | {s}<− 〈〈student〉〉]
16.1 〈〈student〉〉 = [{s} | {s, s}<− 〈〈student,sname〉〉]
18.1 〈〈student,dcode〉〉 =Range Void [{Const4 s, d} | {d, d}<− 〈〈degree,dcode〉〉]
19.1 〈〈degree〉〉 = [{d} | {d, d}<− 〈〈degree,dcode〉〉]
20.1 〈〈student,dcode〉〉 =Range Void [{Const5 d dn, d} | {d, dn}<− 〈〈degree,dname〉〉]
20.2 〈〈studies,dname〉〉 =Range Void [{{Const5 d dn,Const6 d dn,Const7 d dn}, dn} |

{d, dn}<− 〈〈degree,dname〉〉]
21.1 〈〈student,dcode〉〉 =Range [{s,Const8 s dn} | {s, dn}<− 〈〈studies,dname〉〉] Any
21.2 〈〈degree,dname〉〉 =Range [{Const8 s dn, dn} | {s, dn}<− 〈〈studies,dname〉〉] Any

Query processing that requires to use a particular construct can combine the direct
definition of the construct within the BAV pathway with all the inverse rules for that
construct derived from the BAV pathway. This set of definitions can be combined using
a merge function defined as follows, whereunion and intersect are set union and set
intersection:

merge (Range e1 e2) (Range e1′ e2′) =Range (union e1 e1′) (intersect e2 e2′)

Returning to our example, when a query is submitted toSp and answers are required
fromS1, the rules15 ,16 , 17 ,18 ,19 ,20 ,21.1 ,21.2 can be used. In particular, for processing
queryq3 above, we have:

〈〈student,dcode〉〉 =merge 17 21.1 = 21.1 and 〈〈degree,dname〉〉 =merge 20 21.2 =
21.2

Substitution now for〈〈student,dcode〉〉 and〈〈degree,dname〉〉 in q3 gives:
[{s} | {s, d}<− Range[{s,Const8 s dn} | {s, dn}<− 〈〈studies, dname〉〉] Any;

{d, dn}<− Range[{Const8 s dn, dn} | {s, dn}<− 〈〈studies, dname〉〉] Any;
dn = ’CS’]

which simplifies to:
Range[{s} | {s, d}<− [{s,Const8 s dn} | {s, dn}<− 〈〈studies, dname〉〉];

{d, dn}<−[{Const8 s dn, dn} | {s, dn}<−〈〈studies, dname〉〉]; dn = ’CS’] Any

which when evaluated would give the same set of answers as:

Range[{s} | {s, d}<− 〈〈studies, dname〉〉; dn = ’CS’] Any

3.4 P2P Query Reformulation on BAV pathways

Following the examples presented above, we now summarise how combined GAV and
LAV query reformulation can be carried out over a BAV pathwaySx → Sy, with
the aim of obtaining the maximal information that would be derivable from the BAV
pathway by means of GAV and LAV query processing techniques.

Suppose we wish to reformulate a queryq posed onSx to be posed with respect to
Sy. (We note that, due to the reversibility of BAV pathways, from a pathwaySx → Sy

it is also possible to reformulate a queryq posed onSy to be posed with respect to
Sx. The process is exactly as described below except that now itis with respect to the,
automatically derivable,reversepathwaySy → Sx. This was the scenario illustrated in
the examples above, where pathwaysSx → Sp were used to reformulate queries onSp

so that they could be evaluated onSx.)
The first step is to construct a set of view definitions,V, defining constructs inSx in

terms of constructs inSy. This is undertaken by traversing the pathwaySx → Sy, and
at each transformation stept taking one of the following actions:

– if t is of the formrename(c, c′) the rulec = c′ is added toV;
– if t is of the formdelete(c, q) or contract(c, q), the rulec = q is added toV;
– if t is of the formadd(c, q), whereq is a comprehension referencing schema con-

structsc1, . . . , cn in its generators, then invert the rulec = q (as described in
Section 3.3) to obtain a set of rules of the formci = qi for 1 ≤ i ≤ n such that the
only scheme referenced in eachqi is c; add these rules toV;

– if t is of the formextend(c,Range Void qu), wherequ is a comprehension as in the
case ofadd(c, q), then invert the rulec =Range Void qu to obtain a set of rules of
the formci =Range qi Any; add these rules toV;

– if t is of the formextend(c,Range ql Any), whereql is a comprehension as in the
case ofadd(c, q), then invert the rulec =Range ql Any to obtain a set of rules of
the formcj =Range Void qj ; add these rules toV;

– if t is of the formextend(c,Range ql qu), whereql andqu are comprehensions as
in the case ofadd(c, q), then invert the rulec =Range ql qu by inverting separately
qu andql, as in the previous two cases, to obtain fromqu a set of rules of the form
ci =Range qi Any and fromql a set of rules of the formcj =Range Void qj ; add
these rules toV;

We note that the worst-case complexity of constructingV is O(N ×M) whereN is the
number of primitive transformations in the pathway andM is the maximum number of
schema constructs appearing in comprehension expressions.

Once constructed,V can be used to reformulate a queryq posed onSx with respect
to Sy. We term a schema constructc which appears inSy final otherwise it isnon-final.
The query reformulation algorithm is as follows, where the functionNF (q) returns the
set of non-final schemes occurring in an IQL queryq:

while NF (q) 6= ∅
for each c ∈ NF (q)

e := Range Void Any

for each rule r ∈ V such that head(r) = c
e := merge e body(r)

q := [c/e]q

In other words, non-final constructs inq are successively replaced by their defini-
tion in V until there are no non-final constructs left. It is easy to seethat this process
terminates: LetG be the graph obtained fromV by creating a node inG for each schema
construct in the head of a rule inV and an arcc → c′ in G if c′ appears in a rule defin-
ing c. The acyclicity ofG follows from the syntactic properties of BAV transformation
sequences: anadd or extend transformation can only add a construct that does not
exist in the input schema, and the query within the transformation can only refer to
constructs existing in the input schema; adelete or contract transformation can only
delete a scheme that exists in the input schema and the query within the transformation
can only refer to schemes existing in the output schema. By the acyclicity ofG the query
reformulation algorithm must terminate. The complexity ofthe query reformulation al-
gorithm is againO(N ×M). The resulting query would then be optimised, applying
equivalences such as those listed in Appendix A and illustrated in the earlier examples,
and evaluated.

4 Data Source Schema Query Processing

BAV pathways can in principle be used to map directly betweenpeer schemas in a
P2P data integration scenario, and the techniques we have described above can be used
to reformulate queries with respect to a BAV pathway betweentwo peer data source
schemas. However, defining pairwise mappings between peer data source schemas does
not scale as the number of schemas grows. Thus, in AutoMed we also support P2P BAV
data integration viapublic schemas, as already described in the Introduction.

A desirable property in data integration is that the mappingbetween a pair of
schemasSx andSy should form acomplete mapping, in the sense that it identifies all
possible mappings between schema objects in schemasSx andSy. In our P2P frame-
work as described earlier, we can construct mappings between schemasSx andSy by
finding some shared or public schemaSz for which we already know the pathways
Sx → Sz andSz → Sy, and form a concatenation of these two pathways to form a
pathwaySx → Sy.

However, this pathway may not in general represent a complete mapping, sinceSz

might not contain a schema object to represent data associated with schema objects that
appear inSx andSy and for which a mapping could be specified in adirect pathway
from Sx to Sy. Suppose thatSOx is a schema object inSx andSOy is a schema object
in Sy for which a mapping betweenSOx to SOy could be established, but that it is
currently absent due to the absence of a corresponding schema object inSz. Then it
must be the case that the pathwaySx → Sz contains a transformation of the form:
a contractObjx(SOx,Range Void Any)

expressing the fact thatSOx cannot be derived or represented inSz, and similarly,
Sz → Sy must contain a transformation of the form
b extendObjy(SOy,Range Void Any)

expressing the fact thatSOy cannot be derived or represented inSz.
However, the same paira , b of transformations would exist ifSOx could not be

derived or represented inSz andSy, andSOy could not be derived or represented in
Sz andSx. Hence, we can use the presence of pairs of transformations of the form of
a and b to extract pairs of schema objects thatmightbe mappable betweenSx and

Sy, and feed such pairs into aschema matchingprocess [RB01] in order to derive any
mappings that exist between objects as yet unmapped inSx andSy. AutoMed supports
a suitable interactive schema matching tool [Riz04]. This tool automatically derives
possible matchings between pairs of schema objects, as wellas the AutoMed trans-
formations representing their mapping. The user is then asked to confirm or manually
modify the matchings and generated transformations.

Thus, the procedure for constructing a complete mappingSx → Sy from two com-
plete mappingsSx → Sz andSz → Sy is:
(i) Form the setUSOx of schema objects that appear incontract transformations in
Sx → Sz, and the setUSOy of schema objects that appear inextend transformations
in Sz → Sy.
(ii) Perform a pairwise match of objects inUSOx against objects inUSOy. For each
positive match found, remove the transformation steps thatcontract/extend the matched
pair of objects, and replace with the transformations that represent the match found.

To illustrate, we return to our running example. Within the pathwayS3 → Sp there
are two transformations:
22 contractColumn(〈〈degree,qual〉〉, Range Void Any)

23 contractColumn(〈〈reg,tutor〉〉, Range Void Any)
When deriving the pathwayS2 → S3 from the pathwayS2 → Sp (which will

include transformation5) and the reverse of pathwayS3 → Sp (transformations23–
6 — the filled in circles indicate that the reverse of the listedtransformation is being

used), a schema match table as follows is first formed:
Data SourceS2 Data SourceS3

Transformation Schema Object Transformation Schema Object
5 〈〈teach,tname〉〉 22 〈〈degree,qual〉〉

23 〈〈reg,tutor〉〉
The schema matching process should then discover that〈〈teach,tname〉〉 and〈〈reg,tutor〉〉

match (specifically, that they are equivalent, with the exception of the key used). Hence
transformations5 and23 can be removed and the following transformations added to
the end ofS2 → S3:
24 addColumn(〈〈reg,tutor〉〉, [{{s, c}, tu} | {{s, c, t}, tu} <− 〈〈teach,tname〉〉])
25 deleteColumn(〈〈teach,tname〉〉, [{{s, c, Const1 s c}, tu} |

{{s, c}, tu} <− 〈〈reg〉〉; (Const1 s c) >= ‘1994-1’])

5 Concluding remarks

The BAV approach has the advantage in a P2P data integration setting of allowing
bidirectional logical mappings to be specified between peers. We have shown how these

mappings can be used to support two types of query processingin a P2P data integration
system, where either queries are posed on the schema of a datasource at a peer or on
a virtual public schema. We have also shown how GAV and LAV query reformulation
can be combined over BAV pathways — specifically, for a comprehensions-based query
language — thus obtaining the maximal information from BAV pathways that would
be derivable by means of GAV and LAV query processing techniques.

We have focused here on query processing along a single BAV pathway, which can-
not generate cyclic relationships between schema objects and hence for which query
answering is decidable c.f. [HIST03]. The extension of P2P query processing along
a network of arbitrary BAV pathways is an area of ongoing work, and in particu-
lar we wish to investigate the applicability of the epistemic semantics approach of
[CDD+03,CDLR04] to our BAV setting.

References

[BGK+02] P.A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L.Serafini, and
I. Zaihrayeu. Data management for peer-to-peer computing: a vision. In Proc.
WebDB’02, pages 89–94, 2002.

[BLMR06] Z. Bellahs̀ene, C. Lanzanitis, P.J. McBrien, and N. Rizopoulos. Querying dis-
tributed data in a super-peer based architecture. InProc. IWI2006 (in conjunction
with WWW06), 2006.

[Bun94] P. Buneman et al. Comprehension syntax.SIGMOD Record, 23(1):87–96, 1994.
[CDD+03] D. Calvanese, E. Damagio, G. De Giacomo, M. Lenzerini, and R. Rosati. Semantic

data integration in P2P systems. InProc. DBISP2P, at VLDB’03, 2003.
[CDLR04] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical foundations of

peer-to-peer data integration. InProc. PODS, pages 241–251, 2004.
[DG97] O.M. Duschka and M.R. Genesereth. Answering recursivequeries using views. In

Proc. PODS, pages 109–116. ACM, 1997.
[FKLZ04] E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu.Queries and updates in the

coDB peer-to-peer database system. InProc. VLDB, pages 1277–1280, 2004.
[FLM99] M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration. In

Proc. 16th National Conference on Artificial Intelligence, pages 67–73. AAAI, 1999.
[HIMT03] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data management infras-

tructure for semantic web applications. InProc. WWW’03, 2003.
[HIST03] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data

management systems. InProc. ICDE’03. IEEE, 2003.
[JPZ03] E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL queries and migrating

data in the AutoMed toolkit. Technical Report No. 20, AutoMed, 2003.
[JTMP04] E. Jasper, N. Tong, P.J. McBrien, and A. Poulovassilis. View generation and optimi-

sation in the AutoMed data integration framework. InProc. Baltic DB&IS04, volume
672 ofScientific Papers, pages 13–30. Univ. Latvia, 2004.

[Len02] M. Lenzerini. Data integration: A theoretical perspective. InProc. PODS’02, pages
233–246. ACM, 2002.

[LNWS03] A. Loser, W. Nejdl, M. Wolpers, and W. Siberski. Information integration in schema-
based peer-to-peer networks. InProc. CAiSE’03, LNCS. Springer, 2003.

[LRO96] A. Levy, A. Rajamaran, and J. Ordille. Querying heterogeneous information sources
using source description. InProc 22nd VLDB, pages 252–262, 1996.

[MH03] J. Madhavan and A.Y. Halevy. Composing mappings among data sources. InProc.
VLDB’03, pages 572–583, 2003.

[MP02] P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database ar-
chitectures, a schema transformation approach. InProc. CAiSE’02, volume 2348 of
LNCS, pages 484–499. Springer, 2002.

[MP03a] P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema trans-
formation rules. InProc. ICDE’03, pages 227–238. IEEE, 2003.

[MP03b] P.J. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using both
as view rules. InProc. DBISP2P, at VLDB’03, pages 91–107, 2003.

[Nej03] W. Nejdl et al. Super-peer-based routing and clustering strategies for RDF-based
peer-to-peer networks. InProc. WWW’03, 2003.

[PS96] A. Poulovassilis and C. Small. Algebraic query optimisation for database program-
ming languages.The VLDB Journal, 5(2):119–132, 1996.

[Qia96] X. Qian. Query unfolding. InProc. ICDE, pages 48–55. IEEE, 1996.
[RB01] E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema matching.

VLDB Journal, 10:334–350, 2001.
[Riz04] N. Rizopoulos. Automatic discovery of semantic relationships between schema ele-

ments. InProc. of 6th ICEIS, 2004.

Appendix A - Some IQL Equivalences

(a) The following equivalence states thatflatmap propagates through expressions of the
form Range e1 e2:
flatmap f (Range e1 e2) =Range (flatmap f e1) (flatmap f e2)
(b) For anyf:
flatmap f [] = [], flatmap f Void = Void, flatmap f Any = Any

flatmap (lambda x.[]) e = [], flatmap (lambda x.Void) e = Void

flatmap (lambda x.Any) e = Any
(c) For any series of qualifiersQ andQ′, patternp and expressione:
[e | Q; p <− [];Q′] = [], [e | Q; p <− Void;Q′] = Void, [e | Q; p <− Any;Q′] = Any

[e | Q;False;Q′] = []
(d) There are several other equivalences that can be used to simplify comprehension
queries (see [PS96] for a comprehensive discussion). For example,

[e | Q; p1 <− e1; e2;Q′] = [e | Q; e2; p <− e1;Q′]
[e | Q; e1 and e2;Q′] = [e | Q; e1; e2;Q′]

The first of these holds providedFV(p1) ∩ FV(e2) = {}, whereFV(e) denotes the
set of free variables in an expressione. From the second equivalence, it follows that if
e1 and e2 ≡ False then for anye,Q,Q′, [e | Q; e1; e2;Q′] = []
Similarly, if e1 impliese2, then for anye,Q,Q′, [e | Q; e1; e2;Q′] = [e | Q; e1;Q′]

The following equivalence simplifies a nested comprehension:
[e | Q; p <− [p | p <− e′];Q′] = [e | Q; p <− e′;Q′]

The following equivalence allows a filter to be moved inside anested comprehen-
sion provided thatFV(e′) ⊆ FV(p) and the patternp′ is more specific than the pattern
p i.e.p′ can be obtained fromp by means of some substitution. The filtere′′ is obtained
from e′ by substituting each variable fromp in e′ by its counterpart inp′ (i.e.e′′ is equiv-
alent to(lambda p.e′) p′):
[e | Q; p <− [p′ | Q]; e′;Q′] = [e | Q; p <− [p′ | Q; e′′];Q′]
(e) The following equivalences govern the simplification ofexpressions involvingRange:
Range (Range e1 e2) Any =Range e1 e2

Range Void (Range e1 e2) =Range e1 e2

