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1 Introduction

In this paper we present a new method of semantic schema integration, based on
uncertain semantic mappings. The purpose of semantic schema integration is to
produce a unified representation of multiple data sources. First, schema matching
[1] is performed to identify the semantic mappings between the schema objects.
Then, an integrated schema is produced during the schema merging process [2]
based on the identified mappings. If all semantic mappings are known, schema
merging can be performed (semi-)automatically.

As an illustrative example, consider the schemas S1 and S2 in Figure 1.
Schema S1 models a data source of undergraduate students. Undergraduates are
registered (reg) in courses that are taught (tch) by staff members. Schema S2

models a data source of postgraduate students, which can also optionally register
in fourth-year courses to refresh their knowledge or familiarize themselves with
new subjects. Therefore, S1.student and S2.student are disjoint, while S1.course

subsumes S2.course. Such semantic mappings drive the schema integration pro-
cess. For example, the disjointness mapping between the student entities triggers
schema transformations that rename the entities to make them distinct, e.g. into
ug and pg, and add a union entity, e.g. student, that represents the union set of
both undergraduate and postgraduate students.

In this example, we already know the semantics of the schema objects, thus we
can specify their semantic mappings. However, this is not true in general. Manual
schema matching is usually time consuming and automatic schema matching is
uncertain because the semantics of schema objects cannot be directly compared.
In order to take into account this uncertainty in the schema matching results,
we extend the concept of semantic mapping.

We assume to have a finite amount of belief, that can be distributed to al-
ternative semantic mappings. When we are certain about a mapping, we assign
all our belief to it. This is implicitly done by most existing schema matching
techniques [1]. A straightforward extension of this concept can be obtained by
allowing several alternative mappings to be possible, and distributing our belief
to them. For example, we may think that the two student entities in S1 and S2

are either disjoint, in the case they refer to undergraduates and postgraduates,
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S1 student reg
1:N

1:N course tch
1:1

1:N
staff

S2 student reg
0:N

0:N course tch
1:1

0:N
staff

Fig. 1. Schema S1 and S2: undergraduate and postgraduate data sources

or equivalent. This legitimate uncertainty should not prevent the integration of
the schemas. In fact, we can think of two possible integrations, the former cor-
responding to disjointness and the latter to equivalence. The uncertainty in the
mapping between the two student entities propagates in the corresponding alter-
native integrated schemas. The final integrated schema is created by combining
all the produced mappings.

2 A New Schema Integration Approach

2.1 Uncertain Semantic Relationships

As already discussed in the introduction, for every pair of schema objects we
consider several alternative mappings, and our beliefs are distributed over them.
The possible mappings are: equivalence ( S

=), subset-subsumption (
S⊂), superset-

subsumption (
S⊃), intersection (

S∩), disjointness (
S

∩/), and incompatibility (
S

/∼) [3].
We use Θ to refer to the set of all possible mappings. To represent beliefs, we
have adopted Shafer’s belief functions [4]. This choice is justified by the fact
that Shafer’s belief functions can represent the main kinds of uncertainty that
are present in schema integration. An uncertain semantic relationship (USR)
is defined by a special function m, that assigns a probability mass to sets of
semantic mappings between schema objects. We omit the mathematical details,
which can be found in [4].

As in [3], the comparison of schema objects is performed by a pool of ex-
perts, each one specialized on some features. However, to support the inherent
uncertainty of schema matching, experts produce USRs. The mapping between
any two schema objects is computed by aggregating the results of all the avail-
able experts. The aggregation of USRs is easily achieved by using Dempster’s
combination rule [4].

As an example, consider the comparison of the two student entities in schemas
S1 and S2, by means of three experts. The USR produced by one expert might

be: m1({S∩, S⊃,
S

∩/,
S

/∼}) = 1. Another expert might produce the following USR:

m2({ S
=}) = .7,m2({ S⊂, S⊃,

S

∩/, S∩}) = .2,m2({Θ}) = .1. Finally, the third expert’s

output could be: m3({S∩,
S

∩/}) = .8,m3({Θ}) = .2. Due to space limitations, we
cannot provide additional details about the experts. The combination of m1,m2,



3

and m3 is obtained by applying Dempster’s rule, and produces the following

USR: m({S∩,
S

∩/}) = 4/5, m({S∩, S⊃,
S

∩/}) = 2/15, m({S∩, S⊃,
S

∩/,
S

/∼}) = 1/15 .

2.2 Schema Merging

In the previous example we compared student entities, obtaining a set of possible
semantic relationships between them, with a corresponding representation of our
belief distribution. Similarly, we can compare the reg ER relationships, and all
the other objects.

# S1.stud.,S2.stud. S1.reg,S2.reg S1.course,S2.course S1.staff,S2.staff S1.tch,S2.tch

(a)
S
∩/

S
∩/

S
⊃ S

=
S
⊃

(b)
S
∩/

S
/∼

S
⊃ S

=
S
⊃

(c)
S∩

S
∩/

S
⊃ S

=
S
⊃

(d)
S∩ S∩

S
⊃ S

=
S
⊃

(e)
S∩

S
⊃

S
⊃ S

=
S
⊃

(f)
S∩

S
/∼

S
⊃ S

=
S
⊃

(g)
S
⊃

S
∩/

S
⊃ S

=
S
⊃

(h)
S
⊃ S∩

S
⊃ S

=
S
⊃

(i)
S
⊃

S
⊃

S
⊃ S

=
S
⊃

(j)
S
⊃

S
/∼

S
⊃ S

=
S
⊃

(k)
S
/∼

S
/∼

S
⊃ S

=
S
⊃

Table 1. Possible combinations of semantic relationships in the integrated schema

Now assume that the comparison of S1.reg and S2.reg provides the same
USR as in the comparison of the student entities. Also, assume that S1.course
S⊃ S2.course, S1.tch

S⊃ S2.tch, and S1.staff S
= S2.staff are certain. We can build a

table (Table 1), representing all possible combinations of semantic relationships
between all pairs of schema objects.

Notice that not all combinations are possible: the intersection relationship
between the two reg ER relationships specifies that there is at least one com-
mon instance between S1.reg and S2.reg, i.e. there is a common instance of
S1.student and S2.student that is associated with a common instance of S1.course

and S2.course. Therefore, whenever student entities are disjoint (do not have any
instances in common) reg ER relationships cannot be intersecting. Thus only
eleven of the sixteen possible integrated schemas are considered in Table 1.

Each row of this table corresponds to a possible integrated schema, where
each semantic relationship defines a partial integrated schema. For example, in
the possible integrated schema (a) of Table 1 student entities are disjoint, while
in the possible integrated schema (c) S1.student intersects S2.student. The schema
corresponding to row (a) of Table 1 is illustrated in Figure 2.
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S2.student S1.student

student

6

S1.reg
1:N

1:NS1.course

S2.course

6

S1.tch
1:1

1:N

S2.tch
1:1

0:N

staff

S2.reg
0:N

0:N

reg
0:N

0:N

Fig. 2. One of the final alternative integrated schemas generated by our approach,
corresponding to row (a) of Table 1

The belief distribution obtained as a combination of the aforementioned
USRs is defined by4: m{(a), (c), (d)} = 16

25 , m{(a), (c)–(e)} = 8
75 , m{(a)–

(f)} = 4
75 , m{(a), (c), (d), (g), (h)} = 16

75 , m{(a), (c)–(e), (g)–(i)} = 4
225 ,

m{(a)–(j)} = 2
225 , m{(a), (c), (d), (g), (h), (k)} = 4

75 , m{(a), (c)–(e), (g)–
(i), (k)} = 2

225 , m{(a)–(k)} = 1
225 . The set {(a)–(k)}, together with the belief

distribution m, is called an uncertain integrated schema, and is the final prod-
uct of our schema integration approach on our working example. To reduce the
cardinality of the possible integrated schemas, we can decide to keep only the
rows to whom an amount of probability mass over a given threshold is assigned.
For example, we could dispose of all rows of Table 1 but (a), (c), and (d).

3 Conclusion

In this paper we have presented a new method of semantic schema integration.
Our approach differs from existing methods in that it handles the inherent uncer-
tainty in (semi-)automatic schema matching, and supports six kinds of semantic
relationships between schema objects. These features are essential to cope with
real schema integration tasks, where many semantic relationships are possible,
and it is very unlikely to know all of them with certainty.
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