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Several methodologies for integrating database schemas have been proposed in the
literature, using various common data models (CDMs). As part of these methodologies
transformations have been defined that map between schemas which are in some sense
equivalent. This paper describes a general framework for formally underpinning the schema
transformation process. Our formalism clearly identifies which transformations apply for
any instance of the schema and which only for certain instances. We illustrate the appli-
cability of the framework by showing how to define a set of primitive transformations for
an extended ER model and by defining some of the common schema transformations as
sequences of these primitive transformations. The same approach could be used to formally
define transformations on other CDMs.
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1 Introduction

When data is to be shared or exchanged between heterogeneous databases, it is necessary to
build a single integrated schema expressed using a common data model (CDM) [15]. Conflicts
may exist between the export schemas of the component databases, which must be removed by
performing transformations on the schemas to produce equivalent schemas. In this paper we
examine the schema transformation process within a new formal framework that distinguishes in
a precise manner between schema transformations which are dependent on knowledge about the
instances of the schema, and those which are not. This distinction has the advantage of precisely
defining what assumptions are made when a database object is transformed or is considered to
have the same “real world state” [8] as some other object.

In [11] we assumed as the CDM a binary ER model with subtypes. We defined the notions
of ER schemas and instances, and of equivalence of ER schemas. We defined a set of primitive
transformations on ER schemas and explored their properties with respect to schema equiva-
lence. We demonstrated the expressiveness of these primitive transformations by showing how
they can be used to express many of the common schema equivalences found in the literature,
thereby formally deriving precisely what, if any, knowledge about instances these equivalences
are dependent upon.

This paper extends [11] in two ways. Firstly, recognising the fact that different methodologies
might employ different CDMs, we take a step back and define a very general notion of a schema
as a hypergraph. Schemas defined using a specific CDM can then be regarded as higher-level
abstractions of the underlying hypergraph, together with additional constraints that must be
satisfied by all instances of the schema. We develop the notions of instances of schemas and
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schema equivalence at this lower level of abstraction, and we define a set of primitive transfor-
mations on schemas. We then illustrate how a higher-level CDM and transformations on it can
be defined in this framework by showing how to define the binary ER schemas and primitive
transformations on them that we considered in [11].

The second extension of the paper is to further demonstrate the applicability of our frame-
work by defining a much richer CDM, namely an ER model supporting n-ary relations, attributes
on relations, complex attributes, and generalisation hierarchies. We define a set of primitive
transformations for this model and show how they can be used to express many of the common
schema equivalences regarding n-ary relations, attributes of relations, complex attributes and
generalisation hierarchies found in the literature.

The structure of this paper is as follows. In Section 2 we define schemas, instances and
models, and the notion of schema equivalence which provides the semantic foundation of our
schema transformations. In Section 3 we define a set of primitive transformations and explore
their properties with respect to schema equivalence. We next extend these transformations
into “knowledge-based” versions, which allow conditions on instances to be expressed. We
then extend the treatment to composite transformations comprising a sequence of primitive
transformations. Section 4 demonstrates the applicability of this framework by first showing
how to define the binary ER schemas and primitive transformations on them that we considered
in [11], and then defining a much richer CDM and transformations thereon. Section 5 shows
how many of the common schema equivalences on this richer CDM can be expressed in terms
of these transformations, and formally derives precisely what knowledge about instances these
equivalences are dependent upon. Section 6 briefly compares our approach with related work
and Section 7 gives our concluding remarks.

2 The Formalism

2.1 Schemas, Instances and Models

Before proceeding to formally define these notions we require some auxiliary definitions. In
particular, we assume the availability of two disjoint sets, V als (values) and Names (the names
of nodes and edges). The set Schemes is defined recursively as follows:

• Names ⊆ Schemes

• 〈n0, n1, . . . , nm〉 ∈ Schemes if m ≥ 1, n0 ∈ Names, and ni ∈ Schemes for all 1 ≤ i ≤ m.

The distinguished constant Null is a valid name. For any set T , Seq(T ) denotes the set of
finite sequences of members of T .

Definition 1 A schema, S, is a triple 〈Nodes,Edges, Constraints〉 where:

• Nodes ⊆ Names

• Edges ⊆ Names × Seq(Schemes) such that for any 〈n0, n1, . . . , nm〉 ∈ Edges, ni ∈
Nodes ∪ Edges for all 1 ≤ i ≤ m.

• Constraints is a set of boolean-valued expressions whose variables are members of Nodes∪
Edges.
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Thus the first two components of a schema define a labelled, directed, nested hypergraph
(nested in the sense that hyperedges can themselves participate in hyperedges). The third
component of a schema states any extra constraints that all instances of the schema must
satisfy.

We define an instance of a schema in Definition 2 below. An instance is not an absolute
notion but is related to the expressiveness of the language, L, that maps between the conceptual
schema and the database extension. In particular, an instance I is a set of sets. From this, an
extent for each scheme in the schema can be derived by means of an expression in the mapping
language L over the sets of I (point (i) below). In order to support updates to the instance,
this mapping should be reversible, in the sense that each set of I can be derived by means of
some expression in L over the extents of the schema’s nodes and edges (point (ii) below). The
instance should satisfy the appropriate domain constraints (point (iii)) as well as any additional
constraints in the schema (point (iv)):

Definition 2 Given a schema S = 〈Nodes,Edges, Constraints〉, an instance of S is a set
I ⊆ P (Seq(V als)) such that there exists a function

ExtS,I : Nodes ∪ Edges→ P (Seq(V als))

where:

(i) each set in Range(ExtS,I) is derivable by means of an expression in L over the sets of I;

(ii) conversely, each set in I is derivable by means of an expression in L over the sets of
Range(ExtS,I);

(iii) each sequence s ∈ ExtS,I(〈n0, n1, . . . , nm〉) contains m subsequences s1, . . . , sm where si ∈
ExtS,I(ni) for all 1 ≤ i ≤ m; we use ni(s) to denote the subsequence of s corresponding to
the scheme ni, for 1 ≤ i ≤ m;

(iv) for every c ∈ Constraints, the expression c[v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)] evaluates to
true, where v1, . . . , vn are the variables of c.

We call such a function ExtS,I an extension mapping from S to I.

Definition 3 A model is a triple 〈S, I, ExtS,I〉 where S is a schema, I is an instance of S and
ExtS,I is an extension mapping from S to I. We denote by Models the set of models. For any
schema, S, a model of S is a model which has S as its first component.

2.2 Equivalence of schemas

Definition 4 We denote by Inst(S) the set of instances of a schema S. A schema S subsumes
a schema S′ if Inst(S′) ⊆ Inst(S). Two schemas S and S ′ are unconditionally equivalent
(u-equivalent) if Inst(S′) = Inst(S).

Since it is defined in terms of instances of schemas, u-equivalence is not absolute but de-
pends on the expressiveness of the mapping language, L. If we regard Range(ExtS,I) as the
extension of the schema S, u-equivalence implies that each extension of S can be derived from
an extension of S′ and vice versa. To see why this is so consider two u-equivalent schemas
S = 〈Nodes,Edges, Constraints〉 and S ′ = 〈Nodes′, Edges′, Constraints′〉, and a pair of mod-
els both with the same instance component, 〈S, I, ExtS,I〉 and 〈S′, I, ExtS′,I〉. By Definition 2,
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for every scheme n ∈ Nodes∪Edges, ExtS,I(n) = exprn for some expression exprn in L over I.
Also, for every set i ∈ I, i = expri for some expression expri in L over Range(ExtS′,I). Thus,
every set of Range(ExtS,I) can be derived from Range(ExtS′,I) by means of an expression in
L. By a similar argument, every set of Range(ExtS′,I) can be derived from Range(ExtS,I).

To illustrate, the top half of Figure 1 shows a schema S consisting of two nodes person

and dept and an edge between them, an instance I consisting of three sets {john, jane,mary},
{compsci,maths} and {〈john, compsci〉, 〈jane, compsci〉, 〈jane,maths〉, 〈mary,maths〉}, and
the extension mapping ExtS,I defined as follows:

ExtS,I(person) = {john, jane,mary}

ExtS,I(dept) = {compsci,maths}

ExtS,I(〈Null, person, dept〉) = {〈john, compsci〉, 〈jane, compsci〉,

〈jane,maths〉, 〈mary,maths〉}

The bottom half of Figure 1 shows another schema S ′ consisting of three nodes person,
works in and dept, two edges between them, and the constraint stating that each instance of
works in is connected to precisely one instance of person and dept. S ′ subsumes S in the sense
that any instance of S is also an instance of S ′. In particular, we can define ExtS′,I in terms of
ExtS,I as follows:

ExtS′,I(person) = ExtS,I(person)

ExtS′,I(dept) = ExtS,I(dept)

ExtS′,I(works in) = ExtS,I(〈Null, person, dept〉)

ExtS′,I(〈Null, person,works in〉) = ExtS,I(〈Null, person, dept〉)

ExtS′,I(〈Null,works in, dept〉) = ExtS,I(〈Null, person, dept〉)

Conversely, we can define ExtS,I in terms of ExtS′,I as follows (where ./ is the natural join
operator):

ExtS,I(person) = ExtS′,I(person)

ExtS,I(dept) = ExtS′,I(dept)

ExtS,I(〈Null, person, dept〉) = ExtS′,I(〈Null, person,works in〉) ./ ExtS′,I(〈Null,works in, dept〉)

Thus S and S′ are u-equivalent. We will see this u-equivalence again later, expressed at a higher
level of abstraction as the entity/relationship equivalence of Figure 5(b).

We can generalise the definition of u-equivalence to incorporate a condition on the instances
of one or both schemas:

Definition 5 Given a condition, f , Inst(S, f) denotes the set of instances of a schema S that
satisfy f . Two schemas S and S ′ are conditionally equivalent (c-equivalent) w.r.t f if
Inst(S, f) = Inst(S′, f).

To illustrate, in Figure 2 the schema S and the instance I are as in Figure 1. The schema
S′ now consists of three nodes person, mathematician and computer scientist, with constraints
stating that the last two are subsets of the first. I can be shown to be an instance of S ′ only if
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S′

person works in dept

∀w ∈ works in .
|{s | s ∈ 〈Null, person,works in〉 ∧ works in(s) = w}| = 1

∧ |{s | s ∈ 〈Null,works in, dept〉 ∧ works in(s) = w}| = 1

I

〈john, compsci〉
〈jane, compsci〉
〈jane,maths〉
〈mary,maths〉

john
jane
mary

compsci
maths

S
person dept

ExtS′,I

6 6 66 6

ExtS,I

???

Figure 1: Two u-equivalent schemas

the domain of the dept node consists of two values. In our example this is indeed the case, the
two values being compsci and maths, and we can define ExtS′,I in terms of ExtS,I as follows:

ExtS′,I(person) = ExtS,I(person)

ExtS′,I(mathematician) = {x | 〈x,maths〉 ∈ ExtS,I(〈Null, person, dept〉)}

ExtS′,I(computer scientist) = {x | 〈x, compsci〉 ∈ ExtS,I(〈Null, person, dept〉)}

Conversely, we can define ExtS,I in terms of ExtS′,I as follows:

ExtS,I(person) = ExtS′,I(person)

ExtS,I(dept) = {maths, compsci}

ExtS,I(〈Null, person, dept〉) = {〈x,maths〉 | x ∈ ExtS′,I(mathematician)} ∪

{〈x, compsci〉 | x ∈ ExtS′,I(computer scientist)}

Thus S and S′ are c-equivalent with respect to the condition that | ExtS,I(dept) | = 2. We will
see this c-equivalence again later, expressed as the mandatory attribute and total generalisation
equivalence in Figure 3(a).

3 Transformation of Models

In this section we use the definitions of u-equivalence and c-equivalence above as the semantic
foundation for defining a set of primitive transformations on models. A primitive transformation
may always be applicable to a schema irrespective of the instance — in which case we call it a
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S′

person

mathematician
computer

scientist

mathematician
⊆ person

computer scientist
⊆ person

I 〈john, compsci〉
〈jane, compsci〉
〈jane,maths〉
〈mary,maths〉john

jane

mary
compsci
maths

S
person dept

ExtS′,I

-

I

¾

ExtS,I

???

Figure 2: Two c-equivalent schemas
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schema-dependent (s-d) transformation — or may only be applicable if the instance satisfies
certain conditions — in which case we call it an instance-dependent (i-d) transformation.
We show that if a schema S can be transformed to a schema S ′ by means of an s-d primitive
transformation, and vice versa, then S and S ′ are u-equivalent. We show an analogous result
for i-d primitive transformations and c-equivalence. We then enhance the expressiveness of
primitive transformations by allowing them to take an extra parameter. This encodes a user-
defined condition on the model which must be satisfied in order for the transformation to be
applicable — we call such transformations knowledge-based (k-b) ones. We finally extend the
treatment to composite transformations consisting of a sequence of primitive transformations.

3.1 Primitive transformations

Each primitive transformation takes a model and a further parameter and returns a new model
i.e. it is a function of type ArgType → Models → Models for some type ArgType. The
instance component of the input model is left unchanged by every primitive transformation; only
the schema component and the extension mapping are changed. A primitive transformation is
successful if, were it applied, it would result in a model. If not successful, the transformation
is assumed to return an “undefined” value, denoted by φ. The result of applying a primitive
transformation to φ is assumed to be φ.

We list our primitive transformations in Definition 6 below, giving their name and the type of
their first argument. Formal definitions of these transformations are given in the Appendix. In
Definition 6, the type Queries denotes the set of queries expressible in L where, given a schema
S = 〈Nodes,Edges, Constraints〉 and a model 〈S, I, ExtS,I〉, a query q over 〈S, I, ExtS,I〉
is an expression in L whose set of variables, V ARS(q), is a subset of Nodes ∪ Edges. If
V ARS(q) = {v1, . . . , vn}, the value of q is given by q[v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)]. Such
queries will be applied to items of the input schema and will return a set which is the extent
of a new item. Thus, as with our notions of u-equivalence and c-equivalence, transformations
which add new items to a schema are language-dependent.

Definition 6 The following are the primitive transformations:

1. renameNode(Names ×Names) renames a node. It is successful provided either (a) the
new name is not already the name of a node in the schema, or (b) a node already exists
with the new name and has the same extent as the source node.

2. renameEdge(Schemes × Names) renames an edge. It is successful provided either (a)
the new name is not already the name of an edge in the schema, or (b) an edge already
exists with the new name and has the same extent as the source edge.

3. addConstraint(Constraints) adds a new constraint, and is successful provided ExtS,I

satisfies the new constraint.

4. delConstraint(Constraints) deletes a constraint and is always successful.

5. addNode(Names × Queries) adds a new node whose extent is given by the value of the
query. This is successful provided either (a) a node of that name does not already exist,
or (b) a node of that name already exists with precisely the given extent.

6. delNode(Names) deletes a node if it exists and participates in no edges, otherwise it
has no effect on the schema. In the former case it is successful provided property (ii) of
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Definition 2 is not violated by setting the extent of the node to be undefined. In the latter
case it is trivially successful.

7. addEdge(Seq(Schemes) × Queries) adds a new edge between a sequence of existing
schemes. The extent of the edge is given by the value of the query. This transforma-
tion is successful provided either (a) the edge does not already exist, the participating
schemes exist, and the extent of the edge satisfies the appropriate domain constraints, or
(b) the edge already exists with precisely the given extent.

8. delEdge(Seq(Schemes)) removes an edge if it exists and participates in no edges, otherwise
it has no effect on the schema. In the former case it is successful provided property (ii) of
Definition 2 is not violated by setting the extent of the edge to be undefined. In the latter
case it is trivially successful.

We note that every primitive transformation is well-defined i.e. when applied to any model
it yields either φ or another model. We also note that the primitive transformations are syn-
tactically complete, in the sense that without their associated provisos they could be used to
transform any schema into any other schema. With the addition of the provisos, the transfor-
mations become semantically sound i.e. they output a model as defined in Definition 3.

For all input models with the same schema, the models output by a primitive transformation
also all have the same schema. We denote by Schema(t, S) the schema that results by applying
the primitive transformation t to any model of S.

Definition 7 A primitive transformation t is schema-dependent (s-d) w.r.t. a schema S
if t does not return φ for any model of S, otherwise t is instance-dependent (i-d) w.r.t. S.

It is easy to see that if t is s-d w.r.t. S then Schema(t, S) subsumes S. Thus, if a schema S
can be transformed to a schema S ′ by means of a s-d primitive transformation, and vice versa,
then S and S′ are u-equivalent. Similarly, if t is i-d w.r.t. S with associated proviso f then
Schema(t, S) c-subsumes S w.r.t. f . Thus, if a schema S can be transformed to a schema S ′

by means of an i-d primitive transformation with proviso f , and vice versa, then S and S ′ are
c-equivalent w.r.t f .

For example, if S consists of one node, employee, and S ′ consists of one node staff, then
the transformation rename(employee, staff) on S is s-d as is the transformation rename(staff,
employee) on S′, and so S and S′ are u-equivalent.

On the other hand, if S consists of two nodes, employee and staff, and S ′ consists of
one node staff, then the transformation rename(employee, staff on S is i-d with proviso that
ExtS,I(employee) = ExtS,I(staff) while the transformation addNode(employee, staff) on S ′ is
s-d. So overall S and S′ are c-equivalent w.r.t. the condition ExtS,I(employee) = ExtS,I(staff).

3.2 Knowledge-based transformations

For each of the primitive transformations of Definition 6 we can define a new transformation that
takes as an extra argument a condition which must be satisfied in order for the transformation
to be successful. We call such transformations knowledge-based (k-b) ones. We use the same
name for both the 2-parameter and the 3-parameter versions of the primitive transformations
since the number of arguments distinguishes which version is being used. Each 3-parameter
version, op, is defined in terms of the 2-parameter one as follows:

op arg c m = if c(m) then (op arg m) else φ
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Semantically, there is no difference between i-d and k-b transformations since both require
instances to satisfy a condition.

3.3 Composite transformations

The above treatment generalises to composite transformations. A composite transformation
is a sequence of n ≥ 1 primitive transformations:

op1 arg1 c1; op2 arg2 c2; . . . ; opn argn cn

where the conditions ci are optional. If any one of this sequence of primitive transformations
is not successful, i.e. returns φ, then so does the composite transformation overall. Thus if
the primitive transformations have associated provisos f1, . . . , fn respectively, the composite
transformation has the following overall proviso, where m is the model that the transformation
is being applied to:

fi holds for opi−1 argi−1 ci−1 (. . . (op2 arg2 c2 (op1 arg1 c1 m)) . . .), for all 1 ≤ i ≤ n

Any composite transformation T is well-defined, by virtue of the fact that the primitive
transformations are so, and for input models with the same schema its output models also all
have the same schema. If T ’s proviso holds for all models of a schema S, then T is schema-
dependent (s-d) w.r.t. S. Otherwise T is instance-dependent (i-d) w.r.t. S. Notice that for T
to be s-d, its first primitive transformation must individually be s-d but the remaining n − 1
ones need not be.

As for primitive transformations, if a schema S can be transformed to a schema S ′ by means
of a s-d composite transformation, and vice versa, then S and S ′ are u-equivalent. Similarly, if
S can be transformed to schema S ′ by means of an i-d or k-b composite transformation with
proviso f , and vice versa, then S and S ′ are c-equivalent w.r.t f .

To illustrate, for the schemas shown in Figure 1 the following composite s-d transformation
will transform S to S′:

addNode 〈works in, 〈Null, person, dept〉〉;
addEdge 〈Null, person,works in,works in〉;
addEdge 〈Null,works in, dept,works in〉;
delEdge 〈Null, person, dept〉

The reverse transformation, removing the node works in, is achieved by the following s-d
transformation:

addEdge 〈Null, person, dept, {〈person(s1),works in(s1), dept(s2)〉 |
s1 ∈ 〈Null, person,works in ∧ s2 ∈ 〈Null,works in, dept〉〉∧
works in(s1) = works in(s2)}〉;

delEdge 〈Null, person,works in〉;
delEdge 〈Null,works in, dept〉;
delNode works in

Thus S and S′ in Figure 1 are u-equivalent.
For the schemas shown in Figure 2, the following composite transformation will transform S

into S′:
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addNode 〈mathematician, {x | 〈x,maths〉 ∈ 〈Null, person, dept〉}〉;
addNode 〈computer scientist, {x | 〈x, compsci〉 ∈ 〈Null, person, dept〉}〉;
addConstraint (mathematician ⊆ person);
addConstraint (computer scientist ⊆ person);
delEdge 〈Null, person, dept〉 (dept = {maths, compsci});
delNode dept

Note the condition on the last-but-one primitive transformation, making the composite trans-
formation k-b overall. By contrast, the reverse transformation is s-d:

addNode 〈dept, {maths, compsci}〉;
addEdge 〈Null, person, dept, {〈x,maths〉 | x ∈ ExtS′,I(mathematician)} ∪

{〈x, compsci〉 | x ∈ computer scientist}〉;
delConstraint (mathematician ⊆ person);
delConstraint (computer scientist ⊆ person);
delNode mathematician;
delNode computer scientist

Thus S and S′ in Figure 2 are c-equivalent.

4 Expressiveness of the approach

A practical CDM will have higher-level constructs than nodes, edges and constraints. Thus
appropriate composite transformations will be required in order to transform schemas expressed
in such a CDM, and these can be built up from the primitive transformations that we defined
above. In this section we illustrate how a higher-level CDM and transformations on it can be
defined by first showing how to define the binary ER schemas and primitive transformations
on them that we gave in [11]. We further demonstrate the applicability of our framework by
extending this treatment to a much richer ER CDM that supports n-ary relations, attributes on
relations, complex attributes, and generalisation hierarchies.

4.1 Transformations for a binary ER CDM

The following definition of a binary ER schema is as in [11]:

Definition 8 A binary ER schema, S, is a quadruple 〈Ents, Incs,Atts, Assocs〉 where:

• Ents ⊆ Names is the set of entity-type names.

• Incs ⊆ (Ents × Ents), each pair 〈e1, e2〉 ∈ Incs representing that e1 is a subtype of e2.
We assume that the directed graph induced by Incs is acyclic.

• Atts ⊆ Names is the set of attribute names.

• Assocs ⊆ (Names × Names × Names × Cards × Cards) is the set of associations,
where:

(i) For each binary relationship between two entity types e1, e2 ∈ Ents, there is a tuple
in Assocs of the form:

〈rel name, e1, e2, c1, c2〉

c1 and c2 are both of the form l : u where l is a natural number and u is either a
natural number or N (denoting no upper limit). c1 indicates the lower and upper
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cardinalities of instances of e2 for each instance of e1 while c2 indicates the lower and
upper cardinalities of instances of e1 for each instance of e2. rel name may be Null
if there is only one relationship between e1 and e2.

(ii) For each attribute a associated with an entity type e there is a tuple in Assocs of the
form:

〈Null, e, a, c1, c2〉

c1 indicates the lower and upper cardinalities of a for each instance of e, and c2

indicates the lower and upper cardinalities of instances of e for each value of a.

We notice that entity names and attribute names are unique, and that an entity and an
attribute cannot have the same name (because Ents ∪ Atts corresponds to Nodes in the un-
derlying hypergraph). However, attributes can be shared between entities and relationships.
Assocs corresponds to Edges and Incs to Constraints in the underlying hypergraph.

We next define a set of transformations on binary ER schemas in terms of the primitive
transformations we gave in Section 3.1. We will use some short-hand notation for express-
ing cardinality constraints on associations. Although for the moment only binary associa-
tions are necessary, we anticipate the need for n-ary ones in Section 4.2. Thus, we denote
by makeCard 〈n0, n1, . . . , nm, l1 : u1, . . . , lm : um〉 the following cardinality constraint on the
m-ary scheme 〈n0, n1, . . . , nm〉:

m∧

i=1

(∀si ∈ ni . li ≤ |{s|s ∈ 〈n0, n1, . . . , nm〉 ∧ ni(s) = si}| ≤ ui)

Conversely, we denote by getCard 〈n0, n1, . . . , nm〉 the cardinality constraint associated with
the scheme 〈n0, n1, . . . , nm〉 i.e. the above conjunction.

The primitive transformations on binary ER schemas given in [11] can be defined as follows
in terms of the primitive transformations of Section 3.1:

• renameE 〈from, to〉 and renameA 〈from, to〉 which respectively rename an entity type
and an attribute, can both be implemented by:

renameNode 〈from, to〉

• renameR 〈from, to〉 which renames a relationship can be implemented by 1:

renameEdge 〈from, to〉

• expand 〈n0, n1, n2, l1 : u1, l2 : u2〉 which replaces the old cardinality constraint on the
association 〈n0, n1, n2〉 by the new, relaxed, constraint l1 :u1, l2 :u2 is implemented by:

delConstraint (getCard 〈n0, n1, n2〉);
addConstraint (makeCard 〈n0, n1, n2, l1 :u1, l2 :u2〉)

• contract 〈n0, n1, n2, l1 :u1, l2 :u2〉 which replaces the old cardinality constraint on the as-
sociation 〈n0, n1, n2〉 by the new, stricter, constraint l1 :u1, l2 :u2 is implemented similarly.

1There is a slight departure here from this transformation as described in [11] which took only the relationship
name as its first parameter. This was not correct since two relationships can have the same name and so the
entire scheme is needed to uniquely identify a relationship.
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• addE〈e, q〉 which adds an entity type e to the schema and assigns it the extent defined by
the query q:

addNode 〈e, q〉

• delE e which deletes entity type e if it has no attributes and participates in no relationships:

delNode e

• addR 〈r, e1, e2, l1 :u1, l2 :u2, q〉 which adds the relationship 〈r, e1, e2, l1 :u1, l2 :u2〉 to the set
of associations of the schema and assigns it the extent defined by the query q:

addEdge 〈r, e1, e2, q〉;
addConstraint (makeCard 〈r, e1, e2, l1 :u1, l2 :u2〉)

• delR 〈r, e1, e2〉 which removes the relationship 〈r, e1, e2〉 from the set of associations of the
schema:

delConstraint (getCard 〈r, e1, e2〉);
delEdge 〈r, e1, e2〉

• addA 〈e, a, l1 :u1, l2 :u2, qatt, qassoc〉 which adds the association 〈Null, e, a, l1 :u1, l2 :u2〉 to
the schema, assigning the attribute extent qatt and the association extent qassoc:

addNode 〈a, qatt〉;
addEdge 〈Null, e, a, qassoc〉;
addConstraint (makeCard 〈e, a, l1 :u1, l2 :u2〉)

• delA 〈e, a〉 which removes the association 〈Null, e, a〉 from the set of associations of the
schema:

delConstraint (getCard 〈Null, e, a〉);
delEdge 〈Null, e, a〉;
delNode a

• addI 〈e1, e2〉 which adds this subtype relationship to the schema, provided that the extent
of e1 is indeed contained in the extent of e2:

addConstraint (e1 ⊆ e2)

• delI 〈e1, e2〉 which removes this subtype relationship from the schema:

delConstraint (e1 ⊆ e2)

k-b versions of these transformations can be defined by adding the constraint to the first
primitive transformation of the composition. In [11] we illustrated the expressiveness of these
transformations on binary ER schemas by defining many of the common schema equivalences
found in the literature and thus deriving whether they conditional or unconditional. We do
not repeat this work here. Instead we define a richer ER CDM and transformations on it in
Section 4.2 below. We define some equivalences for this richer model in Section 5.
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4.2 Transformations for an enriched ER CDM

Our enriched ER CDM supports n-ary relations, attributes on relations, complex attributes, and
generalisation hierarchies. N-ary relations are readily supported since the underlying hypergraph
can have edges connecting arbitrarily many nodes. Relationships with attributes are supported
since schemes can be nested within schemes (though only one level of such nesting is needed
for this CDM). To support complex attributes, we extend the syntax of addA to specify a path
starting at an entity or relationship and ending with the new, possibly nested, attribute. delA
is similarly generalised. Set-valued attributes are already the default since the cardinality of
attributes is constrained by additional cardinality constraints as required. Finally we need one
more set, Total = {partial, total}, in order to indicate whether a generalisation is partial or total
[9].

Definition 9 An enriched ER schema, S, is a quadruple 〈Ents,Gens,Atts, Assocs〉 where:

• Ents ⊆ Names is the set of entity-type names.

• Gens ⊆ Total × Seq(Names) is the set of generalisations. There is a tuple in Gens of
the form 〈t, e, e1, . . . , en〉 if entity type e is a generalisation of entity types e1, . . . , en. The
generalisation is partial/total according to the value of t. We assume that the directed
graph induced by Gens is acyclic.

• Atts ⊆ Names is the set of attribute names.

• Assocs ⊆ Names× Seq(Schemes)× Seq(Cards) is the set of associations, where:

(i) For each relationship between n entity types e1, . . . , en ∈ Ents, there is a tuple in
Assocs of the form:

〈rel name, e1, . . . , en, c1, . . . , cn〉

ci indicates the lower and upper cardinalities of participations in the relationship by
each instance of ei. rel name may be Null if there is only one relationship between
e1, . . . , en.

(ii) For each attribute a associated with an entity type e there is a tuple in Assocs of the
form:

〈Null, e, a, c1, c2〉

(iii) For each attribute a associated with a relationship 〈r, e1, . . . , en〉 there is a tuple in
Assocs of the form:

〈Null, 〈r, e1, . . . , en〉, a, c1, c2〉

(iv) For each sub-attribute b of a parent attribute a there is a tuple in Assocs of the form:

〈Null, a, b, c1, c2〉

The primitive transformations on these enriched ER schemas are defined as follows in terms
of the primitive transformations of Section 3.1:

• renameX 〈from, to〉 where X can be E,A or R is implemented by renameNode or
renameEdge, as for binary ER schemas in Section 4.1 above.
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• expand 〈n0, n1, . . . , nm, l1 : u1, . . . , lm : um〉 which replaces the old cardinality constraint
on the association 〈n0, n1, . . . , nm〉 by the new, relaxed, constraint l1 : u1, . . . , lm : um is
implemented by

delConstraint (getCard 〈n0, n1, . . . , nm〉);
addConstraint (makeCard 〈n0, n1, . . . , nm, l1 :u1, . . . , lm :um〉)

• contract 〈n0, n1, . . . , nm, l1 : u1, . . . , lm : um〉 which replaces the old cardinality constraint
on the association 〈n0, n1, . . . , nm〉 by the new, stricter, constraint l1 : u1, . . . , lm : um is
implemented similarly.

• addE 〈e, q〉 which adds an entity type e to the schema and assigns it the extent defined by
the query q:

addNode 〈e, q〉

• delE e which deletes an entity type e if it has no attributes and participates in no rela-
tionships:

delNode e

• addR 〈r, e1, . . . , en, l1 :u1, . . . , ln :un, q〉 which adds this relationship to the set of associa-
tions of the schema and assigns it the extent defined by the query q:

addEdge 〈r, e1, . . . , en, q〉;
addConstraint (makeCard 〈r, e1, . . . , en, l1 :u1, . . . , ln :un〉)

• delR 〈r, e1, . . . , en〉 which removes this relationship from the set of associations of the
schema:

delConstraint (getCard 〈r, e1, . . . , en〉);
delEdge 〈r, e1, . . . , en〉

• addA 〈a0, a1, . . . , an, l1 :u1, l2 :u2, qatt, qassoc〉, where a0 is an entity type or relationship and
n ≥ 1, adds the association between an−1 and an to the schema, assigning the attribute
an extent qatt and the association extent qassoc:

addNode 〈an, qatt〉;
addEdge 〈Null, an−1, an, qassoc〉;
addConstraint (makeCard 〈Null, an−1, an, l1 :u1, l2 :u2〉)

• delA 〈a0, a1, . . . , an〉 which removes the association 〈Null, an−1, an〉 from the set of asso-
ciations of the schema:

delConstraint (getCard 〈Null, an−1, an〉);
delEdge 〈Null, an−1, an〉;
delNode an

• addG 〈partial, e, e1, . . . , en〉 which adds this generalisation to the schema, provided that the
extents of e1, . . . , en are disjoint and contained within the extent of e:

addConstraint ∀1 ≤ i ≤ n . ei ⊆ e;
addConstraint ∀1 ≤ i < j ≤ n . ei ∩ ej = ∅
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• addG 〈total, e, e1, . . . , en〉 is equivalent to addG 〈partial, e, e1, . . . , en〉 with the additional
constraint that e1, . . . , en completely cover e:

addConstraint ∀1 ≤ i ≤ n . ei ⊆ e;
addConstraint ∀1 ≤ i < j ≤ n . ei ∩ ej = ∅;
addConstraint e =

⋃n
i=1

ei

• delG 〈partial, e, e1, . . . , en〉 removes this generalisation from the schema by removing the
constraints it implies:

delConstraint ∀1 ≤ i ≤ n . ei ⊆ e;
delConstraint ∀1 ≤ i < j ≤ n . ei ∩ ej = ∅

• delG 〈total, e, e1, . . . , en〉 similarly removes the constraints this generalisation implies:

delConstraint ∀1 ≤ i ≤ n . ei ⊆ e;
delConstraint ∀1 ≤ i < j ≤ n . ei ∩ ej = ∅;
delConstraint e =

⋃n

i=1
ei

5 Some Example Equivalences

In this section we demonstrate our approach by defining, and thereby formalising, a number of
equivalences on enriched ER schemas that have appeared in the literature. To aid presentation
we have grouped these equivalences into three subsections according to what schema constructs
are being equated. Figures 1 - 3 graphically illustrate these three sets of equivalences. In these
figures a shaded hexagon indicates a total generalisation while a blank hexagon indicates a
partial one. Each equivalence is illustrated both generally and by a specific example on the
same figure.

5.1 Equivalences involving generalisations and attributes

Figure 3 illustrates three equivalences between pairs of schemas S1 and S2 involving attributes
and generalisations. The first equivalence has been formalised previously in [5], and illustrates
how our formalism differs from that approach. The second and third equivalences illustrate how
two different equivalences arise when we formalise the “attribute moving” operations found in
a number of papers [2, 9, 4], which have not considered the cardinalities of attributes.

Mandatory attribute and total generalisation equivalence. This exists between two
schemas S1 and S2 when S1 contains an association between an entity type e and an attribute a
with cardinality constraints 1 :1 and 0:N and S2 contains a total generalisation (see Figure 3(a)).
S1 is transformed to S2 as follows:

addE 〈e1, {e(s) | s ∈ 〈Null, e, a〉 ∧ a(s) = v1}〉;
...

addE 〈en, {e(s) | s ∈ 〈Null, e, a〉 ∧ a(s) = vn}〉;
addG 〈total, e, e1, . . . , en〉;
delA 〈e, a〉 (a = {v1, . . . , vn})

Note that the last step is a k-b transformation (i.e. one with a condition), making the whole
transformation k-b. Intuitively we can only delete attribute a if its extent consists of the values
v1, . . . , vn that were used to determine the extents of e1, . . . , en.
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(a) Mandatory attribute and total generalisation equivalence
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(c) Key attribute generalisation

Figure 3: Equivalences involving generalisations and attributes
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The reverse transformation from S2 to S1 is s-d:

addA 〈e, a, 1:1, 0:N, {v1, . . . , vn},∪
n
i=1
{〈s, vi〉 | s ∈ ei}〉;

delG 〈total, e, e1, . . . , en〉;
delE e1;

...
delE en

Thus the two schemas are c-equivalent with respect to the condition ExtS1,I(a) = {v1, . . . , vn}.
A specific instance of the equivalence is illustrated in Figure 3(a), where S1 contains a student

entity type with an attribute level that takes one of two values, postgrad and undergrad (so n = 2
here), and S2 has a generalisation student of two entity types postgrad and undergrad.

We note that replacing in Figure 3(a) the total generalisation in S2 by a partial one and the
mandatory attribute in S1 by an optional one (i.e. cardinality 0 : 1 on e) gives the equivalence
between an optional attribute and a partial generalisation. The above transformations need to
be modified to replace total by partial and 1:1 by 0:1.

Attribute generalisation. This exists between two schemas S1 and S2 when in S1 all sub-
types of a generalisation share a common attribute a while in S2 the attribute is associated with
the supertype (see Figure 3(b)). S1 is transformed to S2 by the following s-d transformation,
where if each cai

= lai
:uai

then ca =
∑n

i=1
lai

:
∑n

i=1
uai

:

addA 〈e, a, ce, ca, a,∪n
i=1
〈Null, ei, a〉〉;

delA 〈ei, a〉;
...

delA 〈en, a〉

The reverse transformation is dependent on the associations between s and the subtypes of
e satisfying the stated cardinality constraints:

addA 〈e1, a, ce, ca1
, a, {s | s ∈ 〈Null, e, a〉 ∧ e(s) ∈ e1}〉

(∀sa ∈ a . la1
≤ |{s | s ∈ 〈Null, e, a〉 ∧ e(s) ∈ e1 ∧ a(s) = sa}| ≤ ua1

);
...

addA 〈en, a, ce, can
, a, {s | s ∈ 〈Null, e, a〉 ∧ e(s) ∈ en}〉

(∀sa ∈ a . lan
≤ |{s | s ∈ 〈Null, e, a〉 ∧ e(s) ∈ en ∧ a(s) = sa}| ≤ uan

);
delA 〈e, a〉

Thus the two schemas are c-equivalent w.r.t. the stated conditions. An instance of the
equivalence is illustrated in Figure 3(b), where in S1 student id is an attribute of postgrad and
undergrad, with ca1

= ca2
= 0 : 1. Moving the attribute to student in S2 gives ca = 0 : 2.

The reverse transformation requires each student no. to be associated with no more than one
postgrad and no more than one undergrad.

Key attribute generalisation. In contrast to attribute generalisation, this involves merging
distinct key attributes on subtypes (a1, . . . , an in Figure 3(c)) to form a single key attribute on
the supertype (a). S1 is transformed to S2 as follows:

addA 〈e, a, 1:1, 1:1,∪n
i=1

ai,∪
n
i=1
〈ei, ai〉〉 (∀1 ≤ i < j ≤ n . ai ∩ aj = ∅);

delA 〈ei, ai〉;
...

delA 〈en, an〉
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The reverse transformation is s-d:
addA 〈e1, a1, 1:1, 1:1, {a(s) | s ∈ 〈Null, e, a〉 ∧ e(s) ∈ e1},

{s | s ∈ 〈Null, e, a〉 ∧ e(s) ∈ e1}〉;
...

addA 〈en, an, 1:1, 1:1, {a(s) | s ∈ 〈Null, e, a〉 ∧ e(s) ∈ en},
{s | s ∈ 〈Null, e, a〉 ∧ e(s) ∈ en}〉;

delA 〈e, a〉

Thus the two schemas are c-equivalent with respect to the condition ∀1 ≤ i < j ≤ n .
ExtS1,I(ai)∩ExtS1,I(aj) = ∅. A specific instance of the equivalence is illustrated in Figure 3(c)
where in S1 student id identifies student instances and staff id identifies staff instances. In a
schema improvement process, we might want to merge these to form a single key attribute
college id on the generalisation member (meaning member of the college), as in S2. This requires
the additional knowledge that the extents of student id and staff id do not intersect. The reverse
transformation is independent of the instance, since we may always partition the set of keys for
a supertype into keys for its subtypes.

5.2 Equivalences between generalisations

Figure 4 illustrates three of the equivalences proposed in [9], where they are used as part of a
methodology for integrating generalisation hierarchies.

Introduction of total generalisation. This exists between two schemas S1 and S2 when S1

contains a set of entity types with distinct extents and S2 contains a generalisation entity type
whose extent is the union of these (see Figure 4(a)). S1 is transformed to S2 by the following
k-b transformation:

addE 〈e,∪n
i=1

ei〉 (∀1 ≤ i < j ≤ n . ei ∩ ej = ∅);
addG 〈total, e, e1, . . . , en〉

The reverse transformation is s-d, since we can always recover e by forming the union of
e1, . . . , en:

delG 〈total, e, e1, . . . , en〉;
delE e

Thus the two schemas are c-equivalent with respect to the condition ∀1 ≤ i < j ≤ n .
ExtS1,I(ei)∩ExtS1,I(ej) = ∅. A specific instance of the equivalence is illustrated in Figure 4(a),
where in S1 the entity types undergrad and postgrad are known to be disjoint and in S2 there is
a total generalisation student of these.

Identification of total generalisation. Here S1 contains entity types e1, . . . , en with disjoint
extents and a partial generalisation, e, thereof while S2 contains an extra total generalisation,
es, of e1, . . . , en (see Figure 4(b)). S1 is transformed to S2 by the following s-d transformation:

addE 〈es,∪
n
i=1

ei〉;
addG 〈partial, e, es〉;
delG 〈partial, e, e1, . . . , en〉;
addG 〈total, es, e1, . . . , en〉

The reverse transformation is s-d, since we can always recover es by forming the union of
e1, . . . , en:
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Figure 4: Equivalences between generalisations
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delG 〈total, es, e1, . . . , en〉;
addG 〈partial, e, e1, . . . , en〉;
delG 〈partial, e, es〉;
delE es

Thus the two schemas are u-equivalent. A specific instance of the equivalence is illustrated
in Figure 4(b) where the knowledge that the extents of undergrad and postgrad are disjoint is
recorded in the schema by the partial generalisation member, and hence we can always introduce
the intermediate student entity type.

Move generalisation. This exists between two schemas S1 and S2 when S1 has a partial
generalisation e of e1, . . . , en, and these are all subtypes of some other specialisation es of e (see
Figure 4(c)): S1 is transformed to S2 by the following i-d transformation (i-d because of the
implicit proviso on addG that ∀1 ≤ i ≤ n . ei ⊆ es):

delG 〈partial, e, e1, . . . , en〉;
addG 〈partial, es, e1, . . . , en〉

The reverse transformation is clearly s-d, intuitively because it is always possible to move
a generalisation of e1, . . . , en up the hierarchy, reducing the constraints on the extents of these
entity types:

delG 〈partial, es, e1, . . . , en〉;
addG 〈partial, e, e1, . . . , en〉;

Thus the two schemas are c-equivalent with respect to the condition ∀1 ≤ i ≤ n.ExtS1,I(ei) ⊆
ExtS1,I(es). A specific instance of this equivalence is illustrated in Figure 4(c), where in S1 the
knowledge that undergrad and postgrad are subsets of student allows us to move undergrad and
postgrad to be subtypes of student in S2.

5.3 N-ary Relationships and Complex Attributes

The first two equivalences in Figure 5 were proposed in [16, 17]. The third is a new equivalence
we introduce, which removes the redundancy that occurs when schemas containing relationships
of varying arity are merged.

Entity/complex attribute equivalence. This exists between two schemas S1 and S2 when
S1 contains a complex attribute a with sub-attributes a1, . . . , an and S2 contains an entity type
ea with the same n attributes (see Figure 5(a)). S1 is transformed to S2 by the following s-d
transformation:

addE 〈ea, a〉;
addR 〈r, e, ea, ce,a, ca,e, 〈Null, e, a〉〉;
addA 〈ea, a1, ca,a1

, ca1,a, a1, 〈Null, a, a1〉〉;
...

addA 〈ea, an, ca,an
, can,a, an, 〈Null, a, an〉〉;

delA 〈e, a, a1〉;
...

delA 〈e, a, an〉;
delA 〈e, a〉

The reverse transformation is straightforward and is also s-d. Thus the two schemas are u-
equivalent. An instance of this equivalence is illustrated in Figure 5(a), where in S1 the complex
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Figure 5: n-ary Relationships and Complex Attributes
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attribute degree consists of subject and specialty whereas in S2 there is a degree entity with the
same attributes. This equivalence would allow S1 to be merged with another schema containing
a degree entity type possibly associated with more attributes.

Entity/relationship equivalence. This exists between two schemas S1 and S2 when S1 has
an entity type er with attributes a1, . . . , am and n binary relationships r1, . . . , rn between er and
entity types e1, . . . , en, and S2 has an n-ary relationship r between e1, . . . , en with attributes
a1, . . . , am (see Figure 5(b)). S1 is transformed to S2 by the following s-d transformation:

addR 〈r, e1, . . . , en, c1, . . . , cn, {〈er(s1), e1(s1), . . . , en(sn)〉 |
s1 ∈ 〈r1, e1, er〉 ∧ . . . ∧ sn ∈ 〈rn, en, er〉 ∧ er(s1) = . . . = er(sn)}〉;

addA 〈〈r, e1, . . . , en〉, a1, cer,a1
, ca1,er

, a1,
{〈s, a1(sa)〉 | s ∈ 〈r, e1, . . . , en〉 ∧ sa ∈ 〈Null, er, a1〉 ∧ er(s) = er(sa)}〉;

...
addA 〈〈r, e1, . . . , en〉, am, cer,am

, cam,er
, am,

{〈s, am(sa)〉 | s ∈ 〈r, e1, . . . , en〉 ∧ sa ∈ 〈Null, er, am〉 ∧ er(s) = er(sa)}〉;
delR 〈r1, e1, er〉;

...
delR 〈rn, en, er〉;
delA 〈er, a1〉;

...
delA 〈er, am〉;
delE er

The reverse transformation is also s-d:
addE 〈er, 〈r, e1, . . . , en〉〉;
addA 〈er, a1, cr,a1

, ca1,r, a1, 〈Null, 〈r, e1, . . . , en〉, a1〉〉;
...

addA 〈er, am, cr,am
, cam,r, am, 〈Null, 〈r, e1, . . . , en〉, am〉〉;

addR 〈r1, er, e1, 1 : 1, c1, 〈r, e1, . . . , en〉〉;
...

addR 〈rn, er, en, 1 : 1, cn, 〈r, e1, . . . , en〉〉;
delA 〈〈r, e1, . . . , en〉, a1〉;

...
delA 〈〈r, e1, . . . , en〉, am〉;
delR 〈r, e1, . . . , en〉;

Thus the two schemas are u-equivalent. An instance of this equivalence is illustrated in
Figure 5(b), where in S1 the entity type sits represents a student’s attempt to pass a course and
the attribute attempt no stores which attempt this is (first, second etc.). In S2 this information
is instead represented by the relationship sits with attribute attempt no.

Redundant relationship removal. This exists when an m-ary relationship (such as rm in
Figure 5(c)) is a projection of an n-ary relationship (such as rn), where m ≤ n. rm may be
removed by the following k-b transformation:

delR 〈rm, e1, . . . , em〉 ({〈e1(s), . . . , em(s)〉 | s ∈ 〈rm, e1, . . . , em〉} =
{〈e1(s), . . . , em(s)〉 | s ∈ 〈rn, e1, . . . , en〉})
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Name Figure S1 → S2 S1 ← S2 S1 ≡ S2

Mandatory attribute and total 3(a) k-b s-d c
generalisation equivalence
Attribute generalisation 3(b) s-d k-b c
Key attribute generalisation 3(c) k-b s-d c
Introduction of total generalisation 4(a) k-b s-d c
Identification of total generalisation 4(b) s-d s-d u
Move generalisation 4(c) i-d s-d c
Entity/complex attribute equivalence 5(a) s-d s-d u
Entity/relationship equivalence 5(b) s-d s-d u
Redundant relationship removal 5(c) k-b s-d c

Table 1: Summary of Equivalences

The reverse transformation is s-d, since it is always possible to project out some participant
entities in a relationship:

addR 〈rm, e1, . . . , em, c1, . . . , cm, {〈e1(s), . . . , em(s)〉 | s ∈ 〈rn, e1, . . . , en〉}〉

Thus the two schemas are c-equivalent w.r.t. the condition

{〈e1(s), . . . , em(s)〉 | s ∈ ExtS1,I(〈rm, e1, . . . , em〉)} =

{〈e1(s), . . . , em(s)〉 | s ∈ ExtS1,I(〈rn, e1, . . . , en〉)}

The equivalence is illustrated in Figure 5(c), where in S1 we have a 3-ary relationship trys

between course, student and tutor indicating the tutor allocated to each student trying a course.
There is also a redundant 2-ary relationship sits which is the projection of trys onto course and
student. In a schema improvement process, we may remove such a redundant relationship to
give the schema S2 containing just the trys relationship.

5.4 Summary

Table 1 summarises the equivalences that we have considered in this section. The columns
headed S1 → S2 and S2 → S1 state whether the left-to-right and right-to-left transformations
are s-d, i-d or k-b. The column headed S1 ≡ S2 states whether the equivalence is unconditional
or conditional.

6 Related Work

The main tasks of database schema integration are pre-integration, schema conforming,
schema merging and schema restructuring [2]. The last three of these tasks involve a pro-
cess of schema transformation. In practice, schema conforming transformations are applied
bi-directionally and schema merging and restructuring ones uni-directionally. However, in all
cases there is the underlying notion that the schema is being transformed to an equivalent one
(at least for some instances of the database). For each transformation, the original and resulting
schema obey one or more alternative notions of schema equivalence [14, 1, 8], which basically
vary in the mapping rules relating elements of the two schemas. This paper has presented a



24

unifying formalism for the schema transformation process by defining a very general notion of
schema equivalence, together with a set of primitive transformations that can be used to formally
define more complex schema transformations.

Previous work on schema transformation has either been to some extent informal [2, 7, 6], has
formalised only transformations that are independent of database content [12, 13], or is limited
to certain types of transformation only [3, 8, 17, 5]. The latter cases assume that specific types
of dependency constraints are employed to limit the instances of schemas (or “real world states”
[8]) in order that the schemas can be regarded as equivalent. In contrast, our approach allows
arbitrary constraints on instances to be specified as part of the transformation rules. Thus,
constructing transformations is a relatively simple task of programming a sequence of primitive
transformations, stating conditions on these where they are dependent on instances satisfying
certain constraints in order to output a valid model. A similar approach has recently been
adopted in [6] where the notion of a database “context” constrains instances so that schemas
can be considered equivalent.

A further distinctive feature of the work described here is that our underlying CDM is a very
simple one. This makes it straightforward to formalise a variety of higher-level CDMs and their
transformations, compared with much previous work on semantic schema integration [1, 2, 4],
where a specific variant of the ER model has been used as the CDM.

7 Conclusions

In this paper we have proposed a general formal framework for schema transformation based on a
hypergraph data model and have defined a set of primitive transformations for this data model.
We have illustrated how practical, higher-level CDMs and transformations on them can be
defined in this framework by showing first how to define the binary ER schemas and primitive
transformations on them that we considered in [11], and then extending the treatment to a
much richer ER model supporting n-ary relations, attributes on relations, complex attributes,
and generalisation hierarchies. We have defined a set of primitive transformations for this richer
CDM and have shown how they can be used to express, and formalise, many of the common
schema equivalences regarding n-ary relations, attributes of relations, complex attributes and
generalisation hierarchies found in the literature.

Our framework is very general, and the same approach that we have used here can be adopted
for formalising other CDMs and their associated primitive transformations. The fist step is to
define schemas in the CDM in terms of the underlying hypergraph and additional constraints.
Then primitive transformations for each construct of a schema can be defined in terms of the
primitive transformations on the underlying hypergraph data model.

The notion of schema equivalence which underpins our primitive transformations is based on
formalising a database instance as a set of sets. We have distinguished between transformations
which apply for any instance of a schema (s-d) and those which only apply for certain instances
(i-d or k-b). Our work is novel in that previous work on schema transformation has either been
informal, or has formalised only transformations that are independent of the database instance,
or is limited to specific types of transformation by restricting the constraints to a specific set
of constraint types. A detailed theoretical treatment of our notion of schema equivalence can
be found in [10], as well as a discussion of how our approach can be applied to the overall
schema integration process. Informally, our approach to integrating two schemas S1 and S2 first
applies transformations to achieve two schemas S ′

1
and S′

2
whose common concepts [2] are either

identical or compatible; these schemas can then be integrated by a simple merge of objects with
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the same name.
Our work has practical application in the implementation of tools for aiding schema inte-

gration. The primitive transformations can be used as a simple “programming language” for
the deriving new schemas. The distinction between s-d, and i-d and k-b transformations serves
to identify which transformations need to be verified against the data and/or other knowledge
about the component databases (e.g. semantic integrity constraints). For future work we wish
to investigate further the applicability of our formalism to the wide range of schema integra-
tion methodologies that have been proposed. We believe that our formalism is methodology-
independent and could be applied to any of the methodologies proposed in literature.
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A Semantics of the primitive transformations

Definition 10 below gives the semantics of each of the primitive transformations of Definition 6
by defining the changes it makes to the input model 〈S, I, ExtS,I〉 to yield the output model
〈S′, I, ExtS′,I〉. In this definition, it is assumed that S = 〈Nodes,Edges, Constraints〉 and
S′ = 〈Nodes′, Edges′, Constraints′〉. The output extension mapping ExtS′,I is identical to
ExtS,I for all arguments except those explicitly defined below.

Definition 10

1. renameNode 〈from, to〉 〈S, I, ExtS,I〉 = 〈S′, I, ExtS′,I〉 such that

S′ = S[from/to]

ExtS′,I(n[from/to]) = ExtS,I(n)

provided that
(a) to 6∈ Nodes or
(b) to ∈ Nodes and ExtS,I(from) = ExtS,I(to).

2. renameEdge 〈〈from, n1, . . . , nm〉, to〉 〈S, I, ExtS,I〉 = 〈S′, I, ExtS′,I〉 such that

S′ = S[from/to]

ExtS′,I(n[from/to]) = ExtS,I(n)

provided that
(a) 〈to, n1, . . . , nm〉 6∈ Edges or
(b) 〈to, n1, . . . , nm〉 ∈ Edges and ExtS,I(〈from, n1, . . . , nm〉) = ExtS,I(〈to, n1, . . . , nm〉).

3. addConstraint c 〈S, I, ExtS,I〉 = 〈S′, I, ExtS′,I〉 such that

Nodes′ = Nodes

Edges′ = Edges

Constraints′ = Constraints ∪ {c}
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provided that V ARS(c) ⊆ Nodes ∪ Edges and c[v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)] evalu-
ates to true, where {v1, . . . , vn} = V ARS(c).

4. delConstraint c 〈S, I, ExtS,I〉 = 〈S′, I, ExtS′,I〉 such that

Nodes′ = Nodes

Edges′ = Edges

Constraints′ = Constraints \ {c}

5. addNode 〈n, q〉 〈S, I, ExtS,I〉 = 〈S′, I, ExtS′,I〉 such that

Nodes′ = Nodes ∪ {n}

Edges′ = Edges

ExtS′,I(n) = q[v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)]

where {v1, . . . , vn} = V ARS(q)

provided that V ARS(q) ⊆ Nodes ∪ Edges and
(a) n 6∈ Nodes or
(b) ExtS,I(n) = q[v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)].

6. delNode n 〈S, I, ExtS,I〉 = 〈S′, I, ExtS′,I〉 such that

Nodes′ = Nodes \ {n}

Edges′ = Edges

ExtS′,I(n) = ⊥

provided that n participates in no edges and that property (ii) of Definition 2 is not
violated by setting ExtS′,I to be undefined for n.

7. addEdge 〈n0, n1, . . . , nm, q〉 〈S, I, ExtS,I〉 = 〈S′, I, ExtS′,I〉 such that

Nodes′ = Nodes

Edges′ = Edges ∪ {〈n0, n1, . . . , nm〉}

ExtS′,I(〈n0, n1, . . . , nm〉) = q[v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)]

where {v1, . . . , vn} = V ARS(q)

provided that n1, . . . , nm ∈ Nodes ∪ Edges, V ARS(q) ⊆ Nodes ∪ Edges, and
(a) 〈n0, n1, . . . , nm〉 6∈ Schemes and q[v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)] satisfies the ap-
propriate domain constraints, or
(b) 〈n0, n1, . . . , nm〉 ∈ Schemes and
ExtS,I(〈n0, n1, . . . , nm〉) = q[v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)].

8. delEdge 〈n0, n1, . . . , nm〉 〈S, I, ExtS,I〉 = 〈S′, I, ExtS′,I〉 such that

Nodes′ = Nodes

Edges′ = Edges \ {〈n0, n1, . . . , nm〉}

ExtS′,I(〈n0, n1, . . . , nm〉) = ⊥

provided that 〈n0, n1, . . . , nm〉 participates in no edges and that property (ii) of Definition 2
is not violated by setting ExtS′,I to be undefined for 〈n0, n1, . . . , nm〉.


