
Temporal Constraints in
Non-Temporal Data Modelling Languages

Peter Mc.Brien

Dept. Computing, Imperial College London, London SW7 2AZ
email: pjm@doc.ic.ac.uk

Abstract. It is common to find that the definition or common usage of a data
modelling language causes there to be restrictions placed on the evolution ofdata
values that are associated with schemas expressed in that modelling language.
This paper terms these restrictionstemporal constraints, and defines three types
of temporal constraint which are argued to be useful modelling concepts, cap-
turing important real-world semantics about objects and their relationships. By
reviewing how these temporal constraints are implied by either the definition or
usage of UML and the relational modelling languages, this paper will use the
temporal constraints to give precise definitions of modelling concepts thatto date
have been left only vaguely and partially understood. It will also consider the
implementation of these constraints in SQL.
keywords: data modelling, dynamic behaviour, conceptual modelling, temporal
constraints

1 Introduction

This paper reviews what will be termed thetemporal constraints (which are also
known asdynamic constraints) of data modelling languages, which we define to mean
the restrictions that are placed on the evolution of the extent of a schema expressed in a
data modelling language. In particular, this paper describes constraints on the evolution
of the extent intransaction time [1] which may be implemented without the necessity
of keeping a transaction time database. Hence we are considering temporal constraints
which may be applied in a non-temporal data modelling language.

To illustrate the concept of temporal constraints in non-temporal data modelling
languages, consider the UML schema in Fig. 1. A normal interpretation of this schema
is that once an instancex has been created of thepassenger class, then it will not be
possible that later the samex appears as an instance ofcargo class. More generally, the
normal interpretation of object oriented modelling languages is that an object identifier
cannot be associated with two different classes and refer tothe same thing. However,
this interpretation is not to be found in the definition of theUML modelling language
[2], and indeed some research work has been conducted into programming languages
which remove this restriction [3]. Another example is foundin the UML association
construct, where the definition of UML makes it unclear if a instancetyre could exist
after the deletion ofaircraft, and if is does, whether it could then be assigned to another
aircraft.

.

.

disjoint, complete

.

.

max tons

cargo

.

.

seats

passenger

.

.

model
maker

aircraft type

.

.

reg
miles

aircraft
0..1

◭ fixed on

.

.

serial no
type
miles

engine
2..4

.

.

serial no
landings

tyre

class:〈〈aircraft type〉〉
attribute:〈〈aircraft type,model〉〉
attribute:〈〈aircraft type,maker〉〉
class:〈〈passenger〉〉
attribute:〈〈passenger,seats〉〉
class:〈〈cargo〉〉
attribute:〈〈cargo,max tons〉〉
generalisation:〈〈aircraft type,{disjoint,complete},passenger,cargo〉〉
class:〈〈aircraft〉〉
attribute:〈〈aircraft, reg〉〉
attribute:〈〈aircraft,miles〉〉

composition:〈〈 ,aircraft type,aircraft,1..1,0..N〉〉
class:〈〈tyre〉〉
attribute:〈〈tyre,serial no〉〉
attribute:〈〈tyre, landings〉〉
aggregation:〈〈 ,aircraft, tyre,0..1,0..N〉〉
class:〈〈engine〉〉
attribute:〈〈engine,serial no〉〉

attribute:〈〈engine, type〉〉
attribute:〈〈engine,miles〉〉
association:〈〈fixed on,aircraft,engine,0..1,2..4〉〉

Fig. 1. Suml : A UML schema for a database of a aircraft fleet, together withits descrip-
tion as a set of schema objects

Related work will be considered in detail at the end of the paper in Section 4. One
contribution of this paper is to define in Section 3 a set of temporal constraints that
restrict the evolution of instances of a schema expressed (and stored as) a non-temporal
data modelling language. The definitions are made in a mannerthat allows them to be
defined on any data modelling language that fits a certain structure that this paper re-
views in Section 2, which has already been shown [4,5] to be sufficient to support the
relational, UML, ER, ORM and XML modelling languages. A second contribution of
the paper is to discuss the extent to which these temporal constraints are (sometimes
rather vaguely) already implied by the definitions of data modelling languages, by dis-
cussing in depth how the temporal constraints can be appliedto UML and the relational
data model.

An advantage gained in defining precisely the temporal modelling constraints and
identifying temporal constraints in schemas is that it reveals where there is the possi-
bility of inconsistencies when data is transferred betweenthe schemas of information
systems that have been built around different data modelling languages. For example,
the relational schema in Fig. 2 would be regarded as equivalent to the UML schema
in Fig. 1 under conventional UML to relational mapping approaches [6]. Indeed, at
any one time, it will be possible to map instances of one schema into instances of the

other schema. However, there are evolutions of the instances of the relational schema
that would not be permitted in the instances when mapped intothe UML schema. For
example, in the relational schema it would be possible to delete an entryx from the
passenger table, and insert it into thecargo table, whilst leaving the instancex un-
changed inaircraft type, and hence have thesame instance of an aircraft type change
from passenger to cargo types. As already discussed, this isnormally not permitted in
object-oriented models.

.

.

cargo
.

. jmodel
.

. jmax tons passenger
.

. jmodel
.

. jseats

aircraft
type .

.

jmodel
.

.

jmaker

66

aircraft
.

.

jreg
.

.

jmiles
.

.

jmodel

?

engine
.

.

jserial no
.

.

jreg
.

.

jtype
.

.

jmiles

?

tyre
.

.

jreg
.

.

jserial no
.

.

jlandings

6

table:〈〈aircraft type〉〉
column:〈〈aircraft type,model〉〉
column:〈〈aircraft type,maker〉〉
table:〈〈passenger〉〉
column:〈〈passenger,model〉〉
column:〈〈passenger,seats〉〉
table:〈〈cargo〉〉
column:〈〈cargo,model〉〉
column:〈〈cargo,max tons〉〉
table:〈〈aircraft〉〉
column:〈〈aircraft,model〉〉
column:〈〈aircraft, reg〉〉
column:〈〈aircraft,miles〉〉
table:〈〈tyre〉〉
column:〈〈tyre, reg〉〉
column:〈〈tyre,serial no〉〉
column:〈〈tyre, landings〉〉

table:〈〈engine〉〉
column:〈〈engine,serial no〉〉
column:〈〈engine, reg〉〉
column:〈〈engine, type〉〉
column:〈〈engine,miles〉〉
primary key:〈〈engine,serial no〉〉
primary key:〈〈aircraft, reg〉〉
primary key:〈〈aircraft type,model〉〉
primary key:〈〈cargo,model〉〉
primary key:〈〈passenger,model〉〉
primary key:〈〈tyre,serial no〉〉
foreign key:〈〈〈〈aircraft,model〉〉,〈〈aircraft type,model〉〉〉〉
foreign key:〈〈〈〈passenger,model〉〉,〈〈aircraft type,model〉〉〉〉
foreign key:〈〈〈〈cargo,model〉〉,〈〈aircraft type,model〉〉〉〉
foreign key:〈〈〈〈tyre, reg〉〉,〈〈aircraft, reg〉〉〉〉
foreign key:〈〈〈〈engine, reg〉〉,〈〈aircraft, reg〉〉〉〉

Fig. 2. Srel
1 : A relational schema for a database of a aircraft fleet, together with its de-

scription as a set of schema objects

2 Models and Schemas

Using the notation of AutoMed [7], a modelling language, ormodel, m contains a
set of modelling constructs, where eachconstruct c is used to represent some class
of data structure that holds set, bag or list of data values, and/or constraints on sets,

bags or lists of data values. Aschemas comprises of a set of schema objects, where
eachschema objecto is typed to some constructc. To date, almost without excep-
tion, researchers have considered that any given information system uses a single mod-
elling language. Such single modelling language schemas can then be described by
sm = {c1:〈〈o1〉〉,c1:〈〈o2〉〉, . . . ,cn:〈〈om−1〉〉,cn:〈〈om〉〉}.

When a schema object has some collection of data associated with it, we call the
data theextentof the schema object. The data associated with suchextensionalschema
objectso can be returned by the functionExt(o). Using the classification of modelling
constructs in [8], there are three classes of construct for which schema objects carry an
extent:

– nodalconstructs may be used to define schema objects that are present in a schema
independently of other schema objects. For example, a UML class is a nodal con-
struct, since schema objects such asclass:〈〈aircraft type〉〉 andclass:〈〈aircraft〉〉 in
Suml may exist without any other classes in the UML schema. A relational table
is also a nodal construct, since schema objects such astable:〈〈aircraft type〉〉 and
table:〈〈aircraft〉〉 may exist without any other tables in the relational schema.
Typically, the instances of a UML class are identified using object identifies, so we
might find that
Ext(class:〈〈aircraft〉〉) = {〈100〉,〈101〉, . . .}
Ext(class:〈〈aircraft type〉〉) = {〈200〉,〈201〉, . . .}
In predicate logic, these extents would cause the termclass:〈〈aircraft〉〉(X) to bind
X to first 100, then 101, etc.
Relational tables are typically identified usingnatural keys [10] (i.e. keys made
up of attributes which have a meaning in the real-world, sucha post codes, peoples
names, tax numbers,etc), so we might find
Ext(table:〈〈aircraft〉〉) = {〈G-CWQS〉,〈G-FDWC〉, . . .},
i.e. the registration codes of the aircraft.

– link-nodal constructs are used to define schema objects that can only exist when
connected to other schema objects, but contain data that is not present in the schema
objects they are connected to. For example, in UMLattribute:〈〈aircraft,miles〉〉 is
a link-nodal construct, since it can only exist when connected toclass:〈〈aircraft〉〉.
A relational column such ascolumn:〈〈aircraft,miles〉〉 is also link nodal since it
can only exist when connected totable:〈〈aircraft〉〉. The definition of link-nodal
constructs implies that the following rule about the extentof link-nodal schema
objects is always true:
link-nodal:〈〈E,A〉〉(X ,Y) → nodal:〈〈E〉〉(X)
Hence, given the extent ofclass:〈〈aircraft〉〉 and the above rule, we might find that
Ext(attribute:〈〈aircraft,miles〉〉) = {〈100,2945321〉,〈101,506834〉, . . .}, and give
the extent oftable:〈〈aircraft〉〉 and the above rule we might find that
Ext(column:〈〈aircraft,miles〉〉) = {〈G-CWQS,2945321〉,〈G-FDWC,506834〉, . . .}
Note that a peculiarity of the natural key based modelling languages is that the link-
nodal schema object used to define the key will contain duplicates, so we might find
Ext(column:〈〈aircraft, reg〉〉)= {〈G-CWQS,G-CWQS〉, 〈G-FDWC,G-FDWC〉, . . .}.

– link constructs are used to define schema objects that can only exist when con-
nected to two or more other schema objects, and contain data that is also present

in the schema objects they are connected to. For example, theUML schema object
association:〈〈fixed on,aircraft,engine〉〉 is a link construct, since it has to be con-
nected toclass:〈〈aircraft〉〉 andclass:〈〈engine〉〉. The definition of link-nodal con-
structs implies that the following rule about the extent of link-nodal schema objects
is always true:
link:〈〈R,E1,E2〉〉(X ,Y) → nodal:〈〈E1〉〉(X)∧nodal:〈〈E2〉〉(Y))

Hence, given the extent ofclass:〈〈aircraft〉〉 andclass:〈〈aircraft type〉〉 above, we
might find
Ext(composition:〈〈 ,aircraft type,aircraft〉〉) = {〈200,100〉, 〈200,101〉, . . .}.
Note that there are no examples of link constructs found in the relational model.

A fourth type of construct is used to defineconstraint schema objects that have no
associated extent, but place restrictions on the extents ofthe schema objects that appear
within the constraint schema object. Figs. 1 and 2 illustrate the representation of a UML
schema and a relational schema as a set of schemes. The UML schema includes agen-

eralisation constraint schema object, and the relational schema includesprimary key

and foreign key schema objects, but null/notnull constraints have been omitted from
the schema for brevity, since they are not used in this paper.

3 Temporal Constraints

We will identify in the following subsections three temporal constraints that have to
some extent already implicitly been used in data modelling languages, but to date have
not been explicitly identified as general modelling concepts in their own right that may
be applied to any non-temporal data modelling language, though as we will see, some-
times have been made available for specific modelling constructs in specific modelling
languages.

To accurately characterise the concepts, we will use discrete lineartemporal logic
[11] to define when certain properties hold. In the discrete linear model of time, we
view the state of the information system passing through a (possibly infinite) series
of states, where each state has one successor (next time) state, and one predecessor
(previous time) state. In the terminology of temporal databases, we are modelling the
transaction time [1] of the information system (but note that in this paper, wedo not
assume that we keep a transaction time history of the states of the information system).

The temporal logic we use in this paper is first order predicate logic with the addition
of two binary operators,Until andSince, and hence is often referred to asUS-Logic.
The statementA Until B means thatA holds at every time up to and including the time
whenB holds. From this operator, a number of derived unary and binary operators can
be defined (where⊤ represents truth, and holds in every state):

A ≡ AUntil⊤
AWhileB ≡ AUntil¬ B

A ≡⊤UntilA
A ≡ AWhile⊤

which we illustrate with the following examples:

1. 〈〈A〉〉(X) means that in the next time there is an instanceX of schema object〈〈A〉〉.
Hence the formula〈〈A〉〉(X) → 〈〈A〉〉(X) means that ifX is an instance of〈〈A〉〉
at any time, then it will be an instance of〈〈A〉〉 at the next time, and〈〈A〉〉(X) →
¬ 〈〈A〉〉(X) means that ifX is an instance of〈〈A〉〉 at any time, then it will not be
an instance of〈〈A〉〉 at the next time.

2. 〈〈A〉〉(X)While 〈〈B〉〉(X) holds if X is an instance of〈〈A〉〉 for the entire period that
X continues to be an instance of〈〈B〉〉.

3. 〈〈A〉〉(X) means that in some future time there is an instanceX of schema object
〈〈A〉〉. Hence the formula〈〈A〉〉(X) → 〈〈A〉〉(X) means that ifX is an instance
of 〈〈A〉〉 at any time, thenX will be an instance of〈〈A〉〉 at some future time, and
〈〈A〉〉(X) →¬ 〈〈A〉〉(X) means that ifX is an instance of〈〈A〉〉 at any time, then it
will never be an instance of〈〈A〉〉 again.

4. 〈〈A〉〉(X) means that in all future times there is an instanceX of schema object
〈〈A〉〉. Hence the formula〈〈A〉〉(X) → 〈〈A〉〉(X) means that ifX is an instance of
〈〈A〉〉 at any time, then it will so for ever more, and〈〈A〉〉(X)→¬ 〈〈A〉〉(X) means
that if X is an instance of〈〈A〉〉 at any time, there will be some time in the future
when it is not an instance.

3.1 Monogamy and Lifetime Monogamy

In general, the concept ofmonogamy involves something being related to just one
other thing at any one time. In data modelling, this concept is captured using op-
tional or mandatory cardinality constraints —i.e. cardinality constraints with an up-
per bound of one. For example,association:〈〈fixedon,aircraft,engine〉〉 in Fig. 1 makes
class:〈〈engine〉〉 have a monogamous relationship withclass:〈〈aircraft〉〉, meaning each
engine can only be fixed on one aircraft at a time. In our representation of data mod-
elling, we can say that an instance of a nodal schema object appearing in some link-
nodal or link schema object is monogamous for that schema object if one of the follow-
ing rules hold, which in essence state that there cannot be two instances of the link-nodal
or link schema object for the same monogamous schema object instance.

monogamous(nodal:〈〈E1〉〉, link:〈〈R,E1,E2〉〉)
def
=

link:〈〈R,E1,E2〉〉(X ,Y) →¬∃Z.link:〈〈R,E1,E2〉〉(X ,Z)∧Y 6= Z

monogamous(nodal:〈〈E2〉〉, link:〈〈R,E1,E2〉〉)
def
=

link:〈〈R,E1,E2〉〉(X ,Y) →¬∃Z.link:〈〈R,E1,E2〉〉(Z,Y)∧Y 6= Z

monogamous(nodal:〈〈E〉〉, link-nodal:〈〈E,A〉〉)
def
=

link-nodal:〈〈E,A〉〉(X ,Y) →¬∃Z.link-nodal:〈〈E,A〉〉(X ,Z)∧Y 6= Z
Hence for Fig. 1, we can state:

monogamous(class:〈〈engine〉〉,association:〈〈fixedon,aircraft,engine〉〉)
monogamous(class:〈〈tyre〉〉,aggregation:〈〈 ,aircraft, tyre〉〉)
monogamous(class:〈〈aircraft〉〉,composition:〈〈 ,aircraft type,aircraft〉〉)
Note that this definition of monogamy does not preventserial monogamy, i.e. an

instance of the nodal class being monogamous at any one time,but changing its rela-
tionships over time. For UMLassociations, this definition is intuitively correct. For ex-
ample, it would allow aclass:〈〈engine〉〉 instance to be moved from oneclass:〈〈aircraft〉〉
to another. However, the definition of UMLaggregationandcompositionare defined

to usually imply that members of the aggregation are not allowed to change from one
group to another [2]. Here we suggest that this ‘usually’ be strengthened to alifetime
monogamoustemporal constraint, that prevents serial monogamy. Once acertain value
Y has been associated with a schema object in its connection with a particular instance
X of some other schema object, then during one period of existence ofX there may not
be some different valueZ used instead ofY . Specifically:

lifetime monogamous(nodal:〈〈E1〉〉, link:〈〈R,E1,E2〉〉)
def
=

link:〈〈R,E1,E2〉〉(X ,Y) →
(¬∃Z.link:〈〈R,E1,E2〉〉(X ,Z)∧Y 6= Z)Whilenodal:〈〈E1〉〉(X)

lifetime monogamous(nodal:〈〈E2〉〉, link:〈〈R,E1,E2〉〉)
def
=

link:〈〈R,E1,E2〉〉(X ,Y) →
(¬∃Z.link:〈〈R,E1,E2〉〉(Z,Y)∧X 6= Z)Whilenodal:〈〈E2〉〉(Y)

lifetime monogamous(link-nodal:〈〈E,A〉〉)
def
=

link:〈〈E,A〉〉(X ,Y) →
(¬∃Z.link:〈〈E,A〉〉(X ,Z)∧Y 6= Z)Whilenodal:〈〈E〉〉(X)

i.e. lifetime monogamy for a nodal schema object in a link or link-nodal schema object
implies monogamy for the duration of a single lifespan of thenodal schema object. We
will interpret the semantics of UML modelling to imply for Fig. 1:

lifetime monogamous(class:〈〈tyre〉〉,aggregation:〈〈 , tyre,aircraft〉〉)
lifetime monogamous(class:〈〈aircraft〉〉,composition:〈〈 ,aircraft type,aircraft〉〉)
The first line above means that an instance ofclass:〈〈tyre〉〉 can only ever be associ-

ated with oneclass:〈〈aircraft〉〉 during one period of existence of a tyre,i.e. a tyre can
only be used on one aircraft, but there is no constraint of which of the tyre or the aircraft
existed first, and the tyre can be taken off the aircraft without destroying either the tyre
or the aircraft. The second line means that an instance ofclass:〈〈aircraft〉〉 can only ever
be associated with oneclass:〈〈aircraft type〉〉.

Note that the UML concept ofreadOnly implies that a value must be set during ob-
ject initialisation, and hence implies a mandatory cardinality constraint in combination
with a lifetime monogamous temporal constraint. Note that the relational model has
no constructs that imply the lifetime monogamous constraint on link schema objects
or link-nodal schema objects, and UML does not provide the constraint in conjunction
with optional cardinality constraints. However, this doesnot mean the it would not be
useful to introduce a specific lifetime monogamous temporalconstraint to these models.
For example, ifattribute:〈〈aircraft, reg〉〉 were lifetime monogamous, one could build a
plane without a registration code, register it, and later cancel the registration code be-
fore scraping the aircraft, but ensure that one never assigns a different registration code
to the aircraft. This would also be readily implemented in SQL using triggers to control
the updating of a column, such that a state column was set to true when a data column
was set to null, prohibiting any further setting of data column value.

3.2 One-off

The oneoff temporal constraint means that once a schema object instance is deleted,
the same instance cannot exist again. For nodal schema objects, this constraint is easily
characterised as

oneoff(nodal:〈〈E〉〉)
def
=

nodal:〈〈E〉〉(X)∧¬ nodal:〈〈E〉〉(X) →¬ nodal:〈〈E〉〉(X)

stating that ifX is an instance ofnodal:〈〈E〉〉 at any time, and at the next time it is not
an instance ofnodal:〈〈E〉〉, then there will be no future time whenX is an instance of
nodal:〈〈E〉〉. The oneoff temporal constraint is often associated with nodal schema ob-
jects in object-oriented models, where once a class instance has been deleted, the same
class instance cannot be restored. For example, once instance〈100〉 has been deleted of
class:〈〈aircraft〉〉, there would not in the future be an instance〈100〉 of class:〈〈aircraft〉〉.
By contrast, models such as the relational models when basednatural keys do not sup-
port the oneoff temporal constraint. This is because a relational database has no mecha-
nism to stop a natural key being reinserted into the databaseafter it has previously been
deleted.

.

.

cargo
.

. jtid
.

. jmax tons passenger
.

. jtid
.

. jseats

aircraft
type .

.

jtid†
.

.

jmodel
.

.

jmaker

66

aircraft
.

.

jaid†
.

.

jreg
.

.

jmiles
.

.

jtid

?

engine
.

.

jeid†
.

.

jserial no
.

.

jaid
.

.

jtype
.

.

jmiles

?

tyre
.

.

jaid
.

.

jtyid†
.

.

jserial no
.

.

jlandings
6

Fig. 3.Srel
2 : A variant ofSrel

1 using auto-increment keys, marked with a † in the diagram.
Note thatcargo andpassenger do not have auto-increment keys, since they inherit the
value of the key fromaircraft type)

If the relational system usesauto-increment keys, then the behaviour would be
more similar to that of the object oriented system. Fig. 3 presents a version of Fig. 2
where auto-increment keys have been used (and Fig. 4 the SQL definitions of some of
the tables), and then we can state

oneoff(table:〈〈aircraft〉〉)
oneoff(table:〈〈aircraft type〉〉)
oneoff(table:〈〈engine〉〉)
oneoff(table:〈〈tyre〉〉)

since once a key value has been generated for an auto-increment key, the value will not
be generated again in the future. A problem remains with the tables implementing the
subclassespassenger andcargo, which are unable to use auto-increment keys. We can
solve this problem with our implementation of the final temporal constraint presented
in the next subsection.

Definition of oneoff for link-nodal and link schema object takes a similar form to
that for nodal schema objects:

CREATE TABLE aircraft type
(mid INT PRIMARY KEY,

maker VARCHAR(20)
)

CREATE TABLE passenger
(mid INT PRIMARY KEY REFERENCES aircraft type ON DELETE CASCADE,

seats INT
)

CREATE TABLE cargo
(mid INT PRIMARY KEY REFERENCES aircraft type ON DELETE CASCADE,

max tons INT
)

CREATE FUNCTION delete aircraft type() RETURNS TRIGGER
AS ’BEGIN

DELETE FROM aircraft type WHERE aircraft type.tid=OLD.tid;
RETURN NULL;
END’ LANGUAGE plpgsql;

CREATE TRIGGER passenger subclass aircraft type AFTER DELETE ON passenger
FOR EACH ROW EXECUTE PROCEDURE delete aircraft type();

CREATE TRIGGER cargo subclass aircraft type AFTER DELETE ON cargo
FOR EACH ROW EXECUTE PROCEDURE delete aircraft type();

Fig. 4. Definition using the Postgres RDBMS SQL language of triggersbeing used to
implement the final temporal constraints

oneoff(link-nodal:〈〈E,A〉〉)
def
=

link-nodal:〈〈E,A〉〉(X ,Y)∧¬ link-nodal:〈〈E,A〉〉(X ,Y) →
¬link-nodal:〈〈E,A〉〉(X ,Y)Whilenodal:〈〈E〉〉(X)

oneoff(link:〈〈R,E1,E2〉〉)
def
=

link:〈〈R,E1,E2〉〉(X ,Y)∧¬ link:〈〈R,E1,E2〉〉(X ,Y) →
¬link:〈〈R,E1,E2〉〉(X ,Y)Whilenodal:〈〈E1〉〉(X)∧nodal:〈〈E2〉〉(Y)

Neither UML nor the relational models have constructs that imply oneoff to link-
nodal or link schema objects, and the semantics of such a constraint would only be of
use in relatively few circumstances. For example, if we added to the UML schema in
Fig. 1 oneoff(attribute:〈〈aircraft, reg〉〉), then an aircraft could change its registration
number, but not revert to a previously used registration number. It should be noted that
the general implementation of oneoff is costly in storage terms, since it requires a trans-
action time history be kept a schema object declared as one-off so that a check can be
made each time a new instance is created that the instance hadnot been present at some
time in the past. The specific case of oneoff being applied to object identifiers and auto-

increment keys is not costly in storage terms since only a single variable incrementing
new values need be kept in order to ensure unique values over time.

3.3 Final

Thefinal temporal constraint means that once a instance of a schema object has been
created, then that instance will remain until one of the instances of the schema objects
it is dependent upon is deleted. Specifically, for nodal schema objects, we state:

final(nodal:〈〈E1〉〉,nodal:〈〈E2〉〉)
def
=

nodal:〈〈E2〉〉(X) → nodal:〈〈E2〉〉(X)Whilenodal:〈〈E1〉〉(X)
meaning that once a instance exists innodal:〈〈E2〉〉, it must continue to exist whilst
the same values exists innodal:〈〈E1〉〉. UML generalisationsimply the final temporal
constraint between the child and parent nodes. For the schema in Fig. 1 we can state:

final(class:〈〈aircraft type〉〉,class:〈〈passenger〉〉)
final(class:〈〈passenger〉〉,class:〈〈aircraft type〉〉)
final(class:〈〈aircraft type〉〉,class:〈〈cargo〉〉)
final(class:〈〈cargo〉〉,class:〈〈aircraft type〉〉)
Hence, when an instance ofclass:〈〈passenger〉〉 is deleted, then so must the instance

of class:〈〈aircraft type〉〉, andvice versa.
There is no modelling construct in the relational model thatdirectly implies final

on its schema objects, but there is some limited support for implementing the final
constraint. Firstly, if we added the SQL constraintON DELETE CASCADE to primary
keys oftable:〈〈passenger〉〉 andtable:〈〈cargo〉〉, as illustrated by the table definitions in
Fig. 4, then we would be able to state:

final(table:〈〈aircraft type〉〉,table:〈〈passenger〉〉)
final(table:〈〈aircraft type〉〉,table:〈〈cargo〉〉)

since deleting a row fromtable:〈〈aircraft type〉〉 will cause the cascading of a delete on
table:〈〈passenger〉〉 or table:〈〈cargo〉〉. Secondly, if we added the SQL trigger for each
of thepassenger andcargo table, as illustrated by the trigger definitions in Fig. 4, which
executes a function that deletes the same identifier from theparentaircraft type table,
then a deletion of eithertable:〈〈passenger〉〉 or table:〈〈cargo〉〉 would trigger a deletion
of table:〈〈aircraft type〉〉. The presence of such a trigger then allows us to state:

final(table:〈〈passenger〉〉,table:〈〈aircraft type〉〉)
final(table:〈〈cargo〉〉,table:〈〈aircraft type〉〉)
In defining the final constraint for link-nodal constructs, there are two cases to con-

sider. Applying the first rule below to a UML attribute or a relational column would
mean that once a value was assigned to the attribute/column it could not be changed.
For example final(attribute:〈〈aircraft, reg〉〉) would mean that a registration number of
a aircraft could not be changed. Interestingly, this modelling concept is absent from the
UML1 and relational languages, but is present in some object oriented programming

1 It is interesting to note that the semantics of final would appear to match the semantics of the
addOnly property of link nodal and link constructs available in some versions of UML prior
to UML 2.0. Also removed in UML v2.0 was the concept ofcreateOnly, which stated that
values could be added once but no more to a property. Both addOnly andcreateOnly forbid
changes.

languages which UML targets (for example thefinal keyword in Java andreadonly

keyword in C#).

final(link-nodal:〈〈E,A〉〉)
def
=

link-nodal:〈〈E,A〉〉(X ,Y) → link-nodal:〈〈E,A〉〉(X ,Y)Whilenodal:〈〈E〉〉(X)

final(link-nodal:〈〈E1,A1〉〉, link-nodal:〈〈E2,A2〉〉)
def
=

link-nodal:〈〈E1,A1〉〉(X ,Y)∧ link-nodal:〈〈E2,A2〉〉(Z,Y) →
link-nodal:〈〈E2,A2〉〉(Z,Y)While link-nodal:〈〈E1,A1〉〉(X ,Y)

The second rule causes a value appearing in one link-nodal that is also appearing in
a second link-nodal to cause the same second value to continue to exist whilst the first
continues to exist. For example, if we stated onSrel

2
final(column:〈〈aircraft, tid〉〉,column:〈〈aircraft type, tid〉〉)

then we would have the same semantics present in the relational model as we gave to the
UML composition construct above, and aircrafts would not beable to change aircraft
types.

For link constructs, there again two types of final constraint. Applied to a UML
association, the first rule below says that once an instance of the association has been
created it remains in existence whilst both of the classes itassociates exist. The second
two rules strengthen the rule to say that the instance of the association will continue in
existence until just one of the classes it associates is deleted.

final(link:〈〈R,E1,E2〉〉)
def
=

link:〈〈R,E1,E2〉〉(X ,Y) →
link:〈〈R,E1,E2〉〉(X ,Y)While (nodal:〈〈E1〉〉(X)∧nodal:〈〈E2〉〉(Y))

final(nodal:〈〈E1〉〉, link:〈〈R,E1,E2〉〉)
def
=

link:〈〈R,E1,E2〉〉(X ,Y) → link:〈〈R,E1,E2〉〉(X ,Y)Whilenodal:〈〈E1〉〉(X)

final(nodal:〈〈E2〉〉, link:〈〈R,E1,E2〉〉)
def
=

link:〈〈R,E1,E2〉〉(X ,Y) → link:〈〈R,E1,E2〉〉(X ,Y)Whilenodal:〈〈E2〉〉(Y)

In UML, the compositionconstruct often implies a coincidence in lifetimes of the
classes in the composition. We propose to restrict this definition to stating that the mem-
ber class of a composition is final in the composition. In Fig.1, this means we can state:

final(class:〈〈aircraft〉〉,composition:〈〈 ,aircraft type,aircraft〉〉)
meaning that once an aircraft has been assigned to an aircraft type, it cannot be changed
to another aircraft type. We would not want to associate the final temporal constraint
with UML aggregations. For example, if final(aggregation:〈〈 ,aircraft, tyre〉〉) was de-
clared for the UML schema, then once〈100,107〉 has been added as an instance, it
would remain until the tyre〈107〉 was deleted fromclass:〈〈tyre〉〉, preventing us from
removing instances from aggregations.

4 Related Work

There has been a considerable amount of work conducted into the modelling of tem-
poral constraints in temporal data models (for example [12,13,14,15,16]). By contrast,
this paper considers temporal constraints that may be used,or are already implied, in
existing non-temporal data models.

In the field of data modelling, the most comprehensive previous treatment can be
found in [17,18], which deal with the temporal behaviours ofnodal and link-nodal con-
structs, but not of link constructs. Also, [17,18] do not explicitly relate their definitions
to specific modelling languages, though the relationship with ER and UML modelling
is clear. In [17], for nodal constructs, the concept ofpermanent constraint is defined
where an object, once it exists, must stay in existence whilst the information system
remains in operation.

permanent(nodal:〈〈E〉〉)
def
=

link:〈〈E〉〉(X) → nodal:〈〈E〉〉(X)

This is similar to the final constraint, with the difference that the final constraint is
always defined relative to some other object. We argue that this is more intuitive, since
is corresponds to the real world concept of something entering its final state, yet not
necessarily continuing to exist forever.

In [17], there is the concept offrequency beingsingleor multiple . Applied to en-
tities the concept of single corresponds to exactly to the definition of one-off in this
paper. However, applied to attributes, it differs from one-off in allowing an attribute to
change value and then return to value during its single existence (where the definition of
one-off states that a particular value may be used only once). The authors also introduce
concept ofdurability , which may bedurable or instantaneous, where instantaneous
means that an object only exists for one chronon in the temporal model. This is a com-
mon distinction in temporal data models, since it allows instantaneous schema objects
to be stored with one time value per instance (the time of the instance occurred at),
whilst durable schema objects require a pair of time values representing the interval the
instance exists for (or set of such pairs if there is set of intervals).

In [18], there was a discussion of how generalisations couldbe classified intostatic
if sub-class memberships could not evolve over time, ordynamic if they could. In [19],
the concept oftemporal behaviour of UML associations is defined, and characterised
as static or dynamic depending on whether the values on the association for a par-
ticular class may be changed. There is also consideration tothe definition of delete
propagations across associations.

Work on the temporal constraints on nodal objects has also been conducted in the
field of ontologies. In [20,21] a classification of unary predicates (equivalent to our
nodal constructs) intorigid , anti-rigid , andnon-rigid was introduced. The rigid con-
straint takes the same definition as the permanent constraint in [17]:

rigid(nodal:〈〈E1〉〉)
def
=

nodal:〈〈E1〉〉(X) → (nodal:〈〈E1〉〉(X))

Recently, it has been proposed that ORM be extended to include this distinction [22].
The definition of rigid shares the flaw we discussed in relationship to the permanent con-
straint from [17]. This flaw was recognised in [23], which proposedexistential rigidity ,
where a value appearing innodal:〈〈E1〉〉 forces the value to also appear in some related
nodal:〈〈E2〉〉:

existentialrigid(nodal:〈〈E1〉〉,nodal:〈〈E2〉〉)
def
=

nodal:〈〈E1〉〉(X) → (nodal:〈〈E1〉〉(X) → nodal:〈〈E2〉〉(X))

If we applied this to our relational model as:

existentialrigid(table:〈〈aircraft type〉〉,table:〈〈passenger〉〉
existentialrigid(table:〈〈aircraft type〉〉,table:〈〈cargo〉〉)

then we would have to implement a temporal history of data instance from tables
table:〈〈passenger〉〉 and table:〈〈cargo〉〉 (which are the relational tables implementing
the subclasses oftable:〈〈aircraft type〉〉), since if a value where to be deleted and rein-
serted intotable:〈〈aircraft type〉〉 then we would need to ensure that if also appeared in
the correct subclass table.

From the above discussion, it can be seen that the definitionsin this paper are the
first to be made across all types of modelling construct, and also the first to be defined in
a manner that is implementable without the necessity of maintaining a full transaction
time history of data.

5 Summary and Conclusions

In this paper, we defined three temporal constraints called lifetime monogamy, oneoff,
and final, that may be used to model the changes that are permitted to the extents as-
sociated with schema objects in static non-temporal data modelling languages. Loosely
speaking, (i) lifetime monogamy models the concept that mandatory or optional re-
lationships are restricted further to disallow serial monogamy, (ii) oneoff models the
concept that things cannot be reincarnated, and (iii) final models the concept that once
a value has been assigned, it cannot be changed.

We have given precise definitions of these three constraintsin linear temporal logic,
and have discussed how some of these constraints are alreadyfully or partially implied
by constructs found in the UML and relational languages. Ourdefinitions are made
in terms of very general modelling concepts of nodal, link-nodal and link modelling
constructs, and this approach has previously been shown to be capable of representing
a wide variety of modelling languages [8,4].

The precise definitions of temporal constraints serve to give two advantages. First,
the modelling constructs of UML and the relational model arebetter understood, lead-
ing to a more accurate modelling of the real world when using these languages. Sec-
ondly, the definitions serve to expose the differences that exist between modelling lan-
guages, and allow action to be taken to overcome these differences. We illustrated this
second advantage by describing how SQLCASCADE andTRIGGER constructs can be
used to implement the temporal constraints, and hence make arelational based system
be capable of holding a schema that corresponds more exactlywith a UML schema than
is the case in current approaches to UML to relational mapping.

To shorten the presentation, we have restricted the class ofmodelling languages
discussed to those with binary link schema objects and with link and link-nodal schema
objects that only connect with nodal schema objects. However the extension of the work
to remove those restrictions is straightforward.

References

1. Jensenet al, C.: A consensus glossary of temporal database concepts. SIGMODRecord
23(1) (1994) 52–64

2. Group, O.M.: Unified Modeling Language: Superstructure 2.1.1.Technical report, OMG
(2007)

3. Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: More Dynamic Object
Re-classification: FickleII. ACM Transactions On Programming Languages and Systems
24(2) (2002) 153–191

4. Boyd, M., McBrien, P.: Comparing and transforming between data models via an interme-
diate hypergraph data model. Journal on Data SemanticsIV (2005) 69–109

5. McBrien, P., Poulovassilis, A.: A semantic approach to integrating XMLand structured data
sources. In: Proc. CAiSE’01. Volume 2068 of LNCS., Springer (2001) 330–345

6. Cabibbo, L., Carosi, A.: Managing inheritance hierarchies in object/relational mapping tools.
In: Proc. 17th CAiSE. Volume 3520 of LNCS., Springer (2005) 135–150

7. Boyd, M., Kittivoravitkul, S., Lanzanitis, C., McBrien, P., Rizopoulos, N.: AutoMed: A BAV
data integration system for heterogeneous data sources. In: Proc. CAiSE’04. Volume 3084
of LNCS., Springer (2004) 82–97

8. McBrien, P., Poulovassilis, A.: A uniform approach to inter-model transformations. In: Proc.
CAiSE’99. Volume 1626 of LNCS., Springer (1999) 333–348

9. Date, C., Darwen, H., McGoveran, D.: Relational Database: Selected Writings 1994–1997.
Addison-Wesley (1998)

10. Date, C.: Object identifiers vs. relational keys. [9] chapter 12 457–476
11. Fisher, M., Gabbay, D., Vila, L., eds.: Handbook of TemporalReasoning in Artificial Intel-

ligence. Elsevier (2005)
12. Artale, A., Parent, C., Spaccapietra, S.: Modeling the evolution of objects in temporal infor-

mation systems. In: Proc. FoIKS. (2006) 22–42
13. Finger, M., McBrien, P.: Temporal conceptual-level databases. In: Temporal Logics: Math-

ematical Foundations and Computational Aspects (Vol 2). OUP (2000) 409–435
14. Gregersen, H., Jensen, C.: Temporal entity-relationship models: a survey. IEEE Trans. KDE

11(3) (1999) 464–497
15. Spaccapietra, S., Parent, C., Zimanyi, E.: Modeling time from a conceptual perspective. In:

Proc. CIKM. (1998) 432–440
16. McBrien, P., Seltveit, A., Wangler, B.: An entity-relationship model extended to describe

historical information. In: Proceedings of CISMOD ’92, Bangalore, India (1992) 244–260
17. Costal, D., Oliv́e, A., Sancho, M.R.: Temporal features of class populations and attributes in

conceptual models. In: Proc. ER. (1997) 57–70
18. Olivé, A., Costal, D., Sancho, M.R.: Entity evolition in IsA hierarchies. In: Proc. ER. (1999)

62–80
19. Albert, M., Pelechano, V., Fons, J., Ruiz, M., Pastor, O.: Implementing UML association,

aggregation, and composition. A particular interpretation based on a multidimensional. In:
Proc. CAiSE. (2003) 143–158

20. Guarino, N., Carrara, M., Giaretta, P.: An ontology of meta-levelcategories. In: Proc. 4th
KR. (1994) 270–280

21. Guarino, N., Welty, C.: Ontological analysis of taxonomic relationships. In: Proc. ER. (2000)
210–224

22. Halpin, T.: Subtyping revisited. In Proper, H., Halpin, T., Krogstie, J., eds.: Proc. EMMSAD
07. (2007) 128–138

23. Anderson, W., Menzel, C.: Modal rigidity in the ontoclean methodology. In: Proc. FOIS.
(2004) 119–127

	Temporal Constraints in Non-Temporal Data Modelling Languages
	Peter M.cBrien

