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Abstract. Increasing numbers of Linked Open Datasets are being pub-
lished, and many possible data visualisations may be appropriate for
a user’s given exploration or analysis task over a dataset. Users may
therefore find it difficult to identify visualisations that meet their data
exploration or analyses needs. We propose an approach that creates con-
ceptual models of groups of commonly used data visualisations, which
can be used to analyse the data and users’ queries so as to automatically
generate recommendations of possible visualisations. To our knowledge,
this is the first work to propose a conceptual modelling approach to
recommending visualisations for Linked Data.

1 Introduction

There are numerous Linked Open Datasets available on the web, and supporting
their visual exploration and analysis by potential users is a pressing need. Con-
versely, there are many possible data visualisations that might be appropriate
for a given user task, e.g. as provided by a typical visualisation library such as
D3 or Google Charts. It may therefore be hard for users to select appropriate
visualisations to meet their specific exploration or analysis needs with respect
to a given dataset.

We propose an approach that addresses this problem by using “visualisa-
tion patterns” expressed in OWL that characterise each distinct (from a data
representation capability) group of commonly-used data visualisations, and by
generating SPARQL query templates corresponding to these visualisation pat-
terns. Our starting premise is that users formulate SPARQL queries to extract
the data that they wish to see visualised; this might be direct specification of a
SPARQL query by a technically knowledgeable user, or indirect construction of
a SPARQL query through a visual querying tool by a non-technical user. Our
OWL visualisation patterns and SPARQL query templates are used to analyse
the data and the users’ queries, respectively, so as to automatically generate a
more focussed set of recommendations of possible visualisations to the user. We
view our approach as being part of a broader set of solutions that can aid users
in formulating queries and exploring Linked Data, e.g. it may be combined with
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browsing and exploration [6, 4, 19, 17, 31], faceted search [37, 2, 24] or structural
summaries [5, 23].

Current approaches to visualising linked data provide a limited set of data
visualisations that are oriented specifically towards visualising RDF graphs or
ontologies, or that support more general data visualisation capabilities but with-
out the intermediate conceptual abstraction and recommendation process for the
user that we propose here (see Section 2). In contrast, to our knowledge ours
is the first work to propose a conceptual modelling approach to recommending
visualisations for Linked Data to users.

We continue the paper with a review in Section 2 of related work on data
visualisation in general and visualising linked data specifically, contrasting this
with our approach. Section 3 describes an example use case motivating our ap-
proach. Section 4 presents OWL specifications characterising several groups of
common data visualisations, as well as SPARQL query templates corresponding
to the OWL visualisation patterns. Section 5 discusses transformations that can
be applied to users’ SPARQL queries so that they match the SPARQL query
templates. Section 6 summarises our contributions and presents possible direc-
tions for further work.

2 Related Work

Data Visualisation. The field of data visualisation is a very active one (for
reviews see e.g. [1, 43, 39]) and is continuing to expand with the advent of ‘big
data’ arising from web-scale applications and the need to develop new techniques
for exploring such data [15]. Current data visualisation tools (e.g. Tableau3,
D34, Google Charts5) require users to manually select from typically tabular
data, apply transformations, and select appropriate visual encodings from a vast
array of possibilities. The user may therefore find it hard to understand the
meaning of the data, the transformations that may be applied to it, and the
range of visualisation possibilities, and may easily fail to ‘see the wood for the
trees’.

For these reasons, there has been work towards automated recommendation
of visualisation possibilities and for ranking recommendations [20, 35, 27, 47]. The
SemVis system [14] reduces the visualisation search space by using a domain on-
tology for mapping the source data into a visual representation ontology storing
‘knowledge about visualisation tools’, and a bridging ontology to map between
the domain ontology and the visual representation ontology. Our work is similar
in spirit to this, but we do not require the availability of a domain or a bridging
ontology.

Other recent work that is close to ours is the Voyager system [48] which
provides techniques aiming to aid the user in selecting appropriate visualisa-
tions, including faceted browsing of visualisation recommendations, and auto-

3 https://www.tableau.com/products/desktop
4 https://github.com/d3/d3/wiki/Gallery
5 https://developers.google.com/chart/interactive/docs/examples
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matic clustering and ranking of visualisations according to data properties and
perceptual effectiveness principles. However, this work focusses on the visuali-
sation of a single relational table of data. It also does not undertake matchings
between the data and conceptual-level representations of visualisations.

Several works have derived taxonomies of classes of visualisation e.g. [36,
11, 41]. However, they focussed on properties of the data (dimensionality, de-
pendent/independent variables, discrete/continuous, ordered/unordered) rather
than capturing different visualisations as instances of a conceptual visualisation
schema.

Finally, languages proposed for manipulating graphical data (e.g. Tableau’s
VizQL [38], Wilkinson’s Grammar of Graphics [46], R’s Tidyr package [33])
require programmers to manually select data, apply transformations, and select
appropriate visual encodings.

Visualising Linked Data. Many research works and systems have ad-
dressed the visualisation of linked data (for reviews see e.g. [12, 32, 8]). There
have been many proposals for visualising ontologies [25, 26, 45, 13] and RDF
graphs [10, 22, 3, 7]. These proposals typically provide a fixed set of tree- or
network-oriented data visualisations for viewing the graph structure of the data
and/or the ontology, with little extensibility or customisation capability.

There are also proposals that support more general visualisation capabilities
for linked data which allow end users to interactively select data and visualisa-
tions [18, 42, 34, 40, 9]. There has also been work on combining faceted search
with data analytic visualisations, mainly in application-specific settings [21, 28,
24].

Graziosi et al. [16] discuss the difficulty of producing visualisations for linked
data for users with little technical knowledge of semantic web technologies or
programming. They present a reference model for building tools that generate
customisable “infoviews” and conduct a survey of existing tools in terms of
their customisation capabilities. Issues relating to the scalability of exploration
and visualisation approaches in the face of large, distributed linked datasets are
discussed by Bikakis and Sellis [8].

None of these works provide the conceptual abstraction of groups of visuali-
sations nor a recommendation process for the user as we propose here.

Our own previous work [30] also proposed a conceptual modelling approach
towards data visualisation. However, that was in the context of structured data
sources with the assumption that strict schema information is available or infer-
able, and with schema-level matching being undertaken between the schema of
the data on the one hand and the visualisation schema patterns on the other.

Finally, we note that our abstraction of classes of commonly used data vi-
sualisations generalises the visualisation capabilities of graph database systems
such as GraphDB6 which guide the user towards creating specific visualisations.

6 http://graphdb.ontotext.com/
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3 Motivating Example

To motivate our approach we consider the Mondial database [29], which is avail-
able in RDF. A small fragment of it is illustrated in Figure 1, with the relevant
part of the OWL Schema illustrated in Figure 2. In these figures, the directional
arrows represent properties, with the arrow going from the domain to the range
to the property.
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Fig. 1. RDF Graph of countries and their borders from the Mondial database

The fragment of the Mondial database that we consider here contains coun-
tries, the continents they are within (some countries may span two continents),
the length of the border between pairs of countries, and the population history
of countries. Figure 3 shows a number of visualisations of this data. Each is
presenting different information about the Country class, but in different ways
according to the properties and datatypes being queried. In this paper we assume
that users formulate SPARQL queries to extract the data they are interested in
viewing, but then require guidance as to which visualisation method can be used,
and we use OWL schema information such as that presented in Figure 2 to guide
that process.

4 OWL Patterns for Visualisation

In visualisation research, the various graphic elements of a visualisation are typ-
ically classified as marks (points, lines, areas, etc) or channels (colour, length,
shape, coordinate, texture, orientation, movement, etc ) of a mark [44]. We make
two basic assumptions here: (1) instances of classes can be represented as a mark
in a visualisation, so that a visualisation becomes a method of viewing the in-
stances of one or more classes; and (2) each functional data property associated
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Country

xsd:decimal

unemployment F

inflation F

Border
isBorderOf 2

Encompassed

encompassedByInfo IF

percent F
xsd:string

carCode F

Continent

encompassedBy F

name F

PopulationCount

hadPopulation IF

xsd:integer

year F

value F

length F

Fig. 2. Fragment of the OWL Schema for the Mondial Database. Functional properties
are labelled F , inverse functional properties are labelled IF , and maximum cardinality
two properties are labelled 2 .

with a class can be used to alter a channel of the mark associated with that class
— we refer to such properties as dimensions of the class instances.

Taking an approach similar to Tableau7, and our previous work [30], we
distinguish two major types of dimensions (we note that these are different to
the ‘discrete’ and ‘continuous’ dimensions of [41]):

– discrete dimensions have a relatively small number of distinct values, that
may nor may not have a natural ordering; they are used to label a mark or
to vary a channel of a mark. Examples include the code associated with a
country or the year associated with a population census.

– scalar dimensions have a relatively large number of distinct values with
a natural numeric ordering (e.g. integers, real numbers, timestamps, dates);
these are represented by a channel associated with a mark. Examples include
the population of a country in a particular year, or the area of a country.

When a dimension is represented by a colour channel, then for a discrete
dimension we assume that a colour key can be used, while for a scalar dimension
we assume that a spectrum of colours can be used. Both discrete and scalar
dimensions may have additional real-world characteristics, e.g. their data may
be geographical, temporal, or lexical, which may suggest specific visualisations
for their representation.

In the following subsections, we develop progressively more complex patterns
of classes and properties, each characterising a group of possible alternative
visualisations. Our approach aims to provide the user with assistance in selecting
appropriate visualisations and should be viewed as being complementary to user
interface design aspects such as interaction design and task-based visualisation
design. To illustrate how the visualisation patterns could be applied in practice,

7 https://www.tableau.com/products/desktop



6 P.J. Mc.Brien and A. Poulovassilis

-8 0 8 16 24
0.0

12.5

25.0

37.5

50.0

inflation %

un
em

p
lo

ym
en

t %

(a) Inflation v Unemployment in Europe

UA

PLI

GB

F

D

VN TR

THA

RP

ROK

RI

R

PK

MYA

J

IR

IND

CN

BD

USA

RA

PE

MEX

CO

BRZRE

WAN ET

DZ

Population of Continents

Continent

Africa

America

Asia

Australia/Oceania

Europe

(b) Continent Population

(c) Population Trend in Oceania (d) Border Length in the Americas

Fig. 3. Example visualisation of country data based on patterns

we conclude the description of each by listing the SPARQL query template that
is implied by the visualisation pattern, together with the user queries matching
this query template that have been used to generate the visualisations shown in
Figure 3.

4.1 Class with data properties

Starting from our two basic assumptions (1) and (2) above, we can identify the
graph pattern illustrated in Figure 4(a), showing a class, CA, with one or more
functional data properties, DPA1. . .DPAn. This graph pattern can be formally
specified by the following visualisation pattern, expressed in OWL:

DataPropertyDomain(DPA1 CA)
DataPropertyRange(DPA1 TA1)
. . .
DataPropertyDomain(DPAn CA)
DataPropertyRange(DPAn TAn)

DataProperty(DPA1)
FunctionalProperty(DPA1)
. . .
DataProperty(DPAn)
FunctionalProperty(DPAn)

Note that here, and subsequently, we use variables CA, CB, . . . to denote
classes A, B, . . . ; variables DPA1, DPA2, . . . to denote data properties of a class
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(c) Three classes connected by two functional object properties

Fig. 4. Graph Patterns for Visualisations

A; variables TA1, TA2, . . . to denote the ranges of such data properties; variable
DPAK to denote a data property of a class A that is a key; variable TAK to
denote the range of such a data property; and variable PAB to denote an object
property between classes A and B.

Some visualisations (such as scatter diagrams) do not require that each mark
be labelled with a meaningful unique label, whilst others (such as bar charts) do
require such labels if they are to be useful. We indicate such a key with a dashed
line in the graph pattern, which adds the following additional statements to the
OWL visualisation pattern:

DataPropertyDomain(DPAK CA)
DataPropertyRange(DPAK TAK)

HasKey(CA () (DPAK))
DataProperty(DPAK)
FunctionalProperty(DPAK)

Each instance of the class CA will result in a mark, and its associated values
of TA1. . .TAn will determine the channels of the mark. If there is a key TAK
present, it may be used to label each mark of the visualisation.
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Many visualisations match this visualisation pattern, and we list below an
indicative sample, summarised in the table below:

– In a scatter diagram the marks are points, and two scalar dimensions TA1
and TA2 are used to alter the x and y coordinates of the points. If there is
a TAK present it can be used to label the points. The colour, shape, etc of
the point can be altered by additional optional dimensions TA3, . . . .

– In a bubble chart, the concept of a scatter diagram is refined to use a third
scalar dimension TA3 to change the size of the point.

– In a calendar chart the marks are entries in a calendar, and hence the value
of dimension TA1 must be a date to identify which slot on the calendar is
used.

– Basic bar charts use each value of TAK to label one bar, and the scalar
value of TA1 to change the length of the bar. There is a limit to the number
of bars that can be displayed so that the chart remains comprehensible. In
the table below, we therefore limit the cardinality of the class CA to be at
most 100, constraining the selection of this type of visualisation to data that
satisfies this constraint (the limit of 100 is of course subjective and would
be tunable in an implementation).

– A choropleth map uses each value of TAK to identify regions on a map,
and the scalar value of TA1 to change the colour of the region.

– In word clouds, the value of TAK is used to determine the word to be
plotted, and the scalar value of TA1 to determine the size of the word.

The analysis above is summarised in the table below. All of these visualisations
can support additional channels by altering the colour, texture, or other aspects
of the mark. This is illustrated in the table by colour or texture dimensions in the
optional column, which are extensible with additional dimensions of the data,
mapping to additional channels in the visualisation. The notation |CA| is used
to denote the number of instances of a class CA, so for example, we allow any
number of instances to be visualised in a calendar chart, but restrict bar charts
to have up to one hundred bars.

Visualisations for Classes with Data Properties
Name |CA| mandatory optional
Calendar Chart 1..* TA1 temporal scalar TAK,TA2 colour
Scatter Diagrams 1..* TA1,TA2 scalar TAK,TA3 colour
Bubble Charts 1..* TA1,TA2,TA3 scalar TAK,TA4 colour
Bar Chart 1..100 TAK, TA1 scalar -
Choropleth Maps 1..* TAK geographical, TA1 colour TA2 texture
Word Clouds 1..* TAK lexical, TA1 scalar TA2 colour

A SPARQL query template to extract the values required for a visualisation
that requires just TAK and TA1 is given below left; additional dimensions can be
added to the query in the obvious way by adding :DPA2 ?TA2, etc. A typical user
interaction scenario making use of the SPARQL query template and the OWL
visualisation template is as follows. The user first formulates a SPARQL query
to extract the data that they wish to see visualised; an example such query is
given below right.
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SELECT ?TAK ?TA1 ?TAn WHERE {
?CA r d f : t ype :CA ;

:DPK ?TAK ;
:DPA1 ?TA1 .

}

SELECT ? i n f l a t i o n ?unemployment WHERE {
? c r d f : t ype : Country ;

: i n f l a t i o n ? i n f l a t i o n ;
: unemployment ?unemployment ;

}

A system implementing our approach would match the user’s query against
the SPARQL query pattern corresponding to each group of visualisations (as
presented here and in the following subsections); in this particular example, the
user’s query matches the SPARQL query template shown above left. The system
would then validate that the OWL visualisation pattern is satisfied by matching
it against the RDFS/OWL statements in the dataset that is being queried which
relate to the classes and properties mentioned in the user’s query. The group of
visualisations that are satisfied (if any) would then be checked against the data
for the additional constraints (see e.g. the above table) relating to individual
visualisations. In our particular example, the Calendar Chart, Chloropeth Map
and Word Cloud would be discounted due to the data type constraints on TA1 or
TAK; and the Bar Chart would be discounted due to the cardinality constraint
on CA. The remaining set of visualisations would finally be offered to the user as
possible alternatives for generating their visualisation. In our particular example,
a scatter diagram or bubble chart would be offered. If the user selects a scatter
diagram, then the diagram shown in Figure 3(a) is produced.

We assume here that users’ SPARQL queries do not contain OPTIONAL
clauses and therefore only full matches with respect to the data are returned.
Exploring the interplay of OPTIONAL clauses with the recommendation tech-
niques that we propose here is an interesting area of future work.

4.2 Two classes linked by a functional property

We now consider the case where in addition to having data properties and a
key data property, a class CA is the domain of an object property PAB whose
range is another class CB. This is illustrated in the graph pattern in Figure 4(b)
which can be specified by the OWL statements below being added to those of
the previous subsection, giving an overall OWL visualisation pattern for this
second group of visualisations:

ObjectPropertyDomain(PAB CA)
ObjectPropertyRange(PAB CB)
DataPropertyDomain(DPBK CB)
DataPropertyRange(DPBK TBK)
DataPropertyDomain(DPB1 CB)
DataPropertyRange(DPB1 TB1)
. . .
DataPropertyDomain(DPBn CB)
DataPropertyRange(DPBn TBn)

HasKey(CB () (DPBK))
FunctionalProperty(PAB)
DataProperty(DPBK)
FunctionalProperty(DPBK)
DataProperty(DPB1)
FunctionalProperty(DPB1)
. . .
DataProperty(DPBn)
FunctionalProperty(DPBn)

The fact that PAB is functional means the presence of a hierarchical pattern
of data, with each instance of CA being associated with one instance of CB.
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Visualisations that represent two classes together rather than a single class are
less common, but some examples are listed below:

– In a tree map, rectangles representing instances of class CB are divided
into rectangles representing instances of class CA, the area of which is pro-
portional to the value of a scalar dimension TA1. Typically it is a dimension
TB1 of CB that is used to colour the rectangles, and additional dimensions
such as TA2 are used for texture, etc.

– In a hierarchy tree, nodes represent instances of CB that are connected by
lines to circles representing instances of CA. Since the nodes are at distinct
levels, optionally it is possible to use TA1 to colour one level, and TB1 to
colour the other level.

– A circle packing represents instances of CB by circles, with instances of
CA placed as circles inside the circle of their parent instance of CB. A scalar
dimension TA1 is used to determine the area of the circles of CA. Similarly
to a hierarchy tree, distinct dimensions can be used to colour distinct levels
of the circles.

– A sunburst represents instances of CB by segments of a central circle, with
segments of an outer circle divided representing instances of CA, placed out-
side of the corresponding instance of CB. The relative size of the segment is
determined by TA1. Similarly to a hierarchy tree, distinct dimensions can be
used to colour distinct rings of the sunburst.

We note that all of these visualisations support additional levels in the hier-
archy, such that one could add a third class CC connected by functional property
PBC from CB giving an additional level to the hierarchy.
The table below summarises the above analysis, where |CA PAB CB| presents the
number of instances in CA that are associated via PAB to each instance of CB.
The upper cardinality figures given (such as 20 for the top level of a tree map) are
there to guide the user towards selection of an uncluttered visualisation, and are
not a rigid limit. The restrictions proposed are subjective, and aesthetics-driven,
but serve to direct users to choosing appropriate visualisations so as to avoid sit-
uations where the amount of data would ‘clutter’ a particular type visualisation.
In any implementation these limits should of course be user-configurable.

Visualisations for functional properties
Name |CB| |CA PAB CB| mandatory optional
Tree Map 1..20 1..100 TAK,TBK,TA1 scalar TB1 colour,TA2 colour
Hierarchy Tree 1..100 1..100 TAK,TBK TA1 colour,TB1 colour
Sunburst 1..20 1..20 TAK,TBK,TA1 scalar TA1 colour,TB1 colour
Circle Packing 1..20 1..20 TAK,TBK,TA1 scalar TA1 colour,TB1 colour

A SPARQL query template to extract the labels and one attribute from each
of the two classes is listed below left (again additional dimensions can be added in
the obvious way). A possible user SPARQL query is shown below right. Although
this does not directly match the SPARQL query template on the left, in Sec-
tion 5 we discuss how the filter expression appearing in the user’s query causes
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the concatenation of encompassedByInfo and encompassedBy to be functional,
and hence match PAB in the query template. Following such a transformation,
for the Mondial database the tree map and hierarchy tree are offered as alter-
native visualisations. If the user selects a tree map, then the diagram shown in
Figure 3(b) is produced.

SELECT ?TBK ?TAK ?TA1 ?TB1 WHERE {
?CA r d f : t ype :CA ;

:DPAK ?TAK ;
:DPA1 ?TA1 .

?CB r d f : t ype :CB ;
:DPBK ?TBK ;
:DPB1 ?TB1 .

?CA :PAB ?CB .
}

SELECT ? con t i n en t ? ca r code ? popu l a t i o n
WHERE {

? c r d f : t ype : Country ;
: carCode ? ca r code ;
: p o pu l a t i o n ? popu l a t i o n ;
: encompassedByIn fo ? en .

? en : encompassedBy ? con ;
: p e r c en t ? p e r c en t .

? con r d f : t ype : Con t i n en t ;
: name ? con t i n en t .

FILTER ( ? pe r cen t >50 )
}

4.3 Two classes linked by a key functional property

A different set of visualisations are specified if we change the HasKey(CA ()
(DPAK)) definition in the previous subsection to

HasKey(CA () (DPAK PAB))
so that it is the combination of TAK and CB that identify instances of CA. In this
case, instances of CA are in a sense dependent on instances of CB, and a number
of visualisations naturally support such a dependency, a selection of which are
listed below:

– In a line chart each line represents an instance of CB labelled with TBK;
TAK represents a scalar dimension to be plotted along the x-axis; and TA1
must be a scalar dimension to be plotted along the y-axis. XY variations
of line charts allow an additional dimension TA2 to be added to the y-axis.
Optionally, additional dimensions TA3 could colour the points of the line,
and TB1 colour the lines.

– In a spider chart, each ring represents an instance of CB, labelled by TBK,
and each spoke a value of CA labelled by TAK; the intersection of the ring
with a spoke is determined by TA1. Similarly to line charts, additional di-
mensions TA2 could colour the points of intersection, and TB1 colour the
lines. For this visualisation type, we require CA to be complete with re-
spect to CB, by which we mean that all instances of CB should appear with
the same (or almost the same) set of values for TAK so that the different
instances of TBK can be can be compared for each instance of TAK.

– In a stacked bar chart, instances of CB are represented by a bar labelled by
TBK, with one of the elements in the stack representing an instance of CA,
and the length of the bar determined by a scalar dimension TA1, and it being
labelled and coloured by TAK. Optionally TA2 could alter the texture of the
elements. For this visualisation type too, we require CA to be complete

with respect to CB, so that the elements in each stack can be compared.
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– A group bar chart is similar to a stacked bar chart, with one group labelled
by TBK, and each bar in the group having its height determined by TA1 and
labelled and coloured by TAK. There is no need for CA to be complete with
respect to CB. Optionally TA2 could alter the texture of the bars.

The table below summarises the above analysis. Again the upper cardinalities
shown for |CB| and |CA| are aesthetics-driven and would be user-configurable.

Visualisations of key functional properties
Name |CB| |CA| complete mandatory optional
Line 1..20 1..* no TAK scalar,TBK,TA1 scalar TA2 scalar,TA3/TB1 colour
Spider 3..10 1..20 yes TAK,TBK,TA1 scalar TA2/TB1 colour
Stacked Bar 1..100 1..20 yes TAK colour,TBK,TA1 scalar TA2 texture
Grouped Bar 1..20 1..20 no TAK colour,TBK,TA1 scalar TA2 texture

The SPARQL query template for this group of visualisations listed below left
is the same as in the previous subsection. Below right is a user’s SPARQL query
asking for the historical population trends of countries in Oceania that matches
the query template and OWL visualisation pattern, and produces Figure 3(c) if
the user selects to view the data on a line chart.

SELECT ?TBK ?TAK ?TA1 ?TB1 WHERE {
?CA r d f : t ype :CA ;

:DPAK ?TAK ;
:DPA1 ?TA1 .

?CB r d f : t ype :CB ;
:DPBK ?TBK ;
:DPB1 ?TB1 .

?CA :PAB ?CB .
}

SELECT ? coun t r y ? yea r ? p opu l a t i o n
WHERE {

? c r d f : t ype : Country ;
: name ? coun t r y ;
: encompassedByIn fo ? en .

? py r d f : t ype : Popu l a t i onCount ;
: yea r ? yea r ;
: v a l u e ? p opu l a t i o n .

? c : hadPopu l a t i on ?py .
# F i l t e r c o nd i t i o n s

? en : encompassedBy ? con .
? con r d f : t ype : Con t i n en t ;

: name ” Au s t r a l i a /Ocean ia” .
}

4.4 Three classes linked by functional properties

As illustrated in the graph pattern in Figure 4(c), suppose that we introduce a
third class CC structured in a similar way to CB, through the following OWL
statements:

ObjectPropertyDomain(PAC CA)
ObjectPropertyRange(PAC CC)
DataPropertyDomain(DPCK CC)
DataPropertyRange(DPCK TCK)
DataPropertyDomain(DPC1 CC)
DataPropertyRange(DPC1 TC1)
. . .
DataPropertyDomain(DPCn CC)
DataPropertyRange(DPCn TCn)

HasKey(CC () (DPCK))
FunctionalProperty(PAC)
DataProperty(DPCK)
FunctionalProperty(DPCK)
DataProperty(DPC1)
FunctionalProperty(DPC1)
. . .
DataProperty(DPCn)
FunctionalProperty(DPCn)
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and that the HasKey on CA is changed to
HasKey(CA () (PAB PAC))

so that instances of CA are identified by combinations of instances of CB and
CC. With this visualisation pattern, we can regard CA as modelling a many-
many relationship between the two classes CB and CC, leading to a group of
visualisations that target a network view of data, such as the following:

– In sankey diagrams, the left hand elements of the diagram represent in-
stances of CB, the right hand elements represent instances of CC, and the
width of the flow between the left and right elements represents scalar di-
mension TA1. Optionally, a second attribute TA2 may be represented by
varying the colour of the connection.

– In network charts, instances of CB and CC are represented by nodes in
the graph, with an instance of CA that is connected to both an instance of
CB and an instance of CC being represented by an edge between these two
nodes. A optional scalar attribute TA1 can vary the colour of the line.

– In chord diagrams, instances of CB and CC are represented by points on
the perimeter of the circle, with the value of TA1 varying the width of the
connection between pairs of points. Again, a second attribute TA2 of the
many-many relationship may be represented by varying the colour of the
connection.

– In heatmap tables, instances of CB and CC are represented by cells of a
table, with the colour of the cell varied using TA1. Optional attribute TA2,
can be represented using texture.

We note that network charts, chord diagrams and heatmap tables can be
used to represent reflexive relationships where CB and CC are the same class
(let us say CB), so that the nodes/cells represent instances of CB, and CA has
two properties associating it to CB.

The table below summarises the above analysis. Whilst most of this group of
visualisations support optional dimensions being represented as a colour channel,
an exception is heatmaps, which require the use of colour in a mandatory channel,
and hence in this case we illustrate the optional dimensions by the use of texture.

Visualisations for a non-functional property
Name |CB| |CC| reflexive mandatory optional
Sankey 1..20 1..20 no TA1 scalar TA2 colour
Network Chart 1..1000 1..1000 yes - TAK,TA1 colour
Chord 1..100 1..100 yes - TA1 size,TA2 colour
Heatmap 1..100 1..100 yes TA1 colour TA2 texture

A SPARQL query template to capture the keys of CB and CC and one at-
tribute of CA is listed below left, and again additional attributes can be added
in the obvious way. The SPARQL below right matches this template, and if the
user selects a chord diagram, the diagram shown in Figure 3(d) is produced.
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SELECT ?TBK ?TCK ?TA1 WHERE {
?CA r d f : t ype :CA ;

:PAB ?CB ;
:PAC ?CC ;
:DPA1 ?TA1 .

?CB r d f : t ype :CB ;
:DPBK ?TBK .

?CC r d f : t ype :CC ;
:DPCK ?TCK .

}

SELECT ? coun t r y1 ? coun t r y2 ? l e n g t h WHERE {
?b r d f : t ype : Border ;

: i s Bo r d e rO f ? c1 ;
: i s Bo r d e rO f ? c2 ;
: l e n g t h ? l e n g t h .

? c1 r d f : t ype : Country ;
: carCode ? coun t r y1 .

? c2 r d f : t ype : Country ;
: carCode ? coun t r y2 .

# F i l t e r c o nd i t i o n s

FILTER ( ? country1<? coun t r y2 )
}

5 Transformations to match Visualisation Patterns

It will often be the case that an RDF graph does not contain the precise structure
required by a visualisation pattern. This is for two main reasons:

– The schema of the data is not fully defined, for example it is often the case
that OWL hasKey properties are not specified (e.g. the original Mondial
schema omits these, despite the keys being defined in the relational version
of the database), and even RDFS functionalProperty declarations are some-
times not specified where they could have been (e.g. in YAGO, www.mpi-
inf.mpg.de/yago-naga/yago/).

– The loosely structured nature of linked data results in inconsistency and
variants of data, so that data may need to be filtered and restructured before
being used for a particular visualisation or group of visualisations.

We therefore describe in this section two indicative transformations that
can be applied to users’ SPARQL queries to make them match a visualisation
pattern.
Functional Subqueries: if a user SPARQL query can be rewritten to contain a
subquery returning ?X and ?Y, such that the value of ?X functionally determines
the value of ?Y, then we can regard the subquery as matching any pattern
requiring a functional property of the form ?X :PXY ?Y.

Taking the example from Section 4.2 we can apply a rewriting as follows:

User Query

SELECT ? con t i n en t ? ca r code ? popu l a t i o n
WHERE {

? c r d f : t ype : Country ;
: carCode ? ca r code ;
: p o pu l a t i o n ? popu l a t i o n ;
: encompassedByIn fo ? en .

? en : encompassedBy ? con ;
: p e r c en t ? p e r c en t .

? con r d f : t ype : Con t i n en t ;
: name ? con t i n en t .

FILTER ( ? pe r cen t>50 )
}

Transformed Query

SELECT ? con t i n en t ? ca r code ? popu l a t i o n
WHERE {

? c r d f : t ype : Country ;
: carCode ? ca r code ;
: p o pu l a t i o n ? popu l a t i o n .

? con r d f : t ype : Con t i n en t ;
: name ? con t i n en t .

SELECT ?c ? con
WHERE {

? c : encompassedByIn fo ? en .
? en : encompassedBy ? con ;

: p e r c en t ? p e r c en t .
FILTER ( ? pe r cen t >50 )

}
}
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In general, we can determine that the variables of such a subquery obey
the functional property if either the properties that bind them together are
functional (which is not the case in this example), or if the subquery when
executed obeys the functional property (which is the case in this example).
Denormalisation of attributes: Suppose we wish to extend the scatter dia-
gram in Figure 3(a) to include information about the population of a country,
and the continent it is within, with the user SPARQL query below left:

User Query

SELECT ? ca rcode ? i n f ? unemployment
? co n t i n en t ? p opu l a t i o n

WHERE {
? c r d f : t ype : Country ;

: carCode ? ca r code ;
: i n f l a t i o n ? i n f ;
: unemployment ?unemployment ;
: p o pu l a t i o n ? popu l a t i o n ;
: encompassedByIn fo ? en .

? en : encompassedBy ? con ;
: p e r c en t ? p e r c en t .

? con : name ? con t i n en t .
FILTER ( ? pe r cen t>50 )

}

Transformed Query

SELECT ? ca rcode ? i n f ? unemployment
? con t i n en t ? p opu l a t i o n

WHERE {
? c r d f : t ype : Country ;

: carCode ? ca r code ;
: i n f l a t i o n ? i n f ;
: unemployment ?unemployment ;
: p o pu l a t i o n ? popu l a t i o n .

SELECT ?c ? con t i n en t
WHERE {

? c : encompassedByIn fo ? en .
? en : encompassedBy ? con ;

: p e r c en t ? p e r c en t .
: name ? con t i n en t .

FILTER ( ? pe r cen t >50 )
}

}

The introduction of population matches the pattern for an additional dimen-
sion of Country, but the name property is not a dimension of Country. However we
can ‘denormalise’ the name dimension of Continent by using a subquery, which
relates the instances of the Country class with name of Continent.

6 Summary and Conclusions

In this paper we have proposed a conceptual modelling approach to match-
ing linked data and visualisations. Our approach uses a set of “visualisation
patterns” expressed in OWL each of which abstracts a group of potential visu-
alisation alternatives. For each visualisation pattern, we define a corresponding
SPARQL query template. The OWL visualisation patterns and SPARQL query
templates are used to analyse the data and the users’ queries, respectively, so
as to make appropriate recommendations of groups of meaningful data visual-
isations to the user. We have also described transformations for denormalising
data, handling non-functional properties as classes, and applying filters to use
non-functional properties in visualisations that normally require functional prop-
erties.

By providing a set of OWL visualisation patterns each characterising the
data representation capabilities of a group of common data visualisations, we
make it easier for the user to select a visualisation that is meaningful in relation
to their query and the data, narrowing their choice to a more focussed set of
visualisations. An alternative scenario that would also be supported by our ap-
proach is where the user has a particular visualisation in mind to visualise a part
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of the data, in which case we can use the OWL visualisation pattern to validate
that the data satisfies the requirements for generating that visualisation and we
can instantiate the associated SPARQL query template in order to retrieve the
data and populate the visualisation.

Future work includes implementing and empirically evaluating our approach
with groups of users, investigating how the approach can be implemented as ex-
tensions of tools such as Tableau, and investigating the possibility of using it in a
“top-down” approach, starting with a desired visualisation type, and using that
to generate SPARQL queries and drill down into data. We also need to perform
an exhaustive analysis of the full range of visualisations supported by state-of-
the art tools, and extend the indicative groups listed in Section 4 as necessary.
This analysis may also give rise to additional visualisation groups, characterised
by additional OWL visualisation patterns. Other directions of future work in-
clude investigating and providing customisation features for users, and exploring
the scalability of our approach when applied to large distributed heterogeneous
linked datasets that need to be accessed via query or API endpoints.
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