
RoKEx: Robust Application-layer Knowledge Exchange

Peter McBrien, Nikos Rizopoulos, and Andrew Charles Smith

Dept. of Computing, Imperial College London,

Exhibition Road, London, SW7 2AZ

www.doc.ic.ac.uk

June 30, 2009

Abstract

Decisions in a dynamic environment may be based
on information coming from a number of different
knowledge sources described using different knowl-
edge representation languages. This paper describes
a common framework in which the data and rules,
both static and dynamic, that may exist in disparate
knowledge sources may be represented. We focus
on two commonly used knowledge representation
languages, namely SQL and OWL-DL. We have
chosen these as examples because they make different
assumptions about the knowledge they hold and we
use them to show that our framework can represent
knowledge under these different assumptions. Key-

words: Knowledge Representation, OWL-DL, SQL

1 Introduction

There are many existing techniques to solve the prob-
lem of integrating data from heterogeneous sources.
A popular approach, and one which we adopted to
solve this problem in the RoDEx project[?], is to
use some form of common data model as an inter-
mediary [?]. In some cases we can add rules to our
database that allow us to infer new facts from the ex-
isting data. We refer to this combination of data and
rules as a knowledge base. This addition of rules
makes the integration process much harder. In this

paper we present a common data model in which to
represent knowledge from different knowledge bases
that will allow us to integrate the knowledge in the
next phase of the project.

We start by presenting a motivating example. We
then describe in detail how we differentiate between
schemas which adopt the open world and closed world
assumptions as well as those that use the unique
name assumption and those that do not. We then
go on to describe how we represent both static and
dynamic rules from different knowledge bases in our
system. We finish with some conclusions.

2 Motivating Example

There is an area where vehicles are monitored, where
vehicles can be friendly military (FMV), friendly
civilian (FCV) or hostile (HV) vehicles. There are
two sources — one an array of ground sensors and
the other a satellite tracking system — which pro-
vide data and knowledge regarding the area and its
vehicles.

The ground sensors can detect vehicles and identify
their markings, i.e. they provide data such as that
shown in Table 1. The sensors provide: a reading id,
a position, the marking for the vehicle, the direction
and the velocity for the vehicle, and a timestamp.
A knowledge source, illustrated in Figure 1, is also
available to reason about the sensor data. The rules

1



sensor data

Id X Y time heading speed

1 10 15 10:23 sw 40

2 10 18 10:25 w 50

3 10 15 9:00 n 90

4 10 20 9:14 s 20

5 10 15 8:02 s 35

6 10 15 8:40 nw 100

markings

Id Mark

1 +

2 <

3 +

5 +

Table 1: Sensor array data, containing the data feed
in sensor data, and the result of image processing for
marking detection in marking

identify the vehicles: a + marking means an FCV, a
< means a FMV. These rules are stored in an OWL-
DL ontology illustrated in Figure 1(a). Based on this
knowledge of rules, the sensors can supply the list of
FCVs, sensor fcv, and FMV, sensor fmv in the area.
Any other vehicle is an unknown vehicle (UV), sen-

sor uv. The views in Table 2 illustrate the data the
sensors provide to the system, and it is the case that
we should assume that the classification is unreliable.

The second source of data is provided by a satellite
tracking system. The system has live data about all
the vehicles it can detect based on their on board
tracking devices. The system also has a list of all the
FMVs. This knowledge is encapsulated as an OWL-
DL ontology illustrated in Figure 2. Any vehicle in
the satellite live data which is not on the known lists
of FMVs is classified as a UV, satellite uv, using a
dynamic rule. Any vehicle in the satellite live data
which is a FMV, is recorded in satellite fmv. The
satellite data does not contain any false positive iden-
tifications of FMVs. Table 3 illustrates the live data
held by the satellite system and Table 4 illustrates
the views over that data feed that classify vehicles.

Based on the sensor and satellite data, a definite list
of unknown vehicles can be computed. These vehicles

sensor fcv

X Y time heading speed

10 15 10:23 sw 40

10 15 11:00 n 90

10 15 14:02 s 35

sensor fmv

X Y time heading speed

10 18 10:25 w 50

sensor uv

X Y time heading speed

10 20 12:14 s 20

10 15 15:00 nw 100

Table 2: Views over the sensor data, identifying
friendly civilian (FCV), friendly military (FMV) and
unknown (UV) vehicles.

live data

TrackingId X Y time heading speed

v45 10 15 10:23 sw 40

v46 10 18 10:25 w 50

v52 10 20 10:26 e 30

Table 3: Satellite data feed

are considered suspicious so a team could be sent to
investigate them. A static rule identifies these suspi-
cious rules based on the information from the sensors
and the satellite.

satellite fmv

X Y time heading speed

10 15 10:23 sw 40

10 18 10:25 w 50

satellite un

X Y time heading speed

10 20 10:26 e 30

Table 4: Views over the satellite data

2



class (Location partial owl:Thing)

class (Markings partial owl:Thing)
individual (cross type Markings)
individual (chevron type Markings)

class (Vehicle partial owl:Thing
restriction (hasMarkings someValuesFrom Markings)
restriction (hasLocation someValuesFrom Location)
restriction (hasSpeed someValuesFrom xsd:Integer))

class (FMV complete Vehicle
restriction (hasMarkings hasValue cross))

class (FCV complete Vehicle
restriction (hasMarkings hasValue chevron))

(a) OWL-DL
(b) HDM

Figure 1: Knowledge in the sensors

class (Vehicle partial owl:Thing
restriction (hasTrackingId someValuesFrom xsd:Integer))
class (FMV complete Vehicle
restriction (oneOf (v35 v45 v46)))

allDifferent (v35 v45 v46)

(a) OWL-DL

(b) HDM

Figure 2: Knowledge in the satellite

3 Preliminaries

In common with the previous RoDEx project
(CC003) [?], we use and extend the Hypergraph

Data Model (HDM) [?] as a common data model
in which to represent schemas from different knowl-
edge representation languages. Figure 1 shows the
OWL knowledge base used for the sensors translated
into an HDM graph. Full details of how this is done

can be found in [?]. We will briefly describe those
constructs in the figure and how the specific objects
in the figure are derived.

The circles depict the nodes in the graph. They
represent some concept in our specific domain of
discourse. Nodes can have an extent which is a
set of data values from this domain. For example,
the circle labelled Vehicle in Figure 1 is a node
that represents all the vehicles in our ontology.

3



The extent of the node is a set of vehicle ids.
When discussing specific nodes in the text we write
them as node:〈〈nodeName〉〉, where nodeName is
the label on the node, so the vehicle node will
be written as 〈〈Vehicle〉〉. The thick black lines
represent the edges. We write edges as follows:
edge:〈〈edgeName, objectName1, . . . , objectNamen〉〉
where edgeName is the label on the edge and
objectName1, . . . , objectNamen are the nodes or
edges that this edge links. The extent of an edge
is a tuple whose elements come from the objects
it links. In the figure the line linking 〈〈Vehicle〉〉
and 〈〈Markings〉〉 is an edge. We write this as
edge:〈〈hasMarkings,Vehicle,Markings〉〉. Its extent is
a tuple, the first element of which comes from the
extent of 〈〈Vehicle〉〉 and the second from the extent
of 〈〈Markings〉〉.

The grey boxes contain constraint operators. It is
sufficient for this paper to give simplified definitions
of constraints that assume only atomic values appear
in the extent of a node and there are no hyperedges
(full definitions that do not make this assumption can
be found in [?]):

• mandatory is represented in diagrams as
sx ⊲ s where sx is a node and s is an
edge 〈〈. . . , sx, . . .〉〉 which connects it to other
nodes, and ExtS,I(sx) − {x | 〈 . . . , x, . . . 〉 ∈
ExtS,I(s)} = ∅. In other words, every value of
sx must appear at least once in the edge s.

• inclusion is represented in diagrams as s1 ⊆ s2,
and states that ∀I, ExtS,I(s1)−ExtS,I(s2) = ∅,
i.e. the extent of s1 is a subset of s2.

• cardinality is represented in diagrams as
|n| attached to a node, and implies that
∀I.|ExtS,I(s)| = n, i.e. the number of instances
in s will always be some fixed value n

• equivalent is represented in diagrams as ≡ con-
necting a subset s1 ⊆ s2 constraint with some
other constraints, and has the semantics that if
s2 replaces s1 in those other constraints, then
any data value in ExtS,I(s2) that obeys the con-
straints is found in ExtS,I(S1).

The last two are new constraints we have introduced
into the HDM as part of this work. It was necessary
to extend our existing constraint set to allow us to
represent open world and non-unique name assump-
tion concepts in the HDM.

The grey lines linking the boxes to the nodes and
edges show which schema objects the constraints
apply to. Constraints do not have an extent,
rather they place restrictions on the extents of
the objects they are applied to. For example
〈〈Vehicle〉〉 ⊲ edge:〈〈hasMarkings,Vehicle,Markings〉〉
means that for every vehicle in 〈〈Vehicle〉〉
there must be a corresponding tuple in
edge:〈〈hasMarkings,Vehicle,Markings〉〉, i.e. every
vehicle must have a marking. 〈〈FCV〉〉 ⊆ 〈〈Vehicle〉〉
means every value in 〈〈FCV〉〉 must also appear in
〈〈Vehicle〉〉, i.e. every FCV is a vehicle.

4 Representation Issues

4.1 Partial and complete definitions

There are two main approaches to constraints in
knowledge representation languages. In the first ap-
proach, constraints are used to specify statements
that must always hold, and thus they can only par-
tially define the extent of an object. An example of
this type is the constraint that specifies that a vehicle
must have a location. This constraint is not sufficient
to classify an instance as a vehicle. In the second ap-
proach, constraints are used to derive the instances of
an object. An example of this type of constraints is
the constraint that specifies that in order to classify
a vehicle as an FMV, then this individual must be an
vehicle and it must a < marking on it.

All constraints that we have used in the previous
RoDEx and AutoMed projects were constraints
of the first approach. This type of constraints is
available in the relational model, the ER model,
RDF/S, OWL-DL, etc. In the example that is
mentioned above, in the sensor knowledge source
there are several constraints of this type. For
example, in Figure 1, we can see that there is a

4



partial definition of the Vehicle class, where the
constraints specify that a vehicle has an associated
location, represented by the mandatory constraint
with a mandatory constraint mandatory(〈〈Vehicle〉〉,
〈〈hasLocation,Vehicle, Location〉〉), a vehicle has
an associated velocity, mandatory(〈〈Vehicle〉〉,
〈〈hasSpeed,Vehicle, xsd : Integer〉〉), and that a vehicle
has an associate marking, mandatory(〈〈Vehicle〉〉,
〈〈hasMarkings,Vehicle,Markings〉〉).

In order to be able to support the constraints
of the second approach, we have to introduce a
new constraint primitive: equivalence (≡). This
constraint is available in OWL-DL. For example,
in the sensor knowledge source, there are two such
constraints defining completely the FMV and FCV
classes, as shown in Figure 1. One constraint is
used to identify the FMV instances: an individual
instance is an FMV if and only if the instance
is a vehicle and has a chevron < marking. This
rule specifies that FMV is a subclass of Vehicle,
subset:〈〈FMV,Vehicle〉〉, and that any instance of
FMV has marking Chevron, mandatory(〈〈FMV〉〉,
〈〈hasMarkings,FMV,Chevron〉〉). These two con-
straints are sufficient to derive FMV instances,
i.e. the FMV class is equivalent to the class where
these two constraints hold for all its instances equiv-

alent(FMV,〈〈⊆,FMV,Vehicle〉〉,mandatory(〈〈FMV〉〉,
〈〈hasMarkings,FMV,Chevron〉〉)). The other ex-
ample is the identification of the FCV instances:
an individual instance is an FCV if and only
if the instance is a vehicle and has a cross +
marking. Similarly to above, we have that equiv-

alent(FMV,〈〈⊆,FCV,Vehicle〉〉,mandatory(〈〈FCV〉〉,
〈〈hasMarkings,FCV,Cross〉〉)).

4.2 Implied edges

In knowledge representation languages, edges are
sometimes implied by inheritance. For example, ER
relationships of an entity are inherited on the special-
isations of that entity. In the HDM, we can define
that:

edge:〈〈e, . . . , sx, . . . 〉〉 ∧ subset:〈〈sx, s
′

x〉〉
→ edge:〈〈e, . . . , s′x, . . . 〉〉

and

Ext(edge:〈〈e, . . . , sx, . . . 〉〉) ⊆ Ext(edge:〈〈e, . . . , s′x, . . . 〉〉)

In order to refer to completely edges, we
need to define their extent. For example,
the edge:〈〈hasMarkings,FCV,Cross〉〉 is implied
from edge:〈〈hasMarkings,Vehicle,Marking〉〉 since
subset:〈〈FCV,Vehicle〉〉 and subset:〈〈Cross,Marking〉〉,
and its extent is:

[{x, y} |
{x, y} ← edge:〈〈hasMarkings,Vehicle,Marking〉〉;
{x} ← node:〈〈FMV〉〉; {y} ← 〈〈Cross〉〉]

4.3 Individuals

There are multiple ways of representing individual
instances in knowledge representation languages.

In one approach, individual instances can be
part of the query mappings between schema
objects. For example, the following query
[{x} | {x, y} ← 〈〈FCV,Marking〉〉; y = Cross] written
in IQL refers to the individual Cross. This approach
is used in data mappings between relational schemas.

In another approach, individual instances may
be explicitly present in the schema representa-
tion. This allows more formal definitions, since
the instance is no longer some text value. For
example, previously we mentioned the constraint
mandatory:〈〈〈〈FCV〉〉, 〈〈hasMarkings,FCV,Cross〉〉〉〉
which refers to an edge hasMarkings between 〈〈FCV〉〉
and another schema object 〈〈Cross〉〉, which represents
an individual. This approach is used in OWL-DL.

In the RoDEx project, we have used the first ap-
proach to represent individual instances. In order
to be able to represent individual instances in the
schema level, we need to extend our primitive con-
straints with a cardinality constraint, cardinality. For
individual instances their cardinalities must be ex-
plicitly specified. Two such constraints are illustrated
in Figure 1 for the individuals Cross and Chevron:
cardinality(〈〈Cross〉〉,1), cardinality(〈〈Chevron〉〉,1). In
Figure 2 there are three FMV individuals 〈〈v35〉〉,
〈〈v45〉〉 and 〈〈v46〉〉.

5



5 Static Rules

The are two main distinctions to make in knowledge
representation languages. The first is between the
open world assumption and the closed world assump-
tion. The second is between the unique name as-
sumption and the non-unique name assumption. Af-
ter reviewing these distinctions, we discuss how to
annotate a rule to illustrate which of these assump-
tions are being used.

5.1 Open and Closed Worlds

The open world assumption (OWA) is the as-
sumption that absence of a value from a current data
set does not mean that the value does not belong
to the data set. It is useful to model systems where
there is uncertainty in the data collected, and absense
of information does not imply it is false. For exam-
ple, making markings in the sensor data open world
would mean that there being no marking recorded for
vehicle id 4 cannot be used to conclude that vehicle id
4 is not an FMV, despite the absence of the required
marking for FMVs.

The OWA limits the kinds of inference and deduc-
tions an agent can make to those that follow from
statements that are known to the agent to be true.
The OWA is closely related to the monotonic nature
of FOL, i.e. adding new information never falsifies a
previous conclusion.

The closed world assumption (CWA) is the as-
sumption that any statement that is not known to
be true is false. This is approach is used in relational
databases (excluding certain uses of null values), and
is appropriate where we are certain of the complete-
ness of our knowledge. For example, it all our FMVs
carry a satellite tracking device, we can assume that
absence from satellite fmv implies a vehicle is not an
FMV.

Our previous work in RoDEx supported only the
CWA. Thus, we need to extend it and provide the
ability to annotate schema objects to distinguish be-
tween OW and CW objects. In particular, we extend

the HDM with a annotating function R : Nodes ∪
Edges→ {cw, ow}. Function R annotates each node
and edge with keywords cw or ow to point whether
the default reasoning for the object is closed-world or
open-world reasoning, respectively.

The default reasoning in knowledge representation
languages differs. For example, OWL supports both
OW and CW reasoning, while the relational model
supports by default CW reasoning. In our example,
the sensor array data do not have complete infor-
mation about FMV vehicles nor HV vehicles. Sen-
sor data only specify the vehicles that are in a spe-
cific area and they are not hiding from the sensors,
i.e. R(〈〈sensor fmv〉〉) = ow. In the satellite knowl-
edge base (Figure 2), the FMV class is a closed world
class. It is defined as an enumeration of three FMV
individuals, 〈〈v35〉〉, 〈〈v45〉〉 and 〈〈v46〉〉. Any other ve-
hicle is not an FMV if it is not one of the three afore-
mentioned individuals.

In queries, we want to be flexible and be able to
change the default reasoning of objects. For exam-
ple, based on the satellite data we might want to
check whether an FMV is in the area using query
member(v35, 〈〈live data〉〉cw

), where the 〈〈live data〉〉
is annotated as CW. Based on the data in Ta-
ble 3, the answer to this query would be false.
If we now take into consideration that some ve-
hicles might not have a very strong signal and
therefore they are not detected by the satellite, we
might want to use the OWA on the live data ta-
ble, i.e. member(v35, 〈〈live data〉〉ow

). In this case the
query would return back unknown, i.e. vehicle v35
might be in the area but cannot be detected.

5.2 Unique name assumption

Regarding the naming assumptions, knowledge rep-
resentation languages can either support the unique

name assumption (UNA), i.e. that different iden-
tifiers always refer to different entities in the world,
or the non-unique name assumption (nUNA),
i.e. that different entities in the world might have dif-
ferent identifiers. For this purpose, the HDM needs
to be extended and objects need to be annotated to

6



show whether UNA holds for the object or not.

In particular, we extend the HDM with a annotat-
ing function N : Nodes ∪ Edges ∪ Instances →
{UNA,nUNA}. Note that instances also need to
be annotated, but not null values. We remind the
reader that the instances of the HDM are Instances∪
{nullunk}, where nullunk represents the case when a
value should appear but it is currently unknown.

For example, the knowledge we have about vehicles
from the sensor array data identify a set of vehicles
at different locations at different times. Essentially,
vehicles can be identified by their X,Y coordinates,
time, heading and speed. However, since the same
vehicle can be present at different locations in dif-
ferent times, e.g. the vehicle that was at 10:23 and
position (10,15) could be the same vehicle that was
at position (10,18) 2 minutes later, the knowledge
make the nUNA. For example, for the sensor data we
have that N(〈〈sensor dmv〉〉) = nUNA and similarly
for all its tuples, e.g. N(〈10, 15, 10 : 23, sw, 40〉) =
nUNA,N(〈10, 15, 11 : 00, n, 90〉) = nUNA, etc. In
the example, with the satellite data, the knowledge
we have is about three FMVs uniquely identified
by their tracking id. In OWL-DL, we have explic-
itly specified that these three vehicles are distinct
from one another, using the owl:allDifferent pred-
icate, which translates in the HDM disjoint con-
straint. Thus, according to the knowledge base in
the satellite, the UNA holds for this set of vehicles,
i.e. N(〈〈FMV〉〉) = UNA.

The UNA and nUNA assumption have implications
on queries. Thus, the query language must allow
changing the naming assumption made on schema ob-
jects, e.g. by annotating them. For example, an IQL
query asking whether a specific tracking id, i.e. a
specific vehicle, is present member(v35, live data),
is translated as member(v35, live datauna) because
of the default UNA made in the satellite data.
This query for the data illustrated in Figure 3
will return false. However, if we learn that track-
ing devices have been tampered with, or that
our satellite transmission is no longer reliable we
need to change the default naming assumption for
〈〈live data〉〉 into nUNA. The query would then be-

come member(v35, 〈〈live data〉〉nuna
), which returns

unknown as a result, since the vehicle with tracking
id v35 might be present in the satellite data recorded
though with a false tracking id.

5.3 An example of a static rule

There are several examples of static rules in our run-
ning example, e.g. the definitions of FMV and FCV
in the sensor knowledge source (Figure 1) are static
rules. Another example of a static rule is the defini-
tion of the 〈〈sensor un〉〉 table:

CREATE VIEW sensor un AS

SELECT x,y,time,heading,speed

FROM sensor data

WHERE classification IS NULL

which as a BAV [?] rule becomes

add(node:〈〈sensor un〉〉, [{x, y, t, d, v} |
{x, y, t, c, d, v} ← node:〈〈sensor data〉〉cw; isnull({c})])

The sensor data table is annotated as CW rather
than OW because a vehicle with id=4 would not be
in the sensor un table if the table is annotated as
OW, because even though there is a tuple in the sen-
sor data table that shows that this vehicle does not
have a classification, the OWA allows the existence
of another tuple which is not yet recorded and where
the specific vehicle has a classification.

6 Dynamic Rules

Dynamic rules (or active rules) are rules that allow
changes in the data to cause other changes in the
data to occur. To illustrate the nature if this type
rule, consider the following two SQL triggers used
in the satellite system to update its satellite fmv and
satellite un tables based on its live data.

The update satellite fmv trigger identifies all vehicles
in the live data which are FMVs, according to its
internal list of FMV vehicles, stored in the fmv table.
The update satellite un trigger identifies all vehicles
in the live data which are not FMVs, according to
the fmv table, and stores in the the satellite un table

7



as unknown vehicles.
CREATE TRIGGER update satellite fmv AFTER INSERT ON live data

SELECT INTO TrackingId,X,Y,time,heading,speed
FROM live data,fmv
WHERE live data.TrackingId=fmv.TrackingId

INSERT INTO satellite fmv
VALUES (TrackingId,X,Y,time,heading,speed)

CREATE TRIGGER update satellite un AFTER INSERT ON live data

SELECT INTO TrackingId,X,Y,time,heading,speed
FROM live data
WHERE TrackingId NOT IN (SELECT TrackingId FROM fmv)

INSERT INTO satellite un
VALUES (TrackingId,X,Y,time,heading,speed)

Such dynamic behaviour can be represented using ex-
ecutable temporal logic rules [?]. Rules in executable
temporal logic take the form declarative past →
executable future, and have the semantics that if
at any time the query declarative past holds, then
executable future is made to hold. For example, to
represent the first of the triggers listed above we
would have rules of the form:

{l, t}<− edge:〈〈 , live data,TrackingId〉〉;
not {l}<− node:〈〈live data〉〉; {l}<− node:〈〈fmv〉〉 →

{l, t}<− edge:〈〈 , satellite fmv,TrackingId〉〉
{l, x}<− edge:〈〈 , live data,X〉〉;
not {l}<− node:〈〈live data〉〉; {l}<− node:〈〈fmv〉〉 →

{l, t}<− edge:〈〈 , satellite fmv,X〉〉
...

where means ‘in the previous moment’, and hence
{l, t}<− edge:〈〈 , live data,TrackingId〉〉;
not {l}<−node:〈〈live data〉〉 identifies new instances
of the live data table, and the TrackingId associated
with it.

7 Conclusion

In this paper we have outlined our work in building
a common representation of knowledge bases. The
three main areas we have dealt with are the differ-
ences between the open and closed world assump-
tions, the differences between using unique name and
non-unique name assumptions, and the modelling of
the temporal aspect of the knowledge base. This

common representation will serve as a platform for
our later work on knowledge integration.

Acknowledgements

The work reported in this paper was funded by
the Systems Engineering for Autonomous Systems
(SEAS) Defence Technology Centre established by
the UK Ministry of Defence.

References

[1] H. Barringer, M. Fisher, D. Gabbay, R. Owens,
and M. Reynolds, editors. The Imperative Future.
Research Studies Press, Somerset, 1996.

[2] M. Boyd and P. McBrien. Comparing and trans-
forming between data models via an intermediate
hypergraph data model. Journal on Data Seman-

tics, IV:69–109, 2005.

[3] D. Le, P. McBrien, and A.C.Smith. RoDEx: Ro-
bust data exchange for unreliable networks. In
Proc. 3rd SEAS DTC Technical Conference, 2008.

[4] P. McBrien and A. Poulovassilis. Data integration
by bi-directional schema transformation rules. In
Proc. ICDE’03, pages 227–238. IEEE, 2003.

[5] A. Poulovassilis and P. McBrien. A general formal
framework for schema transformation. Data and

Knowledge Engineering, 28(1):47–71, 1998.

[6] A. Sheth and J. Larson. Federated database sys-
tems. ACM Computing Survers, 22(3):183–236,
1990.

[7] A. Smith, N. Rizopoulos, and P. McBrien. Rokex:
Report of work package 1. Technical report, Im-
perial College London, August 2008.

8


