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Abstract. It is common to find that the definition or common usage of a data
modelling language causes there to be restrictions placed on the evolutiataof
values that are associated with schemas expressed in that modellingdangu
This paper terms these restricticiemporal constraints, and defines three types
of temporal constraint which are argued to be useful modelling casceap-
turing important real-world semantics about objects and their relationdBjps
reviewing how these temporal constraints are implied by either the definition o
usage of UML and the relational modelling languages, this paper will use the
temporal constraints to give precise definitions of modelling conceptsitidate
have been left only vaguely and partially understood. It will also congiue
implementation of these constraints in SQL.
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1 Introduction

This paper reviews what will be termed tiemporal constraints (which are also
known asdynamic constraints) of data modelling languages, which we define to mean
the restrictions that are placed on the evolution of theréxdta schema expressed in a
data modelling language. In particular, this paper dessrédmnstraints on the evolution
of the extent intransaction time [1] which may be implemented without the necessity
of keeping a transaction time database. Hence we are coingjdemporal constraints
which may be applied in a non-temporal data modelling laggua

To illustrate the concept of temporal constraints in nangeral data modelling
languages, consider the UML schema in Fig. 1. A normal im&ggpion of this schema
is that once an instancehas been created of thassenger class, then it will not be
possible that later the same@ppears as an instanceaafgo class. More generally, the
normal interpretation of object oriented modelling langesiis that an object identifier
cannot be associated with two different classes and reféretsame thing. However,
this interpretation is not to be found in the definition of th®IL modelling language
[2], and indeed some research work has been conducted iogogonming languages
which remove this restriction [3]. Another example is folindhe UML association
construct, where the definition of UML makes it unclear if atancetyre could exist
after the deletion dfircraft, and if is does, whether it could then be assigned to another
aircraft.
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class:((aircraft_type)) composition:({_, aircraft_type, aircraft,1..1,0..N))
attribute:((aircraft_type, model)) class:{(tyre))

attribute:((aircraft_type, maker)) attribute:((tyre, serial_no))

class:((passenger)) attribute:((tyre,landings))

attribute:((passenger, seats)) aggregation:((_, aircraft, tyre,0..1,0..N))
class:{{cargo)) class:{(engine))

attribute:((cargo, max_tons)) attribute:((engine,serial_no))
generalisation:((aircraft_type, {disjoint,complete}, passenger, cargo))

class:((aircraft)) attribute:((engine, type))

attribute:((aircraft, reg)) attribute:((engine, miles))

attribute:((aircraft, miles)) association:({fixed_on, aircraft, engine, 0..1,2..4))

Fig.1.S"M: A UML schema for a database of a aircraft fleet, together istdescrip-
tion as a set of schema objects

Related work will be considered in detail at the end of thegpap Section 4. One
contribution of this paper is to define in Section 3 a set ofgeral constraints that
restrict the evolution of instances of a schema expressetistared as) a non-temporal
data modelling language. The definitions are made in a mahaeallows them to be
defined on any data modelling language that fits a certaictsir that this paper re-
views in Section 2, which has already been shawn [4,5] to [ffecEnt to support the
relational, UML, ER, ORM and XML modelling languages. A sadccontribution of
the paper is to discuss the extent to which these temporatreints are (sometimes
rather vaguely) already implied by the definitions of dataleiling languages, by dis-
cussing in depth how the temporal constraints can be apigilL and the relational
data model.

An advantage gained in defining precisely the temporal niodetonstraints and
identifying temporal constraints in schemas is that it aévavhere there is the possi-
bility of inconsistencies when data is transferred betwibenschemas of information
systems that have been built around different data modelinguages. For example,
the relational schema in Figl 2 would be regarded as equitvédethe UML schema
in Fig./I under conventional UML to relational mapping apgoes [6]. Indeed, at
any one time, it will be possible to map instances of one sehiero instances of the



other schema. However, there are evolutions of the instaoicthe relational schema
that would not be permitted in the instances when mappediimdML schema. For
example, in the relational schema it would be possible tetdehn entryx from the
passenger table, and insert it into theargo table, whilst leaving the instanceun-
changed imircraft_type, and hence have theame instance of an aircraft type change
from passenger to cargo types. As already discussed, thigrsally not permitted in
object-oriented models.

engine |seria|,no |reg |type |mi|es
'

aircraft |m0de| |reg |mi|es |
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cargo |Ldel |max,tons| passengerlm |seats |
table: ((aircraft_type)) table:((engine))
column:((aircraft_type, model)) column:({(engine, serial_no))
column:({(aircraft_type, maker)) column:{(engine, reg))
table:((passenger)) column:({(engine, type))
column:((passenger, model)) column:({(engine, miles))
column:({(passenger, seats)) primary_key:{(engine, serial_no))
table:((cargo)) primary _key: ((aircraft, reg))
column:({(cargo, model)) primary_key: ((aircraft_type, model))
column:{(cargo, max_tons)) primary_key:{(cargo, model))
table:((aircraft)) primary_key:{{passenger, model))
column:((aircraft, model)) primary_key: ((tyre, serial_no))
column:((aircraft, reg)) foreign_key: ((((aircraft, model)), ((aircraft_type, model))))
column:((aircraft, miles)) foreign_key: (({{passenger,model)), ((aircraft_type, model))))
table:((tyre)) foreign_key: ((((cargo, model)), ((aircraft_type, model))))
column:((tyre, reg)) foreign_key: (({(tyre, reg)), {(aircraft, reg))))
column:((tyre, serial_no)) foreign_key:((((engine, reg)), ((aircraft, reg))))

column:((tyre, landings))

Fig. 2. S¥: A relational schema for a database of a aircraft fleet, tegeuith its de-
scription as a set of schema objects

2 Models and Schemas

Using the notation of AutoMed [7], a modelling language,neodel, m contains a
set of modelling constructs, where eambnstruct c is used to represent some class
of data structure that holds set, bag or list of data valueg/ca constraints on sets,



bags or lists of data values. gchemas comprises of a set of schema objects, where
eachschema objecto is typed to some construct To date, almost without excep-
tion, researchers have considered that any given infoomagistem uses a single mod-
elling language. Such single modelling language schemagshen be described by
S™ = {e1:((01),€1:((02)). . Cnt{(Om-1)), G {(Om) }-

When a schema object has some collection of data associatiedt,wve call the
data theextentof the schema object. The data associated with extdnsionalschema
objectso can be returned by the functidxt (o). Using the classification of modelling
constructs in [8], there are three classes of construct ficinmschema objects carry an
extent:

— nodal constructs may be used to define schema objects that ar@pireaeschema
independently of other schema objects. For example, a UMéscls a nodal con-
struct, since schema objects suchtlass: ((aircraft_type)) andclass:{(aircraft)) in
g™ may exist without any other classes in the UML schema. A imelat table
is also a nodal construct, since schema objects suchbss((aircraft_type)) and
table: ((aircraft)) may exist without any other tables in the relational schema.
Typically, the instances of a UML class are identified usibgeot identifies, so we
might find that
Ext(class:((aircraft))) = {(100), (101),...}

Ext(class:((aircraft_type))) = {(200), (20D, ...}

In predicate logic, these extents would cause the td#ss: ((aircraft)) (X) to bind

X to first 100, then 101, etc.

Relational tables are typically identified usingtural keys [10] (i.e. keys made
up of attributes which have a meaning in the real-world, supbst codes, peoples
names, tax numberstc), so we might find

Ext(table: ((aircraft))) = {(G-CWQS), (G-FDWC), ...},

i.e. the registration codes of the aircraft.

— link-nodal constructs are used to define schema objects that can ostyvexén
connected to other schema objects, but contain data theit isesent in the schema
objects they are connected to. For example, in Uadtribute:{(aircraft, miles)) is
a link-nodal construct, since it can only exist when cone@dtbclass:((aircraft)).
A relational column such asolumn:({(aircraft, miles)) is also link nodal since it
can only exist when connected teble:{(aircraft)). The definition of link-nodal
constructs implies that the following rule about the extehtink-nodal schema
objects is always true:
link-nodal: ((E, A))(X,Y) — nodal:{{(E))(X)

Hence, given the extent afass: ((aircraft)) and the above rule, we might find that
Ext(attribute:((aircraft, miles))) = {(100,2945321),(101,506834),...}, and give
the extent otable:((aircraft)) and the above rule we might find that
Ext(column:((aircraft, miles))) = {(G-CWQS5,2945321), (G-FDWC,506834),...}
Note that a peculiarity of the natural key based modellimglsages is that the link-
nodal schema object used to define the key will contain datg&; so we might find
Ext(column:{(aircraft, reg))) = {(G-CWQS,G-CWQS), (G-FDWC,G-FDWC),...}.

— link constructs are used to define schema objects that can omslyvetxén con-
nected to two or more other schema objects, and contain ldatastalso present



in the schema objects they are connected to. For example)Mheschema object
association:{(fixed_on, aircraft, engine)) is a link construct, since it has to be con-
nected toclass:((aircraft)) andclass:((engine)). The definition of link-nodal con-
structs implies that the following rule about the extentiokinodal schema objects
is always true:

link: (R E1, E2))(X,Y) — nodal:((E1)) (X) A nodal: {({E2))(Y))

Hence, given the extent afass:((aircraft)) andclass:((aircraft_type)) above, we
might find

Ext(composition:{(_, aircraft_type, aircraft))) = {(200,100), (200,101), ... }.

Note that there are no examples of link constructs foundenrétational model.

A fourth type of construct is used to definenstraint schema objects that have no
associated extent, but place restrictions on the exterteafchema objects that appear
within the constraint schema object. Figs. 1 and 2 illusttiaé representation of a UML
schema and a relational schema as a set of schemes. The Ukthadhcludes gen-
eralisation constraint schema object, and the relational schema ieslprimary_key
and foreign_key schema objects, but null/notnull constraints have beertethfrom
the schema for brevity, since they are not used in this paper.

3 Temporal Constraints

We will identify in the following subsections three templocanstraints that have to
some extent already implicitly been used in data modellamguages, but to date have
not been explicitly identified as general modelling conséptheir own right that may
be applied to any non-temporal data modelling languageighas we will see, some-
times have been made available for specific modelling cocistin specific modelling
languages.

To accurately characterise the concepts, we will use distireartemporal logic
to define when certain properties hold. In the discratedr model of time, we
view the state of the information system passing throughoadjply infinite) series
of states, where each state has one successor (next tirtes) astd one predecessor
(previous time) state. In the terminology of temporal datds, we are modelling the
transaction time [1] of the information system (but note that in this paper,deoaot
assume that we keep a transaction time history of the stathe mformation system).

The temporal logic we use in this paper is first order preditzzgic with the addition
of two binary operatorsntil andSince, and hence is often referred to d$-Logic.
The statemenA Until B means thaf holds at every time up to and including the time
whenB holds. From this operator, a number of derived unary andrpioperators can
be defined (wheré& represents truth, and holds in every state):

OA=AUntil T
AWhileB = AUntil-OB
OA=TUntilA
LJA=AWhile T

which we illustrate with the following examples:



1. O{(A))(X) means that in the next time there is an instaXic# schema objecfA)).
Hence the formuld(A))(X) — O((A))(X) means that iX is an instance of(A))
at any time, then it will be an instance @A)) at the next time, angA))(X) —
—O((A))(X) means that iX is an instance of(A)) at any time, then it will not be
an instance of(A)) at the next time.

2. ((A))(X) While ((B))(X) holds if X is an instance of(A)) for the entire period that
X continues to be an instance @B)).

3. O((A)(X) means that in some future time there is an instatioé schema object
((A)). Hence the formula(A))(X) — <((A))(X) means that ifX is an instance
of ((A)) at any time, therX will be an instance of(A)) at some future time, and
{(A)(X) — =S (AN (X) means that iK is an instance of(A)) at any time, then it
will never be an instance dfA)) again.

4. [J{(A))(X) means that in all future times there is an instaXcef schema object
((A)). Hence the formuld(A))(X) — CI{(A))(X) means that i is an instance of
((A)) at any time, then it will so for ever more, afi@d\)) (X) — —{(A))(X) means
that if X is an instance of(A)) at any time, there will be some time in the future
when it is not an instance.

3.1 Monogamy and Lifetime Monogamy

In general, the concept ahonogamy involves something being related to just one
other thing at any one time. In data modelling, this concseptaptured using op-
tional or mandatory cardinality constraints +e. cardinality constraints with an up-
per bound of one. For examplessociation:{(fixedon, aircraft, engine)) in Fig.[1 makes
class:{{engine)) have a monogamous relationship witbss: ((aircraft)), meaning each
engine can only be fixed on one aircraft at a time. In our regmtadion of data mod-
elling, we can say that an instance of a nodal schema objgeaipg in some link-
nodal or link schema object is monogamous for that schenebibjone of the follow-
ing rules hold, which in essence state that there cannotdastances of the link-nodal

or link schema object for the same monogamous schema obgtahce.

monogamougodal: ((E1)),link: (R, E1, E2))) def

link: (R E1, E2))(X,Y) — =3Z.link: (R E1,Ex)) (X, Z) AY £Z
monogamou@odal:((Ez)), link:((R,E1, Ez))) def

link: (R E1, E2))(X,Y) — =3Z.link: (R E1,Eo)) (Z,Y)AY £ Z
monogamou@odal: ( >>,Iink-nodal:<<E,A>>)dzef

link-nodal: ((E, A))(X,Y) — —3Z.link-nodal: ((E, A)) (X,Z) AY # Z
Hence for Fig. 1, we can state:

monogamous{ass:((engine)),association:((fixedon, aircraft, engine)))

monogamousfass: ((tyre)),aggregation:({_, aircraft, tyre)))

monogamousfass: {(aircraft)),composition:((_, aircraft_type, aircraft)))

Note that this definition of monogamy does not prevegrial monogamy i.e. an
instance of the nodal class being monogamous at any oneliimhehanging its rela-
tionships over time. For UMlassociationsthis definition is intuitively correct. For ex-
ample, it would allow a&lass:{(engine)) instance to be moved from onkss: ((aircraft))
to another. However, the definition of UMaggregationandcompositionare defined

X

X =

)

-



to usually imply that members of the aggregation are notadtbto change from one
group to another [2]. Here we suggest that this ‘usually’ toergthened to &fetime
monogamougemporal constraint, that prevents serial monogamy. Omegtain value
Y has been associated with a schema object in its connecttbravpiarticular instance
X of some other schema object, then during one period of existefX there may not
be some different valug used instead of. Specifically:
lifetime_monogamougodal:{(E;)), link: (R E1, E2))) def
link: <<R, E1, E2>> (X,Y) —
(—3Z.1ink: (R E1, E2)) (X, Z) AY # Z) While nodal: ((E1)) (X)

lifetime_monogamougodal: {(Ez)), link: (R, E1, E2))) def
link:((R,Eq, E2)) (X,Y) —
(—3Z.link: (R, E1, E2)) (Z,Y) AX # Z) While nodal: ((E2)) (Y)

lifetime_monogamougink-nodal:((E, A))) def
link: ((E,A))(X,Y) —
(=3Z.1ink:((E, A))(X,Z) AY # Z) While nodal: ((E)) (X)
i.e. lifetime monogamy for a nodal schema object in a link or limddal schema object
implies monogamy for the duration of a single lifespan ofrtbeal schema object. We
will interpret the semantics of UML modelling to imply fordri1:
lifetime_monogamous(ass: ((tyre)),aggregation:((_, tyre, aircraft)))
lifetime_monogamous(ass: ((aircraft)),composition:((_, aircraft_type, aircraft)))

The first line above means that an instancelafs: ((tyre)) can only ever be associ-
ated with oneclass: {(aircraft)) during one period of existence of a tyies. a tyre can
only be used on one aircraft, but there is no constraint okwvbf the tyre or the aircraft
existed first, and the tyre can be taken off the aircraft withdestroying either the tyre
or the aircraft. The second line means that an instancksf ((aircraft)) can only ever
be associated with orgass: ((aircraft_type)).

Note that the UML concept akadOnly implies that a value must be set during ob-
ject initialisation, and hence implies a mandatory caditypaonstraint in combination
with a lifetime monogamous temporal constraint. Note that telational model has
no constructs that imply the lifetime monogamous constramlink schema objects
or link-nodal schema objects, and UML does not provide thestraint in conjunction
with optional cardinality constraints. However, this does mean the it would not be
useful to introduce a specific lifetime monogamous tempamraktraint to these models.
For example, ibttribute: ((aircraft, reg)) were lifetime monogamous, one could build a
plane without a registration code, register it, and latercehthe registration code be-
fore scraping the aircraft, but ensure that one never assiglifferent registration code
to the aircraft. This would also be readily implemented in.SQing triggers to control
the updating of a column, such that a state column was saig¢ornthen a data column
was set to null, prohibiting any further setting of data cofuvalue.

3.2 One-off

The oneoff temporal constraint means that once a schema object iestaneleted,
the same instance cannot exist again. For nodal schemaxlifes constraint is easily
characterised as



oneoffinodal: ((E))) def

nodal: ((E)) (X) A

~Onodal: ((E)) (X) — ~<nodal: ((E)) (X)

stating that ifX is an instance ofodal:((E)) at any time, and at the next time it is not
an instance ohodal:((E)), then there will be no future time whexis an instance of
nodal:{(E)). The oneoff temporal constraint is often associated witthahechema ob-
jects in object-oriented models, where once a class insthas been deleted, the same
class instance cannot be restored. For example, once@est00) has been deleted of
class: {(aircraft)), there would not in the future be an insta{@¢@0) of class: {(aircraft)).

By contrast, models such as the relational models when breadal keys do not sup-
port the oneoff temporal constraint. This is because aoslaltdatabase has no mecha-
nism to stop a natural key being reinserted into the datadféeseit has previously been

deleted.
engine |@T |aid |type |miles |seria|,no
aircraft |tid faidt  [miles [reg |
. I 1
%'/:)Cgaft [tidt [model  [maker |tyre aid [tyidT  [serial_no|landings
cargo |m [ max_tong passenge|t}7d [seats |

Fig. 3. %e' : A variant ofS'f"I using auto-increment keys, marked with a T in the diagram.
Note thatcargo andpassenger do not have auto-increment keys, since they inherit the
value of the key fromaircraft_type)

If the relational system usesuto-increment keys, then the behaviour would be
more similar to that of the object oriented system. Fig. 3engs a version of Fig. 2
where auto-increment keys have been used (and Fig. 4 the &fplitidns of some of

the tables), and then we can state
oneoffable: {(aircraft)))

(
oneoff(table: {((aircraft_type)))
oneofftable:{(engine)))
oneofftable: {(tyre)))

since once a key value has been generated for an auto-inar&eye the value will not

be generated again in the future. A problem remains withahkes implementing the
subclassepassenger andcargo, which are unable to use auto-increment keys. We can
solve this problem with our implementation of the final temgd@onstraint presented

in the next subsection.

Definition of oneoff for link-nodal and link schema objeckés a similar form to
that for nodal schema objects:



CREATE TABLE aircraft_type

( mid INT PRIMARY KEY,
maker VARCHAR(20)

)

CREATE TABLE passenger

( mid INT PRIMARY KEY REFERENCES aircraft_type ON DELETE CASCADE,
seats INT

)

CREATE TABLE cargo

( mid INT PRIMARY KEY REFERENCES aircraft_type ON DELETE CASCADE,
max_tons INT

)

CREATE FUNCTION delete_aircraft_type() RETURNS TRIGGER

AS 'BEGIN
DELETE FROM aircraft_type WHERE aircraft_type.tid=OLD.tid;
RETURN NULL;
END’ LANGUAGE plpgsq;

CREATE TRIGGER passenger_subclass_aircraft_type AFTER DELETE ON passenger
FOR EACH ROW EXECUTE PROCEDURE delete_aircraft_type();

CREATE TRIGGER cargo_subclass_aircraft_type AFTER DELETE ON cargo
FOR EACH ROW EXECUTE PROCEDURE delete_aircraft_type();

Fig. 4. Definition using the Postgres RDBMS SQL language of trigdpeiag used to
implement the final temporal constraints

oneoff{link-nodal: ((E, A)) de

)
link-nodal: ((E,A)) (X,Y) A =~Olink-nodal: ((E,A) (X,Y) —
=link-nodal: ((E, A)) (X,Y) While nodal: ((E)) (X)

oneofflink: (R Ej, E2))) def
link: <<R, Eq, E2>> (X7Y) A -0link: <<R, Es, E2>> (X,Y) —
=link: (R, E1, E2)) (X, Y) While nodal: ((Ez )) (X) A nodal: ((E2)) (Y)

Neither UML nor the relational models have constructs thgily oneoff to link-
nodal or link schema objects, and the semantics of such d@raorsvould only be of
use in relatively few circumstances. For example, if we dddethe UML schema in
Fig./1 oneofféttribute:((aircraft, reg))), then an aircraft could change its registration
number, but not revert to a previously used registrationtmenrit should be noted that
the general implementation of oneoff is costly in storagetg since it requires a trans-
action time history be kept a schema object declared as fhise-that a check can be
made each time a new instance is created that the instanec®hbéden present at some
time in the past. The specific case of oneoff being appliedjead identifiers and auto-

=+



increment keys is not costly in storage terms since only glsivariable incrementing
new values need be kept in order to ensure unique valuesimer t

3.3 Final

Thefinal temporal constraint means that once a instance of a schejeet bbs been
created, then that instance will remain until one of theanses of the schema objects
it is dependent upon is deleted. Specifically, for nodal se@hebjects, we state:

final(nodal: (E; ), nodal: ((E,))) %'

nodal: ((Ez)) (X) — nodal: ((E)) (X) While nodal: ((E )) (X)
meaning that once a instance existsnotal:((E»)), it must continue to exist whilst
the same values exists imodal: ((E; )). UML generalisationsimply the final temporal
constraint between the child and parent nodes. For the scheRig./1 we can state:

final(class: {(aircraft_type)),class:{{passenger)))

final(class: ({passenger)) class:((aircraft_type)))

final(class: ({(aircraft_type)),class: {{cargo)))

final(class: {{cargo)),class:{(aircraft_type)))

Hence, when an instance déss:{(passenger)) is deleted, then so must the instance
of class:((aircraft_type)), andvice versa.

There is no modelling construct in the relational model tegctly implies final
on its schema objects, but there is some limited supportnipleémenting the final
constraint. Firstly, if we added the SQL constrad DELETE CASCADE to primary
keys oftable: {{passenger)) andtable:{{cargo)), as illustrated by the table definitions in
Fig.l4, then we would be able to state:

final(table:((aircraft_type)),table:((passenger)))

final(table:((aircraft_type)),table:({cargo)))
since deleting a row frormable: ((aircraft_type)) will cause the cascading of a delete on
table:{(passenger)) or table:({cargo)). Secondly, if we added the SQL trigger for each
of thepassenger andcargo table, as illustrated by the trigger definitions in FFig. 4jevh
executes a function that deletes the same identifier fronpdnentaircraft_type table,
then a deletion of eithetable:((passenger)) or table:((cargo)) would trigger a deletion
of table:((aircraft_type)). The presence of such a trigger then allows us to state:

final(table:((passenger)),table:{(aircraft_type)))
final(table:((cargo)),table:((aircraft_type)))

In defining the final constraint for link-nodal constructseite are two cases to con-
sider. Applying the first rule below to a UML attribute or aagbnal column would
mean that once a value was assigned to the attribute/colucnuld not be changed.
For example finakttribute:{(aircraft, reg))) would mean that a registration number of
a aircraft could not be changed. Interestingly, this maaigitoncept is absent from the
UMLY and relational languages, but is present in some objeattedeprogramming

1tis interesting to note that the semantics of final would appear to match thensies of the
addOnly property of link nodal and link constructs available in some versions ofkibor
to UML 2.0. Also removed in UML v2.0 was the concept@tateOnly, which stated that
values could be added once but no more to a property. Both addOnlgreag:Only forbid
changes.



languages which UML targets (for example tfieal keyword in Java andeadonly
keyword in C#).

final(link-nodal: ((E,A))) def
link-nodal: ((E, A)) (X,Y) — link-nodal: ((E, A)) (X,Y) While nodal: ((E)) (X)

final(link-nodal: ((Ey, A1), link-nodal: (Ez, Ag))) ="

link-nodal: ((E1,A1)) (X,Y) Alink-nodal: ((Ez, A2)) (Z,Y) —
link-nodal: ((E2, A2)) (Z,Y) Whilelink-nodal: ((E1, A1)) (X,Y)

The second rule causes a value appearing in one link-noatabkthlso appearing in
a second link-nodal to cause the same second value to ceritirexist whilst the first
continues to exist. For example, if we stated$fh

final(column: ({(aircraft, tid)),column: ({aircraft_type, tid)))
then we would have the same semantics present in the redbtimdel as we gave to the
UML composition construct above, and aircrafts would noebk to change aircraft
types.

For link constructs, there again two types of final constraipplied to a UML
association, the first rule below says that once an instahttee@ssociation has been
created it remains in existence whilst both of the classassibciates exist. The second
two rules strengthen the rule to say that the instance ofgkeciation will continue in
existence until just one of the classes it associates isedele
final(link: (R, Ex, Ez))) &'

link: (R, E1, E2))(X,Y) —

link: (R, E1, E2)) (X,Y) While (nodal: {(E1)) (X) A nodal: {({(E2)) (Y))

final(nodal: ((E1)), link: (R, E1, E))) %'

link: (R, E1, E2)) (X,Y) — link: (R E1, E2)) (X,Y) While nodal: (E1)) (X)

final(nodal: (), link: (R, Eq, E2))) '

link:((R, Eq, E2)) (X,Y) — link:((R, E1, E2)) (X,Y) While nodal: ((E2)) (Y)

In UML, the composition construct often implies a coincidence in lifetimes of the
classes in the composition. We propose to restrict thisidiefirto stating that the mem-
ber class of a composition is final in the composition. In Eighis means we can state:

final(class: ((aircraft)) ,composition:{(_, aircraft_type, aircraft)))
meaning that once an aircraft has been assigned to an atygafit cannot be changed
to another aircraft type. We would not want to associate the femporal constraint
with UML aggregations For example, if final{ggregation:((_, aircraft, tyre))) was de-
clared for the UML schema, then on¢&00,107% has been added as an instance, it
would remain until the tyré107) was deleted fronlass: ((tyre)), preventing us from
removing instances from aggregations.

4 Related Work

There has been a considerable amount of work conductedhatmbdelling of tem-
poral constraints in temporal data models (for exampléld,24,15,16]). By contrast,
this paper considers temporal constraints that may be asede already implied, in
existing non-temporal data models.



In the field of data modelling, the most comprehensive previmeatment can be
found in [17,18], which deal with the temporal behavioursoflal and link-nodal con-
structs, but not of link constructs. Also, [17,18] do not kxifly relate their definitions
to specific modelling languages, though the relationship @R and UML modelling
is clear. In[17], for nodal constructs, the conceppefmanent constraint is defined
where an object, once it exists, must stay in existence thiksinformation system
remains in operation.

permaner{inodal: ((E))) def

link:((E)) (X) — Cnodal: {((E)) (X)

This is similar to the final constraint, with the differentat the final constraint is
always defined relative to some other object. We argue tietsimore intuitive, since
is corresponds to the real world concept of something ergets final state, yet not
necessarily continuing to exist forever.

In [17], there is the concept dfequency beingsingle or multiple . Applied to en-
tities the concept of single corresponds to exactly to tHenitien of one-off in this
paper. However, applied to attributes, it differs from afkin allowing an attribute to
change value and then return to value during its singleexist (where the definition of
one-off states that a particular value may be used only ofite)authors also introduce
concept ofdurability , which may bedurable or instantaneous where instantaneous
means that an object only exists for one chronon in the teahpoodel. This is a com-
mon distinction in temporal data models, since it allowsa@ntaneous schema objects
to be stored with one time value per instance (the time of tiseéance occurred at),
whilst durable schema objects require a pair of time valapsasenting the interval the
instance exists for (or set of such pairs if there is set @frirals).

In [18], there was a discussion of how generalisations cbaldlassified intstatic
if sub-class memberships could not evolve over timelyaramic if they could. In[19],
the concept ofemporal behaviour of UML associations is defined, and characterised
as static or dynamic depending on whether the values on the association for a par-
ticular class may be changed. There is also consideratidhetaefinition of delete
propagations across associations.

Work on the temporal constraints on nodal objects has also benducted in the
field of ontologies. In'[20,21] a classification of unary pmzdes (equivalent to our
nodal constructs) intagid, anti-rigid , andnon-rigid was introduced. The rigid con-
straint takes the same definition as the permanent cortsngii/]:
rigid(nodal: ((E,))) &'

nodal: ((Ej)) (X) — C(nodal: ({(E1)) (X))

Recently, it has been proposed that ORM be extended to iathisidistinction [22].
The definition of rigid shares the flaw we discussed in refetidp to the permanent con-
straint from [17]. This flaw was recognised in [23], which posecexistential rigidity ,
where a value appearing imodal: ((E; )) forces the value to also appear in some related
nodal:((E2)):

existentialrigid(nodal: ((E1)), nodal: {((E>))) def
nodal: ((Ez)) (X) — [CJ(nodal: {(E1)) (X) — nodal: {{E2)) (X))
If we applied this to our relational model as:



existentialrigid(table: {((aircraft_type)),table: ({passenger))

existentialrigid(table: ((aircraft_type)),table:{{cargo)))
then we would have to implement a temporal history of datéamse from tables
table:((passenger)) andtable:{(cargo)) (which are the relational tables implementing
the subclasses aéble: ((aircraft_type))), since if a value where to be deleted and rein-
serted intatable: ({(aircraft_type)) then we would need to ensure that if also appeared in
the correct subclass table.

From the above discussion, it can be seen that the definiiiotiss paper are the
first to be made across all types of modelling construct, éswlthe first to be defined in
a manner that is implementable without the necessity of taimiimg a full transaction
time history of data.

5 Summary and Conclusions

In this paper, we defined three temporal constraints caifletihhe monogamy, oneoff,
and final, that may be used to model the changes that are pedirtotthe extents as-
sociated with schema objects in static non-temporal dat#eitiog languages. Loosely
speaking, (i) lifetime monogamy models the concept thatdatory or optional re-
lationships are restricted further to disallow serial mgenoy, (ii) oneoff models the
concept that things cannot be reincarnated, and (iii) fired@s the concept that once
a value has been assigned, it cannot be changed.

We have given precise definitions of these three constriaiteear temporal logic,
and have discussed how some of these constraints are aftglgdyr partially implied
by constructs found in the UML and relational languages. @efinitions are made
in terms of very general modelling concepts of nodal, limdal and link modelling
constructs, and this approach has previously been showa ¢amble of representing
a wide variety of modelling languages [8,4].

The precise definitions of temporal constraints serve te tixo advantages. First,
the modelling constructs of UML and the relational modellzetier understood, lead-
ing to a more accurate modelling of the real world when ushegée languages. Sec-
ondly, the definitions serve to expose the differences tkiat between modelling lan-
guages, and allow action to be taken to overcome theseditfes. We illustrated this
second advantage by describing how SQASCADE andTRIGGER constructs can be
used to implement the temporal constraints, and hence maiatinal based system
be capable of holding a schema that corresponds more exatitlp UML schema than
is the case in current approaches to UML to relational mappin

To shorten the presentation, we have restricted the classodglling languages
discussed to those with binary link schema objects and wikeind link-nodal schema
objects that only connect with nodal schema objects. Homtexesextension of the work
to remove those restrictions is straightforward.
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