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In data integration, a Merge operator takes as input a pair of schemas
in some conceptual modelling language, together with a set of correspondences
between their constructs, and produces as an output a single integrated schema.
In this paper we present a new approach to implementing the Merge operator that
improves upon previous work by considering a wider range of correspondences
between schema constructs and defining a generic and formal framework for the
generation of schema transformations. This is used as a basis for deriving trans-
formations over high level models. The approach is demonstrated in this paper to
generate transformations for ER and relational models.

1 Introduction

Initial research into data integration [1, 13] was concerned with the type of transfor-
mations that can be performed on the data source schemas [12, 24], while more recent
research has focused on schema matching [15, 14, 8], i.e. identifying correspondences
and semantic relationships between schema constructs. The process of model man-
agement incorporates the above by providing operators such as Match, Merge, etc for
schemas [2]. In this paper, we are not concerned with the Match operator, which pro-
duces a set of correspondences between the schema constructs, but focus on the Merge

operator, that takes as input two schemas, together with the result of Match, and pro-
duces as output a single integrated schema.

In [16, 6], schemas in a high level conceptual modelling language (such as ER, Re-
lational, ORM, etc) are modelled in a nested hypergraph data model (HDM) [25, 22,
23]. We base our approach to implementing the Merge operator on determining how se-
mantic relationships between nodes and edges in the HDM will cause transformations
on the HDM to be generated, which can be mapped to BAV transformations [23, 18] on
the high level modelling language. Based on these foundations, we provide a generic
framework that can be used for merging schemas irrespective of the high-level mod-
elling language used to represent them. This works by using the semantics of the high
level modelling language to determine which of the low level rules may be applied.

Our methodology has the advantage of providing a generic solution to the problem
of generating transformations, since it relies on the underlying graphical properties of
data modelling languages, and not on the specific modelling language that is being used
in a particular universe of discourse (UoD). In addition, it deals with with a variety of
semantic relationships — subsumption, disjointness, intersection, and equivalence —



between schema constructs, while most existing merging techniques deal with just the
equivalence semantic relationship [3, 19]. As a result, our approach does not only merge
schemas but it also improves them to remove any structural redundancy.

The structure of this paper is as follows. Section 2 describes the types of semantic
relationships we use as input to our Merge operator. Section 3 gives an example of
how a systems integrator might use a given set of semantic relationships to perform
manually data integration with BAV transformations. An informal justification of how
the BAV transformations are derived from the semantic relationships is given, and this
acts as a motivation for the generic rules. Section 4 reviews details of the HDM, and
illustrates how it is used to represent the ER and relational schemas we use in this
paper. Then Section 5 shows how a set of generic rules operating over the HDM may be
used to generate transformations in the higher level modelling languages from semantic
relationships, and in particular the transformations of Section 3. Related work is in
Section 6 and our summary and conclusions are found in Section 7.

2 Semantic Relationships

Various types of semantic relationships between schema constructs have been defined in
the literature. We adopt similar relationship definitions to [12], except for disjointness.
The four types of semantic relationship between schema constructs A,B are based on
the comparison of their intensional domains Di(A), Di(B), i.e. the set of real world
entities associated with the constructs. The relationships are:

1. equivalence: Two schema constructs A and B are equivalent, A
S
= B, iff

Di(A) = Di(B)

2. subsumption: Schema construct A subsumes schema construct B, B
S

⊂ A, iff
Di(B) ⊂ Di(A)

3. intersection: Two schema constructs A and B are intersecting, A
S

∩ B, iff
Di(A) ∩ Di(B) 6= ∅,∃C : Di(A) ∩ Di(B) = Di(C)

4. disjointness: Two schema constructs A and B are disjoint, A
S

6∩ B, iff
Di(A) ∩ Di(B) = ∅,∃C : Di(A) ∪ Di(B) ⊆ Di(C)

It is important to notice that construct C in the definition of intersection and dis-
jointness may or may not exist in the schemas. The notation ∃C : condition means that
there is a real-world concept in the domain of the data source examined, that can be rep-
resented by an existing or non-existing schema construct C that satisfies the condition.

3 Motivating Examples of Integration

We now present two examples of data integration, where the examples differ only in the
modelling language being used, and not in the UoD being considered. The examples
will illustrate the intuition of how schema matching performed between data sources
drives the integration process and leads to integration rules. Of course the integration
rules necessarily differ in detail according to the data modelling language being used,
but they are triggered by the same conditions, they have common objectives and they
perform analogous schema transformations.



3.1 ER Model Integration
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Fig. 1. Three ER models being integrated. The ER model has key attributes underlined, and op-
tional attributes followed by a question mark. Generalisations are indicated by hexagons, and
dictate that their sub-entity classes are disjoint.

Figure 1 illustrates a process where three ER schemas are integrated. First Ser
1

and
Ser

2
are compared, and a set of semantic relationships is produced by Match. These

relationships input into Merge, which integrates Ser
1

and Ser
2

into schema Ser
12

. We then
match Ser

12
with Ser

3
, producing another set of semantic relationships, which are then

used to form the final global schema Ser
g . We will use BAV to specify the transforma-

tions necessary during data integration [18, 4], and adopt the three step conform, merge,
restructure approach to schema integration [1]. Starting with integrating Ser

1
and Ser

2
,

during the conform phase, the fact that 〈〈dept,did〉〉 attribute in Ser
1

is equivalent to the
〈〈dept,id〉〉 attribute in Ser

2
causes one to be renamed as the other:



1 renameAttribute(〈〈dept,id〉〉, 〈〈dept,did〉〉)

During the merging phase, the fact that the concept of 〈〈boss〉〉 in Ser
2

is subsumed
by 〈〈staff〉〉 in Ser

1
causes a subset relation to be introduced between the two entities:

2 addSubset(〈〈staff,boss〉〉)

During the restructuring phase, we remove any redundancy that exists between the
schemas. Since 〈〈worksin,boss,dept〉〉 in Ser

2
is subsumed by 〈〈worksin,staff,dept〉〉 in

Ser
1

, we can delete the former construct without losing information in transforma-
tion 3 . The fact that we are not losing information is verified by supplying a query that
restores the extent of the construct we are deleting. Here we use a list comprehension
[7] based language called IQL [11] used in the AutoMed system [5]. The expression
in 3 states the we take those {x} values in entity 〈〈boss〉〉, and then take those {x, y}
found in relationship 〈〈worksin,staff,dept〉〉 with the same x value, and hence find those
values of the worksin relationship that are associated to the boss entity. Also note that
the rough semantics of each transformation is that the extent of the scheme in the first
argument can be derived from the query that is second argument. If the first argument
is a constraint, then it has no extent, and hence there is no second argument. Similarly,
since 〈〈boss,sid〉〉 is subsumed by 〈〈staff,sid〉〉, we eliminate 〈〈boss,sid〉〉 in transforma-
tion 4 . The fact that 〈〈staff,car〉〉 and 〈〈boss,car〉〉 are equivalent means that we should
eliminate 〈〈staff,car〉〉 in 5 since it is the less specific case of the car attribute, and can
state as the IQL query that its values were all those instances of 〈〈boss,car〉〉.
3 deleteRelationship(〈〈worksin,boss,dept,1:1,0:N〉〉,

[{x, y} | {x} ← 〈〈boss〉〉; {x, y} ← 〈〈worksin,staff,dept〉〉])
4 deleteAttribute(〈〈boss,sid,key〉〉, [{x, y} | {x} ← 〈〈boss〉〉; {x, y} ← 〈〈staff,sid〉〉])
5 deleteAttribute(〈〈staff,car,null〉〉, 〈〈boss,car〉〉)

The resulting Ser
12

is an integration of Ser
1

and Ser
2

that obeys one important feature
of the integration rules of the framework: that pathway S → S ′ of transformations from
schema S to S′ satisfy the relationship preservation property (RPP). The RPP states
that if the reverse pathway P ′ = S′ → S is followed, then the relationships initially
existing in S are still true, i.e. the semantic relationships between the constructs are
preserved. Implicitly, this means that the intentional domains of the constructs are not
affected by the rules, i.e. they do not cause any real-world entity loss nor gain. The RPP
is ensured by the fact that all add and delete transformations in the pathway 1 – 5 that
add or delete constructs that have an associated extent (i.e. set of values) are supplied
with queries that fully define that extent in terms of other constructs in the schema.

Integration now proceeds to match Ser
12

with Ser
3

. Since no naming conflicts are
found, we proceed directly to merging phase. The fact that there is a intersection rela-
tionship between 〈〈sales〉〉 of Ser

3
and 〈〈staff〉〉 of Ser

12
means we can introduce a com-

mon subset entity 〈〈salesboss〉〉 by transformations 7 – 9 . The IQL expression in 7

ensures that the new entity has instances that appear in both 〈〈sales〉〉 and 〈〈staff〉〉, and
this is also explicitly stated in the schema structure by the two subset constructs added
by 8 and 9 . The fact that there is a disjointness relationship between 〈〈pension〉〉 and
〈〈staff〉〉 means we can introduce a generalisation of them in the form of the 〈〈person〉〉
entity with transformations 10 and 11 . In 10 the IQL append operator ++ is used to
append all values of 〈〈pension〉〉 to those of 〈〈staff〉〉.
6 addSubset(〈〈staff,sales〉〉)

7 addEntity(〈〈salesboss〉〉, [{x} | {x} ← 〈〈sales〉〉; {x} ← 〈〈boss〉〉])



8 addSubset(〈〈sales,salesboss〉〉)

9 addSubset(〈〈boss,salesboss〉〉)

10 addEntity(〈〈person〉〉, 〈〈pension〉〉++ 〈〈staff〉〉)

11 addGeneralisation(〈〈person,pension,staff〉〉)

During restructuring, transformations 12–14 perform attribute specialisation, com-
bining the equivalent 〈〈sales,bonus〉〉 and 〈〈boss,bonus〉〉 into 〈〈salesboss,bonus〉〉. Then
15–17 perform attribute generalisation, combining 〈〈pension,sid〉〉 and 〈〈staff,sid〉〉. Fi-
nally 18 removes the redundant 〈〈sales,name〉〉 that is subsumed by 〈〈staff,name〉〉. The
result of these transformations is the final integrated schema Ser

g in Figure 1.
12 addAttribute(〈〈salesboss,bonus,null〉〉, 〈〈sales,bonus〉〉)
13 deleteAttribute(〈〈sales,bonus,null〉〉, 〈〈salesboss,bonus〉〉)
14 deleteAttribute(〈〈boss,bonus,null〉〉, 〈〈salesboss,bonus〉〉)
15 addAttribute(〈〈person,sid,key〉〉, 〈〈pension,sid〉〉++ 〈〈staff,sid〉〉)
16 deleteAttribute(〈〈pension,sid,key〉〉, [{x, y} | {x, y} ← 〈〈person,sid〉〉; {x} ← 〈〈pension〉〉])
17 deleteAttribute(〈〈staff,sid,key〉〉, [{x, y} | {x, y} ← 〈〈person,sid〉〉; {x} ← 〈〈staff〉〉])
18 deleteAttribute(〈〈sales,name,notnull〉〉, [{x, y} | {x, y} ← 〈〈staff,name〉〉; {x} ← 〈〈sales〉〉])

3.2 Relational Model Integration

Figure 2 shows the integration of three relational schemas Srel
1

, Srel
2

and Srel
3

that are
equivalent to the schemas Ser

1
, Ser

2
and Ser

3
. However, due to differences in the mod-

elling language, the semantic relationships that are identified, and the integration trans-
formations required are different from those discussed for the ER integration above. The
final integrated schema Srel

g is almost equivalent to the final Ser
g in Figure 1; the differ-

ence in semantics being that the relational model is unable to express the disjointness
of 〈〈staff〉〉 and 〈〈pension〉〉 that is represented by the ER generalisation hierarchy. Our
discussion of the relational integration focuses on comparing it with the ER integration,
and stating why it is different. First in integrating Srel

1
and Srel

2
, the conforming phase

has a transformation analogous to 1 :
19 renameColumn(〈〈dept,id〉〉, 〈〈dept,did〉〉)

When merging Srel
1

and Srel
2

we have a transformation analogous to 2 , except
foreign keys are specified on the column of a table rather than the entity class (which
ER subsets are defined over):
20 addFK(〈〈〈〈boss,sid〉〉,〈〈staff,sid〉〉〉〉)

Then during restructuring, transformation 21 is analogous to removing the rela-
tionship worksin in 3 , but since foreign keys are constraints, no IQL query needs to be
supplied. The next two steps are analogous to 4 and 5 .
21 deleteFK(〈〈〈〈staff,did〉〉,〈〈dept,did〉〉〉〉)
22 deleteColumn(〈〈boss,id,notnull〉〉, [{x, y} | {x} ← 〈〈boss〉〉; {x, y} ← 〈〈staff,did〉〉])
23 deleteColumn(〈〈staff,car,null〉〉, 〈〈boss,car〉〉)

The resulting relational schema Srel
12

is equivalent to the ER schema Ser
12

. Proceeding
to integrate Srel

12
with Srel

3
, during merge, the first step is analogous to 6 . Transfor-

mations 25–28 are similar to 7 – 9 , but we need to additionally add a 〈〈sales,sid〉〉
column, since in the relational model each table must have key columns (whereas in
the ER model, 〈〈salesboss〉〉 may inherit the sid attribute from 〈〈sales〉〉 and 〈〈boss〉〉). By
a similar argument 29–32 have an extra step compared to 10–11 . Also, they do not
express the semantic constraint that 〈〈pension〉〉 and 〈〈staff〉〉 are disjoint.
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Fig. 2. Three relational models being integrated. The relational models show the columns of a
table in white boxes, with the table name placed to the left of the boxes. Primary key columns are
underlined, and nullable columns are followed by a question mark. Foreign keys are shown by
drawing dashed arrowed lines.

24 addFK(〈〈〈〈sales,sid〉〉,〈〈staff,sid〉〉〉〉)

25 addTable(〈〈salesboss〉〉, [{x} | {x} ← 〈〈sales〉〉; {x} ← 〈〈boss〉〉])
26 addColumn(〈〈salesboss,sid,key〉〉, [{x, y} | {x, y} ← 〈〈sales,sid〉〉; {x, y} ← 〈〈boss,sid〉〉])
27 addFK(〈〈〈〈salesboss,sid〉〉,〈〈sales,sid〉〉〉〉)
28 addFK(〈〈〈〈salesboss,sid〉〉,〈〈boss,sid〉〉〉〉)

29 addTable(〈〈person〉〉, 〈〈pension〉〉++ 〈〈staff〉〉)
30 addColumn(〈〈person,sid,key〉〉, 〈〈pension,sid〉〉++ 〈〈staff,sid〉〉)
31 addFK(〈〈〈〈pension,sid〉〉,〈〈person,sid〉〉〉〉)
32 addFK(〈〈〈〈staff,sid〉〉,〈〈person,sid〉〉〉〉)

During restructuring, transformations 33–35 are analogous to 12–14 . However,
when combining 〈〈pension,sid〉〉 and 〈〈staff,sid〉〉 only transformation 36 can be per-
formed — the relational analogy of 15–17 — because the columns 〈〈pension,sid〉〉 and
〈〈staff,sid〉〉 are keys and cannot be removed without making the tables invalid. Trans-
formation 37 is analogous to 18 . The result of these transformations is Srel

g in Figure 2.

33 addColumn(〈〈salesboss,bonus,null〉〉, 〈〈sales,bonus〉〉)

34 deleteColumn(〈〈sales,bonus,null〉〉, 〈〈salesboss,bonus〉〉)

35 deleteColumn(〈〈boss,bonus,null〉〉, 〈〈salesboss,bonus〉〉)



36 addColumn(〈〈person,sid,key〉〉, 〈〈pension,sid〉〉++ 〈〈staff,sid〉〉)

37 deleteColumn(〈〈sales,name,notnull〉〉, [{x, y} |
{x, y} ← 〈〈staff,name〉〉; {x} ← 〈〈sales〉〉])

4 Representing Models in the HDM

The integration examples in the previous section show that the manual schema trans-
formation and integration processes are driven by intuitive rules based on semantic re-
lationships between schema constructs. The analogy of the rules for the different mod-
elling languages imply that there are also generic rules that hold. In order to capture and
define these generic rules a generic framework is necessary, e.g. the hypergraph data
model (HDM) [23].

A hypergraph data model (HDM) M is a tuple 〈Nodes, Edges, Cons〉, where
Nodes is a set of nodes of a graph, Edges is a set of nested hyperedges, and Cons is
a set of constraint expressions over the Nodes and Edges. In [6] a set of primitive con-
straint constructs was proposed for the HDM, which will be used here in modelling a
higher level modelling language in the HDM:

– inclusion N1 ⊆ N2: The extent of node N1 is a subset of the extent of N2.
– exclusion 6∩(N1 . . . Nn): For every x, y for which 1 ≤ x < y ≤ n, the extent of

node Nx does not intersect with the extent of Ny .
– mandatory N ¤ E: node N is connected by edge E, and every instance in the

extent of N must appear at least once in the extent of E.
– unique N ¢ E: node N is connected by edge E, and every instance in the extent

of N may appear no more than once in the extent of E.
– reflexive N

id
→E: when a instance of N appears in edge E, then one of the instances

of E is that value of N as the value of all its nodes. Whilst by itself not very useful,
reflexive combined with mandatory and unique defines a notion of a key value.

The HDM model can represent any structured data modelling language [16, 6]. Here
we use the approach in [16] that classifies constructs of higher level data modelling lan-
guage into one of four basic representations in the HDM, which are listed below. Table 1
shows how an illustrative subset of the constructs in Figures 1 and 2 are represented in
the HDM.

A nodal construct is one that may appear in isolation in a model, and which has
an associated extent. For example, an ER model entity can be created without being
associated to other entities, and represents some set of objects in the UoD. Thus the
entity 〈〈staff〉〉 is represented in HDM as a single node 〈〈staff〉〉. Since entities have no
associated constraints, there are no constraints in the HDM. Relational tables are also
nodal constructs, are have a very similar mapping to the HDM.

A link construct is one that associates other constructs with each other, and which
has an extent which is drawn from those constructs. For example, the ER relation-
ship construct associates existing entity constructs, and hence is a link construct. Thus,
the ER 〈〈worksin,person,dept,1:1,0:N〉〉 relationship is represented in the HDM by the
edge 〈〈worksin,person,dept〉〉, which is also associated with constraints that represent
the relationship’s cardinality constraints. For example the 1:1 role for 〈〈person〉〉 in the
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Ser

g relationship 〈〈person〉〉 ¢ 〈〈worksin,person,dept〉〉

Srel
g foreign key 〈〈person〉〉 ⊆ 〈〈person:sid〉〉

Ser
g attribute 〈〈person〉〉

id
→ 〈〈 ,person,person:sid〉〉

Ser
g attribute 〈〈person〉〉 ¢ 〈〈 ,person,person:sid〉〉

Ser
g attribute 〈〈person〉〉 ¤ 〈〈 ,person,person:sid〉〉

Ser
g attribute 〈〈person:sid〉〉 ¤ 〈〈 ,person,person:sid〉〉

Srel
g column 〈〈salesboss〉〉 ¤ 〈〈 ,salesboss,salesboss:bonus〉〉

Srel
g column 〈〈salesboss:bonus〉〉 ¤ 〈〈 ,salesboss,salesboss:bonus〉〉

Ser
g subset 〈〈boss〉〉 ⊆ 〈〈staff〉〉

Ser
g generalisation 〈〈pension〉〉 ⊆ 〈〈person〉〉

Ser
g generalisation 〈〈staff〉〉 ⊆ 〈〈person〉〉

Ser
g generalisation 〈〈pension〉〉 6∩ 〈〈staff〉〉

Table 1. Representation of some constructs from Ser
g and Srel

g in the HDM

relationship causes there to be a mandatory and unique constraint in the HDM be-
tween HDM nodes 〈〈person〉〉 and 〈〈worksin,person,dept〉〉. No constructs in the rela-
tional model are link constructs.

A link-nodal construct is one that has an associated extent, but may only exist when
associated with some other construct. They are represented in the HDM by an edge
associating a new node with some existing node or edge. For example, ER attributes
are link-nodal constructs, and the 〈〈person, sid, key〉〉 ER attribute is represented by a
node 〈〈person:sid〉〉, and a nameless edge 〈〈 ,person,person:sid〉〉 linking that node to the
node representing the entity 〈〈person〉〉. The fact that an attribute may not exist without
its attached entity means that all attributes have a mandatory constraint between the
attribute node and the edge (e.g. between 〈〈person:sid〉〉 and 〈〈 ,person,person:sid〉〉).
The key constraint is represented by all mandatory, unique and reflexive constraints
between 〈〈person〉〉 and 〈〈 ,person,person:sid〉〉. If the attribute had been null then the
reflexive and mandatory constraints would be omitted, and if the attribute had been
notnull then only the reflexive constraint would be omitted. Relational columns are
also link-nodal constructs, and have a very similar mapping to the HDM as do ER
attributes.



A constraint construct is one that has no extent associated with it, and just re-
stricts the extent that other constructs may have. For example, the ER subset is a
constraint construct, the subset 〈〈staff,boss〉〉 is represented by a subset constraint be-
tween HDM nodes 〈〈boss〉〉 and 〈〈staff〉〉. ER generalisations are also constraint con-
struct, and are represented by a subset between each child entity and the parent entity,
plus an exclusion between the child entities, as illustrated in Table 1 for generalisa-
tion 〈〈person,pension,staff〉〉. Relational foreign keys are also constraint constructs, and
have a similar mapping to the HDM as do ER subsets.

5 Generic Framework for Transformation Generation

Based on the definitions in the previous section, we now define a generic framework
for the integration of schemas irrespective of the high level conceptual modelling lan-
guage used to represent them. We specify a set of integration rules that derive BAV
transformations from the presence of semantic relationships between nodal, link, and
link-nodal HDM constructs. These generic rules can then be translated into high level
model specific rules, using techniques from [16, 6]. These higher level model rules are
then applied to schemas, and generate BAV transformations such as those presented in
Section 3. Four cases of generic rule to specific rule translation are identified:

1. Exact Translation: the generic rule can be translated into a model-specific rule
by performing a one to one mapping between the HDM constructs and transfor-
mations and their model-specific equivalents, e.g. an addNode transformation in a
generic rule would map into an addEntity transformation in the corresponding ER
model rule, and an inclusion constraint would map onto a foreign key constraint in
a relational model rule.

2. Model Limitations: in some cases the translation of a generic rule in a high level
modelling language cannot be exact because a construct or a transformation in the
generic rule does not have an equivalent construct or transformation in the high
level language. Therefore, some conditions and/or actions of a generic rule might
not be translatable. For example, the HDM exclusion constraint cannot be modelled
in the relational model, and therefore the addition of such a constraint cannot be
translated in a relational model rule.

3. Meta-Constraint Requirements: because some modelling languages have meta-
constraints, extra conditions and actions might be necessary for the translation
of a generic rule into a model-specific rule. For example, a meta-constraint of the
relational model is the existence of a key column for every table. Therefore, a key

column must be added by the relational model rules for every table that they add.
4. Meta-Constraint Restrictions: conditions and/or actions of a generic rule might

be restricted in the translated model-specific rule, if they violate the meta-constraints
of the modelling language the rule is translated into, e.g. the deletion of a link-nodal
construct in a generic rule might be restricted by the corresponding relational model
rule, if the link-nodal is a key column.

Since we adopt the standard conform-merge-restructure integration approach [1],
integration rules for each stage must be defined. Examples of generic rules for each



stage are presented next, together with explanations of their translation into high-level
rules for the ER and the relational model, and their application on the schemas in Sec-
tion 3.

5.1 Naming Conforming

In the first stage we deal with naming conflicts: synonyms when equivalent constructs
have distinct names, and homonyms when non-equivalent constructs have identical
names. Generic Merge and Distinction rules resolve these two conflicts. Two auxiliary
predicates are required at this stage: identicalNames(C1,C2) returns true when con-
structs C1,C2 have identical names, false otherwise, and uniqueName(N) supplies a
new name not used by any construct. For example, the Link-Nodal Merge rule:

LN1

S
= LN2

¬ identicalNames(LN1,LN2)

renameLNgen(LN1, LN2)

deals with synonymous link-nodals. It examines the existence of the equivalence rela-
tionship between two link-nodals LN1 and LN2 with non-identical names and assigns
to them a common name. The Link-Nodal Distinction rule:

¬ LN1

S
= LN2

identicalNames(LN1, LN2)
uniqueName(LN ′)

renameLNgen(LN1, LN ′)

deals with homonym link-nodals. It assigns to one of them a unique name to explicitly
make the two link-nodals distinct. The Nodal and Link Merge and Distinction rules are
defined in the same manner.

These generic naming conforming rules can be translated into high level models by
Exact Translation. Simply, the generic rename transformations will be replaced by the
model-specific rename transformations [16]. For example, the Attribute and Column
Merge rules for the ER and the relational model are produced from the generic Link-
Nodal Merge rule by replacing renameLNgen with renameAttribute and renameCol-

umn, respectively. In the examples of the previous sections, applying these rules would
result into transformations 1 and 19 , respectively.

The naming conforming rules satisfy the RPP since the intentional domain of the
constructs is not affected, only equivalent constructs are assigned identical names.

5.2 Schema Merging

In the next stage of the integration, the schemas are merged and a single schema is
produced. Pair of equivalent constructs, which now have identical names, collapse into
single constructs, new constructs are added and constraints are introduced. The purpose
of the rules of this stage is to identify any possible concepts that do not appear explicitly
in the schemas. The rules satisfy the RPP since constructs are not deleted from the
schema, only added. Therefore the intentional domain of the existing constructs is not
affected.



〈〈N2〉〉
S
⊂ 〈〈N1〉〉

addCons(N2 ⊆ N1) N2

N1

;

N2

⊆

N1

(a) Inclusion Introduction

〈〈N1〉〉
S
∩ 〈〈N2〉〉

uniqueName(N ′)

addNodalgen(〈〈N ′〉〉, [{x} | {x} ← 〈〈N1〉〉; {x} ← 〈〈N2〉〉])
addCons(〈〈N ′〉〉 ⊆ 〈〈N1〉〉)
addCons(〈〈N ′〉〉 ⊆ 〈〈N2〉〉)

N2

N1

;

⊆

⊆

N′

N1

N2

(b) Addition of Intersection

〈〈N1〉〉
S

6∩ 〈〈N2〉〉
uniqueName(N ′)

addNodalgen(〈〈N ′〉〉, 〈〈N1〉〉 + + 〈〈N2〉〉)
addCons(〈〈N1〉〉 ⊆ 〈〈N

′〉〉)
addCons(〈〈N2〉〉 ⊆ 〈〈N

′〉〉)
addCons(〈〈N1〉〉 6∩ 〈〈N2〉〉)

N2

N1

;

N2

N1 ⊆

⊆

N′6∩

(c) Addition of Union

Fig. 3. Generic Schema Merging Rules

The integration rules at this stage examine the existence of subsumption, intersec-
tion and disjointness relationships between nodal constructs. When a subsumption re-
lationship is identified between two nodals then an inclusion constraint must be added
between them (Figure 3(a)). When two nodals N1,N2 intersect, then a new nodal should
be added to represent the common intentional domain of N1 and N2. The appropriate
inclusion constraints must also be introduced as illustrated in Figure 3(b). Finally, when
two nodals are disjoint, an exclusion constraint is added between them and the union
nodal is introduced to represent the union of the disjoint nodal domains (Figure 3(c)).

Exact Translation can be applied on these rules to produce the ER corresponding
ones. The addNodalgen actions would translate into addEntity transformations and the
addition of inclusion constraints would become addSubset transformations. In Sec-
tion 3, the ER Inclusion Introduction rule generates transformation 2 and the ER Ad-
dition of Introduction generates 7 – 9 transformations. Finally, the three HDM con-
straints in the Addition of Union rule map onto an ER generalization, therefore the ER
Addition of Union rule can also be produced by Exact Translation. The complete rule,
which in our examples generates transformations 10–11 , is defined next:

〈〈E1〉〉
S

6∩ 〈〈E2〉〉
uniqueName(E′)

addEntity(〈〈E′〉〉, 〈〈E1〉〉 + + 〈〈E2〉〉)
addGeneralisation(〈〈E′, E1, E2〉〉)



Producing the corresponding merging rules for the relational model does not only
require Exact Translation but there is also a Meta-Constraint Requirement and a Model
Limitation case. For example, if we examine the Addition of Union rule we have that
the generic addNodalgen would become an addTable transformation by Exact Trans-
lation. Because of the Meta-Constraint Requirement of the relational model that each
table must have a key column, the rule is required to perform an extra addColumn
transformation. Conditions keyColumn that identify the key columns of the disjoint ta-
bles are also additionally added. Notice that the constraints added by the generic rule
cannot be represented entirely in the relational model. The Model Limitation is the
exclusion constraint, which does not have a corresponding construct in the relational
model. Therefore, only the addition of the inclusion constraints is translated (into ad-
dition of foreign keys). The complete rule is defined below. An application of it can be
seen in transformations 29–32 .

〈〈T1〉〉
S

6∩ 〈〈T2〉〉
uniqueName(T ′)
uniqueName(KC ′)
keyColumn(〈〈T1〉〉,〈〈T1, KC1〉〉)
keyColumn(〈〈T2〉〉,〈〈T2, KC2〉〉)

addTable(〈〈T ′〉〉, 〈〈T1〉〉 + + 〈〈T2〉〉)
addColumn(〈〈T ′, KC′, key〉〉, 〈〈T1, KC1〉〉 + + 〈〈T2, KC2〉〉)
addFK(〈〈〈〈T1, KC1〉〉, 〈〈T

′, KC′〉〉〉〉)
addFK(〈〈〈〈T2, KC2〉〉, 〈〈T

′, KC′〉〉〉〉)

5.3 Schema Restructuring

In the final stage of the integration, the schema produced during merging is restruc-
tured in order to remove structural redundancies. The restructuring rules are defined
based on the identified semantic relationships between links and link-nodals. For each
relationship between links or link-nodals, all the possible relationships between the cor-
responding attached nodes are examined. All the possible constraint configurations are
also considered. We illustrate this approach with two examples.

〈〈E2, N2, N
′

1/2
〉〉

S
⊂ 〈〈E1, N1, N

′

1/2
〉〉

〈〈N2〉〉
S
⊂ 〈〈N1〉〉

〈〈N1〉〉¢ 〈〈E1, N1, N
′

1/2
〉〉

〈〈N2〉〉¤ 〈〈E2, N2, N
′

1/2
〉〉

constraints( ,〈〈E2, N2, N
′

1/2
〉〉,Cons)

deleteConstraints(Cons)

moveDependents(〈〈E2, N2, N
′

1/2
〉〉,〈〈E1, N1, N

′

1/2
〉〉)

deleteLinkgen(〈〈E2, N2, N
′

1/2
〉〉, [{x, y} | {x, y} ← 〈〈E1, N1, N

′

1/2
〉〉; {x} ← 〈〈N2〉〉])

N1

N2

⊆ N′
1/2

¢

¤ ;

N1

N2

⊆ N′
1/2

¢

Fig. 4. Generic Optional Link Removal



Figure 4 examines one case of link subsumption and defines the Generic Optional
Link Removal rule. More specifically link e1 = 〈〈E1, N1, N

′
1/2

〉〉 subsumes link e2 =

〈〈E2, N2, N
′
1/2

〉〉 and node 〈〈N1〉〉 subsumes 〈〈N2〉〉. Since the domain of e2 is subsumed
by e1, link e2 can be considered for deletion. In order to be able to fully restore e2 after
its deletion and hence to satisfy the RPP, it must be ensured that the entities of e1 that
do not appear in e2 associate with 〈〈N ′

1/2
〉〉 only the entities of 〈〈N1〉〉 that do not appear

in 〈〈N2〉〉. If this restriction is true then e2 can be restored by identifying the entities of
e1 that are associated with entities of 〈〈N2〉〉. The constraints that force this restriction
are: 〈〈N1〉〉¢ 〈〈E1, N1, N

′
1/2

〉〉 and 〈〈N2〉〉¤ 〈〈E2, N2, N
′
1/2

〉〉. Notice that before the link
is deleted any constructs that depend on it have to be examined. Dependent constraints,
identified by constraint, are deleted and all other dependent constructs are moved to
the remaining link.

The translation of this generic Optional Link Removal rule in the ER language is a
simple Exact Translation:

〈〈E2, N2, N
′

1/2
, 1:N, Card2〉〉

S
⊂ 〈〈E1, N1, N

′

1/2
, 0:1, Card1〉〉

〈〈N2〉〉
S
⊂ 〈〈N1〉〉

constraints( ,〈〈E2, N2, N
′

1/2
〉〉,Cons)

deleteConstraints(Cons)

moveDependents(〈〈E2, N2, N
′

1/2
〉〉,〈〈E1, N1, N

′

1/2
〉〉)

deleteRelationship(〈〈E2, N2, N
′

1/2
, 1:N, Card2〉〉, [{x, y} |

{x, y} ← 〈〈E1, N1, N
′

1/2
〉〉; {x} ← 〈〈N2〉〉])

The HDM deleteLinkgen becomes an deleteRelationship transformation and the manda-
tory and unique constraints map to cardinality constraints as explained in [6]. The con-
straints between 〈〈N1〉〉 and e1 map into a 0:1 cardinality constraint, which is less re-
strictive than 1:1, and the mandatory constraint between 〈〈N2〉〉 and e2 maps into a 1:N
cardinality constraint. In our examples, an application of the ER Optional Link Removal
rule generates transformation 3 .

Another example of a restructuring rule is illustrated in Figure 5. The case that
is examined here is the existence of a disjointness relationship between link-nodal con-
structs 〈〈X1, N1〉〉, 〈〈X2, N2〉〉 when 〈〈X1〉〉,〈〈X2〉〉 are also disjoint. In this case, the link-
nodal constructs can be generalized by moving them from the sub-nodes 〈〈X1〉〉,〈〈X2〉〉
to the union node 〈〈X ′〉〉 added during the merging stage and identified by predicate
createdNodal. The rule adds the union link-nodal onto 〈〈X ′〉〉 and then deletes the ex-
isting link-nodals. Translating this rule to a high level model (such as transformations
15–17 in the ER model) requires an examination of Meta-Constraint Restrictions, ex-
cept from performing Exact Translation of the BAV transformations.

For the ER model, the predicate addLNgen can be redefined by Exact Translation.
Before performing the corresponding high level transformation, i.e. addAttribute, the
common constraints of the existing attributes must be identified and cascaded into the
new attribute. Also note that the deleteLNer must implement the meta-constraint that
either the attribute is not key, or its attached entity is a child of a subset or a generalisa-
tion.



〈〈X1, N1〉〉
S

6∩ 〈〈X2, N2〉〉

〈〈X1〉〉
S

6∩ 〈〈X2〉〉
createdNodal(X1, X2, X

′)
uniqueName(N ′)

addLNgen(〈〈X ′, N ′〉〉,[〈〈X1, N1〉〉] + +[〈〈X2, N2〉〉],
〈〈X1, N1〉〉,X2, N2)

deleteLNgen(〈〈X1, N1〉〉, [{x, y} |
{x, y} ← 〈〈X ′, N ′〉〉; {x} ← 〈〈X1〉〉])
deleteLNgen(〈〈X2, N2〉〉, [{x, y} |
{x, y} ← 〈〈X ′, N ′〉〉; {x} ← 〈〈X2〉〉])

X′

⊆

⊆

X2

X1

X2:
N2

X1:
N1

¢

¢

6∩

X′

⊆

⊆

X2

X1
¢

X′ :
N′6∩

;

Fig. 5. Link-Nodal Generalisation

addLNer(〈〈X,N〉〉,Q,〈〈X1, N1, C1〉〉,〈〈X2, N2, C2〉〉) :-

C1=C2, addAttribute(〈〈X,N,C1〉〉, Q).

deleteLNer(〈〈X,N,C〉〉,Q) :-

¬C = key, 〈〈X ′, X〉〉, 〈〈X ′, . . . , X, . . . 〉〉, deleteAttribute(〈〈X,N,C〉〉,Q).

Translating the rule in the relational modelling language, an extra restriction is required.
In the redefinition of addLNgen a new column cannot be added if it is the union of key

columns, because table 〈〈N ′〉〉 has already got a key column, added by the Addition of
Union rule. In the case of deleteLNrel, a Meta-Constraint Restriction applies which
does not allow the deletion of key columns.

addLNrel(〈〈X,N〉〉,Q,〈〈X1, N1, C1〉〉,〈〈X2, N2, C2〉〉) :-

C1=C2, ¬ C1=key, addColumn(〈〈X,N,C1〉〉, Q).

deleteLNrel(〈〈X,N,C〉〉,Q) :-

¬ C = key, deleteColumn(〈〈X,N,C〉〉,Q).

6 Related Work

Many approaches to generating schema transformations can be found in the literature.
Early work can be found in [12, 21], where formal definitions of semantic relationships
between schema constructs similar to ours are given. However, both approaches are
concerned with integrating schemas defined in an extended ER language, which induces
restrictions compared to our generic approach of using the low-level HDM. We define
a wider set of formal rules and examine all possible constraint configurations.

In [10] similar semantic relationships to ours are used, where schema integration is
performed based on corresponding ontologies and concepts. However, the steps for the
creation of the integrated schema are not formally defined, nor is the data mapping, and
further restrictions are imposed, e.g. one schema construct can only map to only one
other construct.

The work most related to ours is [3], where a low-level graph-based modelling lan-
guage is also adopted, called Vanilla, which models both the schemas and the corre-
spondences between their constructs. There is an example showing how an extended
ER language can be supported by Vanilla, however there is no extensive explanation



of how schemas can be translated from Vanilla into a high level modelling language.
The advantage of using the HDM as the common modelling language is that the trans-
lation to and from Relational, ER, XML and UML schemas [16, 17] has already been
studied. Additionally, the schema integration approach in [3] is based only on semantic
equivalence between nodes, while we deal with a wider range of semantic relationships
between all types of generic constructs (nodals, links and link-nodals). However, the
advantage of [3] is that data-level correspondences between constructs are also consid-
ered, e.g. data level correspondence would specify that the instances of two constructs
can be concatenated. Our approach has a more semantic perspective than a data-level
one. Another difference between the two approaches is that we explicitly deal with
constraints and they are a necessary part of our rules. Finally, as for [19] where another
schema integration approach is proposed based entirely on equivalence relationships,
our methodology has the advantage of not only removing integrating schemas but addi-
tionally removing structural redundancies.

7 Summary and Conclusions

In this paper, we have presented a generic and formal framework to generate schema
transformations in the Merge operator. We use the low level HDM as the common
data modelling language, which permits the extension of this framework to any higher-
level modelling language. Our integration rules take as input four types of semantic
relationships — equality, subsumption, disjointness and intersection — and generate
BAV transformations over the HDM. Using the correspondence between the HDM and
higher-level models, these rules can be translated into rules that apply to higher-level
models. In this paper examples of translating generic rules into ER and relational mod-
elling language rules have been presented.

Since we adopt the BAV integration methodology, we are able to reason about the
transformation steps, demonstrate that we preserve information during the integration
and prove the correctness of the process.

Since we deal with a wide variety of semantic transformations, our framework can
be used in conjunction with most schema matching techniques [14, 15] both for merging
and improving schema structure.

In future work we will consider more complicated mappings as in [8, 20, 9], and
rules for removing redundant constraints. Relationships between different types of con-
structs might also prove useful. Our target is to implement a tool that based on this
formal framework can assist in the automatic integration of schemas.
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