
University of London

Imperial College of Science, Technology and Medicine

Department of Computing

Schema Matching and Schema Merging
based on Uncertain Semantic Mappings

Nikos Rizopoulos

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, November 2009

Abstract

This dissertation lies in the research area of schema integration: the problem of

combining the data of different data sources by creating a unified representation of

these data. Two core issues in schema integration are schema matching, i.e. the

identification of correspondences, or mappings, between input schema objects, and

schema merging, i.e. the creation of a unified schema based on the identified

mappings. Examples of mappings found in the literature include semantic map-

pings, e.g. “author represents the same concept as writer”, and data mappings,

e.g. “each data value of name is equal to the concatenation of a first-name value and

a last-name value”. In this dissertation, we propose a schema integration framework

which (1) is only concerned with semantic mappings (that associate schema objects

based on simple set based comparisons of the objects’ instances) and which (2) ex-

plicitly represents and manages the uncertainty as to which semantic relationship

is the correct one to use in any mapping. In our framework, we adopt a wide set

of semantic mappings that allow for a precise, rigorous and formal schema merging

process. Our merging process produces a sound and complete integrated schema for

each pair of input schemas, and in addition it generates view definitions between

the input schemas and the integrated schema.

i

Acknowledgements

First and foremost, I would like to thank my supervisor, Peter McBrien, without

whom I would have never completed this PhD. I would like to thank him for all his

help, support and understanding he has shown throughout my PhD studies on both

research and personal matters.

I would also like to thank all the colleagues and friends that helped me directly or

indirectly in my research. In particular, I would like to thank Matteo Magnani,

with whom I collaborated on parts presented in this dissertation. In particular,

he introduced to me Dempster-Shafer’s theory, we collaborated on identifying how

this theory can be used to specify uncertainty on semantic mappings, and we co-

wrote two papers [93, 68]. I would also like to thank George Tzallas, who was

always available to listen to questions and problems, Aris Papadopoulos and Angelos

Tsoukalas, for the parties at 7 pm, and Xenia Kleniati, for her kindness in offering

me a place to stay when I was homeless.

Last but not least, I would like to thank my wife Pela for being there in both the

happy and the difficult moments during my studies.

ii

to Crene

iii

Contents

1 Introduction 1

1.1 The Schema Integration Task . 2

1.1.1 Definitions . 3

1.1.2 The problems faced within a schema integration task 4

1.1.3 Resolving the problems . 7

1.1.4 Overview of our proposed approach 8

1.2 Motivation . 14

1.2.1 Explicitly representing uncertainty 15

1.2.2 Using more precise semantic mappings 18

1.2.3 Specifying view definitions using BAV 19

1.3 Contributions of Dissertation . 20

1.4 Structure of Dissertation . 22

2 Schema Integration: State of the Art 23

2.1 Terminology Disambiguation . 23

iv

2.2 Schema Matching . 25

2.2.1 Classification of Schema Matching Approaches 25

2.2.2 Types of Mappings . 28

2.2.3 Taking uncertainty into consideration 30

2.3 Schema Merging . 32

2.3.1 Schema Transformations . 33

2.3.2 View Definition Approaches 39

2.3.3 Comparing our approach . 45

2.4 Summary . 47

3 HDM: the common data model 49

3.1 Motivation in using the HDM . 50

3.2 Formal definition of the HDM . 52

3.3 Supporting High-Level Data Models 61

3.4 Describing the ER Data Model in the HDM 63

3.5 Summary . 71

4 Top-K Schema Integration 72

4.1 Top-K Integration Methodology . 74

4.2 Semantic Mappings . 77

4.2.1 Semantics . 77

4.2.2 Semantic Relationships . 82

v

4.2.3 Semantic mappings translated to data mappings 88

4.3 Uncertain Semantic Mappings . 91

4.4 Aggregation of Uncertain Semantic Mappings 93

4.5 Supported Features . 100

4.6 Comparison with other approaches 101

4.7 Top-K Schema Matching . 102

4.7.1 Top-1 vs Top-K . 113

4.8 Top-K Schema Merging . 117

4.9 Summary . 118

5 Top-K Schema Matching 120

5.1 The Match Component . 121

5.1.1 Overview of the Match Experts 122

5.1.2 The matching algorithms . 124

5.1.3 Producing USMs . 129

5.2 Top-K . 137

5.2.1 Processing the uncertain schema mapping 137

5.2.2 Exhaustive Top-K . 138

5.2.3 Local Flatlines . 140

5.2.4 Truncated Top-K . 147

5.3 Experimental Evaluation . 150

vi

5.3.1 Data Set . 151

5.3.2 Configuration . 154

5.3.3 Evaluation Metric . 155

5.3.4 Comparison of Exhaustive and Truncated Top-K based on ac-

curacy . 157

5.3.5 Using regression . 161

5.3.6 Types of Experiments . 162

5.3.7 Experimental Evaluation of Top-1 164

5.3.8 Experimental Evaluation of Top-K 168

5.4 Summary . 173

6 Schema Merging 175

6.1 Low-Level Schema Merging . 176

6.1.1 Summary of our Schema Merging rules 177

6.1.2 Naming Conforming . 180

6.1.3 Unioning . 184

6.1.4 Restructuring . 188

6.1.5 Properties of Low-Level Merging 196

6.1.6 Automatic Schema Merging 201

6.2 Generic Schema Merging . 202

6.3 High-level Schema Merging . 206

vii

6.4 Top-K Schema Merging . 214

6.5 Summary . 219

7 Conclusions and Future Work 221

7.1 Comparison to Related Work . 223

7.2 Future Work . 224

A Low-Level Schema Merging Rules 227

A.1 Naming Conforming . 227

A.2 Unioning . 228

A.3 Restructuring . 228

B Generic Merging Rules 238

B.1 Naming Conforming Rules . 238

B.2 Unioning . 239

B.3 Restructuring . 239

Bibliography 241

viii

List of Tables

1.1 Four possible cases of semantic mappings 17

2.1 Classification of schema matching approaches 27

3.1 Schema objects in the ER schema and the translated HDM schema . 66

4.1 A relation of the PhD students in the AutoMed group 78

4.2 Extents ExtSImp,I . 78

4.3 Intended Extents ExtintSImp,Inst
int . 80

4.4 Belief, plausibility of alternative semantic relationships between pairs

p1, p2 and p3 . 98

4.5 First 16 possible schema mappings 105

5.1 〈0.1, 〈 S∼, {
S

/∼}〉〉 training table . 130

5.2 Number of experiments run for each target task and each user, de-

pending on the size of the training set 152

6.1 Summary of all merging rules possible for all combinations of the

semantic mappings . 178

6.2 16 possible schema mappings for the integration of Ser
1 and Ser

2 216

ix

List of Figures

1.1 Schema Matching and Schema Merging of two bibliography schemas

for academic paper and academic text book publications 5

1.2 Example of structural heterogeneity 6

1.3 Schema Matching and Schema Merging of two bibliography schemas

based on more precise mappings. 11

1.4 Uncertain semantic mappings between schemas Ser
1 and Ser

2 13

1.5 Two possible integrated schemas of Ser
1 and Ser

2 14

1.6 Example data . 17

2.1 Common schema conforming transformations: schemas S1 and S2 are

integrated into S12 . 34

2.2 Common schema restructuring transformations: schema S transformed

to S ′ or S ′′ . 37

3.1 Problems with correspondence between high-level constructs 51

3.2 No equivalent translation of ER generalization in the relational model:

the ER generalization also expresses that there are no common in-

stances in the sub-entities, which cannot be expressed in the relational

model . 51

x

3.3 An example HDM schema . 54

3.4 An example ER schema . 63

3.5 Translation of the example ER schema in the HDM 70

4.1 Our proposed architecture . 74

4.2 Correspondences between extents, intended extents and intended do-

mains . 81

5.1 Regression on probability P (S
∼|rangeik) 135

5.2 Exhaustive top-K trees for NR = 6 139

5.3 Exhaustive Top-K with 4 pairs and NR = 2 142

5.4 Exhaustive Top-K defining local flatlines 143

5.5 Exponentiality of the size of local flatlines 147

5.6 Truncated Top-K with 2 groups of pairs and NR = 2 148

5.7 Truncated Top-K beliefs . 149

5.8 Accuracy improvement when using a regression trainer 162

5.9 Average accuracy of Top-1 schema mapping as training set size increases165

5.10 Average best accuracy across all users and training set sizes for Top-1

schema mapping . 166

5.11 Average best accuracy by each expert across all tasks and all users

for Top-1 schema mapping . 167

5.12 Average maximum accuracy of exhaustive Top-3 schema mappings as

training set size increases . 169

xi

5.13 Average maximum improvement of accuracy of the truncated top-3

schema mappings against the exhaustive Top-3 schema mappings as

training set size increases . 170

5.14 Top-3 matching accuracy improvement against Top-1 and cost 171

5.15 Average best accuracy across all users and training set sizes for top-3

schema mapping . 172

5.16 Accuracy improvement by each expert across all tasks and all users

for Top-3 schema mapping against Top-1 mapping 172

5.17 Average best accuracy by each expert across all tasks and all users

for Top-3 schema mapping . 173

6.1 Naming Conforming rules . 181

6.2 HDM schemas S1 and S2 . 182

6.3 Schemas S ′′
1 and S ′′

2 produced after the naming conforming of S1 and

S2 respectively . 185

6.4 Unioning rules . 187

6.5 Schema S12 produced after unioning schemas S ′′
1 and S ′′

2 . The green

boxes just remind the reader how the schemas looked after the naming

conforming phase. All objects outside the green boxes have been

added during the unioning phase. 189

6.6 Generalization of Edges rule . 193

6.7 The final result of the integration of schemas S1 and S2 195

6.8 Link-Nodal Merge and Distinction rules 204

6.9 Generalization of Link-Nodals rule 205

xii

6.10 Attribute Merge and Distinction rules for the ER model 207

6.11 ER schemas Ser
1 and Ser

2 . 208

6.12 ER schemas S ′′er
1 and S ′′er

2 produced after the naming conforming of

Ser
1 and Ser

2 . 209

6.13 Schema Ser
12 produced after unioning schemas S ′′er

1 and S ′′er
2 211

6.14 The final result of the integration of schemas Ser
1 and Ser

2 213

6.15 Schema S1 produced based on schema mappings #1 and #3 217

6.16 Schema S2 produced based on schema mapping #2 218

xiii

Chapter 1

Introduction

This dissertation lies in the research area of schema integration: the problem of

combining the data of different data sources by creating a unified representation of

these data. Two core issues in schema integration are schema matching, i.e. the

identification of correspondences, or mappings, between input schema objects, and

schema merging, i.e. the creation of a unified schema based on the identified map-

pings. Examples of mappings found in the literature include semantic mappings

and data mappings. Data mappings relate the actual data values of schema objects

using type conversion, string manipulation, arithmetic operations, etc. For example,

in the relational model, a data mapping can be used to relate the data values of two

date of birth attributes that use different datatypes to store data, e.g. one attribute

could hold the date of birth using strings, such as ‘1 January 2010’, and the other

could use the DATE datatype, such as ‘2010-01-01’. Data mappings can also be used

to relate data between several schema objects. For example, a data mapping can

specify that the data values of attribute name can be derived as the concatenation

of the data values of attributes first-name and last-name. Semantic mappings relate

sets of data values of two schema objects using simple set comparison operators

(equivalence, subsumption, intersection, etc) and ignoring the differences in the rep-

resentation of the data values. For example, the two date of birth attributes with sets

1

1.1. The Schema Integration Task 2

of data values {‘1 January 2010’,‘2 January 2010’} and {‘2010-01-01’,‘2010-01-02’}

are semantically equivalent.

In this dissertation, we propose a schema integration framework which (1) is only

concerned with semantic mappings and which (2) explicitly represents and manages

the uncertainty as to which is the correct semantic relationship to use in any

mappings. In our framework, we adopt a wide set of semantic mappings that allow

for a precise, rigorous and formal schema merging process. Our merging process

produces an integrated schema for each pair of input schemas that is both sound,

i.e. no extra data is added, and complete, i.e. no data is lost. In addition, our

merging process generates view definitions between the input schemas and the

integrated schema.

This chapter, in Section 1.1, describes the problems that schema integration looks

at and gives an overview of our schema integration process. Section 1.2 motivates

our work by outlining the complications that emerge during schema integration and

the limitations of existing approaches. The contributions of our work are summa-

rized in Section 1.3, and Section 1.4 presents the structure of the remainder of this

dissertation.

1.1 The Schema Integration Task

In this section, we first define schema integration and explain the outcome of a

schema integration task. Then we give an overview of the problems faced when

attempting to deal with a schema integration task and how these problems can be

resolved. Finally, we present an overview of the schema integration approach that

we propose in this dissertation.

1.1. The Schema Integration Task 3

1.1.1 Definitions

The term that has been and will be repeatedly used throughout this dissertation is

the term schema. By schema we mean any kind of structured or semi-structured

representation of data. For example, Figure 1.1(a) illustrates schemas Ser
1 and Ser

2 .

Schema Ser
1 represents data about academic paper publications and schema Ser

2 rep-

resents data about academic text book publications. Now, schema integration is

the activity of creating a single, unified representation of the schemas of multiple

data sources [60], so that these data sources can be accessed transparently. The

ultimate goal of schema integration is to provide interoperability between the data

sources and make the retrieval of information and knowledge more efficient. The re-

sult of schema integration is an integrated schema and view definitions between

the input schemas and the integrated schema.

An example of an integrated schema is illustrated in Figure 1.1(b). The figure

illustrates schema Ser
3a which is one possible integration of schemas Ser

1 and Ser
2

produced using previous approaches such as [18]. In Ser
3a, compatible schema objects

have collapsed into a single object, e.g. the objects paper and book have collapsed

into publication. Note that throughout this dissertation whenever we use the term

object unqualified, we mean schema object. Later on we are going to see that

for the same integration task our schema integration approach produces a higher

quality schema Ser
3b .

View definitions specify the data mappings between the input schema objects and

the integrated schema objects. In general, using the definition in [60], a data map-

ping is of the form so qSx and states that a query on schema object so can be

partially answered using query qSx on schema Sx, i.e. that the result of query qSx

is a subset of the instances of so. Depending on whether schema Sx is an input

schema or the integrated schema, there are several view definition approaches [60].

For example, the view definition 1.1 below uses the Global-As-View (GAV) [61]

1.1. The Schema Integration Task 4

approach, where integrated schema objects are defined as views of the input schema

objects. View definition 1.1 states that a query on publication can be answered

partially by querying the input schema objects paper and book.

〈〈publication〉〉 〈〈paper〉〉

〈〈publication〉〉 〈〈book〉〉 (1.1)

Later on we are going to see that the view integration approach that we have adopted

in our work allows for explicitly stating whether the exact instances of a schema

object, which is involved in the integration process, can be derived or not. This is

important in order to produce an integrated schema that is both sound and complete,

i.e. a schema that represents exactly the same data instances as the input schemas.

1.1.2 The problems faced within a schema integration task

One of the most challenging problems in schema integration is heterogeneous data

sources [8]. Heterogeneity arises when dissimilarities, or conflicts, exist at any level

of abstraction: the hardware used to store the data, the software used to manage

them, the language used to access them, the schema used to present them (schema-

level heterogeneity), and the values used to store them (data-level heterogeneity).

In our research we concentrate only in schema-level heterogeneity and in particular

in semantic heterogeneity.

Schema-level heterogeneity can arise due to the different data models used to define

schemas. Over the years, several different data models have been introduced for the

definition of schemas. The models most frequently used are the relational model

[27], the Entity-Relationship (ER) model [24], and XML [17]. Most commercial

database management systems allow for an object-relational data model for data

storage [105].

1.1. The Schema Integration Task 5

(a) Matching schemas Ser
1

and Ser
2

(b) Integrated schema Ser
3a

Figure 1.1: Schema Matching and Schema Merging of two bibliography schemas for
academic paper and academic text book publications

1.1. The Schema Integration Task 6

book

id

title

publisher?

year

(a) Concept of
publisher as an ER
attribute

book publishedby

id

title

year

publisher
0:N 1:M

(b) Concept of publisher as an ER entity

Figure 1.2: Example of structural heterogeneity

Schemas defined in all of these data models can take part in a schema integration

task, e.g. in integrating legacy databases, integrating web-services or integrating the

peer schemas in a P2P DBMS [48]. Therefore, one of the issues that must be tackled

by schema integration is this model heterogeneity problem, e.g. when integrating

a relational schema and an XML schema.

Another type of schema-level heterogeneity which hinders the schema integration

process is structural heterogeneity caused by the richness of the existing data

models. Two schemas of the same data model can use objects of different constructs

to represent the same data, thus making the identification of mappings between these

objects more difficult. A very common example of structural richness of ER schemas

is the use of an attribute construct instead of an entity construct to represent a

set of data. This case of structural heterogeneity is illustrated in Figure 1.2. In

Figure 1.2(a), the concept of a book’s publisher is represented as an attribute of ER

entity book, while in Figure 1.2(b) the concept of publisher is represented as an ER

entity associated via a ER relationship to book. Both schemas represent identical

data, but the structure of the schemas differs, which makes the integration of the two

schemas harder. In our schema integration approach we are not currently concerned

with structural heterogeneity per se; instead we focus on resolving the semantics of

schema objects.

Semantic heterogeneity is a major obstacle in schema integration. By semantic

heterogeneity we denote the numerous possible ways of describing the same part of

1.1. The Schema Integration Task 7

the real-world, which, when designing schemas, results in different concepts used,

but not to necessarily different structures. The main reason for semantic hetero-

geneity is the different perspectives that designers adopt to conceptually represent

a part of the real-world [8]; different concepts can be introduced depending on the

level of granularity chosen or required by the application context, and several nam-

ing conventions can be employed depending on the users’ background. One of the

most common forms that semantic heterogeneity appears in is descriptive con-

flicts [102]. Descriptive conflicts are: (a) homonyms, i.e. representing different

concepts with the same name, and (b) synonyms representing the same concept

but with different names. For example, schemas Ser
1 and Ser

2 have essentially the

same structure: in Ser
1 paper is an ER entity associated via an ER relationship to ER

entity author, and in Ser
2 book is an ER entity associated via an ER relationship to

ER entity author. However, the two schemas show semantic heterogeneity, because

they do not represent the same data: Ser
1 is used to represent data about academic

papers, while Ser
2 is used to represent data about academic text books.

1.1.3 Resolving the problems

To resolve schema-level heterogeneity and perform schema integration, first map-

pings between the input schema objects need to be identified [8]. This process is

called schema matching. Notice that since in this work we concentrate on seman-

tic heterogeneity we are therefore only interested in semantic mappings between

input schema objects. Semantic mappings specify correspondences between the

schema objects based on a comparison of the meaning of the concepts the schema

objects represent, e.g. “author represents the same concept as writer”, and are 1:1

mappings. We do not deal with data mappings, such as the 1:2 mapping “each

data value of name is equal to the concatenation of a first-name value and a last-name

value”, nor try to resolve data scaling conflicts, data type conflicts, data precision

conflicts, etc [55]. For example, we are not trying to identify the precise formula

1.1. The Schema Integration Task 8

that translates the values between an attribute salary, which contains instances mea-

sured in euros, and another attribute salary, which contains instances measured in

pounds. The identification of a semantic mapping between these attributes can

assist an expert user to define the precise data mapping. Having identified the map-

pings between input schema objects, the next step in schema integration is schema

merging which produces the final integrated schema and its view definitions.

For example, consider the schemas Ser
1 and Ser

2 in Figure 1.1(a). Schema matching

identifies the mappings between their objects. In Figure 1.1(a) the compatibility

mappings are illustrated as red arrows: “author in Ser
1 is compatible with author in

Ser
2 ”, which we denote as 〈〈〈author〉〉, S

∼, 〈〈author〉〉〉, “paper is compatible with book”,

〈〈〈paper〉〉, S
∼, 〈〈book〉〉〉, “the title attribute of book is compatible with the title at-

tribute of paper”, 〈〈〈paper, title〉〉, S
∼, 〈〈book, title〉〉〉, etc. Based on these mappings

schema merging of Ser
1 and Ser

2 could be performed. An integrated schema that

could be produced, Ser
3a, based on previous approaches such as [18] is illustrated in

Figure 1.1(b). The integrated schema is produced by ignoring incompatibility map-

pings, thus all incompatible schema objects are preserved in the integrated schema,

and applying a merging rule that states that each pair of compatible schema ob-

jects collapses into a single object in the integrated schema. In addition to the

integrated schema Ser
3a, a view definition between the input schema objects and the

integrated schema objects must be produced, such as the GAV definition 1.1 for the

publication object shown previously.

1.1.4 Overview of our proposed approach

In our proposed schema integration approach, we have adopted the Both-As-View

(BAV) [72] methodology to specify view definitions. BAV rules have the advantage of

specifying the structure of the integrated schema, in addition to the view definitions

between the input and integrated schema objects. The structure of the integrated

1.1. The Schema Integration Task 9

schema is the result of addition, deletion and rename transformations on the input

schemas.

For example, regarding the mapping 〈〈〈paper〉〉, S
∼, 〈〈book〉〉〉 the merging rule in our

approach could generate the following BAV definition:

addEntity(〈〈publication〉〉, 〈〈paper〉〉++〈〈book〉〉)

contractEntity(〈〈paper〉〉, Range Void 〈〈publication〉〉)

contractEntity(〈〈book〉〉, Range Void 〈〈publication〉〉) (1.2)

In brief, the first transformation adds an entity publication and defines its exact set

of instances as the concatenation (++) of the instances of paper and book. Note

that we assume set-based semantics for the instances of a schema object, thus the

concatenation operator (++) we use in BAV is equivalent to a union operator. The

second transformation removes the paper object. The transformation also states that

the instances of the removed object cannot be derived exactly from the resulting

schema. Instead, the transformation states that the instances of paper are within the

range of the empty set (Void) and the instances of publication, i.e. that the instances

of paper are a subset of the instances of publication. The third transformation

similarly removes the book object. Detailed definitions of all the transformations

supported in BAV are given in Section 2.3.2.

Thus, another advantage of using the BAV approach in schema integration, com-

pared to previous approaches such as GAV, is that it allows for explicitly stating

whether the exact instances of an object can be derived or not.

Taking a step back and looking at the example integrated schema Ser
3a again, we

see that the integration might be criticized because it is not obvious that the in-

put objects paper and book can be collapsed into a single object publication in the

integrated schema. One could interpret that the reason the two objects have been

merged into a single object is because the two objects represent the same concept.

1.1. The Schema Integration Task 10

According to the mappings, however, we do not know whether the objects represent

the same concept. We only know that the two objects are compatible. Compati-

bility mappings, in general, are imprecise, since the exact relationship between the

objects is not specified. The integrated schema produced based on compatibility

mappings could also be imprecise and debatable, as in this example. Therefore, it

would be useful to use more precise semantic mappings to drive the schema merging

process. For example, it would probably be more correct to say that the paper and

book objects are disjoint, i.e. they represent concepts which can be generalized into

a broader concept but they do not share any common instances. In the schema

integration framework we propose, we require such detailed semantic mappings for

the schema merging process. The advantage of using such mappings is that we can

produce higher quality integrated schemas.

In particular, in our schema integration framework we specify five types of seman-

tic mappings: equivalence (S
=), subsumption (

S
⊂), intersection (

S
∩), disjointness (

S

∩/)

and incompatibility (
S

/∼). Figure 1.3(a) illustrates such mappings between schemas

Ser
1 and Ser

2 . Figure 1.3(b) illustrates the integrated schema Ser
3b that could be pro-

duced based on these mappings. For example the disjoint paper and book objects

are unioned in a new object paperORbook. Schema Ser
3b is more precise than Ser

3a

produced in our first integration attempt. In Ser
3b it is obvious which publications

are papers, which ones are books, which authors have written papers, which authors

have written books and which authors have written both papers and books. In our

first integration in Ser
3a these concepts could not be identified.

The schema matching process in order to identify semantic mappings such the ones

aforementioned, needs to identify first the semantics of the schema objects. By

semantics we denote the set of real-world objects that a schema object represents.

For example, we need to identify that journal-paper represents a subset of the real-

world objects that paper represents. Resolving the semantics of schema objects

is practically unfeasible for all possible situations, but tools that can assist in the

1.1. The Schema Integration Task 11

(a) Matching schemas Ser
1

and Ser
2
. Incompatibility mappings are not displayed.

(b) Integrated schema Ser
3b

Figure 1.3: Schema Matching and Schema Merging of two bibliography schemas
based on more precise mappings.

1.1. The Schema Integration Task 12

process can be developed. In our research, we propose algorithms that can be applied

for the identification of our five semantic mappings. The information that can be

directly utilized by a tool, without any external knowledge or user intervention,

is the schema structure, the names of the schema objects and the schema object

instances. A tool based on this information can never be 100% certain of having

identified a mapping between two schema objects correctly.

A key development in our approach is that we explicitly represent this uncertainty

of the matching tool by introducing the notion of uncertain semantic mapping.

Figure 1.4 illustrates seven uncertain mappings between the schemas Ser
1 and Ser

2 ,

e.g. “there is 65% certainty that paper is incompatible with book and 35% certainty

that paper is disjoint with book”, which we denote as 〈〈〈paper〉〉, [
S

∩/,
S

/∼], [.35, .65], 〈〈book〉〉〉.

The uncertain mapping between the writtenby relationships assigns all its certainty

to disjointness, while the uncertain mappings between the author entities, and be-

tween their name attributes assign all their certainty to the equivalence mapping.

The degrees of uncertainty in each uncertain semantic mapping are derived based

on:

• the available information regarding the schema objects, e.g. their names, their

instances, the schema structure, etc: For example, consider the author objects.

If we compare these objects based on their data instances, then the more

instances we have the more certain we will be about the equivalence mapping

between them.

• training data: The more training data that supports a specific semantic map-

ping, the more certain we are about this mapping. If there is no available

training data or information regarding the schema objects, then the uncer-

tain semantic mapping can show total ignorance, in which case our prototype

system could prompt the user to select the exact semantic mapping.

1.1. The Schema Integration Task 13

Figure 1.4: Uncertain semantic mappings between schemas Ser
1 and Ser

2

Based on the uncertain semantic mappings identified during schema matching, the

schema merging process can be performed. In our approach, we illustrate how

schema matching uncertainty propagates into the merging process to produce a list

of possible integrated schemas, instead of a single integrated schema. For exam-

ple, if the only uncertain mapping between Ser
1 and Ser

2 is 〈〈〈paper〉〉, [
S

∩/,
S

/∼], [.35, .65],

〈〈book〉〉〉, the writtenby relationships are disjoint, the author entities, and the name at-

tributes are equivalent, and all other mappings are certain incompatibility mappings

then the integrated schemas produced during merging would be schemas Ser
3,0.65 and

Ser
3,0.35 with 65% and 35% certainty of correctness respectively. The two integrated

schemas are illustrated in Figure 1.5. Ser
3,0.65 corresponds to the incompatibility map-

ping between paper and book and Ser
3,0.35 corresponds to the disjointness mapping.

Thus, in this particular example, the more precise schema Ser
3,0.35 is not the most

certain one. Notice that schemas Ser
3,0.65, S

er
3,0.35 are produced based on the same

merging rules used when uncertainty is not taken into consideration. These merging

rules would specify the view definitions between the schemas Ser
3,0.65, S

er
3,0.35 and the

input schemas Ser
1 and Ser

2 .

1.2. Motivation 14

Figure 1.5: Two possible integrated schemas of Ser
1 and Ser

2

1.2 Motivation

The problem of schema integration is well-known and researchers have been investi-

gating it since the 1980’s [8]. Initially, the problem arose in the context of distributed

database management systems and the integration of legacy databases. These tech-

nologies provided transparent access to the data sources and allowed for a more

efficient evaluation of queries. These benefits are equally important now with appli-

cations of schema integration found in every schema-based context: grid computing

[103], peer-to-peer networks [48], data warehouses [82], bioinformatics [114], meta-

search engines [53], digital libraries [6], geographical information systems [30], etc.

The wide variety of applications of schema integration and the constant increase in

the number of available data sources require an efficient solution to the problem.

However, schema integration, and especially the schema matching step, is a time-

consuming process. When performed manually, the user has to analyze the schemas,

1.2. Motivation 15

examine the schema object instances and specify the mapping for each pair of ob-

jects. For large schemas, this is extremely labour-intensive and in dynamic envi-

ronments, where the number of sources constantly changes and the schemas evolve

through time, it can be infeasible. Thus, efficient automatic or semi-automatic ap-

proaches need to be examined. This area of research is almost a decade old [90] with

several assisting tools having been developed [62, 65, 73, 33, 10, 34, 109].

1.2.1 Explicitly representing uncertainty

Automatic schema matching tools discover mappings between schema objects and

then automatic schema merging tools create the integrated schema. However, as we

mentioned in the previous section, an automatic matching tool can never be 100%

certain of having correctly identified the mapping between two schema objects due

to the inherent uncertainty of schema matching and, thus, it is prone to errors. On

the other hand, an automatic tool can significantly reduce the time spent analyzing

the schemas and their schema objects and it can produce likely mappings. Therefore

such tools can be employed to assist in the schema integration process.

Existing matching tools, such as the ones previously cited, propagate the uncertainty

of schema matching onto the user: they discover mappings as if they are 100% certain

of their correctness while the user has to be aware of the underlying uncertainty in

their results; he/she needs to inspect the discovered mappings and either validate or

reject them. Internally, though, a tool investigates all possible semantic mappings

(equivalence, subsumption, intersection, disjointness, incompatibility) for each pair

of objects and has associated levels of possibility for each mapping. For example,

in Figure 1.4 the levels of possibility for seven mappings are illustrated. In existing

tools, the mapping with the highest levels of possibility is the one favoured by the

tool and reported to the user. Thus, the 〈〈〈paper〉〉, [
S

∩/,
S

/∼], [.35, .65], 〈〈book〉〉〉 mapping

in Figure 1.4 would be reported as 〈〈〈paper〉〉,
S

/∼, 〈〈book〉〉〉.The crucial information

1.2. Motivation 16

that remains hidden from the user is these levels of possibility, or the levels of

certainty of the tool, for each mapping. This information can help the user to

either rely on the discovered mappings or investigate further some pairs of objects,

and, in general, it can drive user interaction. For example, the user might want to

investigate the mapping between paper and book further since the tool is not very

certain of the correct mapping and realize that the correct mapping for paper and

book is disjointness with 35% certainty. Instead, the tool is more certain about the

mappings between the title objects and between the year objects in Figure 1.4 and

the user can therefore take them as granted. Therefore, explicitly representing the

uncertainty of the tool can reduce the user workload on schema matching and allow

for better matching and merging results. For example, in Figure 1.5 the user can

examine the uncertain integrated schema and select schema Ser
3,0.35 instead of Ser

3,0.65,

even though Ser
3,0.65 has a higher certainty of correctness reported by the tool.

Additionally, the representation of uncertainty in schema integration can provide

with more elaborate query answers, where each answer is associated with a level of

certainty. Such information is essential to support keyword queries, and in environ-

ments where a schema is not always available, e.g. in Dataspace Support Platforms

[49]. Dealing with query processing and annotation on multiple integrated schemas

are out of the scope of this dissertation, but we provide a naive example next to

illustrate the advantages of using our proposed schema integration framework. In

[37], the authors have extensively investigated how uncertain semantic mappings can

be utilized during query processing, and they have also considered the complexity

issues that arise.

To illustrate their approach, let us give an example. Consider the uncertain seman-

tic mappings 〈〈〈publication〉〉, [S⊃,
S

/∼], [.6, .4], 〈〈paper〉〉〉 and 〈〈〈publication〉〉, [
S
⊃,

S

/∼], [.4, .6],

〈〈book〉〉〉, which state that paper and book are either subsumed by or they are incom-

patible with publication, with the specified certainty. These two uncertain semantic

mappings give rise to four cases of semantic mappings illustrated in Table 1.1, where

1.2. Motivation 17

case semantic mappings certainty

#1 〈〈publication〉〉 S
⊃ 〈〈paper〉〉

〈〈publication〉〉
S

/∼ 〈〈book〉〉 0.36

#2 〈〈publication〉〉
S

/∼ 〈〈paper〉〉

〈〈publication〉〉
S

/∼ 〈〈book〉〉 0.24

#3 〈〈publication〉〉 S
⊃ 〈〈paper〉〉

〈〈publication〉〉 S
⊃ 〈〈book〉〉 0.24

#4 〈〈publication〉〉
S

/∼ 〈〈paper〉〉

〈〈publication〉〉 S
⊃ 〈〈book〉〉 0.16

Table 1.1: Four possible cases of semantic mappings

@inproceedings{C75,
author={Peter P. Chen},
title={The Entity-Relationship

Model - Toward a Unified

View of Data},
year={1975},
booktitle={VLDB},
year={1975}

}

(a) An instance of a paper publication

@book{C99,
author={Peter P. Chen,

Jacky Akoka,

Hannu Kangassalo,

Bernhard Thalheim},
title={Conceptual Modeling

Current Issues and

Future Directions},
year={1999},
publisher={Springer}

}

(b) An instance of a book

Figure 1.6: Example data

each case has a corresponding certainty. Here, the degrees of certainty are considered

to be probabilities, and thus the certainty of each case in Table 1.1 is calculated as a

joint probability. For example, the certainty of case #1 is calculated as the product

of the certainty of
S
⊃ for the pair 〈〈publication〉〉 and 〈〈paper〉〉 and the certainty of

S

/∼

for the 〈〈publication〉〉 and 〈〈book〉〉.

Consider also the keyword query “title conference publications author Peter P.

Chen” posed by a user and the two paper and book instances in Figure 1.6. Note

that the query requests for titles of conference publications, i.e. papers in the aca-

demic jargon. However, since this is a keyword query it has to be matched to

the schema available. The schema contains an object publication which has a ti-

tle and an author attribute therefore the system assumes that the query requests

1.2. Motivation 18

for the titles of publications by Peter P. Chen, and disregards the schema object

paper. Query processing will now investigate all four cases of semantic mappings,

and return the answer to the query. In case #1 of semantic mappings, based on

the subsumption mapping between paper and publication query processing would

consider only papers as publications and would associate each paper title with a

0.36 certainty of correctness, e.g. [{The Entity-Relationship Model - Toward a

Unified View of Data},.36]. In case #4, only books would be considered publica-

tions and each book title would be associated with 0.16 certainty, e.g. [{Conceptual

Modeling Current Issues and Future Directions},.16]. Finally, in case #3,

both paper and book titles would be associated with a 0.24 certainty of correctness;

#2 does not consider papers nor books as publications. The final answer to the query

would be an aggregate of the above, e.g. [[{The Entity-Relationship Model -

Toward a Unified View of Data},.6], [{Conceptual Modeling Current Issues

and Future Directions},.4]] Thus, even though the query returns both paper and

book titles of Peter P. Chen, papers have a higher certainty of correctness and they

are presented first to the user, who actually asked for them (conference publications).

1.2.2 Using more precise semantic mappings

Apart from reducing the user workload in schema integration by explicitly represent-

ing schema matching uncertainty, another important aspect in schema integration is

the quality of the integrated schemas produced. Existing merging approaches that

employ only a single type of mapping, e.g. compatibility mappings [87] or equiv-

alence mappings [31, 86, 75], produce integrated schemas that are imprecise and

incomplete. Instead, employing a wider set of semantic mappings allows for a more

precise schema integration process. For example, the integrated schema Ser
3a (Fig-

ure 1.1), which was produced based on compatibility mappings, is incomplete, since

some information that was available in the input schemas Ser
1 and Ser

2 is lost. In par-

ticular, it is impossible in Ser
3a to identify which instances are papers and which ones

1.2. Motivation 19

are books. Therefore, the query “give me the titles of all papers written by Peter P.

Chen” on Ser
3a will be posed on object publication and will return an imprecise answer

containing both paper titles, e.g. [{The Entity-Relationship Model - Toward a

Unified View of Data}], and book titles, e.g. [{Conceptual Modeling Current

Issues and Future Directions}]. On the other hand, when using the wider set of

semantic mappings, we are able to make a more precise integration, paying attention

on which objects we delete or collapse. For example, in the integrated schema Ser
3b

(Figure 1.3), which was produced based on more precise semantic mappings, we are

still able to make the distinction between papers and books because we have retained

the original schema objects. Therefore, if the aforementioned query was posed on

Ser
3b the answer would be just paper titles, e.g. [{The Entity-Relationship Model

- Toward a Unified View of Data}], which is the correct answer. This precise

integration potentially allows for more efficient query processing in a distributed en-

vironment, since the relationship between schema objects is more explicit and thus

detecting the relevant schema objects to a query should be easier.

1.2.3 Specifying view definitions using BAV

One final aspect of schema integration is the view definitions between the input

schemas and the integrated schema. Existing merging approaches [18, 89, 101]

that rely on semantic mappings only generate the integrated schema. They do not

generate the view definitions. Other merging approaches [87, 74], which provide view

definitions, assume as input pre-defined data mappings between the schemas to be

integrated. However, schema matching research that deals with the identification of

such data mappings is extremely limited, due to the complexity of the problem [31].

The two most well known view definition approaches are: Local-As-View (LAV)

and Global-As-View (GAV) [60]. However, instead of using these two approaches

in schema integration, the more recent Both-As-View (BAV) approach can be

1.3. Contributions of Dissertation 20

adopted, which has been shown to subsume LAV and GAV [72]. For example,

in the previous section, the GAV definition 1.1 of publication can be derived from

the first transformation in BAV definition 1.2. In addition, the BAV definition 1.2

can be used to derive LAV definitions of paper and book based on the contract

transformations. Additionally, the use of the BAV approach gives rise to a more

rigorous and formal schema merging process, since BAV definitions specify both

the structure of the integrated schema and the view definitions between input and

integrated schema objects. Additionally, BAV definitions explicitly state whether

the instances of any schema object can be retrieved partially or fully.

1.3 Contributions of Dissertation

The two main contributions of this dissertation are:

1. The management of uncertainty in schema integration: we propose a frame-

work based on the well-founded Dempster-Shafer’s theory to explicitly repre-

sent and manage the uncertainty that emerges during the schema matching

process regarding as to which is the correct semantic relationship between each

pair of schema objects. Additionally, we explain how this schema matching

uncertainty propagates into the schema merging process and how the final

integrated schema is affected.

2. The definition of a low-level framework for schema merging: we propose a

framework of formal, precise and rigorous low-level BAV merging rules. Based

on this framework, sound and complete integrated schemas can be created.

These schemas can be further improved to remove structural redundancies.

The precision of our merging rules allows us to identify the cases where au-

tomating merging might be problematic. In addition, we show that the low-

level framework can be extended for the integration of high-level schemas.

1.3. Contributions of Dissertation 21

In more detail, our contributions are:

• we provide a definition of semantic relationships and semantic mappings based

on a set-based comparison of the real-world objects schema objects represent.

We also explain how semantic mappings can be translated to data mappings.

Our first matching approach that attempts to identify such semantic mappings

was published in [92, 15].

• we introduce the notions of uncertain semantic mapping and uncertain schema

mapping. Based on these, we can explicitly represent the uncertainty of the

schema matching process. Our fundamental framework behind uncertain se-

mantic mappings was published in [93, 68].

• we show that schema matching uncertainty can be applied during the schema

merging process to produce the most probable top-K schema mappings and

top-K integrated schemas. We make a comparison between the top-1 and top-

K approach by identifying cases where one is more preferable than the other

and examining the complexity of each approach.

• we describe the implementation of our schema matching tool that supports

uncertain semantic mappings and produces top-K schema mappings. We ex-

perimentally evaluate our tool and show that taking into account the schema

matching uncertainty slightly improves the matching results.

• we provide a low-level schema merging framework that uses a wide set of

semantic mappings and allows for a rigorous investigation of merging rules.

In particular, we investigate equivalence, subsumption, intersection, disjoint-

ness and incompatibility mappings, rather that just compatibility and incom-

patibility mappings. The methodology behind our low-level schema merging

framework was presented in [95]. The low-level framework allows for: (a) the

exhaustive examination of all fundamental schema merging tasks, (b) the re-

1.4. Structure of Dissertation 22

moval of structural redundancies, and (c) reasoning about the completeness,

soundness and automation of the schema merging process,

• we provide a methodology for deriving generic schema merging rules based on

our low-level schema merging framework. We use the term generic throughout

this dissertation to emphasize that the proposed merging process and merging

rules can be applied to schemas of any data model, i.e. that the proposed

schema merging framework is model-independent. We also provide a method-

ology for translating these generic merging rules into rules for high-level data

models, such as the ER and the relational model. This work was published in

[94].

1.4 Structure of Dissertation

This dissertation is structured as follows. Chapter 2 gives an overview of the schema

integration problem and in particular of the existing schema matching and merging

methodologies, including BAV. Chapter 3 explains the HDM, which is the low-level

data model we have adopted. Chapter 4 introduces uncertain semantic mappings

and defines the framework to manage them during matching and merging. Addi-

tionally, it explains the basic architecture of our prototype uncertain schema inte-

gration tool. Chapters 5 and 6 present our schema matching and schema merging

methodologies, respectively. Chapter 5 gives the details of our schema matching

implementation together with its evaluation based on experimental results. Chap-

ter 6 introduces the low-level merging rules, their properties and their translation

to high-level data models. Finally, Chapter 7 summarizes our work.

Chapter 2

Schema Integration: State of the

Art

Before we begin to explain our proposed schema integration framework, it is nec-

essary to see the current state of the art in the area and how our work relates to

it. Our work concentrates on schema matching and schema merging, therefore this

chapter gives a brief overview of existing research and methodologies on these topics,

and compares them against our proposed approach.

The structure of this chapter is as follows. First, Section 2.1 disambiguates the

different terms for schema integration that have been used in the literature and

explains more precisely our definition of the terms. Then, Sections 2.2 and 2.3

discuss existing schema matching and schema merging approaches respectively, and

compare them against our approach. Section 2.4 summarizes our findings.

2.1 Terminology Disambiguation

In the early 1980s, the term view integration [21] was used to describe the pro-

cess of integrating particular types of schemas called views. A view is a schema

23

2.1. Terminology Disambiguation 24

that describes a subset of the data stored in a data source, from the application

perspective. Thus, a single schema is used to describe the data of a data source and

multiple views are defined to accommodate the types of applications that can access

the data source. View integration focuses on the application and builds the single

schema of the data source by integrating the different views.

In the mid 1980s, the advent of distributed databases [22] gave rise to the problem

of database integration, i.e. the process of designing a global schema to represent

the data of the underlying databases that constitute the distributed database. This

global schema would be the result of the integration of the underlying database

schemas.

The term schema integration was introduced in [8] as a generic term to describe

both view integration and database integration. The definition of the term that we

adopt is the following: schema integration is the problem of combining the data of

different input schemas by (1) creating a unified representation of these data, and (2)

creating view definitions between the input schemas and the unified representation.

In the late 1990s, the term data integration [54, 60] was introduced using a defini-

tion similar to the definition of schema integration in the previous paragraph. How-

ever, we have not adopted the term data integration because people may confuse it

with the problem of identifying and merging data instances, e.g. tuples, strings, etc,

that refer to the same real-world entity. This latter problem comes under different

names in the literature, e.g. the merge/purge problem [52], instance identifi-

cation [110], duplicate elimination [13], and is of particular importance in the

data cleansing area [91, 3].

In 2003, the term model management [11] was introduced to describe the problem

of managing generic models, treated as bulk objects, using high-level operators such

as Match, Merge, Diff, etc. In this context, the term model applies to all formal

descriptions and representations, e.g. form definitions, programming language inter-

2.2. Schema Matching 25

face definitions, web site layouts, etc, and not just to data source schemas. In model

management, the task of schema integration can be performed by first applying the

Match operator to perform schema matching and identify the mappings between

the schemas, and then applying the Merge operator to perform schema merging and

create the integrated schema based on the result of Match.

2.2 Schema Matching

As we have already shown in the introduction, schema matching, the process of

identifying mappings between schema objects, is a crucial step in schema integra-

tion. The process is extremely time-consuming if performed manually and it could

even become infeasible when dealing with large evolving schemas and dynamic en-

vironments. Thus, researchers have been investigating automatic schema matching

approaches.

2.2.1 Classification of Schema Matching Approaches

Until the late 1990s, little attention had been drawn on automating schema matching

[90]. More recently, several approaches have been proposed and prototype tools have

been developed, e.g. [20, 83, 62, 35, 9, 2, 38, 65, 33, 73, 10, 34, 47, 112]. In [90], a

set of criteria is presented to classify schema matching approaches: (1) depending

on the cardinalities of the mappings they discover, i.e. 1:1 mappings, 1:N mappings

and M:N mappings, (2) whether they use schema-structure information or sample

instances of the objects to discover mappings, (3) whether they compare schema

objects based on their names, (4) if they use constraints to compare the objects,

e.g. data type constraints, cardinalities, integrity constraints, etc, (5) whether they

employ any auxiliary external information, e.g. user-input, dictionaries, ontologies,

etc, and (6) whether a single algorithm is used to discover mappings or multiple

2.2. Schema Matching 26

techniques are combined.

Examining the approaches that appear in the literature, most of them [51, 83, 35, 65,

33, 34, 73, 46]: (a) combine different types of information and techniques to compare

schema objects, (b) they use the name information, (c) compare both objects and

sub-structures and (d) discover 1:1 mappings. Note that some approaches claim

to identify 1:N mappings by combining their discovered 1:1 mappings, e.g. “a is

compatible with b” and “a is compatible with c”, but these are not 1:N mappings

from our perspective. We consider valid 1:N mappings as mappings that cannot be

broken down into 1:1 mappings, e.g. “name equals to the concatenation of first-name

and last-name”.

We introduce two more criteria to classify schema matching approaches:

1. depending on whether semantic or data mappings are discovered. Seman-

tic mappings between schema objects are derived based on the meaning, or

semantics, of the concepts the schema objects represent, e.g. “student sub-

sumes/is compatible with undergraduate” Data mappings are low level map-

pings, relating the data values of the schema objects, e.g. “name equals to the

concatenation of first-name and last-name”.

2. depending on whether schema matching uncertainty is supported for multi-

ple semantic mappings for each pair of objects. Existing approaches either

(i) discover compatibility mappings based on a similarity degree produced by

comparing a specific feature of the schema objects, e.g. “student-ug is compati-

ble with student-pg based on a similarity degree of 0.90 produced by comparing

their names”1, or (ii) adopt a framework that allows the representation of the

tool’s uncertainty on multiple semantic relationships for each pair of objects,

e.g. “it is 30% possible that student-ug and student-pg are equivalent, 60% pos-

sible that they are either subsuming, intersecting or disjoint, and 10% possible

1The two strings are each made up of 10 characters and they differ only in a single position.

2.2. Schema Matching 27

compatibility multiple data supporting uncertainty

semantic mappings mappings on multiple semantic

mappings

MUVIS [51] X S
=,

S
⊂,

S
∩,

S

∩/

DIKE [83] X S
=,

S
⊂

LSD [35] X

MOMIS [9] X S
=,

S
⊂,♦

[2] X

[38] X

Cupid [65] X

COMA [33] X

SF [73] X

AutoMatch [10] X

GLUE [34] X

[47] X S
=,

S
⊂,

S
∩,

S

∩/

[112] X S
=,

S
⊂ X

[109] X

iMAP [31] X X

[46] X fuzzy sets
[81] X probabilities

Table 2.1: Classification of schema matching approaches

that they are incompatible.

In Table 2.1, we use the above two criteria to classify existing schema matching ap-

proaches. For a more elaborate classification, we also separate the approaches based

on the type of semantic mappings they identify: whether they identify compatibility

mappings (S
∼), and/or more precise mappings, i.e. equivalence (S

=), subsumption

(
S
⊂), intersection (

S
∩), disjointness (

S

∩/), association (♦). Each empty cell in the

table means that the corresponding feature is not supported.

The table shows that most existing approaches are concerned with identifying com-

patibility mappings between schema objects. Five approaches [51, 83, 9, 47, 112]

discover more precise semantic mappings, two approaches deal with data mappings

[112, 31] and two approaches [46, 81] adopt a framework that can support the rep-

resentation of uncertainty on multiple semantic mappings for each pair of objects.

2.2. Schema Matching 28

2.2.2 Types of Mappings

We separate mappings into two types: data and semantic mappings. A data map-

ping is practically a query over a schema. Since there is an infinite number of possible

queries that can be expressed over a schema, the number of possible data mappings

is also infinite. Thus, a schema matching approach that attempts to discover data

mappings is practically searching in an infinite space and therefore it is trying to

solve an intractable problem.

In the schema matching literature, the approach that discovers the most elaborate

data mappings is iMAP [31]. There, the search space of data mappings is reduced by

looking first at compatible schema objects. In particular, the first top-K most certain

compatibility mappings are used. The type of data mappings discovered in iMAP

include: string concatenations, e.g. “name = concatenation(first-name, last-name)”,

numerical expressions, e.g. “list-price = price ∗ (1 + tax-rate)”, unit conversions,

e.g. “weight-kg = 2.2 ∗ weight-pounds”, schema mismatches, e.g. “fireplace = 1, if

house-descr includes the word fireplace”, etc. In our proposed approach, as briefly

explained in the introduction, schema matching identifies matches between schema

objects with a degree of uncertainty. The matches of our approach can be used

in combination with a technique such as the one presented in iMAP to reduce the

search space for the possible data mappings. Thus, our proposed schema matching

approach is complementary to iMAP.

Another schema matching approach that is concerned with data mappings is [112].

There, two types of data mappings are discovered: string concatenations and schema

mismatches like in iMAP. The schema objects are first mapped to a domain ontology

and then user-defined regular expressions are exploited to define the data mappings.

Finally, in [74] data mappings are discovered as combinations of already known data

mappings, thus a slightly different problem is tackled.

It is worthwhile to mention here Clio [76], which is a tool that also identifies data

2.2. Schema Matching 29

mappings but only under an expert user’s guidance. Therefore we do not consider

Clio an automatic schema matching prototype. Note that data mappings are also

covered in Section 2.3.2 from the schema merging perspective, showing how data

mappings can be used to produce view definitions.

Regarding semantic mappings, they have received more attention in the schema

matching literature. Several taxonomies have been proposed depending on the per-

spective of each approach. In [41] attention is given to schema structure with the

semantic mappings having a straightforward correspondence to specific schema con-

structs. The mappings are equivalence (S
=), subsumption (

S
⊂) and association

(♦), and these correspond to a node, an inclusion constraint and a link (or an ER re-

lationship), respectively. In [64], a structural perspective, but in an object-oriented

environment, is also adopted and the aggregation mapping is additionally pro-

posed, e.g. “class is an aggregation of students”. In [55], an approach is proposed

that gives rise to semantic mappings between schema objects based on the context,

the objects’ instances, domains and roles. In addition to the previous semantic map-

pings, i.e. equivalence, subsumption, association, aggregation, objects can also be

relevant if they share the same role, e.g. if they are both identifiers. The incompat-

ibility (
S

/∼) mapping is also explicitly defined. In [59, 102] the real-world states of the

schema objects are compared giving rise to equivalence, subsumption, intersection

(
S
∩) and disjointness (

S

∩/) mappings. For example, “math and computing students

intersect” because there are some students following a joint mathematics-computing

course, while “undergraduates are disjoint with postgraduate students”.

In the automatic schema matching literature, only five approaches [51, 83, 9, 47, 112]

attempt to discover such elaborate semantic mappings like the ones mentioned

above. Instead, most matching approaches opt to discover the more general com-

patibility (S
∼) mapping, and leave the identification of the more precise mapping to

a later stage or, more commonly, to the user.

2.2. Schema Matching 30

2.2.3 Taking uncertainty into consideration

Schema matching is a well-known problem with no unique and universal solution

[45]. Several research prototype tools have been proposed, but all researchers accept

that the resulting matches can never be 100% correct. The main reason is that a

prerequisite of schema matching is the identification of the semantics of schema ob-

jects, which is a highly intelligent process, and extremely tough and time consuming

even for an expert user. Another reason that prohibits the implementation of a uni-

versal solution to the schema matching problem, is that schema matching is a highly

subjective process. Even expert users who manually perform schema matching do

not agree on the resulting matches. In [73] for example, the authors asked eight

users to manually perform nine matching tasks and no two users could agree on the

matching result for any given task. Therefore, it is highly unlikely that a matching

tool can provide with matches that equally satisfy multiple users. Instead, schema

matching tools are trying to provide the best matches possible and assume that the

user will verify and correct the resulting matches. The user needs to be aware that

the schema matching tool provides matches that may not be correct.

Even if the schema matching tool is not correct, it is interesting to know how uncer-

tain it is for the correctness of its matches. Most existing matching approaches use

algorithms that compare specific features of objects, e.g. their names, and produce

a value in the [0..1] range for each pair. Based on these values (usually called simi-

larity degrees) produced for all pairs, the matching approach decides which pairs are

compatible. Thus, these matching approaches can at most show their uncertainty

on compatibility mappings.

As far as we know, there are only two schema matching approaches [46, 81] that

adopt a framework that can potentially be used to support uncertainty, not only on

compatibility mappings but, on multiple more precise semantic mappings.

In [46], the approach is based on fuzzy set theory. It uses fuzzy membership func-

2.2. Schema Matching 31

tions, which provide a confidence value in the [0..1] range for each pair of objects;

the value represents the uncertainty of the tool regarding the compatibility of the

two objects. Our approach compared to [46] has the additional advantage that it

can be used for a wider set of semantic mappings. The requirements for each fuzzy

membership function are that the function is reflexive, i.e. that the comparison of

a schema object with itself gives the highest matching confidence, and that it is

symmetrical, i.e. the confidence of a match for a pair of objects is irrespective of

the order the two objects are compared. The confidences of multiple membership

functions for each pair of objects can be combined using max, min and weighted

average functions. At the moment, the approach supports fuzzy membership func-

tions µ
S
∼(a1, a2), which are used to derive a value to represent the uncertainty of

the tool regarding the compatibility between objects a1 and a2. Similarly, there

could possibly be fuzzy membership functions µ
S
=(a1, a2), µ

S
⊂(a1, a2), etc, used to

represent the uncertainty for other semantic mappings as well. However, the defini-

tion of these functions is a hard task, and in addition the functions would not meet

the requirements, e.g. reflexivity is violated for disjointness, µ
S

∩/(person, person) 6= 1

since each object is equivalent and not disjoint from itself, and symmetry is vio-

lated for subsumption, µ
S
⊂(student, person) 6= µ

S
⊂(person, student), where student

is subsumed by person but the inverse does not hold.

Another matching approach that could support uncertainty on multiple semantic

mappings is presented in [81]. The approach uses several different matching algo-

rithms to compare schema objects and each algorithm produces a probability for

each pair of objects that specifies its uncertainty on whether the two objects are

compatible or not. No other semantic mappings are identified. The probabilities of

all algorithms for each pair of objects are then combined using a weighted average

function. Thus, the final result of the matching process is arbitrary and depends

more on the confidence assigned to each algorithm, rather than the uncertainty of

the tool on the result. Even though the approach currently only distributes probabil-

2.3. Schema Merging 32

ity on compatibility and incompatibility mappings, potentially it could be extended

to distribute probability on multiple semantic mappings.

Schema matching approaches that expose the uncertainty of the tool can produce a

ranking of the schema mappings of a matching task from the most certain to the least

certain schema mapping. For efficiency purposes, just the top-K schema mappings

need to identified, i.e. the K schema mappings with the highest certainty. In [36],

theoretical work about the combination of such top-K rankings of schema mappings

is presented. There is no discussion about how such top-K rankings can be derived

though. In [37], the authors investigate the query complexity and algorithms for

answering queries when uncertain mappings are present. Additionally, an algorithm

for efficiently computing the top-K answers to queries is presented. Both approaches

[36, 37] are complementary to our research.

2.3 Schema Merging

During a schema integration task, the structure of the participating schemas has

to be altered, or the schemas are transformed, to produce the final integrated

schema. For example, in Figure 1.1 schemas Ser
1 and Ser

2 are transformed to produce

the integrated schema Ser
3a: the author object of Ser

1 is transformed to include an

extra attribute bio in Ser
3a, paper and book are merged together and then renamed

into publication, etc. However, an integrated schema is not complete until the view

definitions between the integrated and the input schemas are explicitly specified,

e.g. the view definition 1.1 in Ser
3a for object publication.

In this section, we first review schema transformation approaches and then discuss

view definition approaches. Finally, we compare schema merging methodologies

with our approach.

2.3. Schema Merging 33

2.3.1 Schema Transformations

Several schema transformation methodologies have been proposed, especially in the

schema integration field [79, 21, 7, 12, 80, 99, 59, 51, 18, 101, 86]. These approaches

present some common ideas and some common transformations that we are going

to illustrate next. For a more detailed comparison of the approaches, the reader can

refer to [8] and [43] which are survey papers of schema transformation methodologies.

Based on [8], we separate schema transformations into two categories: (a) conform-

ing and (b) restructuring. The goal of the conforming transformations is to make

the schemas compatible, ready to be superimposed. The transformations rename

schema objects to resolve naming conflicts and they introduce new concepts and con-

straints. The goal of the restructuring transformations is to improve the structure

of the schema, making it more correct, minimal and understandable to the user [8].

Structural conflicts are resolved and redundant schema objects are deleted. In the

figures below, we use full circles, which we call nodes, to represent schema objects

that can appear on their own in a schema, e.g. entities in the ER model, relations

in the relational model, etc, and dashed circles and lines to represent attributes.

Associations or relationships between objects are represented as dark lines, which

we call links, and constraints are represented as grey boxes.

Figure 2.1 illustrates the most common schema conforming transformations; objects

a and b in schemas S1 and S2 are integrated in schema S12:

• merging objects: Figure 2.1(a) illustrates the most frequently used schema

transformation, where the objects a and b collapse into a single object ab and

their common children are also merged, e.g. c. This schema transformation

is used in [79, 12, 80, 99, 59, 51, 18, 101, 86], where objects that represent

equivalent sets of real-world objects are combined, merged or integrated (dif-

ferent terms are used in each methodology) into one object, and in [7], where

the equivalent objects are renamed to a common name. In [21], where a very

2.3. Schema Merging 34

S1 S2

S12

ab

a b

c

cc

d

d

e

e

(a) 〈〈a〉〉S=〈〈b〉〉

S1

S2

S12

⊆

aa

b

b

(b) 〈〈a〉〉
S
⊃〈〈b〉〉

S1

S2

S12

⊆ ⊆

aa b

b

c

(c) 〈〈a〉〉
S
∩〈〈b〉〉

S1

S2

S12

⊆⊆

a

a

bb

c

(d) 〈〈a〉〉
S
∩/〈〈b〉〉

Figure 2.1: Common schema conforming transformations: schemas S1 and S2 are
integrated into S12

2.3. Schema Merging 35

simple modelling language is used whereby objects can only be relations which

do not have any links between them, this case is resolved by deleting one of

the equivalent objects. Notice that in [79] this schema transformation is also

used when object a subsumes object b, i.e. when a represents a wider set of

real-world entities than b.

• introducing inclusion constraint: Figure 2.1(b) illustrates another fre-

quently used schema transformation, where an inclusion constraint is intro-

duced to show that object a subsumes object b, i.e. a represents a wider set

of real-world entities than b. This schema transformation is used in most

methodologies [21, 7, 12, 80, 99, 59, 51, 18, 101, 86], but not in [79] as ex-

plained previously.

• introducing intersection: Figure 2.1(c) illustrates a schema transformation

usually used when the objects a and b share a common set of real-world enti-

ties in their real-world representations. This common set of real-world objects

is represented by the new object c that is introduced by the transformation,

which also adds the corresponding inclusion constraints that show that a and

b subsume c. This schema transformation is employed in [79, 101] and im-

plicitly introduced but not employed in [18]. Other methodologies adopt the

introducing union transformation, that we are going to see next, in order

to deal with this situation of intersecting representations.

In our working example in the introduction, this rule was used in Ser
3b in Fig-

ure 1.3(b) to produce the intersection paperANDbookauthor object from pa-

per author and book author.

• introducing union: Figure 2.1(d) illustrates one more common schema con-

forming transformation. The objects a and b are associated together by a

new object c, which represents the union of the real-world sets that a and b

represent. The relationships of a, b and c are explicitly specified by the two in-

clusion constraints between a and c, and b and c. This schema transformation

2.3. Schema Merging 36

is used in [79, 7, 99, 59, 51, 101] when the objects a and b represent disjoint

sets of real-world objects. As mentioned previously, this schema transforma-

tion is also employed by some methodologies [99, 59, 51] when the objects a

and b are intersecting. For intersecting schema objects, [80] introduces another

schema transformation that combines the introduction of intersection and

the introduction of union transformations.

In Ser
3b , this rule was used to produce the union paperORbook object from paper

and book and the union author from paper author and book author.

Figure 2.2 illustrates some common schema restructuring transformations; schema

S is transformed to schema S ′:

• promoting attribute to node: Figure 2.2(a) illustrates the most common

schema restructuring transformation, where an attribute is promoted into a

node. This schema transformation, employed in [101], is applied when two

equivalent objects, a node and an attribute, appear in the schema, thus in-

troducing redundancy. In the figure, node B and attribute b in S are the

equivalent objects. The transformation resolves the structural conflict and re-

moves the redundancy by collapsing the objects into one, node B in S ′, and

introducing a new link, r.

Similar transformations are also defined in [7], paying more attention on the

type of the attribute and the cardinality constraints. In the general case, the

cardinality of A in the new link r is 0:N and the cardinality of B 1:M, as

shown in schema S ′′. In the special case, where the attribute b is a key, the

cardinalities of A and B would be both 1:1.

• promoting link to node: Figure 2.2(b) illustrates another common schema

transformation, where a link object is promoted into a node and a structural

conflict is resolved. Like in the previous case, the transformation is applied

2.3. Schema Merging 37

 r r

1:M

0:N

S′′S′S

AAA

BBB

b

b

(a) 〈〈B〉〉S=〈〈b, A〉〉

 r

Y

X

 r1

1:1

X

 r2

Y

1:1

S′S

AA

B

B RR

(b) 〈〈R〉〉S=〈〈r, A,B〉〉

S S′

A′A′

AA

b′

bb
⊆⊆

(c) 〈〈b, A〉〉
S
⊃〈〈b′, A′〉〉

r

r

r

S S′

A′A′

AA

B′B′

BB

⊆

⊆

⊆

⊆

(d) 〈〈r, A,B〉〉S=〈〈r, A′, B′〉〉

S′

S

A1A1 A2A2

AA

b

bb

⊆⊆⊆⊆

(e) 〈〈A1, b〉〉
S
∩/〈〈A2, b〉〉

r r

 r

S′

S

A1A1 A2A2

AA

B

B

⊆⊆⊆⊆

(f) 〈〈r, A1, B〉〉
S
∩/〈〈r, A2, B〉〉

r

0:N

r

1:N

r

A′A′

AA

BB
⊆⊆

(g) 〈〈r, A,B〉〉
S
∩/〈〈r, A′, B〉〉

Figure 2.2: Common schema restructuring transformations: schema S transformed
to S ′ or S ′′

2.3. Schema Merging 38

when two equivalent objects, a node and a link, appear in the schema. In S

the equivalent objects are node R and link r and they collapse into one node

R in S ′. This transformation is employed in [79, 101], without considering

cardinality constraints, and in [7], which is the one we illustrate here. It is

also implicitly used in [80, 59].

• removing redundant attribute: Figure 2.2(c) illustrates a schema trans-

formation where an attribute is deleted from the schema because it is made

redundant by another attribute. In the figure, the attribute b′ in S is made

redundant by b and is deleted in S ′. The transformation is employed in [21, 7]

when an existing attribute, e.g. b, subsumes the redundant attribute, b′. In

[59], where an exhaustive analysis is performed, the transformation is also ap-

plied when the two attribute are equivalent, intersecting or disjoint. Notice

that the transformation is applicable only when the corresponding nodes A

and A′ are either equivalent or when A subsumes A′; the latter is the case we

illustrate here, thus the inclusion constraint.

• removing redundant link: Figure 2.2(d) illustrates another schema trans-

formation where a redundant link is deleted from the schema. In the figure,

the link r between A′ and B′ in S is made redundant by link r between A and

B, and is therefore deleted in S ′. This transformation is implied in [59] and

is used when the links are equivalent or one subsumes the other, where the

subsumed link is deleted.

• attribute generalization: Figure 2.2(e) illustrates a schema transformation

where a common attribute in multiple nodes is generalized in their common

super -node. In the figure, the attributes b of nodesA1 and A2 are generalized to

the attribute b of node A, which subsumes nodes A1 and A2, and then they are

deleted. The transformation is employed in [7] when the attributes of the sub-

nodes are disjoint, or for any type of compatible, i.e. equivalent, subsuming,

intersecting and disjoint, attributes in [59]. In [21], the transformation is also

2.3. Schema Merging 39

used without explicitly specifying the type of mapping between the attributes;

we can assume that the same approach as in [59] is followed.

In our working example, in Ser
3b this rule was used to generalize attributes id,

title, year and name.

• link generalization: Figure 2.2(f) shows a schema transformation similar

to the previous one, corresponding to link objects. Here, the common link

objects of the sub-nodes are generalized. The transformation is employed in

[7, 80], for disjoint links, and in [59] for any type of compatibility mapping

between the links, as long as their attached nodes (A1 and A2 in the figure)

are generalized in a common super -node.

In Ser
3b , the link generalization rule was applied for the relationship writtenby

which was generalized from the entities paper author and book author to author.

• removing optional link: Figure 2.2(g) illustrates a schema transformation

applied in one methodology [80]. In the figure, link r between nodes A and B

is made redundant because of the equivalent link r between A′ and B. Node

A has a 0:N cardinality constraint on r, which means that not all entities

represented by A participate in the link. On the other hand, node A′ which

is subsumed by A has a 1:N cardinality constraint with r, meaning that all

entities of A′ participate in r. Thus, even though the two links are equivalent

the one between A and B is less specific, and thus it is deleted.

2.3.2 View Definition Approaches

In our working example, schemas Ser
1 and Ser

2 have been transformed into Ser
3a,

which is the integrated schema that describes the underlying data sources. However,

queries posed on schema Ser
3a cannot be answered if the data mappings between the

schema objects of Ser
1 ,Ser

2 and Ser
3a have not been specified. Data mappings deter-

mine how queries posed to the system are answered [60]. Formally, a data mapping

2.3. Schema Merging 40

is an assertion of the form:

so qS (2.1)

where so is a schema object and qS is a query on schema S specifying a set of

instances that belong to so.

There are two main approaches for defining data mappings: (a) local-as-view

(LAV) [107] and (b) global-as-view (GAV) [61]. Both of them use the term

local schema for the schema that is tightly-coupled with a data source and the

term global schema for the integrated schema produced when integrating all local

schemas. Using this terminology in our working example, schemas Ser
1 and Ser

2 would

be the local schemas and Ser
3a the global schema.

In LAV, the schema objects of the local schemas are described in terms of the schema

objects of the global schema. This means that in the formal definition of a data

mapping, Equation 2.1, so would be a local schema object and S would be the global

schema. In our working example, a LAV mapping could be:

〈〈paper〉〉 [{x} | {x, z} ← 〈〈publication, pages〉〉; z 6= null] (2.2)

The query on the right hand side of the above mapping states that we can gen-

erate a list of single value tuples, based on taking each binary tuple found in

〈〈publication, pages〉〉, and filtering out those that have null as their second value.

Note that the notation 〈〈publication, pages〉〉 is used to represent a schema object. In

this particular case, the schema object is the attribute pages of entity publication.

More details about this notation can be found in Chapter 3. Hence, the above map-

ping specifies that we can derive instances of object paper in the local schema, from

the object publication in the global schema, by identifying those publications that

do not have a null value for the pages attribute.

The language used to define the query in the above mapping is called IQL [72] and it

2.3. Schema Merging 41

is the query language we are going to use throughout this dissertation. IQL supports

comprehensions [19], which are of the form [e|Q1; . . . ;Qn], where e is called the head

of the comprehension, and each Qi is either a filter or a generator. A generator

has syntax p ← s, where p is a pattern and s is a collection-valued expression,

and returns a collection of values of pattern p. In the query above, the generator

{x, z} ← 〈〈publication, pages〉〉 returns a collection of values of pattern {x, z}, where

x is a publication and z its pages value. A filter is a boolean-valued expression used

to select the values produced by the generators that are going to be returned by

the comprehension. In the query above the expression z 6= null is a filter, which

selects the values {x, z} produced by the generator which have a value for z which

is not null. Finally, a comprehension returns a collection of values of the form

e. Thus, the above query, as aforementioned, will return a collection of instances x

which are instances of publication, they are associated with a value z in the collection

〈〈publication, pages〉〉, and there is the additional restriction that z is not a null value.

Comprehensions c1, . . . , cn can be combined using the concatenation ++ operator,

c1++ . . . ++cn, which returns a collection generated by concatenating the collections

returned by each comprehension ci.

In GAV the objects of the global schema are described in terms of the objects of the

local schemas. This means that in Equation 2.1 so would be a global schema object

and S would be a local schema. In our working example, two GAV mappings would

be:

〈〈publication〉〉 [{x} | {x} ← 〈〈paper〉〉] (2.3)

〈〈publication〉〉 [{x} | {x} ← 〈〈book〉〉] (2.4)

The query [{x} | {x} ← 〈〈paper〉〉] returns all x that are instances of 〈〈paper〉〉. In

the view definition 1.1 in the introduction, we used a shorthand for this query using

only the schema object 〈〈paper〉〉. In the rest of this thesis, whenever a schema object

so is used on its own in a query, then this implies [{x1, . . . , xn} | {x1, . . . , xn} ← so].

2.3. Schema Merging 42

The above GAV mapping specifies that we can derive instances of publication from

the paper and book objects.

The advantage of the LAV approach against the GAV approach is that it favors the

extensibility of the system: to add a new data source to the system, the database

engineer just has to specify the mappings of the objects of the new source’s schema

against the existing global schema; no changes to any existing mappings are neces-

sary. In GAV an addition of a new source means that the existing mappings have to

be amended. The same applies when removing a data source from the system. The

advantage of GAV against LAV is in query processing, which in GAV is a simple

unfolding process [60], while in LAV query processing is a well-known non-trivial

problem [88].

Mappings of both LAV and GAV can be classified into three categories based on

the cover of correct answers they retrieve [60]: (a) sound, (b) complete and (c)

exact. Assume that the complete set of correct answers for a schema object so is

q. A mapping so qS is (a) sound, if qS ⊆ q, i.e. a subset of the correct answers is

retrieved by the mapping (b) complete, if q ⊇ qS, i.e. the mapping retrieves all the

correct answers in addition to some incorrect ones, and (c) exact, if q = qS, if only

correct answers are retrieved and no correct answer is missing.

In our working example, the LAV mapping 2.2 is a complete, but not an exact,

mapping. This mapping selects from the object publication in Ser
3a all its instances

that have a non-null valued attribute for pages in order to retrieve the instances of

paper of Ser
1 . Looking at the schemas Ser

1 and Ser
2 , pages is an attribute of paper but

not an attribute of book. Thus, book instances in Ser
3a have null valued pages; non-

null valued pages are only associated with paper instances. However, there might be

instances of paper in Ser
1 whose pages attribute has not been defined; these instances

will also have null valued pages and thus will not be retrieved by the mapping 2.2.

Therefore, the mapping retrieves a subset of the correct instances of paper, which

based on the definitions above, asserts a sound but not an exact mapping.

2.3. Schema Merging 43

In [44], a new approach, called GLAV, is introduced for defining data mappings.

GLAV combines the expressive powers of both LAV and GAV but query processing

using GLAV mappings is still as hard as in LAV. A GLAV mapping is of the form:

qL qG

where qL is a query on a local schema and qG is a query on the global schema, i.e. it

extends Equation 2.1 by allowing a query on the left-hand side of the mapping.

GLAV was proposed in a web data context and web data require navigation on

arbitrarily long paths. To deal with this issue, GLAV extends LAV and GAV by

allowing qL to be a recursive datalog query. More details on GLAV can be found in

[44].

All of the above approaches face the problem that when the local or the global

schemas change, or evolve, their existing mappings need to be amended. In [72]

a new approach, called both-as-view (BAV), is presented, which subsumes both

LAV and GAV and deals with schema evolution efficiently. A mapping in BAV

defines both the schema transformation that should be performed on the schema

and the data mapping related to the schema object that is being transformed. The

BAV rule can be either a LAV or a GAV mapping and in addition it specifies whether

the mapping is exact or not. Formally, a BAV mapping takes one of the following

two forms:

transformationConstruct(so, Range ql qu), or

renameConstruct(so, so′)

where transformation is one of the following primitives: add,delete,extend, contract,

Construct is the construct type of the object to be added, deleted, etc, ql is a query

on the schema S the transformation is applied on that gives the lower-bound of the

instances of so and qu is a query on S that gives the upper-bound of the instances of

2.3. Schema Merging 44

so. The second form of a BAV mapping is a special case where the transformation

is a rename, thus no query processing is necessary, so is the schema object to be

renamed and so′ is the renamed object.

The add and extend BAV transformations introduce a new object into the existing

schema, while delete and contract remove an object from the schema. The difference

between add and extend is that the former denotes an exact mapping while the latter

denotes a non-exact mapping. Thus, in an add mapping the lower-bound query ql

and the upper-bound query qu are identical. In an extend mapping the constant

Void can be used to indicate that no instances of so can be derived from S and the

constant Any can be used to indicate that there is no knowledge about the upper

limit of instances of so. Similarly for delete, which denotes an exact mapping, and

contract, which denotes a non-exact mapping. In the rest of this dissertation, the

Range ql qu expression will be abbreviated to a single query q for the add and the

delete transformations, since for these transformations ql = qu, with q = ql = qu.

In our working example, two BAV mappings between objects of Ser
1 and Ser

3a are the

following.

1 extendNode(〈〈publication〉〉, Range 〈〈paper〉〉 Any)

2 contractNode(〈〈paper〉〉, Range [{x} | {x, z} ← 〈〈publication, pages〉〉; z 6= null]

〈〈publication〉〉)

The first BAV mapping 1 corresponds to the GAV mapping 2.3. The BAV map-

ping 2 corresponds to the LAV mapping 2.2, which as it was discussed earlier is a

sound but not an exact mapping. This is the reason why the delete transformation

cannot be used here and instead contract is used.

In the BAV approach, the mappings between the objects of two schemas create a

sequence of transformations, called a transformation pathway. The advantage in

BAV is that pathways can be concatenated together, which is very useful in schema

evolution. For example, suppose that schema SG is the global schema and that

2.3. Schema Merging 45

schema SL is a local schema and that the mappings between SL and SG are given

by pathway T , i.e. applying the transformations of T on SL results into schema

SG. Now, assume that SG evolves into S ′
G by a new pathway Tnew. Getting the

BAV mappings between the local schema SL and the new global schema S ′
G is a

simple concatenation of pathways T and Tnew, i.e. T ;Tnew. None of the existing

mappings in T needs to be altered. In the case that the local schema evolves by

a transformation t into schema S ′
L, then the BAV mappings between the new local

schema S ′
L and the global schema SG can be obtained by prefixing pathway T with

the reverse transformation of t, i.e. t. Transformation add is the reverse of delete,

extend is the reverse of contract and vice versa. The final pathway between the new

local schema S ′
L and the global schema SG becomes t;T . Thus, the BAV approach

deals more efficiently with schema evolution than LAV and GAV. More about the

BAV approach can be found in [72].

2.3.3 Comparing our approach

In our schema merging approach, apart from producing the integrated schema, we

require the generation of view definitions between the input and the integrated

schemas. We use schema transformations as previously described and we produce

integrated schemas that are sound and complete, i.e. our merging process does not

produce any information loss nor gain. Additionally, our merging process improves

the integrated schema by removing structural redundancies and thus makes the

schema as minimal and understandable as possible. Finally, our approach generates

BAV definitions that can be used for answering queries on the integrated schema.

In previous research, existing schema merging approaches have been concentrating

in creating duplicate-free integrated schemas. In [18], schema objects which contain

overlapping information are collapsed into a single object. Similarly, in [86] compat-

ible schema objects are collapsed into a single object and multiple-type conflicts are

2.3. Schema Merging 46

resolved. Both approaches only consider compatibility mappings and do not deal

with more precise semantic mappings, as we do in our approach. Structural redun-

dancies are not resolved and finally and more importantly both approaches do not

generate view definitions between the input and the integrated schemas. In [59, 101]

similar semantic mappings to our approach are used to integrate schemas. However

again it is not explained how view definitions are produced. In [89], a generic schema

merging approach is presented using both semantic and data mappings, but view

definitions over the integrated schema are not generated.

Work most related to ours is presented in [87, 74, 12]. In all these approaches, the

input to the schema merging process is data mappings between the input schemas.

In [87], where the relational data model is used, the input data mappings specify

which relations are compatible and then the algorithm combines the compatible

relations into a single overlap relation. Any input relations that cannot be derived

from the overlap relations are also added into the integrated schema. This results

in an integrated schema similar to the schema our approach produces, where the

input schema objects are preserved in the integrated schema. The view definitions

used in [87] are specified using both the LAV and GAV approaches and thus are

very similar to our BAV approach. One criticism for [87], is that it defines schema

merging only for relational schemas, while our approach specifies low-level merging

rules which can be translated to high-level data models, including ER, relational

and XML. A general criticism for all these approaches is that they depend on given

data mappings, whose discovery is widely accepted to be a very hard problem [31].

In [74], input data mappings are used to produce: (a) an integrated schema, which

is a duplicate-free union of the input schemas, and (b) LAV definitions on the inte-

grated schema. However, there is the restriction that the input data mappings can

be reconstructed from the LAV definitions, i.e. that essentially the input data map-

pings are the view definitions. The same restriction applies in [12], where the view

definitions are the same as the input data mappings used for the schema integration.

2.4. Summary 47

Finally, note that work on dealing with view definitions can also be found in the

data exchange [39] literature. In data exchange, the problem that is tackled is

the translation of data from an input schema to a pre-existing integrated, or target

schema. Several research papers have been published on this topic, e.g. [4, 40, 67, 69].

The difference in our work, which is on schema merging and schema integration, is

that the integrated schema has to be generated and does not pre-exist [57].

2.4 Summary

In this chapter, we have presented existing approaches in schema matching and

schema merging, and we have compared them against our proposed approach.

One limitation of existing semantic schema matching approaches is that most of

them only deal with compatibility mappings, while our approach can handle a wider

set of semantic mappings, such as equivalence, subsumption, intersection and dis-

jointness. As a result, we can produce more precise integrated schemas, as illustrated

in the introduction.

The main, however, limitation of existing schema matching approaches is that they

do not expose the uncertainty of their matching approach on the produced semantic

mappings, even though all authors agree that the result of any matching approach

is highly uncertain and erroneous. As far as we know, only two approaches expose

schema matching uncertainty. The first one [46] assigns its uncertainty to a complete

schema mapping, i.e. to the set of semantic mappings for each possible pairs of

objects in a matching task. This result cannot be easily used to identify specific

semantic mappings which the matching tool is least certain about and therefore

the result cannot be easily corrected by the user. In [81], the levels of uncertainty

assigned to each mapping represent more the confidence of the user to the matching

algorithm and less the actual uncertainty of the tool about its own result.

2.4. Summary 48

Regarding the existing schema merging approaches, most of them only produce the

integrated schema without generating any view definitions. Thus, the integrated

schema cannot be used to answer any queries. Schema merging approaches that

produce view definitions use data mappings as input to the merging process. How-

ever, it is widely accepted that the discovery of data mappings is an extremely hard

problem. One work [87], which is more related to our approach, produces both the

integrated schema and view definitions, which are also similar to ours, but the pro-

cess is only defined for relational schemas, while our approach can be extended to

merge schemas of multiple high-level data models.

Chapter 3

HDM: the common data model

We mentioned in the introduction that one of the issues that must be tackled in

a schema integration task is the heterogeneity of the data models. To this end

schema integration approaches adopt a mediator framework [111], where schemas of

different data models, e.g. relational, ER, XML, etc, are first translated into into a

common data model (CDM) [98], resolving any model heterogeneity problems,

and then they are integrated.

The common data model used in our research is the hypergraph data model

(HDM) [70, 16]. One of the main contributions of this dissertation, the definition

of a low-level and formal schema merging framework, is based on the HDM (see

Chapter 6). The advantage of using the HDM lies in the introduction of a generic

classification of high-level data model constructs and the unambiguous translation

between HDM and high-level schemas.

In this chapter, we review the HDM. Section 3.1 explains our motivation in using

the HDM as our CDM. In Section 3.2, the HDM is formally defined. The generic

classification of high-level model constructs based on the HDM is explained in Sec-

tion 3.3. Finally, in Section 3.4, we review the translation between the ER data

model and the HDM.

49

3.1. Motivation in using the HDM 50

3.1 Motivation in using the HDM

When selecting a CDM, the question that arises is how expressive should the em-

ployed CDM be [96]. By expressiveness we mean the degree to which the model

can directly represent a conceptualization. There are two main approaches when

choosing the CDM:

• adopting a high-level CDM that contains many modelling constructs, such

as key, aggregation, generalization, functional dependency, etc. Examples of

approaches that use a high-level CDM are [51, 56]. The use of multiple con-

structs gives more freedom when representing a conceptualization, thus making

the CDM highly expressive. The disadvantage is that the translation process

becomes complicated, firstly because there is rarely a simple correspondence

between the constructs of high-level models (Figure 3.1) and secondly because

not all constructs of a high-level model have equivalent constructs in another

high-level model (Figure 3.2).

• adopting a low-level CDM that consists of a few simple modelling constructs,

which can be used as elementary blocks to build more complex structures.

Examples of approaches that use a low-level CDM are [14, 100, 26, 86]. The

advantage of using a low-level CDM is that it allows for a fine grained analysis

of schemas. In cases where a high-level construct does not have an equivalent

construct in another high-level model, the construct can at least be partially

represented using the low-level elementary constructs. The disadvantage is

that schemas become larger, as they are composed of many elementary objects,

and transformations between the low-level CDM schemas and high-level data

model schemas become more difficult to manage.

In our schema integration approach, we have adopted a low-level CDM based on a

hypergraph data structure, called the hypergraph data model (HDM) [70, 16].

3.1. Motivation in using the HDM 51

paper
bibtex title

writtenby
author bibtex

writtenby.bibtex →

paper.bibtex

paper
id

title
author authorwrittenby

(a) A relational foreign key translated to an ER relation-
ship

publication
id title

paper
id proceedings pages

paper.id →

publication.id

paper
proceedings

pages

publication
id

title
6

(b) A relational foreign key translated to an ER subset

Figure 3.1: Problems with correspondence between high-level constructs

publication
id

paper
id

book
id

paper.id →

publication.id

book.id →

publication.id

paper book

publication id

6

Figure 3.2: No equivalent translation of ER generalization in the relational model:
the ER generalization also expresses that there are no common instances in the
sub-entities, which cannot be expressed in the relational model

3.2. Formal definition of the HDM 52

Using a graph structure as a CDM reduces schemas to an irreducible form [50],

which in the context of relational databases has recently been identified as a sixth

normal form [28, 29].

The HDM differs from other low-level CDMs in specifying a small set of fine grained

constraint primitives, which can be used to build higher level constraints such as

the key and cardinality constraints. Constraint primitives reduce the complexity

imposed by general constraint languages, which entail the parsing, processing and

comprehension of constraint expressions.

A very important feature of the HDM that we take advantage of in our schema

integration framework is the generic classification of high-level model constructs

that it introduces (see Section 3.3). In this generic classification, all constructs

are classified into four types, which are defined based on HDM constructs. In our

research, we use this generic classification to provide a methodology for deriving

generic schema merging rules based on our low-level schema merging framework.

Additionally, the HDM provides an unambiguous translation of the constructs of

high-level models. In [16], the translation of the relational, ER, UML and ORM

constructs is defined, while in [71] the XML model is tackled. We use this work to

provide a methodology for deriving specific high-level merging rules based on our

generic merging rules.

3.2 Formal definition of the HDM

The HDM is a labelled, directed, nested, hypergraph structure. A hyperedge in the

HDM is an edge that connects more than two nodes in a graph, and a hyperedge is

nested in the sense that it can itself participate in hyperedges. Thus the definition

of the HDM is recursive. In the formal definition of the HDM, we are going to use

an auxiliary variable Scheme to make the recursion easier to understand.

3.2. Formal definition of the HDM 53

Definition 3.1. The HDM consists of three constructs: Node, Edge and Constraint.

The grammar of these constructs is defined as follows:

Scheme : Node | Edge

Node : 〈〈name〉〉

Edge : 〈〈name, Scheme, . . . , Scheme〉〉

Constraint : inclusion(Scheme, Scheme) |

exclusion(Scheme, . . . , Scheme) |

union(Scheme, . . . , Scheme) |

mandatory(〈Scheme, . . . , Scheme〉, Scheme) |

unique(〈Scheme, . . . , Scheme〉, Scheme) |

reflexive(Scheme, Scheme)

Note that the mandatory and unique constraints can be abbreviated when the tu-

ple of schemes is unary, i.e. mandatory(〈Scheme〉,Scheme) can be abbreviated to

mandatory(Scheme,Scheme) and unique(〈Scheme〉,Scheme) can be abbreviated to

unique(Scheme,Scheme).

In the above definition of the HDM, six constraint primitives have been used, as

seen in [16]. According to [16], this list of constraint primitives could be extended

in the future but it is sufficient in our schema integration approach and it can deal

with a wide range of data models used in practice, such as ER, relational, XML,

UML and ORM. Before we explain the semantics of the six constraint primitives,

we define the notion of the HDM schema.

Definition 3.2. Given a set of Names that we may use for modelling the real world,

an HDM schema, S, is a triple 〈Nodes, Edges, Constraints〉 where:

• Schemes = Nodes ∪ Edges

3.2. Formal definition of the HDM 54

Figure 3.3: An example HDM schema

• Nodes is a set of Node instances. Each Node instance, 〈〈nn〉〉, has: nn ∈

Names.

• Edges is a set of Edge instances. Each Edge instance, 〈〈ne, s1, . . . , sn〉〉, has:

ne ∈ Names ∪ { }, s1 ∈ Schemes, . . . , sn ∈ Schemes.

• Constraints is a set of Constraint instances. For each Constraint instance, c,

the following holds: c ∈ {inclusion(s1, s2), exclusion(s1, . . . , sn), union(s1, . . . ,

sn), mandatory(〈s1, . . . , sn〉, s), unique(〈s1, . . . , sn〉, s), reflexive(s1, s2)}, where

s1 ∈ Schemes, . . . , sn ∈ Schemes and s ∈ Schemes.

Note that an edge can sometimes be named using the character ‘ ’ representing an

unnamed edge. An example of an HDM schema follows.

Example 3.1. Consider the HDM schema illustrated in Figure 3.3. An

HDM node is represented using a circle and an HDM edge is represented

using a dark line. Also, as we are later going to show in Definition 3.5, the

symbol ⊲ represents the mandatory constraint, ⊳ represents the unique

constraint, and
id
→ represents the reflexive constraint.

Therefore, we have that:

Nodes = {〈〈book〉〉,〈〈book:title〉〉,〈〈book:isbn〉〉,〈〈author〉〉}

Edges = {〈〈 , 〈〈book〉〉, 〈〈book:title〉〉〉〉,

〈〈 , 〈〈book〉〉, 〈〈book:isbn〉〉〉〉,

〈〈writtenby, 〈〈book〉〉, 〈〈author〉〉〉〉}

3.2. Formal definition of the HDM 55

Constraints = {mandatory(〈〈book〉〉, 〈〈writtenby, 〈〈book〉〉, 〈〈author〉〉〉〉),

mandatory(〈〈book〉〉, 〈〈 , 〈〈book〉〉, 〈〈book:title〉〉〉〉),

unique(〈〈book〉〉, 〈〈 , 〈〈book〉〉, 〈〈book:title〉〉〉〉),

mandatory(〈〈book:title〉〉, 〈〈 , 〈〈book〉〉, 〈〈book:title〉〉〉〉),

mandatory(〈〈book〉〉, 〈〈 , 〈〈book〉〉, 〈〈book:isbn〉〉〉〉),

unique(〈〈book〉〉, 〈〈 , 〈〈book〉〉, 〈〈book:isbn〉〉〉〉),

reflexive(〈〈book〉〉, 〈〈 , 〈〈book〉〉, 〈〈book:isbn〉〉〉〉),

mandatory(〈〈book:isbn〉〉, 〈〈 , 〈〈book〉〉, 〈〈book:isbn〉〉〉〉)}

In order to have a more compact listing of the HDM schema, Nodes can lose

their double chevron marks as long as this does not induce any ambiguity.

In this example Edges and Constraints can be rewritten as follows.

Edges = {〈〈 , book, book:title〉〉, 〈〈 , book, book:isbn〉〉,

〈〈writtenby, book, author〉〉}

Constraints = {mandatory(book, 〈〈 , book, author〉〉),

mandatory(book, 〈〈 , book, book:title〉〉),

unique(book, 〈〈 , book, book:title〉〉),

mandatory(book:title, 〈〈 , book, book:title〉〉),

mandatory(book, 〈〈 , book, book:isbn〉〉),

unique(book, 〈〈 , book, book:isbn〉〉),

reflexive(book, 〈〈 , book, book:isbn〉〉),

mandatory(book:isbn, 〈〈 , book, book:isbn〉〉)}

⋄

So far, we have defined the HDM and the HDM schema, but we have not yet given

the semantics of the six constraint primitives of the HDM. The purpose of constraints

is to restrict the values of schema objects in a schema. Thus, in order to explain

the HDM constraint primitives we first need to define what the values, or extents,

of nodes and edges can be, and what makes an HDM schema instance.

Definition 3.3. Given an HDM schema S = 〈Nodes, Edges, Constraints〉, an

3.2. Formal definition of the HDM 56

instance I of S is a structure for which there exists a function ExtS,I : Schemes→

P (Seq(V als)) where: V als is the set of values we wish to model as being in the

domain of our schema, Seq gives a sequence of those values, and P forms the power

set of those sequences. We also have the following restrictions:

1. each tuple 〈a1, . . . , am〉 ∈ ExtS,I(〈〈Ne, s1, . . . , sm〉〉) has: ai ∈ ExtS,I(si), for all

1 ≤ i ≤ m

2. for every c ∈ Constraints, c holds.

We call ExtS,I(s) the extent of s ∈ Schemes.

Note that the first restriction in Definition 3.3 enforces that the extent of an edge

is drawn from values present in the extents of nodes and other edges it connects.

The second restriction refers to the constraints of the schema and it implies that the

extents of the objects do not violate the constraints. We will discuss in detail when

a constraint holds in Definition 3.5, where the semantics of the constraint primitives

are defined. Note that no restriction is put on any particular instance in the extent

of an object; this would form the basis of typing in the HDM. Finally note that the

semantics of the HDM schema and HDM schema instance are set based and hence

at present we can only use the HDM to accurately model data models with set based

semantics.

Now that we have defined the HDM schema instance, we can define the semantics

of the HDM constraints. To this end we need an auxiliary project function that

produces a view of an HDM edge restricted to contain a subset of the nodes or edges

that edge connects. In the following definitions any variable si denotes a member

of Schemes. Note that for each definition of a constraint primitive we give both

a functional form, e.g. inclusion(s1, s2), and an equivalent shorthand infix form,

e.g. s1 ⊆ s2.

3.2. Formal definition of the HDM 57

Definition 3.4. The HDM project function πS,I(〈sx, . . . , sy〉), s, t), takes a tuple of

schemes 〈sx, . . . , sy〉 that must appear in edge s, together with a tuple t that appears

in the extent of s, ExtS,I(s), and returns the values in tuple t that correspond to the

schemes 〈sx, . . . , sy〉:

π(〈sx, . . . , sy〉, 〈〈ne, s1, . . . , sx, . . . , sy, . . . , sn〉〉, 〈a1, . . . , ax, . . . , ay, . . . , an〉) = 〈ax, . . . , ay〉,

where 〈a1, . . . , ax, . . . , ay, . . . , an〉 ∈ ExtS,I(〈〈ne, s1, . . . , sx, . . . , sy, . . . , sn〉〉).

For a singleton tuple of schemes, i.e. 〈sx〉, the project function πS,I(〈sx〉, s, t) can be

abbreviated into πS,I(sx, s, t).

Definition 3.5. The six constraint primitives in the definition of the HDM, have

the following semantics:

1. inclusion(s1, s2) ≡ s1 ⊆ s2 ≡ 〈〈 ⊆, s1, s2〉〉

States that the extent of s1 is always a subset of the extent of s2, i.e.

for all I: ExtS,I(s1)− ExtS,I(s2) = ∅.

2. exclusion(s1, . . . , sn) ≡ s1 6 ∩ . . . 6 ∩ sn ≡ 〈〈6∩, s1, . . . , sn〉〉

States that the extent of s1, . . . , sn are disjoint, i.e.

for all 1 ≤ x < y ≤ n, and for all I: ExtS,I(sx) ∩ ExtS,I(sy) = ∅.

3. union(s, s1, . . . , sn) ≡ s = s1 ∪ . . . ∪ sn ≡ 〈〈∪, s, s1, . . . , sn〉〉

States that the extent of s can be derived by taking the union of the extents of

s1, . . . , sn, i.e.

for all I: ExtS,I(s) = ExtS,I(s1) ∪ . . . ∪ ExtS,I(sn).

4. mandatory(〈s1, . . . , sn〉, s) ≡ 〈s1, . . . , sn〉⊲ s ≡ 〈〈⊲, 〈s1, . . . , sn〉, s〉〉

States that each combination {a1, . . . , an} of the values ai in the extent of si,

1 ≤ i ≤ n, must appear at least once in the extent of the edge s that connects

the si’s, i.e.

for all I: {{a1, . . . , an} | a1 ∈ ExtS,I(s1) ∧ . . . ∧ an ∈ ExtS,I(sn)} −

{{πS,I(s1, s, t), . . . , πS,I(sn, s, t}) | t ∈ ExtS,I(s)} = ∅

3.2. Formal definition of the HDM 58

5. unique(〈s1, . . . , sn〉, s) ≡ 〈s1, . . . , sn〉⊳ s ≡ 〈〈⊳, 〈s1, . . . , sn〉, s〉〉

States that every combination of the values in the extents of s1, . . . , sn must

appear at most once in the extent of the edge s that connects them, i.e.

for all I: {t | t ∈ ExtS,I(s) ∧ t′ ∈ ExtS,I(s) ∧ t 6= t′ ∧

πS,I(s1, s, t) = πS,I(s1, s, t
′)∧ . . .∧πS,I(sn, s, t) = πS,I(sn, s, t

′)} = ∅

6. reflexive(s1, s2) ≡ s1
id

→ s2 ≡ 〈〈
id

→, s1, s2〉〉

States that if an instance of scheme s1 appears in the extent of the edge s2 then

one of the instances of s2 must be an identity tuple, i.e.

for all I: {πS,I(s1, s2, t) | t ∈ ExtS,I(s2)} −

{πS,I(s1, s2, t) | t ∈ ExtS,I(s2) ∧

t = 〈πS,I(s1, s2, t), πS,I(s1, s2, t)〉} = ∅

Example 3.2. To illustrate these constraints, consider the HDM schema

in Example 3.1 and in particular the nodes 〈〈book〉〉,〈〈author〉〉,〈〈book:isbn〉〉

and the edges

〈〈writtenby, book, author〉〉, 〈〈 , book, book:isbn〉〉. Suppose there are three data

sources with this schema but different instances I1, I2, I3 for which:

∀x, x ∈ {1, 2, 3} :

ExtS,Ix(〈〈book〉〉) = {{The Relational Model for Database

Management},

{Conceptual Modeling Current Issues and

Future Directions}}

ExtS,Ix(〈〈book:isbn〉〉) = {{0201141922}, {3540659269}}

ExtS,Ix(〈〈author〉〉) = {{E. F. Codd}, {P. P. Chen}}

3.2. Formal definition of the HDM 59

ExtS,I1(〈〈writtenby, book, author〉〉) = {

{Conceptual Modeling Current Issues and Future Directions,

P. P. Chen}}

ExtS,I1(〈〈 , book, book:isbn〉〉) = {

{The Relational Model for Database Management, 0201141922}

{Conceptual Modeling Current Issues and Future Directions,

3540659269}}

ExtS,I2(〈〈writtenby, book, author〉〉) = {

{The Relational Model for Database Management, E. F. Codd},

{Conceptual Modeling Current Issues and Future Directions,

P. P. Chen}}

ExtS,I2(〈〈 , book, book:isbn〉〉) = {

{The Relational Model for Database Management, 0201141922}

{The Relational Model for Database Management, 3540659269}}

ExtS,I3(〈〈writtenby, book, author〉〉) = {

{The Relational Model for Database Management, E. F. Codd},

{Conceptual Modeling Current Issues and Future Directions,

P. P. Chen}}

ExtS,I3(〈〈 , book, book:isbn〉〉) = {

{The Relational Model for Database Management, 0201141922}

{Conceptual Modeling Current Issues and Future Directions,

3540659269}}

The mandatory constraint 〈〈book〉〉 ⊲ 〈〈writtenby, book, author〉〉 states that

each instance of 〈〈book〉〉 must appear at least once in the extent of the edge

〈〈writtenby, book, author〉〉, i.e. that each book has an author. Since there

is a book, The Relational Model for Database Management, that is not

3.2. Formal definition of the HDM 60

associated with any author in instance I1, the mandatory constraint is not

satisfied for instance I1. Instance I2 satisfies the aforementioned mandatory

constraint.

Consider now the unique constraint 〈〈book〉〉 ⊳ 〈〈 , book, book:isbn〉〉. This

constraint restricts each instance of 〈〈book〉〉 to appear not more than once,

i.e. it is unique, in the extent of the edge 〈〈 , book, book:isbn〉〉. In I2

this is not the case, since the same book appears twice in the extent of

〈〈 , book, book:isbn〉〉, thus I2 does not satisfy the unique constraint. In-

stance I1 does not have this problem.

Instance I3 satisfies both aforementioned mandatory and unique constraints.

Finally, consider the reflexive constraint 〈〈book〉〉
id
→ 〈〈 , book, book:isbn〉〉.

This constraint expresses that the instances of 〈〈book〉〉 can be identified

by the instances of the edge 〈〈 , book, book:isbn〉〉, i.e. if an instance of

〈〈book〉〉 appears in an instance of 〈〈 , book, book:isbn〉〉, then the latter in-

stance must be the identity tuple. Looking it the other way round, the

reflexive constraint expresses that the extent of 〈〈book〉〉 is the same as

the extent of 〈〈book:isbn〉〉 and that the extent of the edge between these

two nodes 〈〈 , book, book:isbn〉〉 contains identity tuples, e.g. {0201141922,

0201141922}. In I1 and I3, we have that all the instances of 〈〈book〉〉 appear

in the extent of 〈〈 , book, book:isbn〉〉:

{πS,Ix(〈〈book〉〉, 〈〈 , book, book:isbn〉〉, t) | t ∈ ExtS,Ix(〈〈 , book, book:isbn〉〉)} =

ExtS,Ix(〈〈book〉〉)

but, there are no identity tuples in the extent of 〈〈 , book, book:isbn〉〉:

{πS,Ix(〈〈book〉〉, 〈〈 , book, book:isbn〉〉, t) | t ∈ ExtS,Ix(〈〈 , book, book:isbn〉〉)∧

t = 〈πS,Ix(〈〈book〉〉, 〈〈 , book, book:isbn〉〉, t),

πS,Ix(〈〈book〉〉, 〈〈 , book, book:isbn〉〉, t)〉} = ∅.

Regarding I2, even the first condition of the reflexive constraint does not

hold; the extent of 〈〈book〉〉 is not the same as the extent of 〈〈 , book, book:isbn〉〉,

3.3. Supporting High-Level Data Models 61

since one instance of 〈〈book〉〉, Conceptual Modeling Current Issues and

Future Directions, is missing from 〈〈 , book, book:isbn〉〉.

Thus the reflexive constraint is not satisfied in any of the schema instances

I1, I2, I3.

⋄

3.3 Supporting High-Level Data Models

Based on the HDM, a generic classification of constructs of high-level models is

provided in [70]. This classification, an overview of which is given in this section,

explains how the constructs of an arbitrary high-level model can be represented

based on the three constructs of the HDM. In our schema merging framework, we

use this classification to provide a methodology for deriving generic merging rules

(see Section 6.2).

In [70], the constructs of any data model are classified as either extentional con-

structs, or constraint constructs, or both. An extentional construct represents a

set of values from some domain. Each such construct must be built using the exten-

tional constructs of the HDM, i.e. nodes and edges. A constraint construct places

a restriction on extents of extentional constructs and its built using the constraint

primitives of the HDM. In detail, the following constructs can be identified in any

data model.

• nodal: a nodal construct is an extentional construct, defined independently of

any other construct and it maps into a node in the HDM. Examples of nodal

constructs are the entity construct in the ER model and the table construct in

the relational model. A nodal schema object is identified by its scheme, which

contains the name of the object, and it may appear in isolation in a schema.

For example, an ER entity author is identified by the scheme 〈〈author〉〉. The

3.3. Supporting High-Level Data Models 62

extent of a nodal schema object is equivalent to the extent of the node schema

object it maps into.

• link: a link construct is an extentional construct defined based on other con-

structs and it maps into an edge in the HDM. An example of a link construct is

the relationship in the ER model. The scheme of a link schema object specifies

the name of the link and the schemes of the objects it associates. For exam-

ple, an ER relationship haswritten, which associates 〈〈book〉〉 and 〈〈author〉〉, is

defined by the scheme 〈〈haswritten, author, 0:N, book, 1:N〉〉. More details about

the definition of ER constructs can be found in the next section. The extent

of a link schema object is a subset of the cartesian product of the extents of

the schema objects it associates.

• link-nodal: a link-nodal construct is an extentional construct defined based

on one other construct and it maps into an edge, node and constraint com-

bination in the HDM. An example of a link-nodal construct is the attribute

in the ER model. The scheme of a link-nodal schema object contains the

name of the object and the scheme of the schema object it is defined upon.

For example, an ER attribute name on entity author is defined by the scheme

〈〈author, name, notnull〉〉. The extent of a link-nodal schema object is the ex-

tent of the edge it maps into, i.e. it is a subset of the cartesian product of the

extent of the schema object the link-nodal is defined upon and the extent of

the HDM node the link-nodal maps into.

• constraint: a constraint construct is defined based on other constructs and it

maps into a combination of the constraint primitives in the HDM. An example

of a constraint construct is the subset construct in the ER model. A constraint

schema object does not have an extent, but instead it limits the extents of the

schema objects it is associated with. The scheme of a constraint schema object

contains the name of the constraint and the schemes of the schema objects,

whose extent is limited. For example, an ER subset construct assigned the

3.4. Describing the ER Data Model in the HDM 63

author

name

bio

book

isbn

title

year?

haswritten

0:N

1:N

Figure 3.4: An example ER schema

name book isa publication specifying that book is a subset of publication is

defined by the scheme 〈〈book isa publication, publication, book〉〉.

Based on this construct classification, the constructs of a data model can be trans-

lated into HDM constructs.

3.4 Describing the ER Data Model in the HDM

In this section we are going to apply the above generic classification of constructs

to the ER model.

Several variations of the ER model have been presented in the literature. The

ER data model that we are going to consider in this section consists of the fol-

lowing constructs: entity, attribute, relationship, key, subset, and generalization.

These constructs need to be classified based on the four aforementioned classes of

constructs. An example of an ER schema is in Figure 3.4. The third column of

Table 3.1 lists the schemes of the schema objects present in this ER schema.

An entity schema object is an extentional object that can be isolated in a schema,

therefore the entity construct is classified as a nodal construct. To formally specify

the translation of the entity construct into the HDM we use HDM production

rules:

Definition 3.6. An HDM production rule has the form:

3.4. Describing the ER Data Model in the HDM 64

〈high level construct name〉〈high level construct scheme〉 7→ 〈HDM schemes〉

〈condition〉1 ⇒ 〈HDM constraint〉1

. . .

〈condition〉n ⇒ 〈HDM constraint〉n

where

• 〈high level construct scheme〉 is the structure used to represent a high level

model construct of type 〈high level construct name〉

• 〈HDM schemes〉 is a list of schemes of the extentional HDM constructs the

〈high level construct scheme〉 maps into. This list might be empty, which is

denoted using the ⊥ symbol. The extent of the 〈high level construct scheme〉 is

equivalent to the extent of the last scheme in this 〈HDM schemes〉 list.

• 〈condition〉 is a boolean expression over elements of the 〈high level construct

scheme〉, which when satisfied causes 〈HDM constraint〉 to be added to the 〈HDM

schemes〉 list.

The production rules specifies the translation of a high level construct, 〈high level

construct scheme〉, into multiple HDM constructs, which are specified by the final

〈HDM schemes〉 list, i.e. after all 〈condition〉s have been checked.

In the case of the ER entity construct the production rule is the following:

entity〈〈name〉〉 7→ [〈〈name〉〉]

An attribute construct is an extentional construct defined upon an entity, or even

in some ER variations defined upon another attribute object. The attribute schema

object specifies the cardinality with which the instances of the object it is defined

upon can participate in the attribute, i.e. whether the attribute is optional or manda-

tory. Therefore, the attribute construct is classified as both an extentional and a

3.4. Describing the ER Data Model in the HDM 65

constraint construct. Its production rule, which uses an auxiliary generate card func-

tion defined in Definition 3.7, is the following:

attribute 〈〈entity,name,constraint〉〉 7→ [〈〈entity name:name〉〉,

〈〈 ,entity,entity name:name〉〉]

true ⇒ generate card({〈〈entity:name〉〉},

〈〈 ,entity,entity:name〉〉,1,∗)

constraint = notnull ⇒ generate card({〈〈entity〉〉}, 〈〈 , entity, entity:name〉〉,

1, 1)

constraint = null ⇒ generate card({〈〈entity〉〉}, 〈〈 , entity, entity:name〉〉,

0, 1)

Definition 3.7. The generate card({NE1, . . . , NEn},E,L,U) function generates car-

dinality constraints between a set of nodes or edges {NE1, . . . , NEn} ∈ Schemes and

E ∈ Edges; there is a lower cardinality bound, L, which may be either 0 or 1, and

an upper bound, U , which may be 1, ∗, or N.

if L = 1 7→ {NE1, . . . , NEn}⊲ E

if U = 1 7→ {NE1, . . . , NEn}⊳ E

if L 6= 1 and U 6= 1 7→ ⊥

Example 3.3. In this example, we illustrate how the ER entity 〈〈book〉〉

and attribute 〈〈book, title, notnull〉〉 of the example ER schema (Figure 3.4)

are translated in the HDM.

1. Applying the node production rule to the entity 〈〈book〉〉 produces an

HDM node 〈〈book〉〉.

2. Applying the attribute production rule to the attribute 〈〈book, title, notnull〉〉

produces a node 〈〈book : title〉〉 and an edge 〈〈 , book, book : title〉〉 ini-

tially.

3.4. Describing the ER Data Model in the HDM 66

class construct ER scheme HDM translation
nodal entity 〈〈author〉〉 〈〈author〉〉
link-nodal, attribute 〈〈author, name, notnull〉〉 〈〈author : name〉〉
constraint 〈〈 , author, author : name〉〉

〈〈author : name〉〉⊲
〈〈 , author, author : name〉〉

〈〈author〉〉⊲ 〈〈 , author, author : name〉〉
〈〈author〉〉⊳ 〈〈 , author, author : name〉〉

constraint key 〈〈author, name〉〉 〈〈author〉〉
id
→ 〈〈 , author, author : name〉〉

link-nodal, attribute 〈〈author, bio, notnull〉〉 〈〈author : bio〉〉
constraint 〈〈 , author, author : bio〉〉

〈〈author : bio〉〉⊲
〈〈 , author, author : bio〉〉

〈〈author〉〉⊲ 〈〈 , author, author : bio〉〉
〈〈author〉〉⊳ 〈〈 , author, author : bio〉〉

nodal entity 〈〈book〉〉 〈〈book〉〉
link-nodal, attribute 〈〈book, isbn, notnull〉〉 〈〈book : isbn〉〉
constraint 〈〈 , book, book : isbn〉〉

〈〈book : isbn〉〉⊲ 〈〈 , book, book : isbn〉〉
〈〈book〉〉⊲ 〈〈 , book, book : isbn〉〉
〈〈book〉〉⊳ 〈〈 , book, book : isbn〉〉

constraint key 〈〈book, isbn〉〉 〈〈book〉〉
id
→ 〈〈 , book, book : isbn〉〉

link-nodal, attribute 〈〈book, title, notnull〉〉 〈〈book : title〉〉
constraint 〈〈 , book, book : title〉〉

〈〈book : title〉〉⊲ 〈〈 , book, book : title〉〉
〈〈book〉〉⊲ 〈〈 , book, book : title〉〉
〈〈book〉〉⊳ 〈〈 , book, book : title〉〉

link-nodal, attribute 〈〈book, year, null〉〉 〈〈book : year〉〉
constraint 〈〈 , book, book : year〉〉

〈〈book : year〉〉⊲ 〈〈 , book, book : year〉〉
〈〈book〉〉⊳ 〈〈 , book, book : year〉〉

link, relationship 〈〈haswritten,author,0:N, 〈〈haswritten, author, book〉〉
constraint book,1:N〉〉 〈〈book〉〉⊲ 〈〈haswritten, author, book〉〉

Table 3.1: Schema objects in the ER schema and the translated HDM schema

3.4. Describing the ER Data Model in the HDM 67

The first condition of the rule, which is true for all attributes, will in-

voke the function generate card({〈〈book : title〉〉},〈〈 , book, book : title〉〉,1,*),

which itself will generate the mandatory constraint 〈〈book : title〉〉 ⊲

〈〈 , book, book : title〉〉. This constraint expresses that each instance of

node 〈〈book : title〉〉 must appear at least once in the extent of the

edge 〈〈 , book, book : title〉〉, i.e. there is a 1 : N cardinality constraint

between the node and the edge. This is the reason that the gener-

ate card function is invoked with lower bound L = 1 and upper bound

U = ∗.

Since the attribute specifies that it is mandatory, notnull, the sec-

ond condition of the production rule will invoke the function gener-

ate card({〈〈book〉〉}, 〈〈 , book, book : title〉〉, 1, 1), which itself will gen-

erate the mandatory constraint 〈〈book〉〉 ⊲ 〈〈 , book, book : title〉〉 and

the unique constraint 〈〈book〉〉 ⊳ 〈〈 , book, book : title〉〉. The first con-

straint specifies that each instance of 〈〈book〉〉must appear at least once

in the extent of 〈〈 , book, book : title〉〉. The second constraint specifies

that each instance of 〈〈book〉〉 cannot appear more than once in the

extent of 〈〈 , book, book : title〉〉. Thus the two constraints express a 1:1

cardinality constraint between 〈〈book〉〉 and 〈〈 , book, book : title〉〉.

Thus, the attribute 〈〈book, title, notnull〉〉 is translated to the following

HDM objects: 〈〈book : title〉〉, 〈〈 , book, book : title〉〉, 〈〈book : title〉〉 ⊲

〈〈 , book, book : title〉〉, 〈〈book〉〉 ⊲ 〈〈 , book, book : title〉〉 and 〈〈book〉〉 ⊳

〈〈 , book, book : title〉〉.

⋄

A relationship construct is an extentional and a constraint construct. A relation-

ship schema object describes an association between schema objects and it includes

the cardinalities with which the instances of the associated schema objects can par-

3.4. Describing the ER Data Model in the HDM 68

ticipate in the relationship. Thus the relationship construct is classified as both a

link and constraint construct. Its production rule is the following:

relationship 〈〈name, entity1, L1 : U1, . . . , entityn, Ln : Un〉〉 7→

[〈〈name, entity1, . . . , entityn〉〉]

true ⇒ generate card({entity1}, 〈〈name, entity1, . . . , entityn〉〉, L1, U1)

. . .

true ⇒ generate card({entityn}, 〈〈name, entity1, . . . , entityn〉〉, Ln, Un)

Example 3.4. The example ER schema contains one ER relationship 〈〈haswritten,

author, 0:N, book, 1:N〉〉. Applying the relationship production rule to pro-

duces the edge 〈〈haswritten, book, author〉〉 initially. The conditions of the

rule will also invoke:

generate card({〈〈book〉〉}, 〈〈haswritten, author, book〉〉, 1, N) and

generate card({〈〈author〉〉}, 〈〈haswritten, author, book〉〉, 0, N).

The first call will generate the mandatory constraint 〈〈book〉〉⊲ 〈〈haswritten,

author, book〉〉 while the second call will not generate any constraint con-

structs (see Definition 3.7).

Thus, the relationship 〈〈haswritten, author, 0 : N, book, 1 : N〉〉 is translated

to the following HDM objects: 〈〈haswritten, author, book〉〉 and 〈〈book〉〉 ⊲

〈〈haswritten, author, book〉〉.

⋄

The key construct is defined upon an entity and it serves to specify the set of

attributes whose instances can be used to identify the instances of the entity. Thus,

the key construct is classified as a constraint construct. Its production rule uses the

notion of natural join, ⋊⋉, defined in Definition 3.8.

Definition 3.8. A view over HDM edges may be formed by joining edges together

to form a new virtual edge:

3.4. Describing the ER Data Model in the HDM 69

〈〈E,A,B1, . . . , Bn〉〉 ⋊⋉ 〈〈E,A,C1, . . . , Cm〉〉 = 〈〈E,A,B1, . . . , Bn, C1, . . . , Cm〉〉

The extent of the virtual edge is defined by a natural join over the extent of the two

joined edges:

ExtS,I(〈〈E,A,B1, . . . , Bn, C1, . . . , Cm〉〉) = [〈x, y1, . . . , yn, z1, . . . , zm〉

| 〈x, y1, . . . , yn〉 ∈ ExtS,I(〈〈E,A,B1, . . . , Bn〉〉) ∧

〈x, z1, . . . , zm〉 ∈ ExtS,I(〈〈E,A,C1, . . . , Cm〉〉)]

The production rule for the ER key construct is:

key〈〈entity, name1, . . . , namen〉〉 7→⊥

true ⇒ 〈〈entity〉〉
id
→ 〈〈 , entity, entity : name1〉〉 ⋊⋉ . . . ⋊⋉

〈〈 , entity, entity : namen〉〉

Example 3.5. In the example ER schema, the key of the 〈〈book〉〉 entity is

〈〈book, isbn〉〉. Applying the production rule to this key construct produces

the reflexive constraint 〈〈book〉〉
id
→〈〈 , book, book : isbn〉〉. This constraint

expresses that the instances of node 〈〈book〉〉 are identified by the edge

〈〈 , book, book : isbn〉〉, which has been produced by the translation of the

〈〈book, isbn, notnull〉〉 attribute. More specifically, if the extent of 〈〈book〉〉 in

schema instance I4 is:

ExtS,I4(〈〈book〉〉) = {{0201141922}, {3540659269}}

then the extent of the edge 〈〈 , book, book : isbn〉〉 must be:

ExtS,I4(〈〈 , book, book : isbn〉〉) = {{0201141922, 0201141922},

{3540659269, 3540659269}}

to satisfy the reflexive constraint.

3.4. Describing the ER Data Model in the HDM 70

author:
bio

⊲

author

⊲

⊳

author:
name

id
→

⊲⊳

⊲

⊳
⊲

⊳

book:
title

⊲

id
→

⊲⊳

book

book:
isbn

⊲

book:
year

⊲

⊲

haswritten

Figure 3.5: Translation of the example ER schema in the HDM

The final HDM schema produced from translating the example ER schema

is illustrated in Figure 3.5. The fourth column of Table 3.1 lists the schemes

of the schema object present in this HDM schema.

⋄

Finally, we have the subset and generalization constructs to translate into the

HDM. The subset construct specifies that the extent of an entity is a subset of the

extent of another entity, i.e. exactly as the inclusion constraint in the HDM (Def-

inition 3.5). Therefore, the subset construct is classified as a constraint construct.

Its production rule is:

subset〈〈super entity, sub entity〉〉 7→⊥

true ⇒ 〈〈sub entity〉〉 ⊆ 〈〈super entity〉〉

The generalization construct specifies that the extent of an entity is the union of

the extents of other entities, which among themselves do not have any common

instances. Thus, the generalization construct is classifies as a constraint construct,

which has the following production rule:

3.5. Summary 71

generalization〈〈super entity, sub entity1, . . . , sub entityn〉〉 7→⊥

true ⇒ 〈〈super entity〉〉 = 〈〈sub entity1〉〉 ∪ . . . ∪ 〈〈sub entityn〉〉

true ⇒ 〈〈sub entity1〉〉 6∩ . . . 6 ∩ 〈〈sub entityn〉〉

The first condition specifies that for each entity i, its extent is a subset of the extent

of the general entity, and the last condition specifies that the n sub-entities are

disjoint, i.e. do not have any common instances.

Example 3.6. An example of a subset is 〈〈book, publication〉〉, which ex-

presses that the extent of 〈〈book〉〉 is a subset of the extent of 〈〈publication〉〉.

An example of a generalization is 〈〈publication, book, paper〉〉, where 〈〈publication〉〉

is the super-entity, whose extent subsumes the extents of the disjoint 〈〈book〉〉

and 〈〈paper〉〉.

⋄

3.5 Summary

In this chapter, we have presented the hypergraph data model (HDM) which we use

in our research to define our low-level schema merging framework (Chapter 6). The

advantage of using the HDM is the introduction of a generic classification of high-

level data model constructs, which we have also presented in this chapter. Based on

this generic classification, we have shown how we can model high-level data models,

such as the ER data model.

In our schema integration framework, we have used this generic classification to

provide a methodology for deriving generic merging rules (Section 6.2). Addition-

ally, we have used the modelling of high-level data models based on the generic

classification to define particular high-level data model merging rules (Section 6.3).

Chapter 4

Top-K Schema Integration

In this chapter, we explain our schema integration framework.

As discussed in the introduction, one of the first steps in a schema integration task

is schema matching. The purpose of schema matching is to identify correspondences

between the objects of the schemas to be integrated. In our framework, the corre-

spondences that we are interested in are semantic mappings. In a matching task,

a list of semantic mappings for each pair of objects is called a schema mapping.

These terms are formally defined in Section 4.2.

In our schema integration framework, we explicitly represent and manage the un-

certainty that emerges during the schema matching process regarding the semantic

mapping between each pair of schema objects. The advantages of managing uncer-

tainty in schema integration have been explained in the literature [37, 108, 49] and

our motivation in representing schema matching uncertainty has been explained in

Section 1.2.1. Specifically, we require our representation of schema matching uncer-

tainty to support the following features:

• ability to rank the possible semantic mappings for each pair of objects based

on their likelihood: This is the ultimate objective for the representation of

72

73

schema matching uncertainty. By ranking the possible semantic mappings,

the ones that are more likely can be investigated first and they can be used to

produce integrated schemas that provide the correct query answers.

• assignment of a degree of uncertainty for each semantic mapping for each

pair of objects: This is necessary for ranking semantic mappings. Addition-

ally, these degrees of uncertainty can be used potentially to combine schema

matching uncertainty with other forms of uncertainty in data sources. For

example, there are several approaches [1, 23] that deal with the automated

ranking of query answers and produce numerical results to represent the level

of the uncertainty of each query answer, and other approaches that use nu-

merical values to represent the uncertainty regarding the data held in a data

source, e.g. in probabilistic databases [58]. These types of uncertainty could

be potentially combined with schema matching uncertainty.

• ability to express ignorance about the possible semantic mappings for each

pair of objects: Expressing ignorance is useful when we have no information

about two schema objects, or when we do not want to compare the objects.

• ability to show certainty about the semantic mapping for a pair of objects.

Section 4.3 explains our approach in representing schema matching uncertainty us-

ing uncertain semantic mappings (USMs), and Section 4.4 provides the rule to

combine uncertain semantic mappings. Our approach, which is based on Dempster-

Shafer’s theory [97], is shown in Section 4.5 to support the above feature require-

ments and in Section 4.6, it is shown to be more suitable for the representation of

schema matching uncertainty compared to other approaches used to model uncer-

tainty.

In our schema integration framework, the final result of matching is an uncertain

schema mapping, defined in Section 4.3. Based on an uncertain schema mapping,

4.1. Top-K Integration Methodology 74

HDM / ER

HDM /

relational

HDM / XML

E
j

E
1

E
2

E
m

...

...

Aggregator

USMs

HDM /

UML
SELECT

DISPLAY

Schema

Mapping

Integrated

Schema

Schema

Object

Pairs

Top-K

Schema
Mapping

K Thresholds

Top-K

Integrated

Schemas

Match

GUI

Mergeuncertain

schema

mapping

Belief/Plausibility

Top-K
Schema
Mappings

Figure 4.1: Our proposed architecture

the K most probable, i.e. the top-K, schema mappings can be discovered, as shown

in Section 4.7. In this section, the objectives for discovering the top-1 and top-K

mappings are identified and the complexity of the two processes is compared.

During schema merging, which is the next step in schema integration, the K most

probable schema mappings give rise to at most K most probable integrated schemas,

which we define in Section 4.8 as top-K integrated schemas.

Before we explain all these new terms, we describe the steps of our schema integration

methodology in Section 4.1.

4.1 Top-K Integration Methodology

In this section, we describe the steps of our schema integration methodology and

the architecture that implements them. The complete architecture is illustrated in

Figure 4.1.

Our methodology for Top-K integration can be divided into the following steps:

1. Schema Matching: The input to our schema matching is a list of n schema

4.1. Top-K Integration Methodology 75

object pairs [si,sj], where si ∈ Sp and sj ∈ Sq, and Sp and Sq are the schemas

or sub-schemas to be integrated. The output of schema matching is an uncer-

tain schema mapping, which is a list of uncertain semantic mappings (USMs),

[usm1, . . . , usmn], one for each pair of objects. Our contribution to schema

matching is the representation of uncertainty regarding the correct semantic

relationship for each pair of schema objects [si,sj] with the use of USMs. In

Figure 4.1, the schema matching step is performed by the Match component,

which consists of a set of experts, E1, . . . , Em, which compare the schema ob-

jects in each pair [si,sj] using different matching algorithms. Each expert e

produces a list of USMs [usm1,e, . . . , usmn,e] which are then aggregated into

the final output of schema matching, the uncertain schema mapping. In Sec-

tion 4.4, based on the working example presented in the introduction (Sec-

tion 1.1.4), we present Example 4.6, which describes instances of experts that

might be used in the Match component, the USMs they produce and how

these are combined to produce the uncertain schema mapping.

In our research, we propose a way of taking the results of each matching

algorithm that each expert e uses, and derive probability masses required for

the definition of USMs. Details about this derivation process can be found in

Section 5.1.3. In brief, an expert user uses the GUI component to examine

the results of the Match component in previous matching tasks and adjusts

them to specify the correct schema mappings for these tasks. Based on these

schema mappings, which we term training data, each expert e in the Match

component identifies the probability masses for the definition of USMs.

In Section 5.3.7, we show that increasing the training set size, increases the

accuracy of the USMs. However, currently, we have no other way of corre-

lating training set size and accuracy improvement. Indeed, it is possible to

propose scenarios where the training data might cause less accurate results to

be produced (as mentioned in Section 5.3.4). Thus, the use of training data is

4.1. Top-K Integration Methodology 76

something justified empirically by the results of experimentation.

2. Schema Mapping Selection: The input for schema mapping selection is the

uncertain schema mapping, [usm1, . . . , usmn], produced in the previous step.

Based on whether we require a semi-automated integration process or a fully-

automated process, the output of schema mapping selection, is either a single

schema mapping or K schema mappings. Note that (as it will be explained in

Section 4.7) an uncertain schema mapping specifies a set of schema mappings

each associated with a probability mass. In a semi-automated process, an ex-

pert user uses the GUI component of our architecture to select the appropriate

schema mapping. In our prototype implementation, no support is provided to

the user, but in principle a tool, such as Clio [76], could be used by the user. In

a fully-automated process, the K schema mappings with the highest likelihood

values are selected. This is performed in the Top-K component, the imple-

mentation of which we describe in Section 5.2. In Section 4.7, Example 4.8

shows a case on our working example of deriving the Top-2 schema mappings.

3. Schema Merging: The input to the schema merging process is a schema map-

ping, supplied from the previous step, and the output is an integrated schema.

For K schema mappings, at most K integrated schemas are produced. The

schema merging step is performed by the Merge component of our architec-

ture. Our contribution to schema merging is that an integrated schema and

its view definitions are produced based on semantic mappings between schema

objects. The process is based on merging rules on the HDM, which can be used

to define rules on higher level data models, such as the ER and the relational

model. More details and examples regarding schema merging are presented in

Chapter 6.

Next, we define the terms uncertain semantic mapping and uncertain schema map-

ping. To do so, we first need to define the terms semantic mapping and schema

4.2. Semantic Mappings 77

mapping.

4.2 Semantic Mappings

In Chapter 2, we stated that we focus on semantic schema matching, therefore the

relationships that we want to discover during matching are semantic relation-

ships.

4.2.1 Semantics

In order to identify the semantic relationship between two schema objects, we need

to compare the semantics of the two objects. We attempt to capture the semantics

of any schema object by looking at the set of real-world entities that the schema

object represents. In [59], the term real-world state is used to represent the real-

world entities of an object. We call this set of real-world entities, the intended

domain Domint
S,Instint(s) of the schema object s. In our integration framework the

semantic relationship between two schema objects is defined based on the set-based

comparison of the objects’ intended domains.

The intended domain of a schema object cannot be derived from a data source, or

from any other mechanical means. The data source only provides the extent (see

Definition 3.3) of the schema object, which is an encoding of the intended domain.

This encoding is frequently incorrect; it might contain errors and values may be

missing or might be extraneous. The correct encoding of the intended domain of

a schema object is what we call the intended extent of the object, which again

cannot always be derived from a data source, but could be if the data source is

well-maintained and known to be correct.

Definition 4.1. Intended Extent Given an HDM schema S = 〈Nodes, Edges,

Constraints〉, an intended instance Instintof S is a structure for which there exists

4.2. Semantic Mappings 78

phd

name college

Dean Williams Birkbeck

Hao Fan Birkbeck

Lucas Zamboulis Birkbeck

Nicos Rizopoulos Imperial

Table 4.1: A relation of the PhD students in the AutoMed group

s ExtSImp,I(s)

〈〈phd〉〉 [{Dean Williams}, {Hao Fan},
{Lucas Zamboulis}, {Nicos Rizopoulos}]

〈〈phd, name〉〉 [{Dean Williams,Dean Williams},
{Hao Fan,Hao Fan},
{Lucas Zamboulis,Lucas Zamboulis},
{Nicos Rizopoulos,Nicos Rizopoulos}]

〈〈phd, college〉〉 [{Dean Williams,Birkbeck},
{Hao Fan,Birkbeck},
{Lucas Zamboulis,Birkbeck},
{Nicos Rizopoulos,Imperial}]

〈〈phd pk, phd, 〈〈phd, name〉〉〉〉 -

Table 4.2: Extents ExtSImp,I

a function ExtintS,Instint : Schemes → P (Seq(V als)), which provides all the correct

instances intended for each s ∈ Schemes. V als is the correct set of values we

wish to model as being in the domain of our schema, Seq gives a sequence of those

values, and P forms the power set of those sequences. We also have the following

restrictions:

1. each tuple 〈a1, . . . , an〉 ∈ ExtintS,Instint(〈〈Ne, s1, . . . , sn〉〉) has: ai ∈ ExtintS,Instint(si),

for all 1 ≤ i ≤ n

2. for every c ∈ Constraints, c holds in Instint.

We call ExtintS,Instint(s) the intended extent of s.

�

4.2. Semantic Mappings 79

Example 4.1. Intended Extent Consider that the AutoMed research

group has created a relational database with schema SImp storing infor-

mation about its members. The database is located at Imperial College

London, one of the institutions of the research group.

One of the relations in the database contains information about the PhD

students of the group. Table 4.1 shows the tuples of this relation and

Table 4.2 shows the schema objects of the relation (see Chapter 3) together

with their extents ExtSImp,I .

In Table 4.1, the word Nicos is misspelled and a tuple is missing concerning

new group member and PhD student Andrew Smith from Imperial College

London. The extents ExtSImp,I of the schema objects replicate these errors.

The intended extents of the objects, listed in Table 4.3, correct these er-

rors: (a) wherever the word Nicos appears in the extent of an object

it is replaced by the word Nikos in the intended extent of the object,

(b) the instance {Andrew Smith}, which is not in ExtSImp,I(〈〈phd〉〉), ap-

pears in ExtintSImp,Inst
int(〈〈phd〉〉) and (c) the intended extents of the attributes

〈〈phd, name〉〉 and 〈〈phd, college〉〉 include instances associated to {Andrew

Smith}.

⋄

The intended extent ExtintS,Instint(s) of a schema object s is a set, therefore it does

not contain any duplicate elements. If s is a nodal construct, then each element

of ExtintS,Instint(s) represents a distinct real-world entity or concept. If s is a link or

link-nodal construct, then each element of ExtintS,Instint(s) represents an association

of real-world entities or concepts. Between the elements of ExtintS,Instint(s) and the

4.2. Semantic Mappings 80

s Extint
SImp,Inst

int(s)

〈〈phd〉〉 [{Dean Williams}, {Hao Fan},
{Lucas Zamboulis}, {Nikos Rizopoulos},
{Andrew Smith}]

〈〈phd, name〉〉 [{Dean Williams,Dean Williams},
{Hao Fan,Hao Fan},
{Lucas Zamboulis,Lucas Zamboulis},
{Nikos Rizopoulos,Nikos Rizopoulos},
{Andrew Smith,Andrew Smith}]

〈〈phd, college〉〉 [{Dean Williams,Birkbeck},
{Hao Fan,Birkbeck},
{Lucas Zamboulis,Birkbeck},
{Nikos Rizopoulos,Imperial},
{Andrew Smith,Imperial}]

〈〈phd pk, phd, 〈〈phd, name〉〉〉〉 -

Table 4.3: Intended Extents ExtintSImp,Inst
int

elements of Domint
S,Instint(s), there is a 1:1 correspondence. If there is a function

mapS : ExtintS,Instint(s) → Domint
S,Instint(s), that maps from the intended extent to the

intended domain, then this function is bijective in schema S for object s. Note

though that a real world entity might have different but correct representations in

distinct schemas, e.g. for schemas S1 and S2 real world entity x can have two distinct

representations y1 and y2 in the intended extents of the schemas, i.e. map−1
S1
(x) = y1,

map−1
S2
(x) = y2 and y1 6= y2, where map−1

Si
represents the inverse function of mapSi

.

For example, a Greek citizen might have two distinct representations in a database

of a Greek organization and an English organization. Both data sources could be

well-maintained and correct. but in the former the Greek name of the person is used

for representation, while in the latter, the name appears using Latin characters.

Definition 4.2. Intended Domain The intended domain, Domint
S,Instint(s), of a

schema object s in schema S is the set of real-world entities, concepts, or associa-

tions between entities and/or concepts, that the intended extent of s, ExtintS,Instint(s),

represents.

�

4.2. Semantic Mappings 81

Nikos Rizopoulos

Dean Williams

Hao Fan

Lucas Zamboulis

Andrew Smith

Nicos Rizopoulos

Dean Williams

Hao Fan

Lucas Zamboulis Andrew
Lucas

Dean

Nikos

Hao

ExtSImp,I(〈〈phd〉〉) Extint
SImp,Inst

int (〈〈phd〉〉) Domint
SImp,Inst

int (〈〈phd〉〉)

(a) Correspondences for a nodal object

{Nicos Rizopoulos,

Imperial}
{Dean

Williams,Birkbeck}

{Hao Fan, Birkbeck}
{Lucas Zamboulis,

Birkbeck}

{Andrew Smith,

Imperial}

{Nikos Rizopoulos,

Imperial}

{Dean Williams,Birkbeck}

{Hao Fan, Birkbeck}

{Lucas Zamboulis,

Birkbeck}

Imperial

Imperial
Birkbeck

Birkbeck

Birkbeck

Dean

Nikos
Hao

Andrew

Lucas
ExtSImp,I(〈〈phd, college〉〉)

Extint
SImp,Inst

int (〈〈phd, college〉〉)

Domint
SImp,Inst

int (〈〈phd, college〉〉)

(b) Correspondences for a link-nodal object

Figure 4.2: Correspondences between extents, intended extents and intended do-
mains

4.2. Semantic Mappings 82

Example 4.2. Intended Domain Following on from Example 4.1, the

extent ExtSImp,I(〈〈phd〉〉) of the nodal schema object 〈〈phd〉〉 contains four

elements in the data source.

As illustrated in Figure 4.2(a), ExtSImp,I(〈〈phd〉〉) corresponds to four of the

elements of the intended extent ExtintSImp,Inst
int(〈〈phd〉〉). ExtintSImp,Inst

int(〈〈phd〉〉)

also contains the element {Andrew Smith}.

Each element of ExtintSImp,Inst
int(〈〈phd〉〉) corresponds to a single element of

Domint
SImp,Inst

int(〈〈phd〉〉) and vice versa. Domint
SImp,Inst

int(〈〈phd〉〉) contains five

real-world entities, in particular five PhD students.

The intended domain Domint
SImp,Inst

int(〈〈phd, college〉〉) of the link-nodal schema

object 〈〈phd, college〉〉, illustrated in Figure 4.2(b), contains associations be-

tween PhD students in Domint
SImp,Inst

int(〈〈phd〉〉) and their colleges. Each

association in the figure is illustrated as a black double headed arrow in

Domint
SImp,Inst

int(〈〈phd, college〉〉).

⋄

Note that the order of the real-world entities in a binary association in the in-

tended domain of an object is insignificant. For example, the intended domain of

link schema object 〈〈supervisedBy, phd, academic〉〉 in SImp contains the association

Nikos Rizopoulos ↔ Peter McBrien. The intended domain of a link schema object

〈〈supervises, academic, phd〉〉 in SImp contains the same association in reverse order,

i.e. Peter McBrien ↔ Nikos Rizopoulos. The order of the real-world entities within

these associations is insignificant, therefore the two associations are identical in the

real-world and in the intended domains of the two link schema objects.

4.2.2 Semantic Relationships

Now that we have defined the semantics of schema objects based on their intended

domains, we can identify semantic relationships between schema objects by perform-

4.2. Semantic Mappings 83

ing a set-based comparison of their intended domains. Our methodology is similar

to [59] where strong and weak equivalences are defined. In [59], the relationships

are limited due to the adopted extended ER data model, e.g. equivalences between

attributes and classes, while we provide a generic framework that can be applied to

any data model.

We have defined six types of semantic relationships between schema objects based

on whether their intended domains are equivalent, they are subsuming one another,

they are intersecting or they are disjoint. For each pair of schema objects [s1, s2] only

one semantic relationship must be and is applicable. Note that each pair [s1, s2] of

schema objects is a list of length two and that the order the schema objects appear

in this list is significant. We first give the definition of the six types of semantic

relationships and then we explain each one.

Definition 4.3. Semantic Relationships The semantic relationship between a

pair of schema objects [s1, s2] in schemas S1 and S2, respectively, must be one of the

following:

• equivalence (S
=): We say that s1 is equivalent to s2 and we write 〈s1,

S
=, s2〉,

iff

∀Instint : Domint
S1,Inst

int(s1) = Domint
S2,Inst

int(s2).

• subset-subsumption (
S

⊂): We say that s1 is subsumed by s2 and we write

〈s1,
S
⊂, s2〉, iff

1. ∀Instint : Domint
S1,Inst

int(s1) ⊆ Domint
S2,Inst

int(s2).

2. ¬ 〈s1,
S
=, s2〉

• superset-subsumption (
S

⊃): We say that s1 subsumes s2 and we write

〈s1,
S
⊃, s2〉, iff

1. ∀Instint : Domint
S1,Inst

int(s1) ⊇ Domint
S2,Inst

int(s2).

4.2. Semantic Mappings 84

2. ¬ 〈s1,
S
=, s2〉

• intersection (
S

∩): We say that s1 intersects with s2 and we write 〈s1,
S
∩, s2〉,

iff

1. ∀Instint : Domint
S1,Inst

int(s1) ∩Domint
S2,Inst

int(s2) 6= ∅

2. ¬ 〈s1,
S
=, s2〉

3. ¬ 〈s1,
S
⊂, s2〉

4. ¬ 〈s1,
S
⊃, s2〉

5. could exist s3 : Domint
S1,Inst

int(s3) = Domint
S2,Inst

int(s3) = Domint
S1,Inst

int(s1) ∩

Domint
S2,Inst

int(s2)

• disjointness (
S

∩/): We say that s1 is disjoint with s2 and we write 〈s1,
S

∩/, s2〉,

iff

1. ∀Instint : Domint
S1,Inst

int(s1) ∩Domint
S2,Inst

int(s2) = ∅

2. ¬ s1
S
⊂s2

3. ¬ s1
S
⊃s2

4. could exist s3 : Domint
S1,Inst

int(s3) = Domint
S2,Inst

int(s3) = Domint
S1,Inst

int(s1) ∪

Domint
S2,Inst

int(s2)

• incompatibility (
S

/∼): We say that s1 is incompatible with s2 and we write

〈s1,
S

/∼, s2〉, iff

1. ∀Instint : Domint
S1,Inst

int(s1) ∩Domint
S2,Inst

int(s2) = ∅

2. ¬ s1
S
⊂s2

3. ¬ s1
S
⊃s2

4. could not exist s3 : Dom
int
S1,Inst

int(s3) = Domint
S2,Inst

int(s3) = Domint
S1,Inst

int(s1)∪

Domint
S2,Inst

int(s2)

�

4.2. Semantic Mappings 85

Intuitively, the semantic relationship between two objects is equivalence (S
=) when

the intended domains of the objects are equivalent for all possible intended in-

stances, i.e. at all times. The semantic relationship between two objects is subset-

subsumption (
S
⊂) when the intended domain of the first schema object is subsumed

by the intended domain of the second schema object. However, this condition is true

even when the two schema objects are equivalent (S
=). Therefore, in the definition of

subset-subsumption (
S
⊂) the second condition that must be satisfied is that the two

objects are not equivalent ¬〈s1,
S
=, s2〉. We call tuples such as 〈s1,

S
=, s2〉 semantic

mappings. The symbol of negation, ¬, in front of a semantic mapping states that

the semantic mapping is not true.

Definition 4.4. Semantic Mapping A semantic mapping between two schema

objects s1 and s2 is the tuple 〈s1, rel, s2〉 where rel ∈ { S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/,
S

/∼}.

�

The definition of superset-subsumption (
S
⊃) is is similar to subset-subsumption. Note

that if 〈s1,
S
⊃, s2〉 then it is also the case that 〈s2,

S
⊂, s1〉.

The semantic relationship between two objects is intersection (
S
∩) if the intended do-

mains of the two objects are intersecting. The second, third and fourth conditions

explicitly prohibit the existence of an equivalence, subset-subsumption and superset-

subsumption relationship, respectively, between the objects. The reason behind

these restrictions is that the intended domains of equivalent or subsuming schema

objects are also intersecting. For example, assume a schema object 〈〈imperial phd〉〉

that represents all Imperial College PhD students in the AutoMed research group.

For all possible Instintthe intended domain Domint
SImp,Inst

int(〈〈imperial phd〉〉) will be

intersecting with Domint
SImp,Inst

int(〈〈phd〉〉), which represents all PhD students in the

AutoMed research group (Example 4.1). In particular, we have that ∀Instint :

Domint
SImp,Inst

int(〈〈imperial phd〉〉)∩Domint
SImp,Inst

int(〈〈phd〉〉) = Domint
SImp,Inst

int(〈〈imperial

phd〉〉). However, it is also the case that ∀Instint : Domint
SImp,Inst

int(〈〈imperial phd〉〉) ⊆

4.2. Semantic Mappings 86

Domint
SImp,Inst

int(〈〈phd〉〉). Thus, even though the intended domains of the two ob-

jects are intersecting, we actually have that 〈〈〈imperial phd〉〉, S
⊂, 〈〈phd〉〉〉. The fifth

condition in intersection checks that the common real-world entities between the

two intersecting objects’ intended domains constitute a set of elements that a single

real-world concept represents. The could exists keyword expresses that this concept

is relevant to schemas S1 and S2 and that s3 that represents the concept may or

may not already appear in S1 and S2. Whether the concept is relevant or not is

subjective and needs to be confirmed by an expert.

Disjointness, which is the next relationship of our definition, does not have to be

explicitly prohibited from the definition of intersection since the first condition of

disjointness, which states that the intended domains of the schema object must

be disjoint, conflicts with the first condition in the definition of intersection. The

same applies for incompatibility. The second and third conditions in disjointness are

necessary for the trivial case where either Domint
S1,Inst

int(s1) = ∅ or Dom
int
S2,Inst

int(s2) =

∅. The fourth condition implies that the union of the intended domains of the

schema objects is the representation of a real-world concept relevant to S1 and S2.

The definition of incompatibility differs with the definition of disjointness only in

their fourth condition. The fourth condition of incompatibility states that the union

of the intended domains of the schema objects is either not the representation of a

real-world concept, or that the real-world concept is not relevant to S1 and S2. For

example, an expert may decide that 〈〈phd〉〉 and 〈〈academic〉〉 are disjoint and that

the union of the two produces a schema object 〈〈phd or academic〉〉, while another

expert may decide that the concept of 〈〈phd or academic〉〉 is not relevant to his/her

integration.

In the remaining of this thesis, we are going to use the term compatible to de-

scribe that two objects are either equivalent, subsuming one another, intersecting

or disjoint.

4.2. Semantic Mappings 87

Definition 4.5. Compatibility Two schema objects s1 and s2 are said to be com-

patible, 〈s1,
S
∼, s2〉, iff one of the following conditions is true: (i) 〈s1,

S
=, s2〉, (ii)

〈s1,
S
⊂, s2〉, (iii) 〈s1,

S
⊃, s2〉, (iv) 〈s1,

S
∩, s2〉, (v) 〈s1,

S

∩/, s2〉.

�

Example 4.3. Semantic Mappings Following on from the example in

the introduction where schemas Ser
1 and Ser

2 about academic papers and

academic text books (see Figure 1.3(a)) are matched, a disjointness mapping

can be identified for pair p1 ≡ [〈〈paper〉〉, 〈〈book〉〉]

〈〈〈paper〉〉,
S

∩/, 〈〈book〉〉〉

meaning that the two schema objects could be both subsets of a more

general object, such as 〈〈publication〉〉. Similarly, regarding the two objects’

attributes pairs p2 ≡ [〈〈paper, title〉〉, 〈〈book, title〉〉] and p3 ≡ [〈〈paper, year〉〉,

〈〈book, year〉〉]:

〈〈〈paper, title〉〉,
S

∩/, 〈〈book, title〉〉〉

〈〈〈paper, year〉〉,
S

∩/, 〈〈book, year〉〉〉
⋄

When matching schemas a list of semantic mappings relating the objects of the

schemas is produced. We call this list of semantic mappings, a schema mapping.

Definition 4.6. Schema Mapping A schema mapping Match is a list of N

semantic mappings for the N distinct pairs of objects of a matching task.

�

Automatic schema matching tools that discover schema mappings can never be

100% certain of their correctness. In our schema integration framework we can rep-

resent the uncertainty of the schema matching tools by introducing the concepts of

uncertain semantic mapping and uncertain schema mapping in Section 4.3.

4.2. Semantic Mappings 88

4.2.3 Semantic mappings translated to data mappings

Before we examine the representation of uncertainty in schema matching, it is inter-

esting to see what we can say about the extents of a pair of schema objects [s1, s2]

knowing that its semantic mapping is 〈s1, rels, s2〉. By relating the extents of schema

objects we can derive data mappings which are useful during schema merging.

For example, previously we mentioned that the objects 〈〈supervisedBy, phd, academic〉〉

and 〈〈supervises, academic, phd〉〉 in SImp are semantically equivalent even though they

specify the same associations of objects in reverse order. By Definition 4.3, we have

that Domint
SImp,Inst

int(〈〈supervisedBy, phd, academic〉〉) = Domint
SImp,Inst

int (〈〈supervises, aca-

demic, phd〉〉). Now since there is a 1:1 mapping between ExtintS,Instint and Domint
S,Instint ,

the above equivalence implies that a 1:1 mapping exists between ExtintSImp,Inst
int(〈〈super-

visedBy, phd, academic〉〉) and ExtintSImp,Inst
int(〈〈supervises, academic, phd〉〉). Using the

function transpose({x, y}) = {y, x} which reverses the order of binary tuples we

have that

ExtintSImp,Inst
int(〈〈supervisedBy, phd, academic〉〉) =

{transpose(i) | i ∈ ExtintSImp,Inst
int(〈〈supervises, academic, phd〉〉) }.

Thus, the original equivalence semantic mapping leads to a data mapping between

the intended extents of the two objects.

Example 4.4. Translation of intended extents For a more detailed

example of how a semantic mapping can be used to determine a data map-

ping between the intended extents of schema objects consider the following.

There is a database at Birkbeck College with schema SBir that stores infor-

mation about the members of the AutoMed research group. In particular,

4.2. Semantic Mappings 89

there is an object 〈〈member〉〉 with intended extent:

ExtintSBir,Inst
int(〈〈member〉〉) =

[{Dean Williams}, {Hao Fan}, {Lucas Zamboulis},

{Nikos Rizopoulos}, {Andrew C. Smith}

{Alex Poulovassilis}, {Peter J. McBrien}]

We know that all the PhD students in the AutoMed group, represented by

〈〈phd〉〉 in SImp (Example 4.1), are also members of the group. Thus, we

have that 〈〈〈phd〉〉, S⊂,〈〈member〉〉〉. This means that Domint
SImp,Inst

int(〈〈phd〉〉) ⊆

Domint
SBir,Inst

int(〈〈member〉〉). However, it is not the case that ExtintSImp,Inst
int(

〈〈phd〉〉) ⊆ ExtintSBir,Inst
int(〈〈member〉〉), due to the fact that in Birkbeck the

encoding of the AutoMed members includes their middle name initials.

The function removeInitials can translate between the intentional extents

of 〈〈member〉〉 and 〈〈phd〉〉 by removing the middle name initials from each

instance of 〈〈member〉〉, if it has any, i.e.

{removeInitials(i) | i ∈ ExtintSBir,Inst
int(〈〈member〉〉)} =

{{Dean Williams}, {Hao Fan}, {Lucas Zamboulis},

{Nikos Rizopoulos}, {Andrew Smith},

{Alex Poulovassilis}, {Peter McBrien}}

Based on the removeInitials function and the fact that 〈〈phd〉〉 is subsumed

by 〈〈member〉〉, we have that the intended extent of 〈〈phd〉〉 is subsumed

by the translated intended extent of 〈〈member〉〉: ExtintSImp,Inst
int(〈〈phd〉〉) ⊆

{removeInitials(i) |i ∈ ExtintSBir ,Inst
int(〈〈member〉〉)}.

⋄

In general, we see that the semantic mapping between two schema objects implies a

data mapping between the intended extents of the objects. The following proposition

4.2. Semantic Mappings 90

specifies the data mapping derived from each distinct compatibility mapping.

Proposition 4.1. Based on Definition 4.3, a function f that can translate between the

intended extents of equivalent, subsuming, intersecting and disjoint schema objects

must have the following properties:

• 〈s1,
S
=,s2〉,

∃f : ∀Instint(ExtintS1,Inst
int(s1) = {f(i) | i ∈ ExtintS2,Inst

int(s2)}).

• (〈s1,
S
⊂,s2〉,

∃f : ∀Instint(ExtintS1,Inst
int(s1) ⊆ {f(i) | i ∈ ExtintS2,Inst

int(s2)}).

• (〈s1,
S
⊃,s2〉,

∃f : ∀Instint(ExtintS1,Inst
int(s1) ⊇ {f(i) | i ∈ ExtintS2,Inst

int(s2)}).

• (〈s1,
S
∩,s2〉,

∃f : ∀Instint(ExtintS1,Inst
int(s1) ∩ {f(i) | i ∈ ExtintS2,Inst

int(s2)} 6= ∅).

• (〈s1,
S

∩/,s2〉,

∃f : ∀Instint, ∃s3(Ext
int
S12,Inst

int(s3) = ExtintS1,Inst
int(s1)∪{f(i) | i ∈ ExtintS2,Inst

int(s2)})

and ExtintS1,Inst
int(s1) ∩ {f(i) | i ∈ ExtintS2,Inst

int(s2)} = ∅.

In general, identifying such a function f is a very hard problem. The number

of such functions is infinite and thus the problem is intractable. It is essentially

the same problem as the identification of data mappings during schema match-

ing (see Section 2.2). As far as we know only two existing schema matching ap-

proach, [31, 112] (reviewed in Section 2.2.2), could possibly be used to identify

such a function f . In these approaches, unit conversion data mappings are derived,

e.g. “weight-kg = 2.2∗weight-pounds”, which are appropriate candidates for function

f . In this particular example, the intended extents of the semantically equivalent

schema objects weight-kg and weight-pounds can be translated using the function

f(x) = 2.2 ∗ x.

4.3. Uncertain Semantic Mappings 91

4.3 Uncertain Semantic Mappings

Based on the definitions in the previous section, we can identify a semantic map-

ping between two schema objects if we know the intended domains of the objects

and we are certain about them. However, intended domains are not available to an

automatic matching tool. Therefore, the matching tool will produce semantic map-

pings with a high degree of uncertainty. In this section, we are going to explain our

methodology for the representation of uncertainty in the schema matching process.

To deal with schema matching uncertainty, we have adopted Shafer’s theory of

belief functions [97], also known as evidence theory. The theory deals with a

so-called frame of discernment, which is the set of all possible elementary events,

and is represented by the letter Θ. In our framework where the uncertainty lies in the

exact semantic relationship in a semantic mapping, the elementary events are all se-

mantic relationships defined in the previous section, i.e. Θ = Θrel = {
S
=,

S
∩,

S
⊂,

S
⊃,

S

∩/,
S

/∼}.

Based on Shafer’s theory, if we are uncertain about which single semantic relation-

ship is the correct one for a given pair, we can assign probability masses to several

distinct sets Ai ⊆ Θrel, of semantic relationships.

The basis of the measure of uncertainty in Shafer’s theory is a function called basic

probability assignment (BPA) that assigns some probability mass to each element

of 2Θ:

Definition 4.7. Basic Probability Assignment (BPA) A function m : 2Θ →

[0, 1] is called basic probability assignment whenever:

• m(∅) = 0

•
∑

A⊆Θm(A) = 1

�

4.3. Uncertain Semantic Mappings 92

The above definition states that no probability mass is assigned to the impossi-

ble event ∅, i.e. the empty set, and that the total probability mass that can be

distributed has measure one.

From a BPA function, we can compute the belief and plausibility of any subset A

of Θ. The belief Bel(A) assigned to a set A is the sum of all probability masses

assigned to any evidence set B that states that the set A is true, i.e. B ⊆ A. The

plausibility Pl(A) assigned to a set A is the sum of all probability masses assigned

to any evidence set B that is consistent with set A, i.e. B ∩ A 6= ∅.

Definition 4.8. Belief and Plausibility

Bel(A) =
∑

B⊆A

m(B)

Pl(A) =
∑

B⊆Θ,B∩A 6=∅

m(B)

�

Since for each set B, with B ⊆ A, the statement B ∩ A 6= ∅ is true, we have that

Bel(A) ≤ Pl(A). Thus, a BPA defines a certainty interval [Bel(A), P l(A)] on each

set A ⊆ Θ.

Example 4.5. Belief and Plausibility In our schema integration frame-

work, the set { S
=,

S

/∼} represents the event “The correct semantic relationship

is either equivalence or incompatibility”, and m({ S
=,

S

/∼}) is the probability

mass supporting exactly this event.

If some probability mass is assigned to the set { S
=}, this increases our belief

in all the events containing it. In fact, if we have some evidence supporting

the event “The true semantic relationship is equivalence”, the same evidence

4.4. Aggregation of Uncertain Semantic Mappings 93

increases also our belief in the event “The true semantic relationship is either

equivalence or incompatibility”.

Plausibility on { S
=,

S

/∼} is the sum of all probability masses that are consistent

with { S
=,

S

/∼}. For example, some probability mass assigned to { S
=,

S

∩/} tells us

that { S
=,

S

/∼} is plausible, without increasing our belief in it, because the

correct relationship could be disjointness.

⋄

Based on Shafer’s theory, we can formally define uncertain semantic mappings:

Definition 4.9. Uncertain Semantic Mapping (USM) An uncertain semantic

mapping between two schema objects s1 and s2 is the tuple 〈s1, m, s2〉 where m is

a BPA on Θrel = {
S
=,

S
∩,

S
⊂,

S
⊃,

S

∩/,
S

/∼}.

�

Automatic matching tools can explicitly represent their uncertainty on a matching

task by producing a list of USMs. We call this list of USMs an uncertain schema

mapping.

Definition 4.10. Uncertain Schema Mapping An uncertain schema map-

ping u-Match is a list of N USMs for the N distinct pairs of objects of a matching

task.

�

4.4 Aggregation of Uncertain Semantic Mappings

USMs can be aggregated using Dempster’s combination rule [97]. The rule takes

two BPAs m1 and m2 over the same frame of discernment Θ as input and produces

the probability mass for a subset A of Θ.

4.4. Aggregation of Uncertain Semantic Mappings 94

Intuitively, a given subset A of Θ may be the intersection of several different pairs

Ai, Aj. In order to obtain the total mass assigned exactly to A, the sum of all

products m1(Ai)m2(Aj), Ai ∩Aj = A, needs to be calculated. However, if there are

assignments m1(Ai), m2(Aj) such that Ai∩Aj = ∅ and m1(Ai)m2(Aj) > 0, i.e. some

probability mass greater than zero is assigned to the empty set, then the combination

m1⊕m2 of m1 and m2 is not a BPA according to Definition 4.7. Therefore, in order

to make m1 ⊕m2 a BPA, we need to exclude cases such as Ai ∩ Aj = ∅. This can

be achieved by normalizing all masses m1⊕m2(A) and dividing them with the sum

of all products m1(Ai)m2(Aj) for which Ai ∩ Aj 6= ∅,

∑

Ai⊆Θ,Aj⊆Θ,Ai∩Aj 6=∅ m1(Ai)m2(Aj)

Thus, the rule that combines two BPAs m1 and m2 is the following:

m1 ⊕m2(A) =

0 if A = ∅
∑

Ai⊆Θ,Aj⊆Θ,Ai∩Aj=A m1(Ai)m2(Aj)
∑

Ai⊆Θ,Aj⊆Θ,Ai∩Aj 6=∅ m1(Ai)m2(Aj)
if A 6= ∅

(4.1)

Based on Dempster’s combination rule, the aggregation of a pair of uncertain se-

mantic mappings 〈s1,m1,s2〉 and 〈s1,m2,s2〉 between schema objects s1 and s2 is a

new uncertain semantic mapping 〈s1,m1⊕2,s2〉 where m1⊕2 is a BPA produced using

Dempster’s combination rule on m1 and m2 for every subset A of Θrel, i.e. ∀A ⊆

Θrel : m1⊕2(A) = m1 ⊕m2(A).

Dempster’s combination rule is commutative and associative, thus the aggregation

of N uncertain semantic mappings is obtained by iteratively aggregating pairs of

uncertain semantic mappings N − 1 times. For example, if there was an additional

uncertain semantic mapping 〈s1,m3,s2〉, then the aggregation of the three mappings

would be a new mapping 〈s1,m1⊕2⊕3,s2〉 where m1⊕2⊕3 is a BPA produced using

Dempster’s combination rule on m1⊕2 and m3 for every subset A of Θrel, i.e. ∀A ⊆

Θrel : m1⊕2⊕3(A) = m1⊕2 ⊕m3(A).

4.4. Aggregation of Uncertain Semantic Mappings 95

Example 4.6. Aggregation of USMs Assume that we have three dif-

ferent experts, E1, E2 and E3, matching the entities paper in Ser
1 and book

Ser
2 and their attributes. Remember that paper represents academic paper

publications and book represents academic text book publications.

Expert E1 compares the cardinalities of the schema objects, i.e. the number

of their instances. The expert takes the view that if the cardinalities are

equal, subsumption is not possible. If the cardinality of the first object

is greater than the other, then they cannot be equivalent and the second

object cannot subsume the first one. Notice that this expert assumes that

all instances belonging to those objects in the real world are stored in the

database. It would be possible to improve the expert so that some instances

can be missing, using fuzzy comparisons. The cardinality of 〈〈paper〉〉 is

much greater than that of 〈〈book〉〉, because there are many more research

papers than text books. Therefore, the first expert can exclude equivalence

and subset-subsumption. The USM produced by this expert is:

mE1({
S
⊃,

S
∩,

S

∩/,
S

/∼}) = 1

〈〈〈paper〉〉,mE1 , 〈〈book〉〉〉

Expert E2 uses schema structure and object names to perform matching.

The expert identifies that both 〈〈paper〉〉 and 〈〈book〉〉 have two attributes title

and year. However, they have different names and their identifiers, bibtex

and id, do not seem compatible. Thus, the expert is uncertain about the

compatibility of 〈〈paper〉〉 and 〈〈book〉〉 and produces the following mapping:

mE2({
S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/}) = .4,mE2({
S

/∼}) = .6

〈〈〈paper〉〉,mE2 , 〈〈book〉〉〉

Expert E3 compares the instances of two schema objects. For efficiency

reasons, it only compares a sample of the instances of 〈〈paper〉〉 with all

4.4. Aggregation of Uncertain Semantic Mappings 96

the instances of the 〈〈book〉〉, and vice versa. This induces uncertainty on

the result. In our example, the expert E3 cannot find matches between

the instances of the two objects, because a publication cannot be both a

paper and a book. Therefore, it will support the set of relationships {
S

∩/,
S

/∼}.

However, as already said, the expert cannot be certain of this information.

Its USM is :

mE3({
S

∩/,
S

/∼}) = .8,mE3(Θrel) = .2

〈〈〈paper〉〉,mE3 , 〈〈book〉〉〉

Experts E1 and E3 think that disjointness and incompatibility are plausible

and expert E2 believes in incompatibility, ranking it higher than any other

relationship. Combining the three BPAs mE1 ,mE2 , and mE3 that the three

experts produce, gives the BPA mp1 as follows.

First mE1 and mE2 must be combined. The two BPAs intersect in these

two sets only:

• { S
⊃,

S
∩,

S

∩/,
S

/∼} ∩ { S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/} = { S
⊃,

S
∩,

S

∩/}:

mE1({
S
⊃,

S
∩,

S

∩/,
S

/∼})×mE2({
S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/}) = 1× 0.4 = 0.4

• { S
⊃,

S
∩,

S

∩/,
S

/∼} ∩ {
S

/∼} = {
S

/∼}:

mE1({
S
⊃,

S
∩,

S

∩/,
S

/∼})×mE2({
S

/∼}) = 1× 0.6 = 0.6

Based on Equation 4.1, we have

mE1⊕E2({
S
⊃,

S
∩,

S

∩/}) = 0.4/(0.4 + 0.6) = 0.4

mE1⊕E2({
S

/∼}) = 0.6/(0.4 + 0.6) = 0.6

Now, mp1 can be computed by combining mE1⊕E2 and mE3 . These two

BPAs intersect in the following sets only:

• {
S

∩/}: is the intersection of { S
⊃,

S
∩,

S

∩/} of mE1⊕E2 with {
S

∩/,
S

/∼} of mE3 , thus

mE1⊕E2({
S
⊃,

S
∩,

S

∩/})×mE3({
S

∩/,
S

/∼}) = 0.4× 0.8 = 0.32

4.4. Aggregation of Uncertain Semantic Mappings 97

• {
S

/∼}: is the intersection of {
S

/∼} of mE1⊕E2 with {
S

∩/,
S

/∼} of mE3 and the

intersection of {
S

/∼} of mE1⊕E2 with Θrel of mE3 , thus

mE1⊕E2({
S

/∼} ×mE3({
S

∩/,
S

/∼}) +mE1⊕E2({
S

/∼}) ×mE3(Θrel) = 0.6 × 0.8 +

0.6× 0.2 = 0.6

• { S
⊃,

S
∩,

S

∩/}: is the intersection of { S
⊃,

S
∩,

S

∩/} of mE1⊕E2 and Θrel of mE3 ,

thus

mE1⊕E2({
S
⊃,

S
∩,

S

∩/})×mE3(Θrel) = 0.4× 0.2 = 0.08

Based on Equation 4.1, we have

mp1({
S

∩/}) = mE1⊕E2⊕E3({
S

∩/}) = 0.32/(0.32 + 0.6 + 0.08) = 0.32

mp1({
S

/∼}) = mE1⊕E2⊕E3({
S

/∼}) = 0.6/(0.32 + 0.6 + 0.08) = 0.6

mp1({
S
⊃,

S
∩,

S

∩/}) = mE1⊕E2⊕E3({
S
⊃,

S
∩,

S

∩/}) = 0.08/(0.32 + 0.6 + 0.08) = 0.08

Thus, the USM for p1 is the following:

mp1({
S

/∼}) = .60,mp1({
S

∩/}) = .32,mp1({
S
⊃,

S
∩,

S

∩/}) = .08

〈〈〈paper〉〉,mp1 , 〈〈book〉〉〉 (4.2)

The same three experts matching the attributes of 〈〈paper〉〉 and 〈〈book〉〉

would produce:

m′
E1
({ S

⊃,
S
∩,

S

∩/,
S

/∼}) = 1

〈〈〈paper, title〉〉,m′
E1
, 〈〈book, title〉〉〉

m′
E2
({ S

=,
S
⊂,

S
⊃,

S
∩,

S

∩/}) = .8,m′
E2
({

S

/∼}) = .2

〈〈〈paper, title〉〉,m′
E2
, 〈〈book, title〉〉〉

m′
E3
({

S

∩/,
S

/∼}) = .8,m′
E3
(Θrel) = .2

〈〈〈paper, title〉〉,m′
E3
, 〈〈book, title〉〉〉

which aggregated give the following USM:

mp2({
S

/∼}) = .20,mp2({
S

∩/}) = .64,mp2({
S
⊃,

S
∩,

S

∩/}) = .16

〈〈〈paper, title〉〉,mp2 , 〈〈book, title〉〉〉

4.4. Aggregation of Uncertain Semantic Mappings 98

p1 p2 p3
[〈〈paper〉〉,〈〈book〉〉] [〈〈paper, title〉〉,〈〈book, title〉〉] [〈〈paper, year〉〉,〈〈book, year〉〉]

Bl Pl Bl Pl Bl Pl

{ S
=} 0 0 0 0 0 0

{ S
⊂} 0 0 0 0 0 0

{ S
⊃} 0 0.08 0 0.16 0 0.16

{S
∩} 0 0.08 0 0.16 0 0.16

{
S

∩/} 0.32 0.4 0.64 0.8 0.64 0.8

{
S

/∼} 0.6 0.6 0.2 0.2 0.2 0.2

Table 4.4: Belief, plausibility of alternative semantic relationships between pairs p1,
p2 and p3

The BPA mp2 is the BPA m′
E1⊕E2⊕E3

. To compute it, first we see that m′
E1

and m′
E2

are intersecting only in: { S
⊃,

S
∩,

S

∩/} and {
S

/∼}. Thus,

m′
E1⊕E2

({ S
⊃,

S
∩,

S

∩/}) = (1× 0.8)/(1× 0.8 + 1× 0.2) = 0.8

m′
E1⊕E2

({
S

/∼}) = (1× 0.2)/(1× 0.8 + 1× 0.2) = 0.2

Now, m′
E1⊕E2

and m′
E3

are intersecting in sets: {
S

∩/}, {
S

/∼} and {
S
⊃,

S
∩,

S

∩/}. As

previously, we have

mp2({
S

∩/}) = m′
E1⊕E2⊕E3

({
S

∩/}) = 0.8×0.8
0.8×0.8+(0.2×0.8+0.2×0.2)+0.8×0.2

= 0.64

mp2({
S

/∼}) = m′
E1⊕E2⊕E3

({
S

/∼}) = 0.2×0.8+0.2×0.2
0.8×0.8+(0.2×0.8+0.2×0.2)+0.8×0.2

= 0.20

mp2({
S
⊃,

S
∩,

S

∩/}) = m′
E1⊕E2⊕E3

({ S
⊃,

S
∩,

S

∩/}) = 0.8×0.2
0.8×0.8+(0.2×0.8+0.2×0.2)+0.8×0.2

= 0.16

For the pair 〈〈paper, year〉〉 and 〈〈book, year〉〉, the experts produce USMs

which have the same BPAs m′
E1
, m′

E2
and m′

E3
as above. Thus, a similar

mapping would be produced for this pair :

mp3({
S

/∼}) = .20,mp3({
S

∩/}) = .64,mp3({
S
⊃,

S
∩,

S

∩/}) = .16

〈〈〈paper, year〉〉,mp3 , 〈〈book, year〉〉〉

while we can assume in this example that the remaining attribute pairs of

paper and book give certain incompatibility mappings.

In Table 4.4 we have computed the belief and plausibility of every alternative

semantic relationship for the three pairs.

4.4. Aggregation of Uncertain Semantic Mappings 99

⋄

Dempster’s combination rule can be applied to combine two independent BPAs.

This means that the information used to derive each BPA must be independent. In

our previous example (Example 4.6) for instance, the three experts produce USMs

(each USM is associated with a BPA) based on completely different information to

compare schema objects (cardinalities, structure and instances). Thus, in Exam-

ple 4.6, we can apply Dempter’s rule to combine the experts’ BPAs. If, instead,

two experts both produced BPAs by comparing the instances of the schema objects

and the third expert produced BPAs by comparing the cardinalities of the schema

objects, then the final combined BPA would be biased towards the results of the

first two experts, i.e. biased towards the cardinality information.

Other existing schema matching approaches, e.g. [81], also have to deal with this

issue, which is usually resolved by assigning weights to the experts. The way these

weights are derived though is not trivial. In some approaches, e.g. [33], these weights

are assigned arbitrarily, while in [35] there is a training phase where the weights are

learned based on data from previous manual matching tasks.

We currently require our experts to be independent. This implies that we cannot

use experts as black boxes, but we need to know the information they use to perform

matching. If there are experts that use dependent information to produce BPAs then

these experts have to be merged into a single expert first, in order to be incorporated

into our framework. As future work, we could investigate extensions of Dempster’s

combination rule, e.g. the tradeoff method [97], that essentially assign weights to

the experts.

4.5. Supported Features 100

4.5 Supported Features

We mentioned in the introduction of this chapter a list of features that we require

our approach to the representation of schema matching uncertainty to support. In

this section, we illustrate how we support these features.

• ranking: USMs can be used to rank the semantic relationships for each pair of

schema objects based on the belief or the plausibility assigned to each semantic

relationship. For example, based on the plausibility values in Table 4.4, the

semantic relationships for pair p1 have the following ranks: (1)
S

/∼; (2)
S

∩/; (3)
S
⊃,

S
∩; (4) S

=,
S
⊂.

• degree of uncertainty: each semantic relationship for each pair of schema ob-

jects is assigned a belief and a plausibility value based on USMs. Belief and

plausibility can be used to show the degree of uncertainty of each semantic

relationship. For example, for pair p1 in Table 4.4, we have that semantic

relationship
S

/∼ is assigned a plausibility value of 0.6.

• ignorance: USMs can be used to show total and partial ignorance about the

possible semantic relationships for each pair of objects. USMs can express

total ignorance by assigning all their probability mass to the set of all seman-

tic relationships, m(Θrel) = 1. USMs can also express partial ignorance by

assigning a part of their probability mass to Θrel. For example, a USM with

m({ S
=}) = .2,m(Θrel) = .8 means that we have some evidence that the two

objects are equivalent, but we are not sure.

• certainty: A USM that assigns all its probability mass to a single semantic

relationship for a pair of objects, e.g. m({ S
=}) = 1, expresses its certainty about

the particular semantic relationship for that pair.

4.6. Comparison with other approaches 101

4.6 Comparison with other approaches

There are several approaches to modelling uncertainty [84] that could also be used

potentially to represent schema matching uncertainty. In this section, we com-

pare Dempster-Shafer’s theory (adopted in our approach) against the numerical

formalisms (probabilities, fuzzy sets) reviewed in [84], and against rough sets.

Dempster-Shafer’s theory is known to be a generalization of Bayesian probability

theory [84]. Thus, using probabilities to represent schema matching uncertainty is

subsumed by our approach. Specifically, USMs could be used to assign probabili-

ties, if probability mass is assigned to singleton sets of semantic relationships. For

example, a USM with m({
S

∩/}) = .4,m({
S

/∼}) = .6 means that for the particular pair

the probability of disjointness is .4, while the probability of incompatibility is .6.

Fuzzy set theory [113] is another approach that could be used to represent schema

matching uncertainty. A fuzzy set is specified by a tuple 〈S, gS〉 where S is a set

and gS is a function with range [0, 1]. For each x, gS(x) is the grade of membership

of x in S, i.e. gS(x) shows the degree of uncertainty whether x is a member of S

or not. Fuzzy set theory provides support for two of the features we require in

the representation of schema matching uncertainty: certainty and ignorance. For

example, if S
{ S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/}
is the set of all compatible pairs of objects, then the fact

that p1 is definitely a compatible pair is expressed with g
{ S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/}
(p1) = 1. If we

are uncertain whether p2 is a compatible or an incompatible pair, we can assign

g
{ S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/,
S

/∼}
= 1 showing total ignorance. However, fuzzy set theory does not fully

support our other two feature requirements: ranking and assignment for a degree

of uncertainty to each semantic relationship. We illustrate this with the following

example.

Assume the following grades of membership: g
{ S
⊃,

S
⊂,

S
∩}

= 0.2, g
{ S
⊃,

S
∩,

S

∩/}
= 0.2, g

{ S
=,

S
∩}

=

0.5 and g
{

S

/∼}
= 0.1. Based on these grades, fuzzy set theory does not provide a

way to derive the rank of each semantic relationship nor its degree of uncertainty.

4.7. Top-K Schema Matching 102

In the example, it is more likely that
S
∩ should be ranked first because it is sup-

ported by three grades, but this cannot be derived formally. Additionally, it is

not obvious at which position
S

/∼ should be ranked. Using Dempster-Shafer’s the-

ory, we can use belief and plausibility to rank each semantic relationship. In this

particular example, if we use plausibility to rank the relationships we would have:

Pl(
S
∩) = 1, P l(S

=) = 0.5, P l(
S
⊃) = 0.4, P l(

S
⊂) = Pl(

S

∩/) = 0.2, P l(
S

/∼) = 0.1.

Finally, rough set theory [85] is another approach that could also be used to rep-

resent schema matching uncertainty. A rough set is an approximation of a set

specified by lower and upper bounds. For example, in our setting, a rough set of

all compatible pairs of schema objects in a matching task could be specified by the

tuple 〈{p1}, {p1, p2, p3}〉, which states that the set of compatible pairs of objects is

a superset of {p1} and a subset of set {p1, p2, p3}, i.e. we are certain that p1 is a

compatible pair but we are uncertain about p2 and p3. Thus, rough sets can either

be used to show certainty about the semantic relationship of a pair, e.g. p1, or total

ignorance, e.g. p2 and p3. Certainty and total ignorance are special cases of the

schema matching uncertainty that can be represented by Dempster-Shafer’s theory.

Regarding the previous example of pairs p1, p2, p3, the certainty that p1 is a compat-

ible pair can be represented in Dempster-Shafer’s theory with m({ S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/}) = 1,

while for pairs p2, p3, which we are uncertain whether they compatible or not, we can

state that m({ S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/,
S

/∼}) = 1. Thus, regarding schema matching uncertainty,

Dempster-Shafer’s theory is more expressive than rough set theory.

4.7 Top-K Schema Matching

Existing schema matching approaches produce a single schema mapping (Defini-

tion 4.6) for each matching task. For example, in COMA++ [5] the multiple cor-

respondences produced by matching constitute a single schema mapping. If uncer-

tainty is exposed, then an uncertain schema mapping (Definition 4.10) is produced.

4.7. Top-K Schema Matching 103

The uncertain schema mapping assigns a probability mass to several distinct sets of

schema mappings.

Assuming that a task is composed of N pairs of objects and that matching seeks for

the six semantic relationships of Definition 4.3 then there are 6N possible schema

mappings. Most existing schema matching approaches only consider two semantic

relationships, compatibility and incompatibility, therefore 2N schema mappings are

possible, and they return one of these possible schema mappings as the final result.

If we are uncertain about the correct schema mapping, we can assign probability

masses to several distinct sets of schema mappings. Using Shafer’s theory in this

setting, the frame of discernment is the set of all 6N possible schema mappings,

i.e. ΘMatch = {Match1, . . . ,Match6N}, where Matchi is a schema mapping. From an

uncertain schema mapping a BPA MMatch on ΘMatch can be derived. The derivation

of MMatch is described next.

An uncertain schema mapping defines N USMs for N pairs of objects. Each USM

specifies a BPA mpi , 1 ≤ i ≤ N , on Θrel for each pair pi. Assume that mpi assigns

probability masses to sets relsij ⊆ Θrel. For each set relsij , there is a set of schema

mappings Sij ⊆ ΘMatch, with each schema mapping in Sij specifying relationships

for pair pi only from relsij , i.e.

∀mi, ∀Matchk ∈ Sij,Matchk[i] ∈ relsij (4.3)

where Matchk[i] is the relationship for pair pi in schema mapping Matchk. Each

mi on Θrel can now be translated into a BPA Mi on ΘMatch, with mi(relsij) =

Mi(Sij). The final BPA MMatch is produced by combining the Mi’s on ΘMatch using

Dempster’s combination rule, i.e. MMatch = M1 ⊕ . . .⊕MN .

4.7. Top-K Schema Matching 104

Example 4.7. Assigning probability mass to schema mappings Fol-

lowing on from Example 4.6, the matching task of comparing the entity pa-

per and its attributes (6 objects) against the entity book and its attributes

(5 objects) contains 30 pairs of objects, N = 30. Assuming that we are

interested in 6 relationships, the frame of discernment ΘMatch for the un-

certain schema mapping has 306 = 729, 000, 000 possible schema mappings.

Following on from Example 4.6, the USMs for the three pairs p1, p2 and p3

allow four semantic relationships for each pair. For the remaining 27 pairs,

p4, . . . , p30, their USMs have BPA mpj({
S

/∼}) = 1, 4 ≤ j ≤ 30, i.e. the tool

is certain that the remaining 27 pairs are incompatible. The three pairs,

each one with four possible semantic relationships, specify 43 = 64 possible

schema mappings. In these 64 schema mappings, pairs p4, . . . , p30 are all

incompatible. The remaining 306 − 43 schema mappings are not possible

since they assign to pairs p4, . . . , p30 a compatibility relationship. Table 4.5

shows the first 16 possible schema mappings focusing on pairs p1, p2 and

p3, and abbreviating the remaining 27 pairs whose only configuration is the

incompatibility relationship.

To derive MMatch, we examine BPAs mp1 , mp2 and mp3 . The BPA mp1

assigns probability mass to sets {
S

/∼}, {
S

∩/} and { S
⊃,

S
∩,

S

∩/} for pair p1. In the

64 possible schema mappings, p1 has relationship
S

/∼ in mappings Match1, . . . ,

Match16, i.e. the set {
S

/∼} for p1 corresponds to set S11 = {Match1, . . . ,Match16}.

Similarly, {
S

∩/} for p1 appears in schema mappings S12 = {Match17, . . . ,Match32}

and { S
⊃,

S
∩,

S

∩/} appear in S13 = {Match17, . . . ,Match64}. Thus, mp1 is trans-

lated into M1 on ΘMatch with M1(S11) = mp1({
S

/∼}) = .60,M1(S12) =

mp1({
S

∩/}) = .32,M1(S13) = mp1({
S
⊃,

S
∩,

S

∩/}) = .08.

Similarly, mp2 and mp3 are translated into BPAs M2 and M3 on ΘMatch:

4.7. Top-K Schema Matching 105

p1 p2 p3 p4 − p30

MatchN1
S

/∼
S

/∼
S

/∼
S

/∼

MatchN2
S

/∼
S

/∼
S

∩/
S

/∼

MatchN3
S

/∼
S

/∼
S
∩

S

/∼

MatchN4
S

/∼
S

/∼
S
⊃

S

/∼

MatchN5
S

/∼
S

∩/
S

/∼
S

/∼

MatchN6
S

/∼
S

∩/
S

∩/
S

/∼

MatchN7
S

/∼
S

∩/
S
∩

S

/∼

MatchN8
S

/∼
S

∩/
S
⊃

S

/∼

MatchN9
S

/∼
S
∩

S

/∼
S

/∼

MatchN10
S

/∼
S
∩

S

∩/
S

/∼

MatchN11
S

/∼
S
∩

S
∩

S

/∼

MatchN12
S

/∼
S
∩

S
⊃

S

/∼

MatchN13
S

/∼
S
⊃

S

/∼
S

/∼

MatchN14
S

/∼
S
⊃

S

∩/
S

/∼

MatchN15
S

/∼
S
⊃

S
∩

S

/∼

MatchN16
S

/∼
S
⊃

S
⊃

S

/∼

Table 4.5: First 16 possible schema mappings

S21 = {Match1, . . . ,Match4,Match17, . . .Match20,Match33, . . . ,Match36,

Match49, . . . ,Match52}

S22 = {Match5, . . . ,Match8,Match21, . . .Match24,Match37, . . . ,Match40,

Match53, . . . ,Match56}

S23 = {Match5, . . . ,Match16,Match21, . . .Match32,Match37, . . . ,Match48,

Match53, . . . ,Match64}

M2(S21) = .20,M2(S22) = .64,M2(S23) = .16

S31 = {Match1,Match5,Match9,Match13,Match17,Match21,Match25,

Match29,Match33,Match37,Match41,Match45,Match49,Match53,

Match57,Match61}

4.7. Top-K Schema Matching 106

S32 = {Match2,Match6,Match10,Match14,Match18,Match22,Match26,

Match30,Match34,Match38,Match42,Match46,Match50,Match54,

Match58,Match62}

S33 = {Match2, . . . ,Match4,Match6, . . .Match8,Match10, . . . ,Match12,

Match14, . . . ,Match16,Match18, . . .Match20,Match22, . . . ,Match24,

Match26, . . . ,Match28,Match30, . . . ,Match32,Match34, . . . ,Match36,

Match38, . . . ,Match40,Match42, . . . ,Match44,Match46, . . . ,Match48,

Match50, . . . ,Match52,Match54, . . . ,Match56,Match58, . . . ,Match60,

Match62, . . . ,Match64}

M3(S31) = .20,M3(S32) = .64,M3(S33) = .16

No mass is assigned on the rest of the schema mappings in ΘMatch.

The final BPA MMatch is produced by combining the above translated

masses M1, M2 and M3:

MMatch({Match1}) = .024

MMatch({Match2}) = .0768

MMatch({Match2,Match3,Match4}) = .0192

MMatch({Match5}) = .0768

MMatch({Match6}) = .24576

MMatch({Match6,Match7,Match8}) = .06144

MMatch({Match5,Match9,Match13}) = .0192

MMatch({Match6,Match10,Match14}) = .06144

MMatch({Match6,Match7,Match8,Match10,Match11,

Match12,Match14,Match15,Match16}) = .01536

MMatch({Match17}) = .0128

MMatch({Match18}) = .04096

MMatch({Match18,Match19,Match20}) = .01024

4.7. Top-K Schema Matching 107

MMatch({Match21}) = .04096

MMatch({Match22}) = .131072

MMatch({Match22,Match23,Match24}) = .032768

MMatch({Match21,Match25,Match29}) = .01024

MMatch({Match22,Match26,Match30}) = .032768

MMatch({Match22,Match23,Match24,Match26,Match27,

Match28,Match30,Match31,Match32}) = .008192

MMatch({Match17,Match33,Match49}) = .0032

MMatch({Match18,Match34,Match50}) = .01024

MMatch({Match18,Match19,Match20,Match34,Match35,

Match36,Match50,Match51,Match52}) = .00256

MMatch({Match21,Match37,Match53}) = .01024

MMatch({Match22,Match38,Match54}) = .032768

MMatch({Match22,Match23,Match24,Match38,Match39,

Match40,Match54,Match55,Match56}) = .008192

MMatch({Match21,Match25,Match29,Match37,Match41,

Match45,Match53,Match57,Match61}) = .00256

MMatch({Match22,Match26,Match30,Match38,Match42,

Match46,Match54,Match58,Match62}) = .008192

MMatch({Match22,Match23,Match24,Match26,Match27,

Match28,Match30,Match31,Match32,Match38,

Match39,Match40,Match42,Match43,Match44,

Match46,Match47,Match48,Match54,Match55,

Match56,Match58,Match59,Match60,Match62,

Match63,Match64}) = .002048

⋄

4.7. Top-K Schema Matching 108

Having derivedMMatch and ΘMatch, the belief and/or the plausibility of each possible

schema mapping can be computed. However, since the number of possible schema

mappings is exponential to the number of pairs N in the matching task, even just

computing MMatch and ΘMatch, is time consuming. In addition, the belief and/or

the plausibility of each possible schema mapping is not even necessary. What is

useful is the belief and/or the plausibility of the schema mappings that are the most

probable ones, i.e. the top-K schema mappings.

Definition 4.11. Top-K schema mappings A list of K tuples (Matchi, li), 1 ≤

i ≤ K each one associating a schema mapping Matchi with a degree of belief li is

called top-K schema mappings. The definition also holds for plausibility. The

top-K schema mappings are ordered based on li in descending order.

�

Existing matching approaches are equivalent to identifying the top-1 schema map-

pings.

The problem now lies in identifying the top-K schema mappings without having to

identify all 6N possible schema mappings nor compute their belief or plausibility. A

solution to this problem is provided in the next chapter (Section 5.2). The solution

is based on the fact that the belief/plausibility of a schema mapping can be iden-

tified, without computing MMatch, as the product of the beliefs/plausibilities of the

semantic relationships the schema mapping is composed of.

Lemma 1. The belief bl of a schema mapping Matchl which belongs to the list of top-

K schema mappings [(Match1, b1), . . . , (MatchK , bK)] is equivalent to the product of

the beliefs of the semantic relationships Matchl is composed of:

Bel({Matchl}) =
∑

A⊆{Matchl},A∈ΘMatch

MMatch(A) =
∏

1≤j≤N

Bel(Matchl[j])

4.7. Top-K Schema Matching 109

where Matchl[j] is the semantic relationship selected for pair j in Matchl and

Bel(Matchl[j]) is the belief assigned to Matchl[j].

Proof. Since the set {Matchl}, 1 ≤ l ≤ K is a singleton event of ΘMatch and MMatch

is a BPA, i.e. MMatch(∅) = 0, the only subset A that satisfies the conditions A ∈

ΘMatch, A ⊆ {Matchl} is the set A = {Matchl}. Therefore, computing the belief of

{Matchl} based on Definition 4.8 we have:

Bel({Matchl}) =
∑

A⊆{Matchl},A∈ΘMatch

MMatch(A) = MMatch({Matchl}) (4.4)

To compute MMatch({Matchl}) we consecutively apply Dempster’s rule. For exam-

ple, M1⊕2({Matchl}) = M1 ⊕M2({Matchl}) is computed as follows

M1⊕2({Matchl}) =

∑

S1i⊆ΘMatch,S2j⊆ΘMatch,S1i∩S2j={Matchl}
M1(S1i)M2(S2j)

∑

S1i⊆ΘMatch,S2j⊆ΘMatch,S1i∩S2j 6=∅ M1(S1i)M2(S2j)
(4.5)

whereM1 is the BPA derived from the BPAmp1 on the semantic relationships of pair

p1, and S1i is the set of schema mappings corresponding to the sets of relationships

rels1i the BPA mpi assigns probability mass to. Similarly for M2.

Based on Equation (4.3), the following hold:

∀Matchq ∈ S1i : Matchq[1] ∈ rels1i,

∀Matchq ∈ S2j : Matchq[2] ∈ rels2j . (4.6)

Since the schema mappings in ΘMatch are produced by computing all possible com-

binations of semantic relationships amongst the pairs, there must be at least one

Matchq ∈ S1i ∩ S2j such that Matchq[1] ∈ rels1i and Matchl[2] ∈ rels2j . Thus,

4.7. Top-K Schema Matching 110

∀i, j : S1i ∩ S2j 6= ∅, and therefore the following is true

∑

S1i⊆ΘMatch,S2j⊆ΘMatch,S1i∩S2j 6=∅

M1(S1i)M2(S2j) = 1

and Equation (4.5) becomes

M1⊕2({Matchl}) =
∑

S1i⊆ΘMatch,S2j⊆ΘMatch,S1i∩S2j={Matchl}

M1(S1i)M2(S2j) (4.7)

In order for S1i ∩ S2j = {Matchl}, rels1i and rels2j must include Matchl[1] and

Matchl[2] respectively (Equation (4.6)), but they cannot include any other relation-

ships. If either rels1i or rels2j included more relationships, then the intersection

S1i ∩ S2j would contain more than one schema mappings and not only Matchl. For

example, if Matchl[1] =
S
= and Matchl[2] =

S
⊂, while rels1i = {

S
=,

S

∩/} and rels2j = {
S
⊂},

then the intersection S1i ∩ S2j would contain not only schema mapping Matchl, but

also a schema mapping Matchv, with Matchv[1] =
S

∩/ and Matchv[2] =
S
⊂. Thus, we

must have that rels1i = {Matchl[1]} and rels2j = {Matchl[2]}.

In addition, we have that there is only one pair S1i and S2j that satisfy the condition

S1i ∩ S2j = {Matchl}. For example, if there were S ′
1i and S ′

2j such that S ′
1i ∩ S ′

2j =

{Matchl}, then as explained previously these S ′
1i and S ′

2j can only correspond to

relationships rels1i = {Matchl[1]} and rels2j = {Matchl[2]}. But then S ′
1i = S1i

and S ′
2j = S2j .

Therefore, from Equation (4.7) we have that

M1⊕2({Matchl}) = M1(S1i)M2(S2j), where S1i ∩ S2j = {Matchl}

Since rels1i = {Matchl[1]} and rels2j = {Matchl[2]} are singleton events of Θrel, we

4.7. Top-K Schema Matching 111

have thatm1({Matchl[1]}) = Bel({Matchl[1]}) andm2({Matchl[2]}) = Bel({Matchl[2]}).

Based also on the definition of M1 and M2, the previous formula becomes:

M1⊕2({Matchl}) = m1({Matchl[1]})m2({Matchl[2]})

= Bel(Matchl[1])Bel(Matchl[2])

Similarly, we can show by induction that

MMatch({Matchl}) = Bel({Matchl[1]}) . . . Bel({Matchl[N]}).

Thus, Equation (4.4) becomes:

Bel({Matchl}) = Bel({Matchl[1]}) . . . Bel({Matchl[N]})

=
∏

1≤j≤N Bel(Matchl[j]).

Example 4.8. Top-2 Schema Mappings Following on from the previous

example, instead of computing the BPA for the 64 possible schema map-

pings, we just discover the top-2 schema mappings. Depending on user

selection, the top-K algorithm can be run on either belief or plausibility.

Based on Table 4.4 and having selected belief to run the top-K algorithm

on, in the first iteration of the top-K algorithm will select for each pair the

relationship with the highest belief producing schema mapping MatchK=1,

which includes the following semantic mappings:

(i) 〈〈〈paper〉〉,
S

/∼,〈〈book〉〉〉

(ii) 〈〈〈paper, title〉〉,
S

∩/,〈〈book, title〉〉〉

(iii) 〈〈〈paper, year〉〉,
S

∩/,〈〈book, year〉〉〉

The belief on this schema is computed as the product of the beliefs on

the relationships selected for each pair (see Table 4.4), i.e. 0.6 × 0.64 ×

4.7. Top-K Schema Matching 112

0.64 = 0.24576. However, we know that this is actually an incorrect schema

mapping. The correct one is selected in the next iteration of the top-K

algorithm.

In the second iteration, the top-K algorithm will change the relationship

for one of the pairs. The next highest belief comes from the disjointness re-

lationship for pair p1. Therefore, the schema mapping MatchK=2 produced

in the second iteration includes the semantic mappings:

(i) 〈〈〈paper〉〉,
S

∩/,〈〈book〉〉〉

(ii) 〈〈〈paper, title〉〉,
S

∩/,〈〈book, title〉〉〉

(iii) 〈〈〈paper, year〉〉,
S

∩/,〈〈book, year〉〉〉

The belief of this schema mapping is 0.131072.

Thus, the top-2 schema mappings are: [(MatchK=1, 0.24576), (MatchK=2,

0.131072)].

⋄

The previous example (Example 4.8) shows a case where the top-1 schema mapping

is not entirely correct. In particular, the semantic mapping for the paper and book

objects is wrong. However, by looking at the next most probable schema mapping,

we identify the correct schema mapping. Thus, the reason for identifying the top-K

schema mappings rather than the top-1 schema mapping in our schema integration

framework, is that the top-K schema mappings can potentially provide an improved

mapping compared to the top-1 schema mapping.

In the next chapter, in Section 5.2, we explain two approaches for deriving the

top-K schema mappings: the exhaustive and the truncated top-K approaches. In

the exhaustive top-K approach, two consecutive mappings from the top-K schema

mappings may differ only in the semantic mapping of a few pair of objects. Thus,

schema mapping at rank i + 1 in the exhaustive top-K approach might not offer a

significant improvement over the schema mapping at rank i. However, the exhaustive

4.7. Top-K Schema Matching 113

top-K approach can guarantee improved schema mappings in certain situations (see

Section 5.3.4). In the truncated top-K approach, two consecutive schema mappings

have different semantic mappings for groups of pairs of objects, which means that

the two schema mappings differ significantly. Thus, schema mapping at rank i+1 in

the truncated top-K approach could potentially be a significant improvement over

schema mapping at rank i. The drawback of the truncated top-K approach is that

some schema mappings, potentially including the schema mapping with the correct

semantic mappings for all pairs of objects, are never considered.

4.7.1 Top-1 vs Top-K

In this section we are attempting to identify the cases where either top-1 or top-K

matching is preferable.

The purpose of schema matching as explained previously and defined in [90] is

the identification of correspondences, or mappings, between input schema objects.

Based on Section 4.2.2, schema matching is the process that derives a schema map-

ping between the input schemas. Thus, an obvious objective O1 for the schema

matching process is: to identify the single correct schema mapping according to a

single expert user’s perspective. To satisfy objective O1, it is sufficient to perform

a top-1 matching; the expert user can verify the correctness of the single schema

mapping produced or correct it.

As we have previously explained and illustrated in Example 4.8, the most probable

schema mapping (top-1) is not always the correct schema mapping. Thus, an obvious

extension to the above objective for schema matching is objective O2: to identify

a single schema mapping that the expert user is satisfied with. We assume that

expert satisfaction increases monotonically with the number of correct (according

to the expert user) semantic mappings identified. To satisfy objective O2, a top-K

approach is more preferable since the expert will have K schema mappings to choose

4.7. Top-K Schema Matching 114

from and select the one she is more satisfied with.

Notice here that we are only interested in low-level objectives regarding the schema

mapping produced from the matching process. High-level objectives can also be

defined for matching, e.g. how the schema mapping discovered during matching can

affect the cover of correct answers returned when the final schema is queried, but

these are out of the scope of our research.

On a fully automatic schema matching task, an expert user is not available to confirm

neither the correctness of the schema mapping produced nor her satisfaction with

the mapping. Thus, the above two objectives are not applicable in this case. In

a fully automated setting, the schema mapping produced by the matching process

has to be used directly in the schema integration process. If top-1 matching is

applied, then a single integrated schema is produced, thus a single set of answers

is returned for each query. If the top-K approach is used, multiple sets of answers

will be returned for each query, thus potentially increasing the number of correct

answers covered, providing more flexibility and accuracy [37].

Regarding the manual cost of matching, in a fully automated setting there is no

manual cost by definition. Regarding objectives O1 and O2, the correction of a

schema mapping or the selection of a schema mapping out of the top-K requires

user interaction and a user cost which we are now going to estimate.

Note that regarding the correction of a schema mapping we cannot use approaches

that assume data mappings as part of their schema mappings. For example, in [25],

schema mappings consist of tuple generating dependencies which is a data mapping

formalism. These approaches require the existence of schemas that can be queried,

and thus they are more relevant in data exchange scenarios where data mappings are

defined between pre-existing source and target schemas. In our approach, we deal

with schema integration where the integrated schema does not exist and cannot be

queried. In our approach, the schema mapping (Definition 4.6) consists of semantic

4.7. Top-K Schema Matching 115

mappings which have been defined between the input schemas and not between the

input and the integrated schemas.

We consider the process of correcting a schema mapping as follows: for each pair pi

of objects in the schema mapping, the user has to: (a) identify the correct semantic

relationship for pi, i.e. select one of the possible relationships for pi, (b) check

whether the schema mapping correctly identifies the semantic relationship of pi, and

if not, (c) alter the semantic mapping of pi with the correct relationship. Assume

that the manual cost of identifying the correct relationship for any pair of objects,

i.e. step (a), is constant and equal to identifyrel. The costs of steps (b) and (c)

are also constant for any pair of objects and aggregated together they are equal to

fixpair. We have that fixpair << identifyrel, since the identification of the correct

semantic relationship of a pair of objects is a highly intelligent process, Thus, the

cost Costfix of correcting a schema mapping of N pairs can be specified as

Costfix = identifyrel ×N (4.8)

which is proportional to the number N of pairs in the matching task.

Note that the above equation estimates the complexity of the process of correcting

a schema mapping. For example, it does not specify the mapping selection process

which should be followed to identify the semantic relationship for each pair of ob-

jects, i.e. step (a), which the user could perform either manually or with the help

of a tool, such as Clio [76] and the approach in [106].

Regarding the complexity of selecting a schema mapping out of the top-K, assume

that K=2 and that we compare schema mappings sm1 and sm2 which have N pairs

of objects. We define the cost of this comparison, Costpick(sm1, sm2), as

Costpick(sm1, sm2) = Σ1≤i≤Npickrel(pi)

4.7. Top-K Schema Matching 116

where pickrel(pi) is the cost of comparing the semantic relationships pair pi is as-

signed in sm1 and sm2, and selecting one. Note that again we are not interested

in the details of how this selection is performed. If pi has been assigned the same

relationship in both sm1 and sm2, then pickrel(pi) = 0. Thus, the complexity of

comparing two schema mappings is proportional to the number of pairs whose rela-

tionship differs in the two mappings.

Based on the above cost function, the cost of comparing K schema mappings Costpick(

sm1, . . . , smk) is the sum of costs of comparing the K schema mappings pairwise.

Since K is a constant, the complexity of Costpick(sm1, . . . , smk) is also proportional

to the number of pairs in the matching task whose relationship differs in the K

mappings.

In terms of the complexity of top-1 and top-K matching, the first question is whether

the identification of a USM is more complex than the identification of a single

certain semantic mapping. As it will be shown in Chapter 5, the implementation

of a matching expert that identifies USMs rather than certain semantic mappings

requires more space. If s is the space that is required for deriving certain semantic

mappings, then 26×s is the space required for deriving USMs, where 26 is the number

of all possible sets of semantic relationships, since we use 6 semantic relationships

in total. Thus, the space complexity of deriving USMs is of the same order as for

certain semantic mappings. In addition, the combination of USMs is also of the

same order as the combination, e.g. using a weighted average function, of similarity

degrees most existing approaches adopt, e.g. [35, 65, 33, 46].

The main complexity issue caused by the introduction of uncertainty in the result

of the schema matching process is the exponential number 6N of schema mappings

that need to be managed. While in the top-1 approach only one schema mapping is

derived, when uncertainty is exposed the belief/plausibility of each possible schema

mapping needs to be derived, i.e. exponential space 6N is required. However, by

just restricting the number of schema mappings required and only focusing on the

4.8. Top-K Schema Merging 117

top-K schema mappings, the space complexity of the process is just K× s the space

complexity s of existing approaches.

4.8 Top-K Schema Merging

Based on the top-K schema mappings identified during matching, each one anno-

tated with a belief or plausibility degree, K schema merging tasks are defined.

Each merge task corresponds to one of the top-K schema mappings and produces

an integrated schema. Each integrated schema will be annotated with the belief

or plausibility degree of the schema mapping it was derived from. Due to the fact

that our schema merging process (introduced in Chapter 6) may produce identical

schemas for multiple distinct schema mappings, the top-K schema mappings result in

at most K integrated schemas, which can be ordered based on their associated belief

or plausibility. For example, if two schema mappings MatchNi and MatchNj, i 6= j,

with associated belief or plausibility li and lj respectively, map to identical integrated

schema Sij, then the belief or plausibility of Sij is equal to li + lj normalized.

Definition 4.12. Top-K integrated schemas From top-K schema mappings

[(MatchN1, l1), . . . , (MatchNK , lK)] a ranked list S of at most K integrated schemas

is derived. Each integrated schema Si ∈ S, 1 ≤ i ≤ K, corresponds to a set of schema

mappings {MatchNmi
1
, . . . ,MatchNmi

n
}, 1 ≤ mi

j ≤ K, and is annotated with the sum

of the belief or plausibility degrees of schema mappings MatchNmi
j
, i.e. lmi

1
+. . .+lmi

n
,

normalized. Thus, we have

S = [(S1,
lm1

1
+ . . .+ lm1

n

l1 + . . .+ lK
), . . . , (Sj,

lmj
1
+ . . .+ lmj

n

l1 + . . .+ lK
)], 1 ≤ j ≤ K.

S is called the top-K integrated schemas.

�

4.9. Summary 118

4.9 Summary

In this chapter, we have presented our framework for the representation of uncer-

tainty in schema matching and schema merging.

We show that initially in the schema matching process, the semantics of the schema

objects need to be identified, i.e. the real world entities the objects represent. Based

on these semantics, the semantic mappings can be identified. However, the seman-

tics of the objects are not available to an automatic matching tool, therefore the

mappings it produces are highly uncertain. In our framework, we aim to represent

this schema matching uncertainty, and we specify four features that this represen-

tation should support: (a) ability to rank semantic relationships for each pair of

objects, (b) assignment of a degree of uncertainty to each singleton semantic rela-

tionship for each pair of objects, (c) ability to express ignorance, and (d) ability to

express certainty. In our framework, we have adopted Dempster-Shafer’s theory to

represent schema matching uncertainty.

In this chapter, we first introduce the notion of the uncertain semantic mapping,

which assigns probability masses to sets of semantic relationships for a pair of ob-

jects. These probability masses represent the certainty of the tool about the cor-

rectness of a semantic relationship for a specific pair of objects. Thus, for each pair

multiple semantic relationships are possible, each one with a degree of certainty.

Then, we show how uncertain semantic mappings, based on Dempster-Shafer’s the-

ory, support the four features required. In Section 2.2.3, where we reviewed the

two existing approaches [46, 81] that can be used to represent schema matching

uncertainty on multiple semantic relationships, we saw that [46] is based on fuzzy

set theory and [81] on probabilities. In this chapter (Section 4.6), we explain why

our approach is more suitable than these approaches to model uncertainty. In par-

ticular, we show that Dempster-Shafer’s theory can represent probabilities and that

fuzzy set theory does not fully support the features required.

4.9. Summary 119

The final result of schema matching in our framework is an uncertain schema map-

ping, which is produced by combining uncertain semantic mappings. An uncertain

schema mapping assigns probability masses to sets of schema mappings; it essen-

tially assigns probability masses to sets of possible integrated schemas. Because

the number of possible schema mappings is exponential to the number of pairs of

objects in the matching task, the identification of the level of uncertainty of each

schema mapping, and thus each integrated schema, is of exponential space com-

plexity. Therefore in our framework, we introduce the notion of the top-K schema

mappings and top-K integrated schemas, which allow the identification of the K

mappings and the at most K schemas the tool is most certain about. In this chap-

ter, we have also explained the complexity of selecting a schema mapping out of the

top-K.

Chapter 5

Top-K Schema Matching

In the previous chapter the framework of our schema integration approach was

presented. Our approach improves upon existing methodologies by extending the

notion of mappings between schema objects. In particular, in our framework the

uncertainty of the correct semantic relationship between each pair of schema ob-

jects is explicitly represented in uncertain semantic mappings (USMs), which

give rise to multiple possible schema mappings for each integration task, which we

call top-K schema mappings, and multiple possible integrated schemas, which

we call top-K integrated schemas. Our approach subsumes existing matching

and merging approaches that do not externalize schema matching uncertainty on

multiple semantic mappings and whose outcome is a single integrated schema.

In our proposed architecture (Section 4.1), the USMs of a matching task are dis-

covered by the Match component. The Top-K component translates these USMs

into top-K schema mappings. In this chapter we present our implementation of

the Match and Top-K components. In our implementation of the Match compo-

nent we have adapted existing schema matching, ontology aligning, string matching

and word similarity research software, as well as introduced new simple matching

algorithms.

120

5.1. The Match Component 121

Additionally, in this chapter a thorough experimental evaluation of our matching

implementation is presented. The evaluation is based on a well-known set of user,

schema and schema mapping data previously used for the evaluation of existing

matching software [73]. The experimental results show that:

• our implementation can improve the accuracy of the matching algorithms we

experimented with for deriving a single schema mapping,

• the top-K schema mappings produced in our framework can improve the ac-

curacy of our top-1 matching.

The structure of this chapter is as follows. In Section 5.1, we present the algorithms

used in the Match component to compare schema objects. These algorithms produce

a similarity degree for each pair of objects just like existing matching tools. In the

same section, we show how these similarity degrees can be translated into USMs. In

Section 5.2, we present our implementation of the Top-K component. We present

and compare two possible approaches: the exhaustive and the truncated top-K

approaches. In Section 5.3, we present our test bed for the experimental evaluation,

we explain the metric used to evaluate the matching process, and finally we show

our experimental results for top-1 and top-3 schema matching.

5.1 The Match Component

As illustrated in Figure 4.1, the Match component takes as input a list of schema

object pairs pj, 1 ≤ j ≤ M and produces an uncertain schema mapping, i.e. M

USMs (Definition 4.10).

The Match component consists of a set of N experts Ei, 1 ≤ i ≤ N , which produce

USMs, and an aggregator which aggregates these USMs. The task of each expert

Ei is to independently compare each pair pj, 1 ≤ j ≤ M , of objects and produce

5.1. The Match Component 122

a USM usmi,j for each pair. The Aggregator combines the USMs produced by the

experts for each pair of objects using Dempster’s rule and produces a single final

USM usmj for each pair. For example, for pair p1 the USMs usm1,1, . . . , usmN,1

produced by the N experts are aggregated to give a final USM usm1. Thus, the

aggregator produces a list of USMs usmj, 1 ≤ j ≤ M , one USM for each pair of

objects. This list constitutes an uncertain schema mapping, which is the output of

the Match component.

5.1.1 Overview of the Match Experts

In our implementation of the Match component, we have included new experts

and have adapted experts from existing schema matching, ontology aligning, string

matching and word similarity research software.

The main task of each expert Ei is to compare each pair of objects pj and based

on that comparison produce a USM usmi,j for the pair. We remind the reader that

a USM on pair pj assigns probability masses to the possible semantic relationships

for the pair, i.e. it assigns probability masses to subsets of Θrel = {
S
=,

S
∩,

S
⊂,

S
⊃,

S

∩/,
S

/∼}.

Thus the main task of each expert is to compare each pair of objects and based on

that comparison to identify the probabilities of the semantic relationships for that

pair.

In existing schema matching approaches, the result of the comparison of a pair of

objects is a normalized value in the [0,1] range, which is usually called similar-

ity degree [90]. The implicit assumption in these approaches is that the higher

the similarity degree is, the more likely is that the pair of objects are compatible.

Analogously, the lower the similarity degree is, the more likely is that the pair of ob-

jects are incompatible. Thus, existing approaches assume monotonicity [46] between

the similarity degree and the level of compatibility. However, there is no existing

matching approach that is shown to be monotonic [45].

5.1. The Match Component 123

In our implementation, we do not make any assumptions about the monotonicity

of the similarity degrees. Each Match expert produces a USM for each pair of

objects based on the similarity degree the expert has computed by comparing the two

objects. The correlation between the similarity degree and the semantic relationship

this degree implies is left to the expert to identify.

In order to produce a USM for each pair pj, each expert needs to identify the

probabilities of the semantic relationships for pj, based on the similarity degree it

has produced for pj. To this end, each expert stores statistical data from previous

matching tasks that associate the similarity degrees of pairs and their user-confirmed

semantic relationships. For example, based on previous matching tasks an expert

could have stored the statistical information that 5 pairs of objects that the user has

confirmed to be compatible have similarity degrees in the [0.9,1] range, while only one

pair, which is incompatible according to the user, has similarity degree in the same

[0.9,1] range. Based on this information, any new pair of objects with a similarity

degree in the [0.9,1] range will be assigned a 5
6
probability on compatibility and a 1

6

probability on incompatibility. Such probabilities can be used for the definition of

the USM for each pair of objects.

We say that each result of the Match component is user-centred since the statistical

data held by each expert, and therefore the probabilities and USMs that the expert

produces, depend on the user’s feedback from previous matching tasks, e.g. the

result in the example above would be different if another user for the same tasks

had identified 4 compatible and 2 incompatible pairs that have similarity values in

the [0.9,1] range. According to this user, any new pair of objects with a similarity

degree in the [0.9,1] range will be assigned a 4
6
probability on compatibility and a 2

6

probability on incompatibility.

5.1. The Match Component 124

5.1.2 The matching algorithms

The following matching algorithms have been implemented in each expert. They do

not constitute a complete list of all possible schema matching algorithms, but they

cover the main two matching approaches, schema-level and instance-level matching

[90]. Schema-level matching covers both name comparison and structural compar-

ison. We allow for both linguistic name comparison, with the help of the Word-

Net taxonomy, and syntactic name comparison, using a string matching algorithm.

For structural comparison, we have adopted the Similarity Flooding algorithm [73].

Instance-level matching is useful to exclude possible semantic relationships. Each

algorithm produces a similarity degree, i.e. a value in the [0,1] range, for each pair

of schema objects.

• WordNet: The WordNet expert uses the WordNet taxonomy [42] to linguisti-

cally compare schema objects. WordNet is a lexical taxonomy with semantic

associations between words, such as kind-of, part-of, and synonym-of associ-

ations. The expert, for each pair of schema objects, extracts the names of

the objects, treats these names as words in WordNet and compares them by

applying the Lin algorithm [63]. The implemented expert reuses the RESuLT

[104] implementation of the Lin algorithm. In brief, the algorithm defines as

similarity between two words W1 and W2 the ratio between the amount of

information needed to state how common W1 and W2 are and the amount

of information needed to describe W1 and W2. The commonality of any two

concepts W1 and W2 is identified based on the first common parent word Wp

of W1 and W2 in the WordNet taxonomy.

In more detail, the algorithm is based on information theory and computes the

amount of information needed to describe a word W as the negative logarithm

of the probability of W , − logP (W). The probability P (W) is provided by

WordNet. WordNet defines a probability distribution over the words in its

5.1. The Match Component 125

taxonomy based on each word’s frequency [42].

The information needed to describe W1 and W2 can now be computed as

− logP (W1)− logP (W2) and the commonality of the two words based on the

first common parent word Wp is − log(P (Wp)). The similarity is given by the

ratio:

sim(W1,W2) =
2×− log(P (Wp))

− logP (W1)− logP (W2)

Based on the above formula, for any two identical, or synonymous, words the

similarity degree is 1. In case the name of any of the two schema objects

is not part of WordNet, the expert has been adapted to produce similarity

degree NaN, i.e. not a number. Later on in this section, we will see how these

similarity degrees are handled.

• Rondo String Matching: The Rondo String Matching expert uses a string

matching algorithm to syntactically compare the names of schema objects. For

this expert we have reused the implementation of previous schema matching

approaches [73, 75]. In brief, the algorithm treats the names of the schema

objects as plain strings. For each pair of objects, it splits the name of each

object into a set of words. Then it compares the words in the two sets, looking

for common prefixes and suffixes. Additionally, it uses term frequencies to

reduce the impact of common terms in large schemas.

In more detail, the names n1, n2 of each pair of objects s1, s2 are split into

sets of words sw1 and sw2 respectively. Non-letter characters as well as upper-

case characters are used to identify the beginning of words. Same-case letters

are grouped together forming words, as well as an upper case letter followed

by a group of lower-case letters. For example, the string LCDScreenSize is

split into the set {LCD,Screen,Size}, and the string LCDMonitor is split into

{LCD,Monitor}.

5.1. The Match Component 126

For each pair of words wi ∈ sw1 and wj ∈ sw2, if the two words are identical

then the similarity is word similarity(wi, wj) = 1. The words are also com-

pared looking for common prefixes and suffixes. If pos is the position of the first

letter mismatch, i.e. a prefix and/or a suffix has been detected, then the sim-

ilarity is word similarity(wi, wj) = penalty.pos/length(wi).pos/length(wj),

where the default value of penalty is 0.5 and the function length(w) returns

the length of word w. Note that since for each pair of words there is a prefix

and suffix word similarity, the maximum of the two is selected.

Finally, the similarity degree returned by this algorithm for objects s1, s2 with

names n1, n2 respectively is:

sim(n1, n2, S1, S2) =
∑

i,j

max(word similarity(wi, wj))

freq(wi, S1).freq(wj, S2)
.

where freq(w, S) returns the number of times the word w appears inside the

sets of words created for the objects of schema S.

• Similarity Flooding: The Similarity Flooding expert performs a structural

comparison based on a graph matching algorithm [73]. The expert is named

after this algorithm. In brief, the Similarity Flooding algorithm treats data

source schemas as directed labeled graphs and performs an iterative fixpoint

computation that propagates the similarities of the nodes to and from their

neighbours. The computation stops when between two iterations the simi-

larity of all pairs is not altered significantly. The algorithm is based on the

assumption that two nodes are similar if their adjacent nodes in their respec-

tive graphs are similar. The expert reuses the implementation provided by the

authors of the algorithm [73].

In more detail, the expert uses the input schema object pairs [si, sj] to built two

graph structures of nodes and edges that the Similarity Flooding algorithm

requires as input. One graph structure GS1 corresponds to all the schema

5.1. The Match Component 127

objects si in the left-hand side of the input pairs, and the other graph structure

GS2 corresponds to all the schema objects sj in the right-hand side of the input

pairs. Based on the generic classification of constructs presented in Section 3.3,

we can translate a schema object of any data model into the required graph

structure of the Similarity Flooding algorithm as follows. Each nodal schema

object 〈〈s〉〉 is translated into a node s in the graph. Each link schema objects

〈〈l, s1, s2〉〉 is translated into a directed edge from node s1 to node s2. Each

link-nodal schema object 〈〈s1, s2〉〉 is translated into a node s in the graph and

an edge from s1 to s2.

After the translation process, the expert feeds the two graphsGS1 andGS2 into

the Similarity Flooding algorithm. In our implementation, the configuration

of the algorithm used is the one that according to [73] produces the best overall

results and has the best convergence. For the sake of completeness this configu-

ration is: the inverse-average formula is used to propagate similarities between

adjacent nodes, the fixpoint formula σn+1 = normalize(σ0 + σn + f(σ0 + σn))

is applied to each iteration of the algorithm, the default value 0.05 is used to

examine whether the computation has reached the fixed point, and initially

all nodes are considered equally similar.

• Cardinality: The Cardinality expert compares the cardinalities of the schema

objects, i.e. the number of their instances. The similarity degree produced for

each pair of objects s1, s2 with cardinalities Card(s1) and Card(s2) respec-

tively, is:

sim(s1, s2) =

1 Card(s1) = Card(s2)

0 otherwise

Thus, for schema objects with equivalent number of instances the algorithm

produces similarity degree 1. Since, equivalent (S
=) schema objects should have

equivalent cardinalities, the expert is useful to exclude equivalence mappings.

5.1. The Match Component 128

• Instances-Intersection: The Instances-Intersection expert compares the ac-

tual instances of the schema objects. The similarity degree produced by the

Instances-Intersection expert for each pair of objects s1 and s2 with sample

instances Sample(s1) and Sample(s2) respectively, is:

sim(s1, s2) =
2× |Sample(s1) ∩ Sample(s2)|

|Sample(s1)|+ |Sample(s2)|

where Sample(s1) ∩ Sample(s2) returns a set with the common instances in

the two samples, and |Set| returns the size of Set. In our implementation,

the sample instances are selected randomly from each object’s extent. In-

stance matching, i.e. identifying that two instances are identical, has been

implemented based on case-insensitive string equivalence.

Based on the above formula, the similarity degree is 0 if there are no common

instances in the samples of the schema objects. In this case, disjointness and in-

compatibility might be more probable. If sim(s1, s2) = 1, i.e. |Sample(s1)| =

|Sample(s2)| = |Sample(s1) ∩ Sample(s2)|, then the objects might be equiv-

alent. In all other cases, the similarity degree is 0 < sim(s1, s2) < 1, which

might allow the exclusion of disjointness and incompatibility.

• Instances-Subset: The similarity degree produced by the Instances-Subset ex-

pert for each pair of objects s1 and s2 with sample instances Sample(s1) and

Sample(s2) respectively, is:

sim(s1, s2) =
|Sample(s1) ∩ Sample(s2)|

|Sample(s1)|

If sim(s1, s2) = 1 then the object might be equivalent. If sim(s1, s2) < 1 then

the objects might be intersecting.

• Instances-Superset: The similarity degree produced by the Instances-Superset

expert for each pair of objects s1 and s2 with sample instances Sample(s1)

5.1. The Match Component 129

and Sample(s2) respectively, is:

sim(s1, s2) =
|Sample(s1) ∩ Sample(s2)|

|Sample(s2)|

5.1.3 Producing USMs

The aforementioned algorithms produce a similarity degree for each pair of objects.

Each expert that implements one of the above algorithms needs to translate each

similarity degree into a USM, i.e. each expert needs to identify for each pair of

objects probability masses for subsets of Θrel = {
S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/,
S

/∼}, based on the sim-

ilarity degree it has produced for the pair. In this section, we first describe the

methodology we propose to identify these probability masses and then illustrate our

implementation.

To identify the probability masses for the USMs, each expert stores statistical data

from user-confirmed schema mappings. These mappings could come from previous

matching tasks that the user has validated (see Figure 4.1) and they form the training

data set of the expert.

Each expert Ei specifies sets of semantic relationships, reli,j ⊆ Θrel, and ranges

rangei,k of similarity degrees, rangei,k = [x, y], 0 ≤ x < y ≤ 1. Based on these,

if sim is the similarity degree for pair p produced by Ei and rel the semantic

relationship for p confirmed by the user, Ei stores statistical data that associate

sim with rangei,k when sim ∈ rangei,k, and associate sim with the sets reli,j such

that rel ∈ reli,j .

Based on the statistical data, the expert Ei is able to identify the following proba-

bilities:

• P (rangei,k): the probability that the similarity degree sim′ for a pair p′ of

schema objects falls in the rangei,k, i.e. sim
′ ∈ rangei,k.

5.1. The Match Component 130

{
S

/∼} S
∼

[0, 0.1] 282 4
(0.1, 0.2] 13 2
(0.2, 0.3] 18 5
(0.3, 0.4] 2 1
(0.4, 0.5] 0 0
(0.5, 0.6] 0 1
(0.6, 0.7] 0 0
(0.7, 0.8] 0 1
(0.8, 0.9] 0 0
(0.9, 1.0] 3 7

Table 5.1: 〈0.1, 〈 S∼, {
S

/∼}〉〉 training table

• P (reli,j ∧ rangei,k): the joint probability that the user-confirmed relationship

rel′ for a pair p′ belongs to the set reli,j and that the similarity degree sim′

for the pair falls in the rangei,k, i.e. that both rel′ ∈ reli,j and sim′ ∈ rangei,k

hold.

Based on these probabilities, the expert can compute P (reli,j|rangei,k),

P (reli,j|rangei,k) =
P (reli,j ∧ rangei,k)

P (rangei,k)
(5.1)

the conditional probability that the relationship for a pair p′ of objects belongs in

the set reli,j given that the similarity degree sim′ for the pair falls in the rangei,k.

The implementation of the above methodology is as follows. Each expert includes a

trainer component. The trainer learns the probabilities, P (rangei,k) and P (reli,j ∧

rangei,k), and can calculate the conditional probabilities P (reli,j|rangei,k) based

on Equation 5.1. The probability P (rangei,k) is estimated as the proportion of the

training pairs of objects that have a similarity degree in rangei,k and the probability

P (reli,j ∧ rangei,k) is estimated as the proportion of pairs of objects that have have

a semantic relationship in reli,j and the similarity degree of the pair is in the range

rangei,k.

5.1. The Match Component 131

The implementation of each trainer component is based on a two-dimensional train-

ing table T . An example of a training table is illustrated in Table 5.1. The vertical

dimension of the table splits the [0,1] range into smaller intervals, rangei,j. We

remind the reader that the [0,1] range is the range of the similarity degrees pro-

duced by the matching algorithms. The horizontal dimension of the training table

is distinct non-intersecting subsets reli,j of the set Θrel = {
S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/,
S

/∼}. Note that
⋃

j reli,j = Θrel. In Table 5.1, the horizontal dimension is split into two sets: {
S

/∼}

and set S
∼ ≡ { S

=,
S
⊂,

S
⊃,

S
∩,

S

∩/} (Definition 4.5).

Each cell T [rangei,k, reli,j] of table T specifies the number of training pairs p′ that

have a similarity degree sim′ that falls in rangei,k and their relationship rel′ is a

member of reli,j . The sum of all cells Σk,jT [rangei,k, reli,j] in the training table

specifies the number of all training pairs1. Thus, the probability P (reli,j ∧ rangei,k)

is computed as

P (reli,j ∧ rangei,k) =
T [rangei,k, reli,j]

Σk,jT [rangei,k, reli,j]
(5.2)

Note that ∀j, k : P (reli,j ∧ rangei,k) ∈ [0, 1] and that Σk,jP (reli,j ∧ rangei,k) = 1.

The sum of all cells in a single horizontal dimension k is ΣjT [rangei,k, reli,j]. Based

on this sum we can compute the probability P (rangei,k) as

P (rangei,k) =
ΣjT [rangei,k, reli,j]

Σk,jT [rangei,k, reli,j]
(5.3)

Note that ∀k : P (rangei,k) ∈ [0, 1] and that ΣkP (rangei,k) = 1.

Thus, P is a probability function [78] and can therefore be used as BPA (Defini-

tion 4.7) to define USMs (Definition 4.9). Note here that the space complexity of

identifying P depends on the number of cells T [rangei,k, reli,j]. If we assume that

the number of rangei,k ranges is constant, then the space complexity depends only

on the number of reli,j sets, which can be maximum 2|Θrel| = 26.

1Apart from the ones with sim′ = NaN.

5.1. The Match Component 132

Example 5.1. Computing USMs In Table 5.1 the cell T [(.9, 1], S
∼] spec-

ifies that 7 pairs have a similarity degree in the (.9, 1] range and their

mapping is in set S
∼. The sum of all cells is 339, i.e. 339 pairs have been

used as training. Thus, the joint probability P ((.9, 1] ∧ S
∼) is computed as

the fraction of the number of pairs in cell [(.9, 1], S
∼] and the number of all

pairs, i.e. P ((.9, 1]∧ S
∼) = 7/339. The sum of all cells in the dimension (.9, 1]

ΣjT [(.9, 1], relj] is 10. Thus, P ((.9, 1]) = 10/339 and based on Equation 5.1

we have that P (S
∼|(.9, 1]) = P ((.9, 1] ∧ S

∼) ÷ P ((.9, 1]) = 7/399 ÷ 10/339 =

7/10. Similarly, P ({
S

/∼}|(.9, 1])) = P ({
S

/∼} ∧ (.9, 1]) ÷ P ((.9, 1]) = 3/339 ÷

10/339 = 3/10.

Now, consider that in a new matching task there is a pair s1, s2 of objects,

whose similarity degree falls in the range (.9, 1]. The USM the expert will

produce based on training data in Table 5.1, is 〈s1, m, s2〉, where

m(X) =

P (S
∼|(.9, 1]) if X = S

∼

P ({
S

/∼}|(.9, 1]) if X = {
S

/∼}
(5.4)

where P (S
∼|(.9, 1]) = 7/10 and P ({

S

/∼}|(.9, 1])) = 3/10.

⋄

In our implementation, the vertical dimension of the training table is split into

1/interval intervals, where 1 mod interval = 0, 0 < interval ≤ 1. Each line k, k 6= 0

of the training table is associated with a range (interval × k, interval × (k + 1)],

while line 0 of the table is associated with range [0, interval]. In Figure 5.1, we have

interval = 0.1. The value of the interval is individual for each expert. The training

table in each trainer is specified as a tuple 〈interval, 〈reli1, reli2, . . . , relin〉〉, where

relij ⊆ {
S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/,
S

/∼}, relix ∩ reljy = ∅, x 6= y. Table 5.1 illustrates a 〈0.1, 〈 S∼, {
S

/∼}〉〉

table.

5.1. The Match Component 133

The training process is performed as follows. Initially, each expert sets the value of

each element of the training table to zero. Then, for each training matching task the

expert compares each pairs of schema objects p′ and produces a similarity degree

sim′. The semantic relationship rel′ for p′ is provided by the user. Based on these

values the cell T [rangeik, relij], with sim′ ∈ rangeik and rel′ ∈ relij is incremented.

Note that only one relij of the training table will match the relationship rel′ since the

horizontal dimension of the table does not include intersecting sets. If the similarity

degree produced by the expert is NaN, i.e. not a number, the expert just discards

the pair.

After the training process, the expert, based on the training table, can determine all

the necessary probabilities, and produce USMs. Note that in case the expert pro-

duces similarity degree NaN for a pair of objects s1, s2 then the USM resulting from

is 〈s1,m, s2〉,m(Θ) = 1, which means that the expert expresses its total ignorance

about the particular pair.

The above implementation suffers when there are no training pairs that map to

specific ranges in the [0,1] range. For example, in training table Table 5.1, there

are no training pairs that fall in the (0.8,0.9] range. If the similarity degree of a

new pair p′ of objects falls in such a range, the expert is not be able to compute

the necessary probabilities. In this case the expert shows total ignorance about the

mapping of p′, i.e. produces USM 〈s1,m, s2〉,m(Θ) = 1.

However, intuitively even for ranges with no previous training data, it might be

possible to say that a set of relationships reli,j1 is more probable than another set

reli,j2 . This intuition would be based on the training data of the adjacent ranges.

Example 5.2. Ranges with no training data Table 5.1 shows that

there are no training pairs in the (0.8,0.9] range. However, we see from the

table that as the similarity degree increases the proportion of compatible

5.1. The Match Component 134

to incompatible pair of objects also increases.

First, we can calculate the probabilities for compatibility and incompatibil-

ity in all ranges with training data, similar to Example 5.1:

P (
S

/∼|[0, 0.1]) = 0.986 P (S
∼|[0, 0.1]) = 0.014

P (
S

/∼|(0.1, 0.2]) = 0.866 P (S
∼|(0.1, 0.2]) = 0.1333

P (
S

/∼|(0.2, 0.3]) = 0.7826 P (S
∼|(0.2, 0.3]) = 0.2174

P (
S

/∼|(0.3, 0.4]) = 0.666 P (S
∼|(0.3, 0.4]) = 0.333

P (
S

/∼|(0.5, 0.6]) = 0.0 P (S
∼|(0.5, 0.6]) = 1.0

P (
S

/∼|(0.7, 0.8]) = 0.0 P (S
∼|(0.7, 0.8]) = 1.0

P (
S

/∼|(0.9, 1.0]) = 0.3 P (S
∼|(0.9, 1]) = 0.7

For some ranges the probabilities are missing, e.g. P (
S

/∼|(0.8, 0.9]) and P (S
∼|(0.8, 0.9]).

In these ranges, the probabilities cannot be defined because there are no

training examples.

Looking at the above probabilities, we can see that the probability for in-

compatibility from the 0.986 value in the [0,0.1] range decreases to 0.3003

in the (0.9,1.0] range, while the probability for compatibility from the 0.014

value in the [0,0.1] range increases to value 1 in the (0.7,0.8] range and value

0.6997 in the (0.9,1] range.

Thus, for a pair of objects that the similarity degree is in the (0.8,0.9] range

it is more probable that the pair is compatible rather than incompatible.

So the trainer that shows total ignorance for this pair based on the training

data is not precise.

⋄

To resolve this issue, a trainer can consider the ranges and their conditional prob-

abilities as data points (x, y) and try to fit a curve to these points. In particular,

5.1. The Match Component 135

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

similarity degree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ro
b
a
b
il
it
y
 o
f
c
o
m
p
a
ti
b
il
it
y

data points

regression

Figure 5.1: Regression on probability P (S
∼|rangeik)

for each set relij of mappings in the horizontal dimension of the training, a dis-

tinct curve needs to be computed. For each set of mappings relij , a data point

(x, y) = (medium(rangeik), P (relij|rangeik)) is defined for each combination of

rangeik and conditional probability P (relij|rangeik). For example, regarding the

set S
∼ of the training table Table 5.1 the probability P (S

∼|(0.9, 1]) = 0.7 can be

translated into a data point (0.95, 0.7), since medium((0.9, 1]) = 0.95. Figure 5.1

illustrates all the data points that can be derived from Table 5.1 for S
∼.

In our implementation, we have used least-squares regression analysis to identify the

curve. For each set of relationships relij , the trainer can identify a curve frelij(x)

that fits the corresponding data points. The curve frelij is identified as the func-

tion that minimizes the square error: Σn
i=1(yi − frelij(xi))

2. Based on this curve

freli,j , the trainer can compute the conditional probability P (relij|[sim, sim]) as

P (reli,j|[sim, sim]) = frelij(sim) for any 0 ≤ sim ≤ 1. In our implementation, we

identify a quadratic curve to fit the data points.

5.1. The Match Component 136

Example 5.3. Regression trainer Following on from Example 5.2, the

ranges and the relationship probabilities define a series of data points (x, y).

Figure 5.1 illustrates the data points for compatibility. The value of x in

each point is the mean value of the range this point represents, e.g. for

range (0.3,0,4] x = (0.4+ 0.3)/2 = 0.35. The value of y in each point is the

probability of the relationship this point represents, e.g. for range (0.3,0.4]

y = P (S
∼|(0.3, 0.4]) = 0.333.

By performing quadratic least-squares regression analysis, we can identify a

curve f(x) = −1.991x2+3.026x−0.27, which is also illustrated in Figure 5.1.

Thus, while previously we could not calculate the probability of compati-

bility for the (0.8,0.9] range, using f we can deduce that the probability a

pair of object is compatible given that the similarity degree produced for

this pair is 0.85, P (S
∼|0.85) = f(0.85) = 0.8636, which confirms our intu-

ition that any pair with similarity degree in (0.8,0.9] is more probable to be

compatible than incompatible.

⋄

In our implementation, a regression trainer has been implemented using the flana-

gan2 package that performs a quadratic least squares regression analysis. Note that

we normalize the results of the identified curve, if the probability given by the de-

rived function is out of the [0,1] range:

P (rel|[sim, sim]) =

frelij(sim) if 0 ≤ frelij(sim) ≤ 1

0 if frelij(sim) < 0

1 if frelij(sim) > 1

(5.5)

2http://www.ee.ucl.ac.uk/∼mflanaga/java/

5.2. Top-K 137

5.2 Top-K

The Top-K component of our schema integration tool selects the top-K schema

mappings for a matching task. We mentioned in Chapter 4 that the number of

possible schema mappings is exponential to the number N of pairs of objects in the

matching task. Thus, we do not want to identify all possible schema mappings nor

compute their belief or plausibility. Instead, we want to identify only the top-K

schema mappings.

In our implementation, the ordering of the schema mappings could be based on either

plausibility Pl or belief Bel. We remind the reader that Chapter 4 shows how belief

and plausibility of schema mappings can be derived from USMs. The rest of this

section talks about deriving top-K mappings based on belief, but the same process

can be applied for top-K mappings based on plausibility. Our implementation is

based on Lemma 1 (Section 4.7), which shows that the belief of a schema mapping

can be identified without computing the BPA MMatch for the schema mappings.

5.2.1 Processing the uncertain schema mapping

The input to the Top-K component is an uncertain schema mapping u-Match, i.e. a

list of N USMs (Def. 4.10) one for each of the N pairs of objects compared. The first

step of the Top-K component is to process each one of these N USMs u-Match[i] and

derive the belief Bel for each semantic relationship for each pair pi of objects. These

beliefs are crucial according to Lemma 1, which states that the belief of a schema

mapping is equivalent to the product of the beliefs of the semantic relationships it

is composed of.

In the second step, the semantic relationships for each pair pi are ranked based on

their belief. This process produces a list li of semantic relationships for each pair

pi of objects. The list stores the relationships from the highest ranking relationship

5.2. Top-K 138

li[0] to the lowest ranking relationship li[NR − 1], where NR is the number of

possible relationships. Hence, the j-th ranked semantic relationship for pair pi is

li[j]. Our implementation allows for NR = 6, since we support 6 distinct semantic

relationships (Definition 4.3).

Now, we can perform K iterations to identify the top-K schema mappings. In each

iteration, we select the schema mapping with the next highest belief. For example,

in the first iteration the schema mapping with the highest belief is the one that is

composed of the semantic relationships at rank 0 for all pairs, li[0]. In the second

iteration, the semantic relationship of one of the pairs, e.g. pj, needs to be altered

to lj[1]. The pair pj that is selected is the one that causes the smallest change

in the belief of the schema mapping, i.e. ∀i, i 6= j : |Bel(lj [0]) − Bel(lj [1])| ≤

|Bel(li[0])−Bel(li[1])|. The next section shows this process in detail.

5.2.2 Exhaustive Top-K

To efficiently compute the top-K schema mappings for a particular matching task,

we use a tree structure. Each node of the tree represents one schema mapping and

each possible schema mapping corresponds to a node in the tree. Thus, we call this

tree structure exhaustive top-K tree.

Each schema mapping sm in this exhaustive top-K tree, is abbreviated using a N -

digit string. Each position i of the string corresponds to pair pi. The value sm[i] of

the string at position i is the rank of the semantic relationship selected for pair pi in

sm, which corresponds to the semantic relationship li[sm[i]]. For example, assume

that N = 2 and schema mapping sm′ has string abbreviation 02. The relationship

that has been selected for pair p1 in sm′ is the relationship with rank sm′[1] = 0

and for pair p2 is the relationship with rank sm′[2] = 2. The belief of each sm is

computed as the product of the beliefs of the semantic relationships sm is composed

of (Lemma 1). Thus, Bel(sm) = Bel(l1[sm[0]])×. . .×Bel(lN [sm[N]]). For example,

5.2. Top-K 139

0

1

2
3

4
5

(a) N = 1

00

01

02
03

04
05

10

11

12
13

14
15

20

21

22
23

24
25

30

31

32
33

34
35

40

41

42
43

44
45

50

51

52
53

54
55

(b) N = 2

Figure 5.2: Exhaustive top-K trees for NR = 6

regarding the schema mapping sm′ mentioned above, we have Bel(02) = Bel(l1[0])×

Bel(l2[2]]).

Each node of the exhaustive top-K tree has an associated belief, which is the belief

of the schema mapping the node corresponds to. The tree is structured to ensure

that each node has belief equal or greater than the belief of its descendants.

For example, Figure 5.2(a) illustrates the complete exhaustive top-K tree for N = 1

and NR = 6. The root of this tree represents schema mapping, sm0, with string

abbreviation 0. To produce the descendants of the root, the 1-th position of the

schema mapping is incremented. The only child of sm0 represents schema mapping

sm1 with string abbreviation 1. The belief of sm1 is less than or equal to the

belief of sm0, since by definition of l1 we have that Bel(l1[sm0[1]]) = Bel(l1[0]) ≥

Bel(l1[sm1[1]]) = Bel(l1[1]) and Bel(sm1) = Bel(l1[1]), Bel(sm0) = Bel(l1[0]), thus

Bel(sm1) ≤ Bel(sm0).

The exhaustive top-K tree is gradually built as follows. In the first iteration, the root

of the tree is identified as the schema mapping whose string abbreviation contains

only zeroes. This mapping, where each pair has been associated with semantic

relationship with rank 0, has the highest belief and it is the first mapping out of

the top-K. For example, in Figure 5.2(b) the schema mapping 00 is the root of the

top-K tree for N = 2 and NR = 6.

5.2. Top-K 140

Before moving on to the next iteration, the children of the root node must be

identified. The children of the root node are stored in a list of current leaf nodes

together with their beliefs. One of these leaf nodes will be the schema mapping with

the next highest belief, i.e. the second schema mapping in the top-K.

In general, the children of each node are defined by incrementing a single position

in the string abbreviation of the mapping of the parent node. For example, the

children of node 00 are: 10 and 01. If there is a child node which has been produced

by incrementing the i position of its parent, then the descendants of this child node

cannot update their first i − 1 positions. This constraint ensures that there are no

two nodes in the tree that correspond to the same schema mapping. For example, in

Figure 5.2(b) the descendants of node 01, which has been produced from node 00 by

incrementing position 2, cannot update the first 2− 1 = 1 positions. Therefore, the

01 has only one child, node 02. Similarly, for 02 and the rest of the 01 descendants,

i.e. 03, 04 and 05, the first 1 positions cannot be incremented.

Now, at each iteration i, i ≤ K, we search through the list of current leaf nodes and

identify the schema mapping with the highest belief. This will be the mapping at

rank i. Before we start iteration i+ 1, we identify the children of the i-th mapping

and add them in the list of current leaf nodes.

For example, in Figure 5.2(b) after the identification of the root node the list of

current leaf nodes contains nodes 01 and 10. Now assume that in the second iteration

node 10 has the highest belief and it is the one selected. The list of current leaf

nodes is now updated to contain also the children of 10, i.e. it contains in total

nodes 20, 11 and 01. One of these nodes is going to be third mapping of the top-K.

5.2.3 Local Flatlines

Even though the exhaustive top-K approach identifies all possible schema mappings,

it produces local flatlines that may delay the identification of a preferable mapping.

5.2. Top-K 141

To illustrate this issue, assume that in a matching task we are just interested in

compatibility and incompatibility mappings. Assume that the task contains N pairs

of objects and that v pairs, p1, . . . , pv, v ≤ N , have identical USMs and thus identical

beliefs for compatibility and incompatibility i.e. Belpi(
S
∼) = Belpj(

S
∼) and Belpi(

S

/∼) =

Belpj(
S

/∼) for all 1 ≤ i ≤ v, 1 ≤ j ≤ v, i 6= j. A reason this may happen is because the

similarity degrees for these v pairs fall in the same range in the training table and

therefore the v pairs have identical USMs. Additionally, assume that amongst the

N pairs, the v aforementioned pairs are the ones that the tool is least certain about

their semantic relationships, i.e. |Belpi(
S
∼) − Belpi(

S

/∼)| < |Belpj(
S
∼) − Belpj(

S

/∼)|, 1 ≤

i ≤ v, v < j ≤ N . Note here that in an interactive setting, where the user validates

the produced semantic mappings, the identification of these v pairs is crucial since

these pairs can be the first that are examined and corrected if necessary. This

is an advantage of our approach and a result of the explicit representation of the

uncertainty of the tool on each semantic mapping.

Now, the v pairs of objects specify a sub-graph in the exhaustive top-K tree, for

each possible configuration of the N − v pairs. Each such sub-graph contains 2v

schema mappings, one for each possible alternative configuration of the v pairs of

objects, while the configuration of any other pairs is constant. In each sub-graph,

the beliefs of the mappings that belong to the same depth of the sub-graph are

identical. Therefore, the schema mappings at each depth of each sub-graph have

consecutive ranks in the exhaustive top-K approach. When all these mappings are

visited a local belief flatline is produced. It is a flatline because the belief of the

schema mappings does not change even though the schema mappings change.

Example 5.4. Exhaustive Top-K delayed by local flatlines

In a matching task, there are four pairs of schema objects: p1 ≡ 〈s11, s21〉,

p2 ≡ 〈s11, s22〉, p3 ≡ 〈s12, s21〉 and p4 ≡ 〈s12, s22〉. The single expert

used, calculates the similarity degrees for the four pairs, sim(p1) = 0.95,

5.2. Top-K 142

Figure 5.3: Exhaustive Top-K with 4 pairs and NR = 2

sim(p2) = 0.95, sim(p3) = 1, sim(p4) = 0.3, and based on the training

data, which are illustrated in Table 5.1, outputs the following USMs:

〈s11,m5.1, s21〉,

〈s11,m5.1, s22〉,

〈s12,m5.1, s21〉,

m5.1({
S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/}) = 0.7

m5.1({
S

/∼}) = 0.3

〈s12,m5.4, s22〉

m6.7({
S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/}) = 0.2174

m6.7({
S

/∼}) = 0.7826

In this matching task, we are interested only in compatibility and incom-

patibility relationships. Therefore, there are 24 possible schema mappings.

The exhaustive top-K tree for all these schema mappings is illustrated in

Figure 5.3. In each schema mapping in the figure, the first position corre-

sponds to pair p1, the second position corresponds to p2, the third position

to p3 and the fourth position to p4. Each schema mapping in the figure is

annotated with its rank, e.g. the root 0000 is annotated with rank 1. After

5.2. Top-K 143

0000(1) 1000(2) 0100(3) 0010(4) 0001(5) 1100(6) 1010(7) 0110(8) 1001(9) 0101(10) 0011(11) 1110(12) 1101(13) 1011(14) 0111(15) 1111(16)

schema mapping (rank)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b
e
li
e
f

0

1

2

3

4

c
o
s
t

belief

preferred mapping 0000

preferred mapping 0100

preferred mapping 0110

preferred mapping 0111

Figure 5.4: Exhaustive Top-K defining local flatlines

the root in rank 1, the schema mappings in the next 3 ranks are derived by

altering the configuration of one of the first pairs of objects, since these pairs

are the ones that the tool is least certain about: |Belp1(
S
∼)−Belp1({

S

/∼})| =

|Belp2(
S
∼) − Belp2({

S

/∼})| = |Belp3(
S
∼) − Belp3({

S

/∼})| = |0.7 − 0.3| = 0.4 <

|Belp4(
S
∼)−Belp4({

S

/∼})| = |0.2174− 0.7826| = 0.5652. Figure 5.4 illustrates

the belief of each schema mapping of the 24 schema mappings. The schema

mappings in the figure are in ranking order.

In Figure 5.3, a sub-graph of 23 schema mappings is defined for each pos-

sible configuration of pair p4. The first sub-graph contains mappings 0000,

1000, 0100, 0010, 1100, 1010, 0110 and 1110, where the configuration of p4

is 0. The second sub-graph contains mappings 0001, 1001, 0101, 0011, 1101,

1011, 0111 and 0111, where the configuration of p4 is 1. The mappings that

belong to the same depth of a sub-graph have identical beliefs. For example,

the mappings 1000, 0100 and 0010 in ranks 2, 3, and 4 respectively, have be-

lief 0.428, e.g. Bel(1000) =
Belp1 ({

S

/∼})×Belp2 (
S
∼)×Belp3(

S
∼)×Belp4 ({

S

/∼})

Belp1 (
S
∼)×Belp2 (

S
∼)×Belp3(

S
∼)×Belp4 ({

S

/∼})
= 0.428.

Note that the belief of the mapping is normalized so that the belief of map-

ping 0000 is 1. The three schema mappings 1000, 0100 and 0010 define a

local flatline, which is illustrated in Figure 5.4 as a shaded area.

The figure also illustrates the selection cost of a preferable mapping in an

5.2. Top-K 144

interactive setting in terms of the number of pairs of objects compared,

as defined in Section 4.7.1. First of all, assume that the user’s preferred

mapping is 0111 for this task. In step (a), the user compares the first two

schema mappings in top-16, i.e. the mappings 0000 and 1000 at rank 1 and

rank 2 respectively. The cost of this comparison is the cost of comparing a

single pair of objects, in particular pair p1, since all other pairs have identical

relationships. Now, mapping 0000 is more correct than 1000 according to

this user, therefore the mapping 0000 is selected by the user and is carried on

to the next schema mapping comparisons. Effectively, by selecting mapping

0000 over 1000 it shows that the user prefers for p1 the relationship 0 rather

than the relationship 1.

In step (b), mapping 0000 is compared with the mapping 0100 at rank 3.

This cost of this comparison is the cost of comparing the two relationships

of p2. Thus, an additional pair to p1 is now compared increasing the number

of pairs compared and increasing the selection cost to two. Mapping 0100

is better than 0000, therefore this mapping is carried on to the next steps.

Effectively, the selection of 0100 over 0000 shows that the user prefers the

relationship 1 for p2 rather than the relationship 0.

Now, based on the user’s previous selections, the tool knows that the map-

pings that the user is interested in are mappings of the form 01 , i.e. they

start with3 01. All other mappings can be skipped and not displayed to

the user, who would not need to compare them. Therefore, the overall user

effort and the overall selection cost is reduced.

Thus, in step (c), the next four mappings 0010, 0001, 1100 and 1010 are

skipped and do not affect the cost of selection. Mapping 0110, however, is

of the form 01 . The user compares mapping 0100 with 0110 and decides

to select mapping 0110, which is more correct. The cost of this comparison

3Note that in an example with NR = 6, the mappings the user would be interested in would
be of the form 01 ,21 , etc.

5.2. Top-K 145

is another pair of relationships to be compared for pair p3. Thus, the cost

increases to three pairs.

Similarly, now all the mappings of interest are of the form 011 , which allows

skipping the next 6 mappings. In step (d), when mapping 0111 is reached,

it is compared against 0110 and it is selected. The user has identified the

correct mapping for this task. The cost is increased to 4.

Finally, in step (e), mapping 1111 is skipped and not displayed to the user

since it does not follow the current selected form 0111.

⋄

As we see from the above example, local flatlines do not affect the cost of the search

process in an interactive setting, i.e. when the user gradually specifies which schema

mappings out of the top-K she prefers until she reaches a preferable mapping. The

tool based on the user’s preferences can guide the search process and avoid schema

mappings which are irrelevant to the user.

However, in a fully automatic setting where there is no user intervention, irrelevant

schema mappings cannot be avoided. In the example above, in a fully automatic

setting where the top-16 mappings are required, the tool has to consider all 16

mappings shown in Figure 5.4. Thus, the tools has to pass four local flatlines. The

same mapping 1111 is reached in 16 steps (as many as the mappings), while in

the interactive setting the 16 mappings are examined in five steps (mappings 0000,

1000, 0100, 0110 and 0111) based on user preference. Thus, local flatlines in a fully

automatic setting could delay the identification of the preferable mapping. This

is even more problematic since the number of schema mappings in a local flatline

increases exponentially as shown next.

Assume again that a matching task contains N pairs of objects of which v pairs have

identical beliefs for compatibility and incompatibility. As aforementioned, these v

pairs specify a subgraph in the exhaustive top-K tree and at each depth of this

5.2. Top-K 146

subgraph a local flatline is defined. We call the number of schema mappings at each

depth of the subgraph, the size of the local flatline.

Each schema mapping at depth i of the sub-graph, when compared to the root

schema mapping has i changes on the configuration of the v pairs. The root config-

uration contains only zeroes, therefore each schema mapping at depth i has i ones

and v− i zeroes. To calculate the number of possible configurations with i ones and

v − i zeroes we need to calculate the combinations

(

v

i

)

. Thus, the size of the local

flatline at depth i for the v pairs is

size(i) =

(

v

i

)

=
v!

(v − i)! i!
(5.6)

For example, consider that v = 3 and depth i = 2. At depth i = 2 there are going to

be 2 out of the 3 pairs with configuration one and one pair with configuration zero.

The number of such mappings and thus the size of the local flatline is

(

3

2

)

= 3.

In Example 5.4, where v = 3 (p1, p2, p3), in depth i = 2 of the sub-graph with root

0000, the

(

3

2

)

possible mappings are 1100, 1010 and 0110, i.e. two out of the first

three pairs have configuration one, and these mappings constitute a local flatline as

shown in Figure 5.4. If we increment v, v = 4, then for i = 2 there are going to

be 2 out of the 4 pairs with configuration one and 2 pairs with configuration zero,

i.e. the local flatline size if

(

4

2

)

= 6. For v = 5 and i = 2 the size is

(

5

2

)

= 10, and

for v = 6 it is

(

6

2

)

= 15.

The graph in Figure 5.5, which is derived by Equation 5.6, illustrates that the size

of a local flatline at each depth increases exponentially as the number of pairs v

increases.

Thus, in a fully automatic setting, a top-K method which avoids local flatlines would

be beneficial.

5.2. Top-K 147

1 2 3 4 5 6 7 8 9 10

v number of pairs with identical USMs

0

20

40

60

80

100

120

140

160

180

200

220

s
iz
e
 o
f
lo
c
a
l
fl
a
tl
in
e

depth 1

depth 2

depth 3

depth 4

Figure 5.5: Exponentiality of the size of local flatlines

5.2.4 Truncated Top-K

In the truncated top-K approach, the pairs of objects that have identical USMs are

grouped together. This approach is used in a fully automatic setting, therefore the

user cannot intervene nor differentiate between the pairs in a group. In a matching

task with N pairs of objects, there are Ng groups of pairs, G1, . . . , GNg , Ng ≤ N . The

number of pairs in each group Gi is |Gi|. Each two pairs of objects, pi, pj, 1 ≤ i ≤

N, 1 ≤ j ≤ N, i 6= j that belong to the same group of pairs, Gl, i.e. pi ∈ Gl, pj ∈ Gl,

have identical USMs.

As in the exhaustive top-K approach, each schema mapping sm in the truncated

top-K approach is represented as a string of length Ng. Each position i in sm now

represents the semantic relationship of group Gi, i ≤ Ng. Thus, all pairs of objects

in the same group have the same semantic relationship in sm. The position i in

sm is given a value 0,. . . ,NR − 1, which specifies now the rank of the relationship

selected for group Gi in sm. Since all pairs in Gi have identical USMs, the ranking

of the semantic relationships amongst these pairs is identical. Group Gi uses this

5.2. Top-K 148

Figure 5.6: Truncated Top-K with 2 groups of pairs and NR = 2

ranking. In the truncated top-K approach, the process to derive the top-K schema

mappings is the same as before, i.e. the top-K tree is gradually built but for each

configuration of the groups G1, . . . , GNg .

In the truncated approach, the sub-graphs that were previously causing the local

flatlines are also truncated, e.g. in the case where NR = 2 the sub-graph with 2|Gi|

different nodes is replaced with a truncated version with just two nodes, a root and

a leaf; the root of the truncated sub-graph represents exactly the same mapping

as the root node in the exhaustive sub-graph, and the leaf node of the truncated

sub-graph represents exactly the same mapping as the leaf node in the exhaustive

sub-graph.

The drawback of the truncated top-K is that not all possible schema mappings for

a particular task are identified. The advantage of this approach is that it is not

delayed by local flatlines.

Example 5.5. Truncated Top-K

Following on from Example 5.4, in the truncated top-K approach pairs p1,p2

and p3 form group G1, since they have identical USMs, and pair p4 forms

group G2. The truncated top-K tree contains 22 mappings and is illustrated

in Figure 5.6.

Each sub-graph in the exhaustive approach, Example 5.4, is replaced by a

truncated version of it. Mappings 00 and 10 in Figure 5.6 constitute the

truncated version of the sub-graph in Figure 5.3 with root node 0000 and

5.2. Top-K 149

0000 1110 0001 1111

schema mapping

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b
e
li
e
f

0

1

2

3

4
c
o
s
t

truncated top-k

preferred mapping 0000

preferred mapping 1110

Figure 5.7: Truncated Top-K beliefs

leaf node 1110. Mapping 00 corresponds to mapping 0000 in the exhaustive

top-K approach and mapping 10 corresponds to 1110. Mappings 01 and

11 constitute the truncated version of the sub-graph in Figure 5.3 with

root node 0001 and leaf node 1111. Mapping 01 corresponds to 0001 and

mapping 11 corresponds to 1111.

There are 12 more mappings in the exhaustive top-K tree, which are not

considered in the truncated version.

Figure 5.7 illustrates the beliefs of the 22 mappings identified in the trun-

cated approach. The schema mappings in the figure are in ranking order

and have been expanded into their exhaustive top-K counterparts.

We can see that Figure 5.7 is free of local flatlines. Additionally, we see

that a reasonable mapping 1110, which is 50% correct (0111 is the user’s

preferred mapping) is just the second mapping in the truncated top-4, while

it is the 12-th mapping in the exhaustive top-16 mappings.

⋄

5.3. Experimental Evaluation 150

5.3 Experimental Evaluation

In this section, an experimental evaluation of our matching implementation is pre-

sented. First, we want to evaluate how the introduction of USMs in the matching

process affects the quality of the derived schema mapping. In order to examine this

issue we compare the schema mapping derived by the matching algorithms when

they produce similarity degrees (see Section 5.1.2) compared to the top-1 schema

mapping derived using the same algorithms extended to produce USMs. This eval-

uation step will show whether the introduction of uncertainty in matching in the

form of USMs affects top-1 matching. Our experiments show that top-1 matching

is in fact improved with the use of USMs.

Additionally, we want to evaluate the improvement we gain in the quality of the

schema mapping when looking at the top-K schema mappings rather than just the

top-1 mapping. This evaluation step will show whether there is an advantage in

examining top-K mappings rather that just the top-1 mapping. Our experiments

confirm our intuition that better schema mappings than the top-1 schema mapping

are available in the top-K mappings.

In the rest of this section, we first describe the data set that we use to perform

our evaluation. We have adopted the data set also used in [73] for the evaluation

of a matching implementation because it supplies us with data that can be used

for training our matching experts to produce USMs. Then we list the matching

experts we experimented with. Our matching experts have been configured to assign

probability mass to two sets of semantic relationships { S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/} and {
S

/∼} since

the data set we have adopted does not specify more specific semantic relationships

to pairs of objects, e.g. { S
=}. or {S

∩}, etc. Then we discuss the evaluation metric,

accuracy, used to measure the quality of schema mappings.

Having defined the evaluation metric, we have compared our two proposed ap-

proaches (exhaustive and truncated top-K) for the derivation of the top-K schema

5.3. Experimental Evaluation 151

mappings (Section 5.3.4), and we have explained when each approach can guarantee

improvement on the accuracy of the schema mappings produced. In Section 5.3.5,

we compare our matching experts based on whether they use regression to define

USMs and we show that using regression produces schema mappings of higher ac-

curacy on average for our experts. Finally, we describe our experiments and our

results.

5.3.1 Data Set

The evaluation of our schema matching implementation requires a set of schema

matching tasks T where manual matching has been performed by a user u in each

task t ∈ T . Each task t ∈ T specifies an integration of two schemas, St1 and St2,

with sets of schema objects SOt1 and SOt2 respectively. The user u must have

defined the schema mapping mtu that holds between St1 and St2 according to her

perspective.

The schema matching tasks that we used in the evaluation are the tasks introduced

in [73]. Some schemas in these tasks have been borrowed from research papers

and others have been derived from data used on websites such as Amazon.com and

Yahoo.com. In our experiments we used 8 tasks. Both XML and relational schemas

are included in these tasks.

Manual matching in each task t ∈ T has been performed by seven different users

u1, . . . , u7, from the Stanford Database Group. Thus, for each task t we have seven

different versions of Match, e.g. for task t1, user u1 has specified the schema mapping

m11 between S11 and S12, user u2 has specified schema mapping m21, etc. Interest-

ingly, as noted in [73], no two users could agree on the Match result for any given

task, i.e. for any users ux and uy and any task t, the schema mappings mxt and

myt are different. This enforces our idea of uncertain semantic mappings and the

need for training the Match experts for each user. One last point regarding the data

5.3. Experimental Evaluation 152

training
set size 1 2 3 4 5 6 7

#num
(

7
1

)

= 7
(

7
2

)

= 21
(

7
3

)

= 35
(

7
4

)

= 35
(

7
5

)

= 21
(

7
6

)

= 7
(

7
7

)

= 1
experiments

Table 5.2: Number of experiments run for each target task and each user, depending
on the size of the training set

set is that the users have specified only compatibility (match) and incompatibility

(no-match) semantic mappings.

In our implementation, the schema matching tasks had to be partitioned into tasks

used for training and tasks used for the experimental evaluation of our tool, which

we call target tasks. We cannot use all the tasks for training since this would produce

bias towards the training set, i.e. our tool would perform well for the trained tasks

but would not be able to deal with new matching tasks as well. This is the well-

known, in Machine Learning, problem of overfitting [77].

The overfitting problem can be resolved using cross-validation [77]. In particular,

we applied a version of k-fold cross-validation. In k-fold cross-validation, the T

tasks are split into k disjoint sets, T1, . . . , Tk. Each set Ti contains
|T |
k

tasks, where

|T | specifies the size of set T , i.e. |Ti| =
|T |
k
, 1 ≤ i ≤ k. Then the experiments are

run k times (k folds) each time using a different set of tasks Ti as target tasks. The

remaining set of tasks, Tj, 1 ≤ j ≤ k, j 6= i, are put together to produce the training

tasks. Thus, the size of the training set in each experiment is |T | − |Ti| = |T | −
|T |
k
.

The results of the k experiments are then averaged.

In our version of k-fold cross-validation, we do not want a constant training set

size. Instead, we want to see how our implementation performs as the training set

size increases from size 1 up to size |T | − 1. Additionally, we want to examine all

possible combinations of training tasks and not be restricted to the k sets randomly

selected initially in k-fold cross-validation. For example, in a 2-fold cross-validation

with |T | = 8, where the two disjoint set of tasks are T1 = {t1, t2, t3, t4} and T2 =

{t5, t6, t7, t8}, target task t1 will be evaluated using only the training tasks of T2;

5.3. Experimental Evaluation 153

tasks t2, t3, t4 are not going to be included in the training. Finally, in our version

of k-fold cross-validation, we increase the training set size from size 1 up to size

|T | − 1, which is similar to performing k-fold cross-validation for increasing values

of k. In the last case where the training set size is |T | − 1, the value of k is |T |. In

our particular data set taken from [73], we have |T | = 8, and the maximum size of

the training set is |T | − 1 = 7.

We have conducted the experiments as follows. Each experiment is using a single

task tj as a target task. Each user’s ui schema mapping for this task mij is used

for the evaluation of our implementation. The rest of user’s ui schema mappings

for the remaining tasks, mik, 1 ≤ k ≤ 8, k 6= j, are used as training data. At each

stage of the experiments, we increase the size |TS| of the training set TS. There

are 7 stages, since this is the maximum size of the training set we can have. In

the first run, the size of the training set is |TS1| = 1, meaning that only one of the

mik, 1 ≤ k ≤ 8, k 6= j is used as training data. In order to avoid overfitting, we run

the same experiment, i.e. with the same target mappings mij, but using different

training data sets and then we average the results. For example, if mi1 is the target

schema mapping, then the experiment in stage 1 is first run using training data

TS1 = {mi2}, then using TS1 = {mi3}, etc. This way we have
(

7
1

)

= 7 combinations

of training data, which produce 7 different experiments for stage 1. The results of

these experiments are then averaged. In the next stage, stage 2, the size of the

training set is incremented, |TS2| = 2. In this stage we have
(

7
2

)

combinations of

training data, i.e. 21 experimental results, which we average. The same process is

executed up to training size |TS7| = 7, which specifies only one possible experiment.

Table 5.2 shows in detail the number of experiments ran for each target task for one

user as the training set size increases.

5.3. Experimental Evaluation 154

5.3.2 Configuration

Due to the fact that only two matching tasks in our data set contain sample instances

of the schema objects and therefore the training process would be limited, we decided

not to include match experts that perform instance-based comparison of schema

objects in our experiments.

The experts we experimented with are the WordNet expert, the Similarity Flooding

expert and the Rondo String Matching expert. In addition, we used hardcoded com-

binations of these experts, where the algorithms of these experts are combined into

a single algorithm. These hybrid experts are: Similarity Flooding/Rondo, where

the initial similarity degrees for the Similarity Flooding algorithm are provided by

the Rondo String Matching algorithm, and Rondo/WordNet, where names are to-

kenized based on the Rondo String Matching algorithm and then tokens are com-

pared using the algorithm of the WordNet expert. Finally, we used combination of

experts according to our proposed framework, where the USMs of the experts are

combined using our aggregation method (Section 4.4). These experts are: Similar-

ity Flooding + Rondo, Similarity Flooding + WordNet and Similarity Flooding +

Rondo/WordNet. These three experts perform both structural and name matching.

Since the users of our data set have only specified compatibility and incompatibility

mappings, our experts have been configured to identify just two sets of mappings:

S
∼ and {

S

/∼}. We used both types of trainers, non-regression and regression based, in

our experiments in both cases using interval = 0.1. Thus, the training tables used

in our experiments are of type 〈0.1, 〈 S∼, {
S

/∼}〉〉. Finally, we used belief to order the

top-K schema mappings.

5.3. Experimental Evaluation 155

5.3.3 Evaluation Metric

In order to evaluate the performance of our Match component and the quality of the

schema mappings it produces, we can measure the effort the user is required to spend

to transform a schema mapping Match into the user-intended schema mapping [73].

User-effort is measured by counting the number of semantic mappings that need

to be altered on the automatically generated schema mapping Match. Note that

this user-effort is not the same as the cost of correcting a schema mapping Costfix

presented in Section 4.7.1. Costfix also considers the user-effort required to identify

the correct semantic relationship for each pair before transforming Match to the

user-intended schema mapping.

Let: (1) n be the number of compatibility mappings proposed by the tool, (2)

c, c ≤ n the number of correct compatibility mappings identified by the tool, and

(3) m the number of compatibility mappings in the user-intended result. The value

f = n − c is the number of false positives mappings, i.e. mappings that falsely

have been identified as compatible. The value m− c is the number of false negative

mappings, i.e. mappings that falsely have been identified as incompatible.

If the user performs the whole matching process manually, then the default initial

mapping can be considered to be the one where all pairs are incompatible. In this

case m semantic mappings need to be altered to translate this mapping to the user-

intended one. The user effort in this case is m/m = 1.

If the user first employs the automatic matching process, which produces schema

mapping Match, and then corrects the false positives and false negatives of Match,

she would require to alter f+(m−c) semantic mappings. Thus, the amount of work

needed for transforming an automatically generated schema mapping compared to

transforming the default schema mapping is given by the ratio:

5.3. Experimental Evaluation 156

f + (m− c)

m
=

(n− c) + (m− c)

m

Now, we can measure the quality of a automatically generated schema mapping by

calculating the amount of work it saves the user from doing, i.e. :

A =
m

m
−

f + (m− c)

m
= 1−

(n− c) + (m− c)

m
(5.7)

This metric is called accuracy and it is introduced in [73]. In a perfect schema

mapping where n = m = c, the user-effort required after the automatic matching is

0 and accuracy is 1.

If more than half of the semantic mappings of an automatically generated schema

mapping are incorrect, i.e. if c < n/2, then accuracy is negative, meaning that the

user has to do more work than if she was to do the whole process from scratch.

A criticism on the accuracy metric is that it does not take into consideration the

number of pairs in a schema matching task. For example, assume a task where

there are 5 pairs of objects two of which are compatible, i.e. m = 2. A schema

mapping detects one of these pairs without any false positive pairs, i.e. n = c = 1.

In this case, the schema mapping identifies correctly one of the two compatible pairs

between the five pairs in total. Accuracy is 0.5. Now, assume that there are 50 pairs

of objects, and still m = 2 and n = c = 1. In this task, the schema mapping

managed to identify one of the two compatible pairs between the 50 in total pairs,

which is probably more difficult than in the previous task with 5 pairs. However,

accuracy is still 0.5.

Nonetheless, in our evaluation we are still going to use the accuracy metric since

it has been previously used in well-known research papers [73, 33]. In addition, all

other existing metrics [32] face the same aforementioned problem.

5.3. Experimental Evaluation 157

5.3.4 Comparison of Exhaustive and Truncated Top-K based

on accuracy

Based on the accuracy metric, we can compare the exhaustive and truncated top-K

methods.

At any matching task, there are N pairs of objects, m of which are compatible

according to a user. Based on the USMs for these N pairs, an exhaustive top-K tree

is defined.

Assume again, as in Section 5.2.3, that we are just interested in compatibility and

incompatibility relationships and that v pairs of objects that have identical beliefs for

compatibility and incompatibility are the pairs that the tool is least certain about.

As it has been mentioned, these v pairs specify a sub-graph in the exhaustive top-K

tree for each possible configuration of the N − v pairs, and that at each depth of

this sub-graph a local flatline is defined. Assume that the root of such a sub-graph

does not represent the user-intended schema mapping, i.e. the accuracy A0 at the

root is not 1. Then, the maximum accuracy Ai at each depth i of the sub-graph will

be improving, Ai = A0 + i/m, until the user-intended configuration for the v pairs

of objects is reached.

Proof. Assume that at the root of each subgraph defined by the v pairs cv out of

v pairs concerned are true positives and fv out of the v pairs are false positives.

Additionally, assume that in the remaining N − v pairs, cN−v are true positives

and fN−v are false positives. Thus, at the root of the tree there are in total f =

fv + fN−v false positives and c = cv + cN−v true positives, which result in accuracy

(Equation 5.7) :

A0 = 1−
(fv + fN−v) + (m− (cv + cN−v))

m
(5.8)

5.3. Experimental Evaluation 158

At each depth i of the subgraph, the semantic mapping on i of the v pairs is altered

compared to their semantic mappings at the root of the tree. The best accuracy will

be achieved if all of these i changes are correct changes, i.e. all i changes increase the

true positives c′v and/or decrease the false positives f ′
v: c

′
v = cv + x and f ′

v = fv − y,

where x+ y = i. Thus, the best accuracy at depth i is:

Ai = 1−
(f ′

v + fN−v) + (m− (c′v + cN−v))

m
=

= 1−
(fv − y + fN−v) + (m− (cv + x+ cN−v))

m

= 1−
(fv + fN−v) + (m− (cv + cN−v))− (y + x)

m

= A0 +
i

m

Thus, exhaustively traversing each subgraph identified by the v pairs of objects

guarantees an improvement i
m

in accuracy at each depth of the subgraph, until the

maximal accuracy for the specific configuration of the N − v pairs is reached.

In the truncated top-K approach, even though the exponential size of local flatlines

does not affect the process, since local flatlines are avoided, improvement in accuracy

is not guaranteed as in the exhaustive top-K approach.

There are two cases that can be identified, which determine whether the accuracy

improves or worsens when traversing the truncated subgraph. One case is when at

the root of the subgraph most of the v pairs have been assigned the correct semantic

relationship. In this case traversing the truncated subgraph worsens the currently

achieved schema mapping accuracy. This case is identified when at the root of the

subgraph cv > fv and Belv(
S
∼) > Belv({

S

/∼}) or cv < fv and Belv(
S
∼) < Belv({

S

/∼}),

where Belv(
S
∼)) is the belief of compatibility for all v pairs and Belv({

S

/∼}) is the

5.3. Experimental Evaluation 159

belief of incompatibility for the v pairs.

The second case is when at the root of the subgraph most of v pairs have not

been assigned the correct relationships. This case is identified when at the root

of the subgraph we have that cv < fv and Belv(
S
∼) > Belv({

S

/∼}) or cv > fv and

Belv(
S
∼) < Belv({

S

/∼}) In this case traversing the truncated subgraph improves the

current achieved schema mapping accuracy.

Proof. The root of each subgraph specified by the v pairs of objects in the exhaustive

top-K tree represents exactly the same mapping as the root in the truncated version

of the sub-graph.

• Belv(
S
∼) > Belv(

S

/∼) Assuming that compatibility has higher belief than in-

compatibility for the v pairs, Belv(
S
∼) > Belv(

S

/∼), the root of the truncated

sub-graph assigns to all v pairs the compatibility relationship. The accuracy

A0 at the root is the same as in Equation 5.8:

A0 = 1−
(f0v + f0(N−v)) + (m− (c0v + c0(N−v)))

m

= 1−
m− c0(N−v) + f0(N−v)

m
−

f0v − c0v
m

(5.9)

where c0v,f0v are the true and false positives, respectively, regarding the v

pairs of objects at the root of the subgraph with c0v + f0v = v. c0(N−v),f(N−v)

are the true and false positives, respectively, regarding the N − v pairs at the

root.

At the next node of the truncated sub-graph, the v pairs are configured to be

incompatible, which is the relationship with next highest belief for these pairs.

Therefore, the true and false positives in the v pairs are c1v = f1v = 0. Since

the configuration of the N − v pairs does not change in this node, we have

c1(N−v) = c0(N−v) and f1(N−v) = f0(N−v). The accuracy A1 at this node is:

5.3. Experimental Evaluation 160

A1 = 1−
m− c1(N−v) + f1(N−v)

m
−

f1v − c1v
m

= 1−
m− c0(N−v) + f0(N−v)

m
− 0

A1 = A0 +
f0v − c0v

m
(5.10)

Based on Equation (5.10), there are two cases:

1. f0v < c0v: (f0v − c0v)/m < 0, which means that A1 < A0

2. f0v > c0v: (f0v − c0v)/m > 0, which means that A1 > A0

The first case describes the situation where there are more true positives (c0v)

pairs than false positives (f0v) in the v pairs at the root of the subgraph,

i.e. most of the semantic mappings for the v pairs have been correctly identi-

fied. Traversing the truncated top-K tree in this case worsens the accuracy of

the schema mappings; the root has higher belief A0 than the leaf A1.

The second case where f0v > c0v, describes the situation where there are

more incompatible pairs than compatible, which does not agree with the tool’s

beliefs. The truncated top-K approach in this case guarantees improvement

in accuracy; the leaf has higher belief than the root, A1 > A0.

• Belv(
S
∼) < Belv(

S

/∼) Assuming that incompatibility has higher belief than com-

patibility in the v pairs, the accuracy at the root of the truncated sub-graph

is A0 = 1 −
m−f0(N−v)−c0(N−v)

m
, while the accuracy at the leaf is A1 = 1 −

m−c1(N−v)+f1(N−v)

m
− f1v−c1v

m
.

Similar to the previous case, we can deduce that A1 = A0 −
f1v−c1v

m
. Now, if

c1v > f1v then, A1 > A0, but if c1v < f1v then A1 < A0.

5.3. Experimental Evaluation 161

We could assume that most of the v pairs are correctly identified when the tool

has been trained extensively. Thus, the exhaustive top-K approach could be applied

after extensive training, while the truncated top-K approach could give better results

in the early stages of training. Additionally, the truncated top-K approach could be

useful when dealing with matching tasks that do not follow the general patterns of

other matching tasks. In these cases, extensive training is not helpful.

5.3.5 Using regression

In Section 5.1.3, we showed that our USMs are produced based on a training table,

which is divided based on degree ranges. Additionally, we showed that by using

regression on the training table’s data we can possibly produce more precise USMs,

e.g. in ranges where there are no training data the trainer does not need to show

total ignorance but it can derive a USM based on the USMs on the adjacent ranges.

In this section, we are going to show that our experiments confirm our intuition,

even though the improvement gained from using regression is small.

We compared the accuracy of the top-1 schema mapping produced by the three

matching experts, Similarity Flooding, Rondo String Matching and WordNet, both

with and without using regression to derive the USMs. For each user and each task

we identified the maximum accuracy of the experts in both cases, and we identified

the percentage of improvement in accuracy when using regression. For example,

assume that for each user u and for each task i expert j produces maximum accuracy

auijreg and auij with and without regression respectively. Improvement in accuracy is

calculated as the fraction of the difference between the two accuracies, auijreg − auij,

over the maximum possible difference, 1− auij:

Impruij =
auijreg − auij

1− auij
(5.11)

5.3. Experimental Evaluation 162

1 2 3 4 5 6 7 8

tasks

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

a
c
c
u
ra
c
y
 i
m
p
ro
v
e
m
e
n
t

Rondo String Matching

Similarity Flooding

WordNet

average

Figure 5.8: Accuracy improvement when using a regression trainer

Impruij equals 1 when the maximum possible improvement is achieved, and Impruij

is negative if the accuracy when using regression is worse than the accuracy when

regression is not used.

Figure 5.8 shows the average accuracy improvement Imprij across all users for each

task i and each expert j in top-1 matching. As seen, using regression does not

guarantee an improvement in accuracy, but a small increase is achieved. On average

the three experts show an improvement of 0.0003. More particularly, the Similarity

Flooding expert shows an improvement of -0.001 on average across all tasks, the

Rondo String Matching expert shows an improvement of 0.041 and the WordNet

experts shows a -0.039 improvement.

5.3.6 Types of Experiments

We have performed two types of experiments of our schema matching implemen-

tation. The experiments show that our top-K matching approach improves the

accuracy of the matching algorithms and that the improvement in accuracy gained

from the top-K schema mappings outweighs the user selection cost of going through

5.3. Experimental Evaluation 163

the mappings to identify the most preferable one. In the experiments described in

the rest of this chapter only regression-based experts have been used.

In the first set of experiments, we want to examine whether our translation of sim-

ilarity degrees to USMs degrades the accuracy of the schema matching algorithms.

To achieve this, we compare the accuracy of the single schema mapping produced

by each expert when similarity degrees are produced, against the accuracy of the

top-1 schema mapping produced by the same expert when it is adapted to translate

similarity degrees to USMs.

In the second set of experiments, we use our matching tool to compare the im-

provement in the accuracy when top-K schema mappings are identified against the

accuracy of the top-1 schema mapping. However, the production of top-K schema

mappings entails a user cost of selecting the most preferable mapping out of the

top-K. Therefore, in these experiments we also take into consideration the maxi-

mum cost that the user would have to pay to interactively go through the top-K

schema mappings to identify a preferable mapping.

Regarding the first set of experiments, the single schema mapping identified by

traditional matching, i.e. where uncertainty is not considered, needs to be com-

puted based solely on the similarity degrees. To identify the single schema map-

ping, we used the filtering method introduced in [73] as perfectionist egalitarian

polygamy, and mentioned in [33] as MaxDelta with relative tolerance value d = 1.

This filtering method produces schema mappings with the highest accuracy in [73].

The idea behind this filtering method is that each schema object s1 is matched

only to the schema object s2 with the highest similarity degree and vice versa,

i.e. s1 matches with s2 if and only if for all x, sim(s1, s2) ≥ sim(s1, sx) and

sim(s1, s2) ≥ sim(sx, s2).

5.3. Experimental Evaluation 164

5.3.7 Experimental Evaluation of Top-1

In our first set of experiments, we want to evaluate the accuracy of our tool that

outputs USMs instead of similarity degrees.

We remind the reader that our data set contains eight matching tasks. For each task

seven different users have manually specified their desired schema mapping. Each

run of our experiments is executed for a specific user u, a specific target task t and a

specific training set size. In each run the number of individual matching experiments

depend on the training set size. Table 5.2 lists the number of experiments executed

for each training set size. The result of each run is the average accuracy of the top-1

schema mappings identified in the individual experiments of the run.

For each user u and each target task t, seven runs are executed, which correspond to

127 experiments. Since there are eight matching tasks, for each user u we have exe-

cuted 8× 127 = 1016 individual experiments. Since there are seven users, the total

individual matching experiments we have executed in this first set of experiments is

7× 1016 = 7112 experiments.

First of all, we want to confirm that by increasing the training set size the tool per-

forms better, i.e. that the average accuracy of the top-1 schema mapping improves.

Figure 5.9 illustrates the average accuracy of each expert as the training set size

increases. The horizontal axis specifies the training set size and the vertical axis

specifies the average accuracy of the expert across all users and all tasks. For ex-

ample, the average accuracy of the Similarity Flooding expert across all seven users

and all eight tasks is -0.0877 when the training set size is equal to one. As we can

see from the figure, in general the average accuracy of each expert improves as the

training set size increases.

Figure 5.10(a) illustrates the best accuracy achieved on average across all users for

each task by each expert. Figure 5.10(b) illustrates how this best accuracy compares

5.3. Experimental Evaluation 165

1 2 3 4 5 6 7

training set size

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

a
c
c
u
ra
c
y

Similarity Flooding

Rondo String Matching

WordNet

Similarity Flooding/Rondo

Rondo/WordNet

Similarity Flooding + Rondo

Similarity Flooding + WordNet

Similarity Flooding + Rondo/WordNet

Figure 5.9: Average accuracy of Top-1 schema mapping as training set size increases

with the best accuracy achieved when using the perfectionist egalitarian polygamy

approach. The formula used for this comparison is similar to Equation 5.11, i.e. it

identifies the ratio of the actual improvement achieved compared to the maximum

possible improvement. If the accuracy produced by our tool is less than the accu-

racy produced by the polygamy approach, improvement is negative. Note that in

Figure 5.10(b) we compare only the results of singleton experts since we want to

compare how the same algorithms perform in our approach and in the perfectionist

egalitarian polygamy approach.

As we can see in Figure 5.10(b), in most tasks using our approach improves the

accuracy of an algorithm. The interesting cases are task 1 and task 3. In task 1,

even though our experts achieve a high accuracy, e.g. the Similarity Flooding/Rondo

expert achieves an accuracy of 0.457, this is still worse than the accuracy achieved

by the polygamy approach. For example, the accuracy of the Similarity Flood-

ing/Rondo expert is -1.27 worse than if the polygamy approach was used. Thus, we

see that the polygamy approach performs exceptionally well for task 1. On the other

hand, on task 3, our tool in some cases produces very low accuracy, e.g. the Similarity

Flooding/Rondo expert produces accuracy -0.86. However, it still performs better

than the polygamy approach, e.g. the Similarity Flooding/Rondo expert improves

5.3. Experimental Evaluation 166

1 2 3 4 5 6 7 8

tasks

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

a
c
c
u
ra
c
y

Similarity Flooding

Rondo String Matching

WordNet

Similarity Flooding/Rondo

Rondo/WordNet

Similarity Flooding + Rondo

Similarity Flooding + WordNet

Similarity Flooding + Rondo/WordNet

(a) Average best accuracy

1 2 3 4 5 6 7 8

tasks

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

im
p
ro
v
e
m
e
n
t

Similarity Flooding

Rondo String Matching

WordNet

Similarity Flooding/Rondo

Rondo/WordNet

(b) Accuracy improvement

Figure 5.10: Average best accuracy across all users and training set sizes for Top-1
schema mapping

5.3. Experimental Evaluation 167

expert

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

a
c
c
u
ra
c
y

Top-1 Matching

Perfectionist Egalitarian Polygamy
R
o
n
d
o
 S
tr
in
g
 M
a
tc
h
in
g

S
im
ila
ri
ty
 F
lo
o
d
in
g

W
o
rd
N
e
t

S
im
ila
ri
ty
 F
lo
o
d
in
g
/R
o
n
d
o

R
o
n
d
o
/W
o
rd
N
e
t

S
im
ila
ri
ty
 F
lo
o
d
in
g
 +
 R
o
n
d
o

S
im
ila
ri
ty
 F
lo
o
d
in
g
 +
 W
o
rd
N
e
t

S
im
ila
ri
ty
 F
lo
o
d
in
g
 +
 R
o
n
d
o
/W
o
rd
N
e
t

Figure 5.11: Average best accuracy by each expert across all tasks and all users for
Top-1 schema mapping

the accuracy of task 3 by 0.1247.

Therefore, we could say that for the same matching algorithms our approach pro-

duces more consistent accuracy results:

• it produces an accuracy which does not match the polygamy accuracy but it

is still fairly high (task 1),

• it improves in general the polygamy accuracy (tasks 2-6),

• it matches the polygamy accuracy (tasks 7 and 8).

Figure 5.11 illustrates the average best accuracy achieved by our approach and the

perfectionist egalitarian polygamy approach across all tasks and all users for each

expert. We see that our approach improves the accuracy of all experts, except from

the Rondo/WordNet expert. More importantly, we see that the most accurate set

up (accuracy of 0.1755) is using USMs and combining the Similarity Flooding and

Rondo String Matching experts. This set up is more accurate even than the hybrid

Similarity Flooding/Rondo expert (accuracy of 0.1434).

5.3. Experimental Evaluation 168

5.3.8 Experimental Evaluation of Top-K

In our second set of experiments, we compare the accuracy of the top-3 schema

mappings against the top-1 schema mapping. We want to confirm our intuition

that by considering further schema mappings and not just a single mapping, as

most current approaches do, we achieve better accuracy.

As in the evaluation of the top-1 matching, for each user u and each target task

t, seven runs are executed. In total, the same number of individual matching ex-

periments are executed, i.e. 7112 experiments, but now the top-3 schema mappings

are computed, instead of just the top-1. The exhaustive top-K approach is used to

compute the top-3 match results. In each experiment, the most accurate schema

mapping out of the top-3 is identified. The results of each experiment are: (a)

the maximum improvement of accuracy gained in the top-3 mappings compared to

the accuracy of the top-1 mapping, and (b) the worst user cost needed to identify

the most preferable mapping in the top-3. The result of each run is the average

maximum improvement of accuracy and the average worst user cost.

First, we want to confirm that by increasing the training set size the average maxi-

mum accuracy of the top-3 schema mappings improves. Figure 5.12 illustrates the

average maximum accuracy for each expert as the training set size increases. As

we can see from the figure, accuracy improves for the exhaustive top-3 approach as

training set size increases.

To confirm our previous intuition in Section 5.3.4 that the exhaustive top-K approach

provides better results after extensive training, while the truncated top-K approach

is useful in the early stages of training, we have also examined how the average

maximum accuracy of the truncated top-3 compares to the one of the exhaustive

top-3. We compared the two approaches in similar way to Section 5.3.5, i.e. we

calculate the ratio of the improvement gained compared to the maximum possible

improvement that could be gained. The results are illustrated in Figure 5.13. The

5.3. Experimental Evaluation 169

1 2 3 4 5 6 7

training set size

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

a
c
c
u
ra
c
y

Similarity Flooding

Rondo String Matching

WordNet

Similarity Flooding/Rondo

Rondo/WordNet

Similarity Flooding + Rondo

Similarity Flooding + WordNet

Similarity Flooding + Rondo/WordNet

Figure 5.12: Average maximum accuracy of exhaustive Top-3 schema mappings as
training set size increases

figure shows that, in general, as the training set size increases the improvement

gained in the truncated top-3 approach decreases compared to the exhaustive top-3

approach.

Going back to the exhaustive top-3 experiments, Figure 5.14(a) illustrates the im-

provement in accuracy when looking at the top-3 schema mappings compared to the

accuracy of the top-1 mapping. In the figure, the improvement in top-3 is illustrated

against the training set size. First of all, we see that the top-3 approach always im-

proves against the top-1, i.e. our tool correctly identifies the pairs of objects whose

semantic mapping is incorrect in the top-1 mapping and repairs them. As we were

expecting, in the exhaustive top-3 approach the improvement is not gigantic, but it

is substantial, e.g. above 4% in all cases. The reason is that in the exhaustive top-3

schema mappings, the semantic mappings of a maximum of two pairs of objects can

be changed compared to the top-1 schema mapping.

The aforementioned improvement in accuracy does not come for free. The user has

to manually go through the top-3 mappings and choose the best one, i.e. a selection

cost must be paid. Figure 5.14(b) illustrates the ratio of the improvement against

the worst selection cost. For each individual matching experiment, worst selection

5.3. Experimental Evaluation 170

1 2 3 4 5 6 7

training set size

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

im
p
ro
v
e
m
e
n
t

Similarity Flooding

Rondo String Matching

WordNet

Similarity Flooding/Rondo

Rondo/WordNet

Similarity Flooding + Rondo

Similarity Flooding + WordNet

Similarity Flooding + Rondo/WordNet

Figure 5.13: Average maximum improvement of accuracy of the truncated top-3
schema mappings against the exhaustive Top-3 schema mappings as training set
size increases

cost is calculated as the ratio of the number of pairs whose semantic mapping has

been changed in the top-3 schema mappings over the total number of pairs in the

matching task, as shown in Example 5.4. As we can see from the figure, on average

the improvement in accuracy gained is three times more than the cost needed to

obtain it. Thus, our approach is cost efficient. Note that in the truncated top-K

approach we do not need to examine the selection cost, since this approach is useful

only in a fully automatic setting.

Figure 5.15 illustrates the best accuracy achieved on average across all users for each

task by each expert when computing the top-3 schema mappings. The comparison of

the top-3 accuracy against the top-1 accuracy for each task is shown in Figure 5.16.

As we can see, the WordNet expert is the only expert which does not improve in

the top-3 mappings for all tasks. The Rondo String Matching expert improves all

tasks showing its least improvement 0.018 for task 5 and its maximum improvement

0.115 for task 8. The Similarity Flooding + WordNet expert improves all tasks,

with least improvement 0.0038 for task 3 and maximum improvement 0.129 for task

1. In general, we can see that the experts by looking at the top-3 schema mappings

5.3. Experimental Evaluation 171

1 2 3 4 5 6 7

training set size

0.04

0.05

0.06

0.07

0.08

0.09

0.1

im
p
ro
v
e
m
e
n
t

Similarity Flooding

Rondo String Matching

WordNet

Similarity Flooding/Rondo

Rondo/WordNet

Similarity Flooding + Rondo

Similarity Flooding + WordNet

Similarity Flooding + Rondo/WordNet

Average Expert

(a) Improvement

1 2 3 4 5 6 7

training set size

1

1.5

2

2.5

3

3.5

4

4.5

5

im
p
ro
v
e
m
e
n
t
/
w
o
rs
t
c
o
s
t

Similarity Flooding

Rondo String Matching

WordNet

Similarity Flooding/Rondo

Rondo/WordNet

Similarity Flooding + Rondo

Similarity Flooding + WordNet

Similarity Flooding + Rondo/WordNet

Average Expert

(b) Improvement over cost

Figure 5.14: Top-3 matching accuracy improvement against Top-1 and cost

5.3. Experimental Evaluation 172

1 2 3 4 5 6 7 8

tasks

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

a
c
c
u
ra
c
y

Similarity Flooding

Rondo String Matching

WordNet

Similarity Flooding/Rondo

Rondo/WordNet

Similarity Flooding + Rondo

Similarity Flooding + WordNet

Similarity Flooding + Rondo/WordNet

Figure 5.15: Average best accuracy across all users and training set sizes for top-3
schema mapping

1 2 3 4 5 6 7 8

tasks

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

im
p
ro
v
e
m
e
n
t

Similarity Flooding

Rondo String Matching

WordNet

Similarity Flooding/Rondo

Rondo/WordNet

Similarity Flooding + Rondo

Similarity Flooding + WordNet

Similarity Flooding + Rondo/WordNet

Figure 5.16: Accuracy improvement by each expert across all tasks and all users for
Top-3 schema mapping against Top-1 mapping

improve their accuracy compared to just looking the top-1 mapping.

Finally, Figure 5.17 illustrates the average best accuracy achieved in the top-3 and

the top-1 approaches across all tasks and all users for each expert. We see that

the experts further improve the accuracy of the top-1 mapping. In particular, the

Similarity Flooding + Rondo expert shows the highest overall accuracy of 0.24,

which is the highest achieved by any expert in top-3, top-1 and the perfectionist

egalitarian polygamy approaches.

5.4. Summary 173

expert

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

a
c
c
u
ra
c
y

top-3 matching

top-1 matching
R
o
n
d
o
 S
tr
in
g
 M
a
tc
h
in
g

S
im
ila
ri
ty
 F
lo
o
d
in
g

W
o
rd
N
e
t

S
im
ila
ri
ty
 F
lo
o
d
in
g
/R
o
n
d
o

R
o
n
d
o
/W
o
rd
N
e
t

S
im
ila
ri
ty
 F
lo
o
d
in
g
 +
 R
o
n
d
o

S
im
ila
ri
ty
 F
lo
o
d
in
g
 +
 W
o
rd
N
e
t

S
im
ila
ri
ty
 F
lo
o
d
in
g
 +
 R
o
n
d
o
/W
o
rd
N
e
t

Figure 5.17: Average best accuracy by each expert across all tasks and all users for
Top-3 schema mapping

5.4 Summary

In this chapter, we have presented our implementation of schema matching.

In our schema matching process, we produce uncertain semantic mappings (USMs),

which allow the representation of the uncertainty of the automatic schema matching

tool. USMs require the distribution of probability masses to the several semantic

relationships possible for each pair of objects. Thus, in this chapter we explain a

methodology for the identification of these probability masses.

Our matching tool is based on existing matching algorithms. These algorithms pro-

duce similarity degrees for each pair of objects, which need to be translated into

probability masses. To achieve this, the matching tool is trained based on user-

validated semantic mappings from previous matching tasks and stores statistical

information about these mappings. This information can then be used to identify

probabilities for sets of semantic relationships. Compared to existing approaches

[46, 81] that could potentially support the representation of uncertainty for mul-

tiple semantic mappings, our implementation relies on the user-validated semantic

mappings. In [81], the identification of the probability mass is based on training

5.4. Summary 174

data produced by matching identical schemas. When matching identical schemas,

an object in one schema is equivalent to itself in the other schema. However, this

process can only be used to derive equivalence relationships between schema objects.

Additionally, the final result of matching would be identical for any user. In our

implementation, the final result of matching is user-specific, which is closer to reality

where different users have different views on how schemas should be matched [73]. In

[46], schema matching uncertainty is represented based on fuzzy set theory. In fuzzy

set theory (see Section 4.6), instead of probabilities, grades of membership must be

identified. In [46], these grades of membership are the similarity degrees produced

by existing matching algorithms like the ones we have used for our experts. Addi-

tionally, [46] (and [81]) does not directly support the representation of uncertainty

on multiple semantic mappings, but its implementation needs to be extended. We

provide a methodology directly applicable on multiple semantic mappings.

The produced USMs specify an exponential number of possible schema mappings

for each matching task. To deal with this complexity problem, our tool identifies

the top-K most certain schema mappings. We have implemented two approaches

for identifying the top-K mappings: the exhaustive and the truncated approach.

In this chapter, we show: (a) that the exhaustive top-K approach guarantees a

more accurate schema mapping compared to the top-1 mapping, and (b) that the

exhaustive top-K approach might be slow to identify a good schema mapping in an

environment with no user interaction. The truncated top-K approach is shown to

be more effective when there is no user interaction and when the matching tool has

not been extensively trained.

In our experimental evaluation of our implementation, we show that our approach

improves the accuracy of existing matching algorithms and that the exhaustive top-

K matching further improves these results in a cost effective manner.

Chapter 6

Schema Merging

In the previous chapter, we discussed in detail the identification of the top-K

schema mappings in our matching approach. As explained in Section 4.8, these K

schema mappings define K schema merging tasks. These tasks produce the top-K

integrated schemas (Definition 4.12). In this chapter, we are going to introduce

our schema merging process and show how each integrated schema is produced.

Our approach to schema merging uses formal and precise low-level transformation

rules. One of the advantages of our merging approach, which is due to the formal def-

inition of our rules, is that we are able to prove the soundness and completeness

of the rules; our rules do not produce any information loss nor gain. Addition-

ally, the precision in which these rules are defined allows us to examine the degree

to which these rules can be automated.

Compared to existing approaches [59, 101, 89] that consider similar semantic map-

pings to our approach, our schema merging also specifies view definitions between the

input and the integrated schemas. Compared to the merging approaches [87, 74, 12],

these approaches consider data mappings, whose discovery is a very hard problem

[31], and in addition these approaches are model specific. Instead, our schema merg-

ing approach specifies merging rules based on semantic mappings. Our merging rules

175

6.1. Low-Level Schema Merging 176

are defined using a low-level data model, the HDM (presented in Chapter 3), which

allows their translation to higher-level rules for multiple high-level model schema

merging [94].

The structure of this chapter is as follows. Section 6.1 presents our low-level schema

merging approach, discussing the possible merging rules (Sections 6.1.1-6.1.4), their

properties (Section 6.1.5) and the degree to which they can be automated (Sec-

tion 6.1.6). Section 6.2 explains our generic schema merging framework and Sec-

tion 6.3 provides our methodology for defining merging rules for high-level models

based on the generic framework. As an example, we illustrate how generic rules can

be translated into ER data model rules. Finally, Section 6.4 gives an example of the

final outcome of our top-K schema merging.

6.1 Low-Level Schema Merging

We have defined our low-level schema merging methodology based on a set of for-

mally defined rules. These rules have been identified by exhaustively investigating

the semantic mappings between any pairs of objects and considering all possible

configurations of sub-schema structures.

The input to our schema merging process is a schema mapping (Definition 4.6),

which is a list of N semantic mappings. For each one of these semantic mappings,

we identify which merging rule is applicable. The application of all the identified

rules produces the final integrated schema. Note that our rules have been defined

with the assumption that the data in the input schemas have been pre-processed

and are conformed. Therefore, our merging rules do not use any instance translation

functions.

In order to avoid the complexity of high-level models, we have used the HDM (Chap-

ter 3) to define our rules. The HDM contains two existential constructs: nodes and

6.1. Low-Level Schema Merging 177

edges. Thus, to identify all possible cases of semantic mappings between pairs of

objects, we only have to consider each possible semantic relationship between two

nodes and each possible semantic relationship between two edges.

For each identified schema merging case, either (i) a simplification is possible and a

rule is specified, (ii) a simplification is not possible (NSP), or (iii) the case cannot

logically exist and it is identified as an SRNP (Semantic Relationships Not Possible)

case.

Based on the identified cases and their respective rules, we see that we can apply

a standard schema integration approach [8], where integration is split into three

phases: (a) naming conforming, (b) unioning and (c) restructuring. In our schema

merging approach, each one of these phases is associated with a specific set of rules.

6.1.1 Summary of our Schema Merging rules

Table 6.1 provides a summary of all the rules used in our schema merging approach.

The first column, case, of the table specifies the sub-schema structures that are

examined in the table. The first row of the table examines the semantic relationship

x between any two nodes A and B. The rest of the rows of the table examine each

possible semantic relationship x between two edges.

In the first row, all possible semantic relationships between two nodes are inves-

tigated: equivalence (A S
= B), subsumption (A

S
⊂ B), intersection (A

S
∩ B) and

disjointness (A
S

∩/ B). For each case, a rule is specified. Incompatibility (
S

/∼) does not

need to be examined, since by default an incompatibility mapping implies that no

schema changes are necessary.

In the second, third and fourth row, all possible semantic relationships between

two edges are investigated. Each row identifies a different sub-schema configuration

of the two edges. The second row of the table identifies the case where the two

6.1. Low-Level Schema Merging 178

x

case y z S
=

S
⊂

S
∩

S
∩/

BA
x

Node Merge

Node Distinction
Addition of
Inclusion

Addition of
Intersection

Addition of
Union

BA x Edge Merge

Edge Distinction NSP

Addition of Edge

Intersection NSP

C

B

A x y

S
⊂

Redundant Edge

Removal

Optional Edge

Removal

Addition of Edge

Intersection NSP

S
∩

Specialization of

Edges NSP

Addition of Edge

Intersection NSP

S
∩/ SRNP SRNP SRNP

Generalization
of Edges

N ′
2

N ′
1N1

N2

x yz

S
⊂

S
⊂

Redundant Edge

Removal

Optional Edge

Removal

Addition of Edge

Intersection NSP

S
∩

Specialization of

Edges

Optional Edge

Removal

Addition of Edge

Intersection NSP

S
∩/ SRNP SRNP SRNP

Generalization
of Edges

S
⊃

Redundant Edge

Removal NSP

Addition of Edge

Intersection NSP

S
∩

S
⊂

Specialization of

Edges

Optional Edge

Removal

Addition of Edge

Intersection NSP

S
∩

Specialization of

Edges NSP

Addition of Edge

Intersection NSP

S
∩/ SRNP SRNP SRNP

Generalization
of Edges

S
∩/

S
⊂ SRNP SRNP SRNP

Generalization
of Edges

S
∩ SRNP SRNP SRNP

Generalization
of Edges

S
∩/ SRNP SRNP SRNP

Generalization
of Edges

Table 6.1: Summary of all merging rules possible for all combinations of the semantic
mappings

6.1. Low-Level Schema Merging 179

edges associate the same two nodes A and B. The third row of the table identifies

the case where the two edges have one node A in common. This row apart from

examining each possible semantic relationship x between the edges, in addition

examines each possible semantic relationship y between the nodes B and C that node

A is associated with by the two edges. Note here that the equivalence (S
=) relationship

is not considered for y, since this case would be semantically identical with the

configuration of the second row of the table. The final row of the table identifies the

case where the two edges do not have any node in common. In addition to examining

all possible relationships for x, also the relationships y and z between the nodes at

the ends of the two edges are examined. Again, the equivalence relationship is not

considered for either y or z, since it would imply the configuration of either the

second or third row of the table.

While exhaustively examining all possible cases of semantic relationships, cases

where the semantic relationships cannot co-exist have been identified. For example,

consider in the third row of Table 6.1 the case where the semantic relationship x

between the two edges is equivalence and the semantic relationship y between the

nodes B and C is disjointness. This is an illegal case, since by definition the disjoint

nodes B and C do not have any common instances, therefore the two edges cannot

have any common instances either. Thus, the edges cannot be equivalent. This is an

illegal case and it is identified in the Table 6.1 with the acronym SRNP (Semantic

Relationships Not Possible).

Additionally, we have identified cases where the schema cannot be simplified based

on the specified semantic relationships. These cases are illustrated as NSP (No

Simplification Possible) cells in Table 6.1, and no rules have been defined for them.

For example, edge disjointness cases can only be simplified if the nodes in at least

one end of the edges are disjoint. As it will be explained in Section 6.1.5, if this

condition holds then the application of the corresponding rule produces a complete

and sound schema with no additional or missing instances, i.e. no information loss

6.1. Low-Level Schema Merging 180

or gain. In general, we require all our merging rules not to cause any information

loss nor gain. More about this requirement, which we call Intended Domain

Preservation Property (IDPP), is discussed in Section 6.1.5.

6.1.2 Naming Conforming

Based on a standard schema integration approach [8], the first phase of merging is

naming conforming.

In the naming conforming phase, naming conflicts between the objects of the schemas

are resolved. Given that there may be both homonym and synonym [8] conflicts be-

tween nodes and between edges, this leads us to have four rules: Node Merge,

Edge Merge, Node Distinction and Edge Distinction rules. The Node Merge

and Edge Merge rules resolve the synonym conflict of having two equivalent nodes or

two equivalent edges that do not have identical names. In such a case, the rules as-

sign to the two equivalent objects a common name. The Node Distinction and Edge

Distinction rules resolve the homonym conflict of having two non-equivalent objects

with identical names. In this case, the objects have to be assigned distinct names

to make them distinguishable. Thus only the equivalence semantic relationship is

used in this phase of schema merging.

Based on the above observations, the following auxiliary functions are required:

• identicalNames(N1, N2): checks whether two names N1 and N2 are identical.

Returns true when the two names N1, N2 are identical, and false otherwise.

• commonName(N1, N2, N): supplies a common name N based on names N1 and

N2. Variables N1 and N2 must be grounded.

• ¬ 〈〈〈N1〉〉, reli, 〈〈N2〉〉〉: returns true if the mapping of the objects 〈〈N1〉〉 and

〈〈N2〉〉 is 〈〈〈N1〉〉, relj , 〈〈N2〉〉〉 with relj ∈ Θrel = {
S
=,

S
⊂,

S
⊃,

S
∩,

S

∩/,
S

/∼} and reli 6= relj,

and false otherwise.

6.1. Low-Level Schema Merging 181

〈〈〈N1〉〉,
S
=, 〈〈N2〉〉〉

¬ identicalNames(N1, N2)
commonName(N1, N2, N

′)
renameNode(〈〈N1〉〉, 〈〈N

′〉〉)
renameNode(〈〈N2〉〉, 〈〈N

′〉〉)

(a) Node Merge

¬ 〈〈〈N1〉〉,
S
=, 〈〈N2〉〉〉

identicalNames(N1, N2)
distinctNames(N1, N2, N

′
1, N

′
2)

renameNode(〈〈N1〉〉, 〈〈N
′
1〉〉)

renameNode(〈〈N2〉〉, 〈〈N
′
2〉〉)

(b) Node Distinction

〈〈e1, N1, N2〉〉
S
=〈〈e2, N1, N2〉〉

¬ identicalNames(e1, e2)
commonName(e1, e2, e

′)
renameEdge(〈〈e1, N1, X1〉〉, 〈〈e

′, N1, X1〉〉)
renameEdge(〈〈e2, N2, X2〉〉, 〈〈e

′, N2, X2〉〉)

(c) Edge Merge

¬ 〈〈e1, N1, N2〉〉
S
=〈〈e2, N1, N2〉〉

identicalNames(e1, e2)
distinctNames(e1, e2, e

′
1, e

′
2)

renameEdge(〈〈e1, N1, N2〉〉, 〈〈e
′
1, N1, N2〉〉)

renameEdge(〈〈e2, N1, N2〉〉, 〈〈e
′
2, N1, N2〉〉)

(d) Edge Distinction

Figure 6.1: Naming Conforming rules

• distinctNames(N1, N2, N
′
1, N

′
2): supplies with two distinct namesN ′

1,N
′
2. Vari-

ables N1 and N2 must be grounded and are used to derive N ′
1 and N ′

2 respec-

tively.

Figure 6.1 illustrates all the rules in the naming conforming stage. All our rules take

the form of conditions, defined above the horizontal line, which if satisfied cause the

BAV (see Section 2.3.2) transformations, below the line, to be generated.

For example, the Node Distinction rule has three conditions: the first checks that

two nodes are not equivalent, the second checks that the names of the two objects are

identical and the third condition identifies two distinct names. If these conditions

are satisfied, then the two objects are renamed so that they have distinct names.

Notice also the Edge Distinction rule. By definition of the HDM (Definition 3.2),

6.1. Low-Level Schema Merging 182

(a) S1

(b) S2

Figure 6.2: HDM schemas S1 and S2

two edges e1 and e2 can have identical names as long they associate a different set

of nodes/edges. For example, the edges 〈〈writtenBy, book, author〉〉 and 〈〈writtenBy,

paper, author〉〉 can have identical names because one edge associates book and author

while the other edge associates paper and author. Problems with the names of the

edges arise if the edges associate the same nodes, e.g. if there are two writtenBy edges

between book and author. In such a case, we need to identify whether the two edges

represent the same real-world semantics or not, i.e. whether they are equivalent or

not. The Edge Distinction rule only examines edges which associate the same nodes

N1 and N2, they are not equivalent and finally have identical names. Only in these

conditions we have two homonym edges that need to be renamed.

6.1. Low-Level Schema Merging 183

Example 6.1. Naming Conforming

In this chapter, we are going to use as a running example, the example pre-

sented in the introduction. In this Section 6.1 of the chapter, we are going

to merge the HDM schemas that are produced from the ER schemas of the

introduction. The HDM schemas, S1 and S2, are illustrated in Figure 6.2.

All compatibility mappings between S1 and S2 objects are listed below:

〈〈〈paper〉〉,
S

∩/, 〈〈book〉〉〉

〈〈〈paper : bibtex〉〉,
S

∩/, 〈〈book : id〉〉〉

〈〈〈 , paper, paper : bibtex〉〉,
S

∩/, 〈〈 , book, book : id〉〉〉

〈〈〈paper : title〉〉, S
∩, 〈〈book : title〉〉〉

〈〈〈 , paper, paper : title〉〉,
S

∩/, 〈〈 , book, book : title〉〉〉

〈〈〈paper : year〉〉, S
⊃, 〈〈book : year〉〉〉

〈〈〈 , paper, paper : year〉〉,
S

∩/, 〈〈 , book, book : year〉〉〉

〈〈〈writtenby, paper, author〉〉,
S

∩/, 〈〈writtenby, book, author〉〉〉

〈〈〈author〉〉, S
∩, 〈〈author〉〉〉

〈〈〈author : name〉〉, S
∩, 〈〈author : name〉〉〉

〈〈〈 , author, author : name〉〉, S
∩, 〈〈 , author, author : name〉〉〉

Based on the above mappings, the only rule that can be applied in the

naming conforming phase is Node Distinction. The rule can be applied on

the 〈〈author〉〉 nodes in S1 and S2 and on the 〈〈author : name〉〉 nodes.

We have that 〈〈〈author〉〉, S
∩, 〈〈author〉〉〉, i.e. the two nodes are not equivalent:

¬〈〈〈author〉〉, S
=, 〈〈author〉〉〉. In addition, the two nodes have identical names,

therefore the call identicalNames(author,author) returns true. Thus, the

first two conditions of the Node Distinction rule are satisfied.

The third condition calls the function distinctNames. There can be several

automatic implementations of this function, e.g. the nodes can be prefixed

6.1. Low-Level Schema Merging 184

with the name of the node they are attached to:

distinctNames(author,author,paper author,book author).

The rule then generates the following transformations. The transformations

are prefixed with the schema they should be executed on.

S1.renameNode(〈〈author〉〉,〈〈paper author〉〉)

S2.renameNode(〈〈author〉〉,〈〈book author〉〉)

Similarly, regarding the 〈〈author : name〉〉 nodes the following transforma-

tions should be executed:

S ′
1.renameNode(〈〈author : name〉〉,〈〈paper author : name〉〉)

S ′
2.renameNode(〈〈author : name〉〉,〈〈book author : name〉〉)

The resulting schemas S ′′
1 and S ′′

2 produced after the application of the Node

Distinction rules are illustrated in Figure 6.3.

⋄

6.1.3 Unioning

The second phase of schema merging is the unioning phase [8]. In the unioning

phase, the two schemas to be merged are superimposed; thus each pair of equiva-

lent nodes/edges, which after the naming conforming stage have identical names,

collapses into a single node/edge. The superimposition of schemas in BAV is per-

formed by a series of extend transformations (Section 2.3.2). These transformations

add to each schema any objects that are only available in the counterpart schema.

Note that this is the only place where our merging approach uses extend, since it

is stating here what is not directly available from one schema, but should only be

sourced from the second schema.

In the rest of the unioning phase, subsumption, intersection and disjointness map-

pings between nodes are examined. The rules of this phase, illustrated in Figure 6.4,

use the auxiliary function uniqueName(N1,N2,N
′,rel), which supplies with a new

6.1. Low-Level Schema Merging 185

(a) S′′

1

(b) S′′

2

Figure 6.3: Schemas S ′′
1 and S ′′

2 produced after the naming conforming of S1 and S2

respectively

6.1. Low-Level Schema Merging 186

unique name N ′ based on the values of the grounded variables N1 and N2 and the

semantic relationship rel. In detail, the rules of the unioning phase are:

• Addition of Inclusion: adds an inclusion constraint whenever a subsumption

mapping exists between two nodes.

• Addition of Intersection: adds an intersection node, whenever an inter-

section mapping holds between two nodes. The intersection node added

represents the common sub-domain of the intersecting nodes. In the rule

(Figure 6.4(b)), the name of the new node 〈〈N ′〉〉 added is provided by the

uniqueName function and its extent is defined as the instances that appear

on both intersecting nodes 〈〈N1〉〉 and 〈〈N2〉〉. Additionally, two inclusion con-

straints are added to illustrate that the intersection node 〈〈N ′〉〉 is a subset of

both 〈〈N1〉〉 and 〈〈N2〉〉.

• Addition of Union: adds a union node, whenever a disjointness mapping

holds between two nodes. The union node added represents the union of the

domains of the disjoint nodes. In the rule (Figure 6.4(c)), the extent of the

new node 〈〈N ′〉〉 is defined by appending the instances of the disjoint nodes

〈〈N1〉〉 and 〈〈N2〉〉. Additionally, a union constraint is added to illustrate that

〈〈N’〉〉 is the union of 〈〈N1〉〉 and 〈〈N2〉〉, and an exclusion constraint is added

between 〈〈N1〉〉 and 〈〈N2〉〉 to illustrate that the disjoint nodes do not have any

common instances.

Example 6.2. Unioning In our running example, in the unioning phase

first the schemas S ′′
1 and S ′′

2 are extended to produce a single schema where

all the objects of both schemas appear. Then the Addition of Union rule

on nodes 〈〈paper〉〉 and 〈〈book〉〉 is applied.

6.1. Low-Level Schema Merging 187

〈〈〈N2〉〉,
S
⊂, 〈〈N1〉〉〉

addConstraint(〈〈 ⊆, 〈〈N2〉〉, 〈〈N1〉〉〉〉)
N2

N1

N2

⊆

N1

(a) Addition of Inclusion

〈〈〈N1〉〉,
S
∩, 〈〈N2〉〉〉

uniqueName(N1,N2,N
′,

S
∩)

addNode(〈〈N ′〉〉, [{x} | {x} ← 〈〈N1〉〉; {x} ← 〈〈N2〉〉])
addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N1〉〉〉〉)
addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N2〉〉〉〉)

N2

N1

⊆

⊆

N′

N1

N2

(b) Addition of Intersection

〈〈〈N1〉〉,
S

∩/, 〈〈N2〉〉〉

uniqueName(N1,N2,N
′,

S

∩/)

addNode(〈〈N ′〉〉, 〈〈N1〉〉 ++ 〈〈N2〉〉)
addConstraint(〈〈∪, 〈〈N ′〉〉, 〈〈N1〉〉, 〈〈N2〉〉〉〉)
addConstraint(〈〈6∩, 〈〈N1〉〉, 〈〈N2〉〉〉〉)

N2

N1

N2

N1

N′6 ∩ ∪

(c) Addition of Union

Figure 6.4: Unioning rules

6.1. Low-Level Schema Merging 188

The first condition of the rule is satisfied by the mapping 〈〈〈paper〉〉,
S

∩/, 〈〈book〉〉〉.

The second condition calls the function uniqueName, which in this case

could be implemented by concatenating the two names, e.g.

uniqueName(paper,book,paperORbook,
S

∩/).

The rule then generates the following transformations on schemas S ′′
1 and

S ′′
2 .

addNode(〈〈paperORbook〉〉, 〈〈paper〉〉 ++ 〈〈book〉〉)

addConstraint(〈〈∪, paperORbook, paper, book〉〉)

addConstraint(〈〈6∩, paper, book〉〉)

Similarly, the Addition of Union rule can be applied on the disjoint nodes

〈〈paper : bibtex〉〉 and 〈〈book : id〉〉, the Addition of Inclusion rule can be ap-

plied on 〈〈paper : year〉〉 which subsumes 〈〈book : year〉〉 and, finally, the Ad-

dition of Intersection rule can be applied for the intersecting nodes: (a)

〈〈paper : title〉〉 and 〈〈book : title〉〉, (b) 〈〈paper author〉〉 and 〈〈book author〉〉

and (c) 〈〈paper author : name〉〉 and 〈〈book author : name〉〉.

The final schema S12 produced in the unioning phase is illustrated in Fig-

ure 6.5.

⋄

6.1.4 Restructuring

In the final restructuring phase [8] of schema merging, the existence of equivalence,

subsumption, intersection and disjointness relationships between edges are exam-

ined. The set of formally defined rules of this phase includes Redundant Edge

Removal rules, Optional Edge Removal, Specialization of Edges, Addition

of Edge Intersection and Generalization of Edges rules. The purpose of these

rules is to minimize duplication and simplify the schema. As an illustrative case, in

6.1. Low-Level Schema Merging 189

Figure 6.5: Schema S12 produced after unioning schemas S ′′
1 and S ′′

2 . The green
boxes just remind the reader how the schemas looked after the naming conforming
phase. All objects outside the green boxes have been added during the unioning
phase.

6.1. Low-Level Schema Merging 190

this section we are going to consider only rules related to the disjointness relationship

between edges. All rules are available in Appendix A.

When a disjointness relationship is identified between two edges e1 and e2, then a

union edge e′ can be added. The new edge will subsume the disjoint edges. The

purpose of the rule is to add the union edge if the disjoint edges e1 and e2 can then

be deleted. Otherwise, the addition of the union edge just produces redundancy.

Essentially, what we would like to accomplish is to generalize the disjoint edges into

the union edge and then remove the disjoint edges. Thus, the rule that arises in an

edge disjointness case, is the Generalization of Edges rule.

Before adding the union edge e′ the nodes that e′ associates have to be added. In

the general case, these nodes are the union nodes of the nodes at both ends of e1 and

e2. In some cases the union nodes are not necessary, because they already exist. For

example, if a disjointness relationship has been identified between the corresponding

nodes, then during the unioning phase the union nodes would have been added by

the Addition of Union rule.

Since, we want to delete the edges e1 and e2, we need to pay attention to whether

the extent of these edges can be reproduced from the extent of the added union

edge e′. If the extents of e1 and e2 cannot be exactly reproduced then the merging

rule causes either information loss or gain. For example, if the disjoint edges e1

and e2 are 〈〈first supervisor, phd, academic〉〉 and 〈〈second supervisor, phd, academic〉〉,

which associate each PhD student with either her first or second supervisors, and

e′ is the union edge 〈〈supervisor, phd, academic〉〉, then we cannot determine based

only on e′ which instances of the union edge are instances of first supervisor and

second supervisor. We know that ExtS,I(first supervisor) ⊆ ExtS,I(supervisor) and

ExtS,I(second supervisor) ⊆ ExtS,I(supervisor), but we cannot be exact on the ex-

tents of the two edges. Therefore in this example, we cannot delete the edges

first supervisor and second supervisor.

6.1. Low-Level Schema Merging 191

In order to be able to reproduce the extents of 〈〈e1, N1, N
′
1〉〉 and 〈〈e2, N2, N

′
2〉〉 from

the union edge e′, we must enforce some constraint. The necessary constraint is that

the nodes at one end of the edges must also be disjoint, i.e. either 〈〈〈N1〉〉,
S

∩/, 〈〈N2〉〉〉

or 〈〈〈N ′
1〉〉,

S

∩/, 〈〈N ′
2〉〉〉.

For example, if 〈〈〈N1〉〉,
S

∩/, 〈〈N2〉〉〉 and 〈〈N
′〉〉 is the union node of 〈〈N1〉〉 and 〈〈N2〉〉

added during the unioning phase, then the extent of e1 can be determined from e′

by identifying all the instances {x, y} of e′ where x ∈ ExtS,I(N1), i.e. using query

Q1 = [{x, y} | {x, y} ← 〈〈e′, N ′, N ′′〉〉; {x} ← 〈〈N1〉〉]. Similarly, the extent of e2 can

be derived from e′ based on the query Q2 = [{x, y} | {x, y} ← 〈〈e′, N ′, N ′′〉〉; {x} ←

〈〈N2〉〉]. If N1 and N2 are not disjoint but they are sharing some instances, then it

is possible that query Q1 contains instances of e2 and Q2 contains instances of e1,

i.e. ExtS,I(e1) ⊂ Q1 and ExtS,I(e2) ⊂ Q2. Thus, if N1 and N2 are not disjoint, then

the queries Q1 and Q2 would not retrieve the exact extent of the edges, but they

would include additional instances causing an information gain.

In Figure 6.6 a Generalization of Edges rule is defined for mapping 〈〈〈e1, N1, N
′
1〉〉,

S

∩/, 〈〈e2, N2, N
′
2〉〉〉. The rule enforces the constraint 〈〈〈N1〉〉,

S

∩/, 〈〈N2〉〉〉. The rule uses

some auxiliary functions:

• createdNodal(N1,N2,N
′): identifies the node N ′ created during the union-

ing phase, due to the relationship between N1 and N2. As seen from the

unioning rules in Figure 6.4, there is only one such node for each pair N1 and

N2.

• constraints(N,e,Constraints): identifies the constraints Constraints be-

tween N and e. Variables N and e have to be grounded.

• commonCons(C1,C2,C): identifies the common constraints C between C1 and

C2. C1 and C2 have to be grounded.

• addConsList(C,N ′,e′): generates add transformations for the constraints C

6.1. Low-Level Schema Merging 192

between N ′ and e′

• genDeleteCons(Constraints): generates delete transformations for the list

of constraints Constraints.

• moveDependents(e1,e2): replaces each reference to e1 with a reference to e2.

Thus, any object which depends on e1 will be now moved to depend on e2.

The rule based on the disjointness relationship of the nodes on one end of the edges

identifies the union nodeN ′ created during the unioning phase, createdNodal(〈〈N1〉〉,

〈〈N2〉〉, 〈〈N
′〉〉). Thus, the union node for the union edge e′ that the rule was going to

add already exists from one end of the edges. In the other end, the nodes are inter-

secting 〈〈〈N ′
1〉〉,

S
∩, 〈〈N ′

2〉〉〉, which results in an intersection node N ′
12 during unioning,

createdNodal(〈〈N ′
1〉〉,〈〈N

′
2〉〉,〈〈N

′
12〉〉). Thus, the rule1 needs to create the union

node for this end of the edge e′. The rule derives the name of this union node to be

N ′′, uniqueName(N ′
1,N

′
2,N

′′,
S

∩/), and adds it with its extent to be the union of the

extents of N ′
1 and N ′

2, addNode(〈〈N
′
1〉〉 ++ 〈〈N

′
2〉〉). The union edge e′ is also added

and it associates the two union nodes N ′ and N ′′, 〈〈e′, N ′, N ′′〉〉. Any constraints

that are common between e1 and e2 are added to e′ and any other constraints are

deleted. Finally, the edges e1 and e2 are deleted with associated queries Q1 and Q2

respectively, as explained previously.

Example 6.3. Restructuring: Edge Disjointness In our running ex-

ample, in the restructuring phase the Generalization of Edges rule can be

applied on schema S12 (Figure 6.5) due to the mapping:

〈〈〈writtenby, paper, paper author〉〉,
S

∩/, 〈〈writtenby, book, book author〉〉〉.

The second condition of the rule is satisfied by the mapping 〈〈〈paper〉〉,

S

∩/, 〈〈book〉〉〉 and the third condition binds 〈〈N ′〉〉 to 〈〈paperORbook〉〉. The

1This rule maps to the third Generalization of Edges rule in Appendix A in which the nodes at
each end of the disjoint edges have the same semantic relationships (disjointness, intersection) in
reverse order.

6.1. Low-Level Schema Merging 193

〈〈e1, N1, N
′
1〉〉

S

∩/〈〈e2, N2, N
′
2〉〉

〈〈N1〉〉
S

∩/〈〈N2〉〉
createdNodal(〈〈N1〉〉, 〈〈N2〉〉, 〈〈N

′〉〉)

〈〈N ′
1〉〉

S
∩〈〈N ′

2〉〉
createdNodal(〈〈N ′

1〉〉, 〈〈N
′
2〉〉, 〈〈N

′
12〉〉)

uniqueName(N ′
1,N

′
2,N

′′,
S

∩/)

uniqueName(e1,e2,e
′,

S

∩/)

constraints(〈〈N1〉〉,〈〈e1, N1, N
′
1〉〉,Constraints1)

constraints(〈〈N2〉〉,〈〈e2, N2, N
′
2〉〉,Constraints2)

commonCons(Constraints1,Constraints2,Constraints)

constraints(〈〈N ′
1〉〉,〈〈e1, N1, N

′
1〉〉,Constraints′1)

constraints(〈〈N ′
2〉〉,〈〈e2, N2, N

′
2〉〉,Constraints′2)

commonCons(Constraints′1,Constraints′2,Constraints′)

addNode(〈〈N ′′〉〉, 〈〈N ′
1〉〉 ++ 〈〈N

′
2〉〉)

addEdge(〈〈e′, N ′, N ′′〉〉, 〈〈e1, N1, N
′
1〉〉] ++ 〈〈e2, N2, N

′
2〉〉)

addConsList(Constraints,〈〈N ′〉〉,〈〈e′, N ′, N ′′〉〉)
addConsList(Constraints′,〈〈N ′′〉〉,〈〈e′, N ′, N ′′〉〉)
genDeleteCons(Constraints1)

moveDependents(e1,e
′)

deleteEdge(〈〈e1, N1, N
′
1〉〉, [{x, y} | {x, y} ← 〈〈e

′, N ′, N ′′〉〉; {x} ← 〈〈N1〉〉])
genDeleteCons(Constraints2)

moveDependents(e2,e
′)

deleteEdge(〈〈e2, N2, N
′
2〉〉, [{x, y} | {x, y} ← 〈〈e

′, N ′, N ′′〉〉; {x} ← 〈〈N2〉〉])

(a) Formal Rule

N′∪6∩

N2

N1

N′

2

N′

1

⊇

⊇

N′

12 N′∪6∩

N2

N1

N′

2

N′

1

⊇

⊇

N′

12N′′ ∪

(b) Graphical representation

Figure 6.6: Generalization of Edges rule

6.1. Low-Level Schema Merging 194

fourth condition is satisfied by the mapping 〈〈〈paper author〉〉, S
∩, 〈〈book author〉〉〉

and the fifth condition binds 〈〈N ′
12〉〉 to 〈〈paperANDbookauthor〉〉.

Then a new name for the union node for the right hand side of the edges

is identified, binding N ′′ to author, and a new name for the union edge is

identified, binding e′ to writtenby.

Variables Constraints1 and Constraints2 get value [⊲] for the mandatory

constraint between 〈〈paper〉〉 and 〈〈writtenby, paper, paper author〉〉, and the

mandatory constraint between 〈〈book〉〉 and 〈〈writtenby, book, book author〉〉,

respectively. Variable Constraints which identifies the common constraints

between Constraints1 and Constraints2 gets values [⊲], as well.

On the right hand side, variables Constraints′1 and Constraints′2 get the

value of an empty list [] and thus Constraints′ also gets value [].

The rule then generates the following transformations on S12:

addNode(〈〈author〉〉, 〈〈paper author〉〉++〈〈book author〉〉)

addEdge(〈〈writtenby, paperORbook, author〉〉,

〈〈writtenby, paper, paper author〉〉 ++ 〈〈writtenby, book, book author〉〉)

addConstraint(〈〈⊲, 〈〈paperORbook〉〉, 〈〈writtenby, paperORbook, author〉〉〉〉)

deleteConstraint(〈〈⊲, 〈〈paper〉〉, 〈〈writtenby, paper, paper author〉〉〉〉)

deleteEdge(〈〈writtenby, paper, paper author〉〉,

{x, y} | {x, y} ← 〈〈writtenby, paperORbook, author〉〉; {x} ← 〈〈paper〉〉)

deleteConstraint(〈〈⊲, 〈〈book〉〉, 〈〈writtenby, book, book author〉〉〉〉)

deleteEdge(〈〈writtenby, book, book author〉〉,

{x, y} | {x, y} ← 〈〈writtenby, paperORbook, author〉〉; {x} ← 〈〈book〉〉)

The final integrated schema is illustrated in Figure 6.7.

⋄

6.1. Low-Level Schema Merging 195

Figure 6.7: The final result of the integration of schemas S1 and S2

6.1. Low-Level Schema Merging 196

6.1.5 Properties of Low-Level Merging

In this section we are going to discuss the properties of our proposed merging rules

and the properties of the resulting schemas.

During the naming conforming phase, the Node and Edge Merge rules collapse each

pair of equivalent objects into a single object. The Node and Edge Distinction rules

explicitly differentiate each two non-equivalent objects. Therefore, after the naming

conforming and the superimposition of the schemas, in the resulting schema:

1. objects are preserved. For each object in the initial schemas an object exists

in the resulting schema.

2. non-equivalence is preserved. For each pair of objects which are non-equivalent

in the initial schemas, they are distinct in the resulting schema.

3. duplicates are eliminated. The resulting schema is duplicate-free, i.e. there

are no two distinct objects which are semantically equivalent.

For the last property to hold, the initial schemas must also be duplicate-free.

During the unioning phase, the Addition of Intersection and Union rules add nodes

onto the schema, therefore duplicate nodes might be created. For example, assume

one schema that contains nodes 〈〈ug〉〉 and 〈〈student〉〉 and another schema that con-

tains node 〈〈pg〉〉. A disjointness relationship is identified between nodes 〈〈ug〉〉 and

〈〈pg〉〉, which represent undergraduate and postgraduate students. Therefore, when

the Addition of Union rule creates the union node 〈〈N ′〉〉 of 〈〈ug〉〉 and 〈〈pg〉〉, this

node will be equivalent to 〈〈student〉〉. Thus, two equivalent but distinct nodes, 〈〈N ′〉〉

and 〈〈student〉〉, will be part of the resulting schema. The same problem arises in the

restructuring phase of schema merging, where there are rules that add nodes and/or

edges.

This problem can be solved either manually or automatically. In the first case, the

user could intervene and specify the transformations that should not be applied

6.1. Low-Level Schema Merging 197

because they create duplicate objects. In the latter case, schema matching could be

performed on the final integrated schema. Matching could identify the equivalent

objects which can then be collapsed into single objects by applying the Node and

Edge Merge rules. Because of the constraints and the previously identified semantic

mappings, during this schema matching process there are few objects that need to

be compared. For example, only the added union node 〈〈N ′〉〉 of 〈〈ug〉〉 and 〈〈pg〉〉

needs to matched against existing objects, and additionally it does not need to be

compared with all the objects but just the ones which subsume either 〈〈ug〉〉 and/or

〈〈pg〉〉.

The most important property of our merging rules is what we call the Intentional

Domain Preservation Property (IDPP), which is also referred to as complete-

ness and minimality in the literature [87]. If S1 and S2 are the schemas before and

after the application of a merging rule r, then r conforms to the IDPP if for each

instance of an object of S1, this instance can be derived from the instances of the ob-

jects in S2, and vice versa. Thus, no information is lost or gained when transforming

S1 to S2 and vice versa. In this case, we say that the rule r is both complete and

sound. Any rules whose actions contain only add, delete and rename transforma-

tions can be considered as possibly obeying the IDPP, provided their IQL queries

have been correctly formulated. This is by definition of the add, delete and rename

transformations, which specify the exact extent of the object added, deleted and

renamed, respectively, i.e. they do not allow any information loss or gain apart from

what is identified by their associated IQL query. The completeness and soundness

properties of our rules demonstrate that the queries have been correctly formulated.

For example, consider the Generalization of Edges rule in Figure 6.6. In order to

check that the rule is both complete and sound we need to examine its transforma-

tions. The interesting cases are the deletion of edges e1 and e2.

We can show that edge e1 can be deleted because its extent can be exactly reproduced

from e′, as specified by the query attached to the delete e1 transformation. Lemmas 2

6.1. Low-Level Schema Merging 198

and 3 state this formally. The same holds for the deletion of edge e2. The proof of

Lemma 2 is supplied below as an illustrative example of how rules are examined for

their completeness and soundness.

Lemma 2. Let e1, e2 be two edges.

if 〈〈〈e1, N1, X1〉〉,
S

∩/, 〈〈e2, N2, X2〉〉〉,

〈〈〈N1〉〉,
S

∩/, 〈〈N2〉〉〉,

createdNodal(〈〈N1〉〉,〈〈N2〉〉,〈〈N
′〉〉),

ExtS,I(〈〈e
′, N ′, X〉〉) =

ExtS,I(〈〈e1, N1, X1〉〉) ∪ ExtS,I(〈〈e2, N2, X2〉〉).

ExtS,I(〈〈X〉〉) = ExtS,I(〈〈X1〉〉) ∪ ExtS,I(〈〈X2〉〉)

then ∀x, y. {x, y} ∈ ExtS,I(〈〈e
′, N ′, X〉〉),

{x} ∈ ExtS,I(〈〈N1〉〉)

→{x, y} ∈ ExtS,I(〈〈e1, N1, N
′
1〉〉)

In the Generalization of Edges rule (Figure 6.6) all the conditions in the lemma

hold. The lemma shows that each instance retrieved by the query in the delete e1

transformation [{x, y} | {x, y} ← 〈〈e′, N ′, N ′′〉〉; {x} ← 〈〈N1〉〉] is an instance of e1.

Thus the transformation is sound. Before we give the proof of the lemma above we

need to define the cartesian extent of an edge.

Definition 6.1. Cartesian Extent The cartesian extent of an edge 〈〈e,N1, N2〉〉 is

the cartesian product of the extents of the associated nodes in e, i.e.

ExtS,I,×(〈〈e,N1, N2〉〉) = ExtS,I(〈〈N1〉〉)× ExtS,I(〈〈N2〉〉).

�

Now, we can prove Lemma 2.

Proof. By the definition of disjointness 〈〈〈N1〉〉,
S

∩/, 〈〈N2〉〉〉 we have:

∀x1, x2. {x1} ∈ ExtS,I(〈〈N1〉〉), {x2} ∈ ExtS,I(〈〈N2〉〉)

→ {x1} 6= {x2}.

6.1. Low-Level Schema Merging 199

We may add redundant terms to the above implication as follows:

∀x1, x2, ∀y1, y2. {x1} ∈ ExtS,I(〈〈N1〉〉), {x2} ∈ ExtS,I(〈〈N2〉〉),

{y1} ∈ ExtS,I(〈〈X〉〉), {y2} ∈ ExtS,I(〈〈X2〉〉)

→ {x1, y1} 6= {x2, y2}.

which based on the definition of the cartesian extent can be written:

∀x1, x2, ∀y1, y2. {x1, y1} ∈ ExtS,I,×(〈〈 , N1, X〉〉), {x2, y2} ∈ ExtS,I,×(〈〈e2, N2, X2〉〉)

→ {x1, y1} 6= {x2, y2}.

i.e. ExtS,I,×(〈〈 , N1, X〉〉) ∩ ExtS,I,×(〈〈e2, N2, X2〉〉) = ∅.

By definition of the cartesian extent of an edge, we have ExtS,I(〈〈e2, N2, X2〉〉) ⊆

ExtS,I,×(〈〈e2, N2, X2〉〉), and thus

ExtS,I,×(〈〈 , N1, X〉〉) ∩ ExtS,I(〈〈e2, N2, X2〉〉) = ∅ (6.1)

Since ExtS,I(X) = ExtS,I(X1)∪ExtS,I(X2), we have that ExtS,I(X1) ⊆ ExtS,I(X),

and therefore ExtS,I(〈〈e1, N1, X1〉〉) ⊆ ExtS,I,×(〈〈 , N1, X〉〉). Thus,

ExtS,I(〈〈e1, N1, X1〉〉) ∩ ExtS,I,×(〈〈 , N1, X〉〉) = ExtS,I(〈〈e1, N1, X1〉〉) (6.2)

Based on the definition of the extent of an edge, we have

∀x, y. {x, y} ∈ ExtS,I(〈〈e
′, N ′, X〉〉), {x} ∈ ExtS,I(〈〈N1〉〉)

→ {x, y} ∈ ExtS,I(〈〈e
′, N ′, X〉〉), {x} ∈ ExtS,I(〈〈N

′〉〉),

{y} ∈ ExtS,I(〈〈X〉〉), {x} ∈ ExtS,I(〈〈N1〉〉)

→ {x, y} ∈ ExtS,I(〈〈e
′, N ′, X〉〉),

{x} ∈ ExtS,I(〈〈N
′〉〉) ∩ ExtS,I(〈〈N1〉〉),

{y} ∈ ExtS,I(〈〈X〉〉)

Based on the initial conditions we have that ExtS,I(〈〈N1〉〉) ⊆ ExtS,I(〈〈N
′〉〉) and that

ExtS,I(〈〈e
′, N ′, X〉〉) = ExtS,I(〈〈e1, N1, X1〉〉) ∪ ExtS,I(〈〈e2, N2, X2〉〉), thus the above

implication can be re-written

6.1. Low-Level Schema Merging 200

∀x, y. {x, y} ∈ ExtS,I(〈〈e
′, N ′, X〉〉), {x} ∈ ExtS,I(〈〈N1〉〉)

→ {x, y} ∈ ExtS,I(〈〈e1, N1, X1〉〉) ∪ ExtS,I(〈〈e2, N2, X2〉〉)

{x} ∈ ExtS,I(〈〈N1〉〉), {y} ∈ ExtS,I(〈〈X〉〉)

which based on the cartesian extent definition becomes

∀x, y. {x, y} ∈ ExtS,I(〈〈e
′, N ′, X〉〉), {x} ∈ ExtS,I(〈〈N1〉〉)

→ {x, y} ∈ ExtS,I(〈〈e1, N1, X1〉〉) ∪ ExtS,I(〈〈e2, N2, X2〉〉)

{x, y} ∈ ExtS,I,×(〈〈 , N1, X〉〉)

→ {x, y} ∈ (ExtS,I(〈〈e1, N1, X1〉〉) ∪ ExtS,I(〈〈e2, N2, X2〉〉))∩

ExtS,I,×(〈〈 , N1, X〉〉)

→ {x, y} ∈ (ExtS,I(〈〈e1, N1, X1〉〉) ∩ ExtS,I,×(〈〈 , N1, X〉〉))∪

(ExtS,I(〈〈e2, N2, X2〉〉) ∩ ExtS,I,×(〈〈 , N1, X〉〉))

Finally, the last implication based on Equations 6.1 and 6.2 becomes

∀x, y. {x, y} ∈ ExtS,I(〈〈e
′, N ′, X〉〉), {x} ∈ ExtS,I(〈〈N1〉〉)

→ {x, y} ∈ ExtS,I(〈〈e1, N1, X1〉〉)

Regarding the completeness of the deletion of e1, we need to show that each instance

of e1 is an instance retrieved by the query in the delete e1 transformation. This is

the inverse of what the previous lemma stated, and it is formally explained below.

Lemma 3. Let e1, e2 be two edges.

if 〈〈〈e1, N1, X1〉〉,
S

∩/, 〈〈e2, N2, X2〉〉〉,

ExtS,I(〈〈e
′, N ′, X〉〉) = ExtS,I(〈〈e1, N1, X1〉〉) ∪ ExtS,I(〈〈e2, N2, X2〉〉).

then ∀x, y. {x, y} ∈ ExtS,I(〈〈e1, N1, X1〉〉)

→{x, y} ∈ ExtS,I(〈〈e
′, N ′, X〉〉),

{x} ∈ ExtS,I(〈〈N1〉〉)

which can be trivially proved based on the facts that

6.1. Low-Level Schema Merging 201

ExtS,I(e1, N1, X1) ⊆ ExtS,I(〈〈e
′, N ′, X〉〉), and

∀{x, y} ∈ ExtS,I(e1, N1, X1) : {x} ∈ ExtS,I(〈〈N1〉〉)

6.1.6 Automatic Schema Merging

In Table 6.1, we have exhaustively identified the possible merging rules. In this

section, we identify the degree to which our merging rules can be automated by

examining the auxiliary functions that are used in the rules.

First of all, the generated BAV transformations do not need the user’s assistance

to be performed; the objects and queries associated with them are formally speci-

fied. This also holds for the high-level actions, i.e. the functions constraints/3,

commonCons/3, genDeleteCons/3 and moveDependents/2 of the restructuring phase.

The interesting functions are the name functions used when a new object is added

onto the schema. These are: commonName/3, distinctNames/4 and uniqueName/4.

A possible fully automated implementation of the commonName/3 function, can iden-

tify the common substring of the names of two objects. Another implementation

could use a preferred schema, where the object names of the preferred schema are

used, e.g. in a data exchange scenario the preferred schema would be the target

schema.

Function distinctNames/4 can also be automated quite simply. It takes as input

two identical names of two objects in different schemas and returns two distinct

names. The distinct names can be produced by simply prefixing the name of the

objects with the name of the schema they belong to, or with the name of the schema

object they are attached to (Example 6.1).

Similarly, the uniqueName/4 function can be fully automated by identifying a ran-

dom name or by concatenating the names of the objects the rule is dealing with. In

some cases, such implementations might be sufficient, e.g. in a meta-search engine

6.2. Generic Schema Merging 202

where the merged schema is not presented to the user. On the other hand, if the

schema is available to the user or it is used in some other schema integration sce-

nario, such a fully automated implementation might be problematic, since the names

produced are ambiguous hampering the understanding of the integrated schema.

In general, our proposed schema merging approach is semi-automatic with the min-

imum user’s effort necessary: the integrated schema can be produced automatically

but the user might have to perform a few rename transformations to assign more

intelligent names to the schema objects.

6.2 Generic Schema Merging

Based on our low-level schema merging introduced in Section 6.1 and using the

generic classification of high-level model constructs introduced in Section 3.3, we

can define a generic schema merging methodology, independent of any data model

used. We remind the reader that the generic classification of constructs defines four

classification types: nodal, link, link-nodal and constraint constructs. Additionally,

we know that the nodal construct maps to the HDM node, the link construct maps

to the HDM edge and that the link-nodal construct maps to an edge, node and

constraints combination in the HDM. Note that in this and the following sections,

the notation of schema objects is prefixed with the data model of the object for

clarity.

Similarly to our low-level merging, generic merging uses a set of formally defined

rules and follows the three integration phases of naming conforming, unioning and

restructuring. The rules of our generic merging are derived from their respective low-

level rules but they are driven based on the semantic relationships between nodal,

link, and link-nodal objects. The rules can then be translated into high-level model

specific rules as will be explained in Section 6.3.

6.2. Generic Schema Merging 203

During naming conforming, generic merging specifies Nodal Merge and Distinc-

tion rules, Link Merge and Distinctions rules, and Link-Nodal Merge and

Distinction rules. Since the nodal construct maps to the HDM node, the rules

about nodes in low-level merging can be directly mapped to generic nodal rules.

For example, the Nodal Merge rule is produced by using the Node Merge rule (Fig-

ure 6.1(a)) and just replacing the node BAV transformations to generic nodal BAV

transformations:

〈〈〈N1〉〉,
S
=, 〈〈N2〉〉〉

¬ identicalNames(N1, N2)

commonName(N1, N2, N
′)

renameNodalgen(〈〈N1〉〉, 〈〈N
′〉〉)

renameNodalgen(〈〈N2〉〉, 〈〈N
′〉〉)

This rule and all other generic merging rules use generic BAV transformations.

For example, the generic renameNodalgen BAV transformation renames a nodal

object, renameLNgen renames a link-nodal object, addLNgen adds a link-nodal and

deleteLNgen deletes a link-nodal object.

Similarly, the rules about edges in the low-level merging can be directly mapped to

generic link rules. The naming conforming rules for link-nodals are also straightfor-

ward. The rules are illustrated in Figure 6.8. The most interesting cases of generic

merging are the link-nodal rules of the restructuring phase. All rules are available

in Appendix B.

Looking at the link-nodal rules in more detail, we first see that a link-nodal object

〈〈X,N〉〉maps to a node hdm:〈〈N〉〉, an anonymous edge hdm:〈〈 , X,N〉〉 and a manda-

tory constraint hdm:〈〈N〉〉⊲ hdm:〈〈 , X,N〉〉. Any semantic relationship rel between

two link-nodals 〈〈〈X1, N1〉〉, rel, 〈〈X2, N2〉〉〉 specifies the same relationship rel be-

tween the HDM edges the link-nodals consist of: 〈hdm:〈〈 , X1, N1〉〉, rel, hdm:〈〈 , X2, N2〉〉〉.

6.2. Generic Schema Merging 204

〈〈〈X,N1〉〉,
S
=, 〈〈X,N2〉〉〉

¬ identicalNames(N1, N2)
commonName(N1, N2, N

′)
renameLNgen(〈〈X,N1〉〉, 〈〈X,N ′〉〉)
renameLNgen(〈〈X,N2〉〉, 〈〈X,N ′〉〉)

(a) Merge

¬ 〈〈〈X,N1〉〉,
S
=, 〈〈X,N2〉〉〉

identicalNames(N1, N2)
distinctNames(N1, N2, N

′
1, N

′
2)

renameLNgen(〈〈X,N1〉〉, 〈〈X,N ′
1〉〉)

renameLNgen(〈〈X,N2〉〉, 〈〈X,N ′
2〉〉)

(b) Distinction

Figure 6.8: Link-Nodal Merge and Distinction rules

This semantic mapping between the edges could potentially trigger the execution of

a Redundant Edge Removal, Specialization of Edges, Optional Edge Removal, Addi-

tion of Intersection or Generalization of Edges rule during the low-level restructuring

phase. The rule rl that is triggered based on 〈hdm:〈〈 , X1, N1〉〉, rel, hdm:〈〈 , X2, N2〉〉〉

is the rule that needs to be manipulated so that it is turned into a generic rule

rg for the link-nodals 〈〈X1, N1〉〉 and 〈〈X2, N2〉〉. If rl deletes one of the edges

hdm:〈〈 , X1, N1〉〉 and/or hdm:〈〈 , X2, N2〉〉, then the rg deletes together with the edge

the node N that the edge is attached to. The reason the node can be deleted is

because of the mandatory constraint hdm:〈〈N〉〉⊲ hdm:〈〈 , X,N〉〉, which states that

each instance of hdm:〈〈N〉〉 appears in the extent of hdm:〈〈 , X,N〉〉. Thus, if the edge

hdm:〈〈 , X,N〉〉 can be deleted and its extent can be derived from the remaining ob-

jects, as it can be proved for rl, then the node hdm:〈〈N〉〉 can also be deleted since

its extent can be derived from the edge.

For example, consider the case of the existence of a disjointness relationship be-

tween link-nodal objects 〈〈X1, N1〉〉, 〈〈X2, N2〉〉 when 〈〈X1〉〉,〈〈X2〉〉 are also disjoint.

Translating this case into the HDM, we have that the edges hdm:〈〈 , X1, N1〉〉 and

hdm:〈〈 , X2, N2〉〉 are disjoint and that the nodes hdm:〈〈X1〉〉 and hdm:〈〈X2〉〉 are

disjoint. We cannot deduce anything about the relationship between the nodes

hdm:〈〈N1〉〉 and hdm:〈〈N2〉〉. Therefore, to derive the generic rule for this particular

case of disjoint link-nodals we could use for example the Generalization of Edges

rule in Figure 6.6, where the aforementioned relationships between the HDM ob-

6.2. Generic Schema Merging 205

〈〈〈X1, N1〉〉,
S

∩/, 〈〈X2, N2〉〉〉

〈〈〈X1〉〉,
S

∩/, 〈〈X2〉〉〉
createdNodal(X1, X2, X

′)

uniqueName(N1, N2, N
′,

S

∩/)

addLNgen(〈〈X
′, N ′〉〉,[〈〈X1, N1〉〉]++[〈〈X2, N2〉〉],

deleteLNgen(〈〈X1, N1〉〉, [{x, y} |
{x, y} ← 〈〈X ′, N ′〉〉; {x} ← 〈〈X1〉〉])

deleteLNgen(〈〈X2, N2〉〉, [{x, y} |
{x, y} ← 〈〈X ′, N ′〉〉; {x} ← 〈〈X2〉〉])

(a) Formal Rule

X′∪

X2

X1

X2:

N2

X1:

N1

⊳

⊳

6 ∩
X′∪

X2

X1
⊳

X′
:

N′6 ∩

(b) Graphical representation

Figure 6.9: Generalization of Link-Nodals rule

jects hold. In that rule, the union node of hdm:〈〈N1〉〉 and hdm:〈〈N2〉〉 is added,

the union edge of hdm:〈〈 , X1, N1〉〉 and hdm:〈〈 , X2, N2〉〉 is added, and finally the

edges hdm:〈〈 , X1, N1〉〉 and hdm:〈〈 , X2, N2〉〉 are deleted2. Based on the low-level

rule, the generic rule is also going to: (a) add the union node and the union edge

using an addLNgen transformation, and (b) delete the edges hdm:〈〈 , X1, N1〉〉 and

hdm:〈〈 , X2, N2〉〉, and as we explained earlier, also delete the nodes hdm:〈〈N1〉〉 and

hdm:〈〈N2〉〉 using deleteLNgen transformations. The result of these transformations

is the Generalization of Link-Nodals rule illustrated in Figure 6.9.

2The node hdm:〈〈N ′

12
〉〉 in the Generalization of Edges rule has been added during unioning

because of the intersection relationship between hdm:〈〈N1〉〉 and hdm:〈〈N2〉〉. However, in this case
of disjoint link-nodals such a node is not created during unioning

6.3. High-level Schema Merging 206

6.3 High-level Schema Merging

Based on the generic schema merging methodology described in the previous section,

schemas of high-level data models can be integrated. Each generic rule produced

by our methodology can be translated into a high-level model specific rule, using

techniques from [70, 16]. In this section, we describe our translation methodology

and give illustrative examples of generic to ER model rule translation. The schemes

of the ER schema objects in this section follow the definitions in Section 3.4.

We have identified four cases of generic rule to specific rule translation:

1. Exact Translation: the generic rule can be translated into a model-specific

rule by performing a one to one mapping between the generic constructs

and transformations and their model-specific equivalents, e.g. an renameLNgen

transformation in a generic rule would map into an renameAttribute transfor-

mation in the corresponding ER model rule.

2. Model Limitations: in some cases the translation of a generic rule using a

high level data model cannot be exact because a construct or a transformation

in the generic rule does not have an equivalent construct or transformation in

the high level language. Therefore, some conditions and/or actions of a generic

rule might not be translatable. For example, the HDM exclusion constraint

cannot be individually modelled in the ER model, and therefore the addition

of such a constraint cannot be translated in a ER model rule.

3. Meta-Constraint Requirements: because some data models have meta-

constraints, extra conditions and actions might be necessary for the transla-

tion of a generic rule into a model-specific rule. For example, a meta-constraint

of the relational model [27] is the existence of a column for every table. There-

fore, a column must be added by the relational model rules for every table that

they add.

6.3. High-level Schema Merging 207

〈er:〈〈X,N1〉〉,
S
=, er:〈〈X,N2〉〉〉

¬ identicalNames(N1, N2)
commonName(N1, N2, N

′)
renameAttribute(er:〈〈X,N1〉〉, er:〈〈X,N ′〉〉)
renameAttribute(er:〈〈X,N2〉〉, er:〈〈X,N ′〉〉)

(a) Merge

¬ 〈er:〈〈X,N1〉〉,
S
=, er:〈〈X,N2〉〉〉

identicalNames(N1, N2)
distinctNames(N1, N2, N

′
1, N

′
2)

renameAttribute(er:〈〈N1〉〉, er:〈〈N
′
1〉〉)

renameAttribute(er:〈〈N2〉〉, er:〈〈N
′
2〉〉)

(b) Distinction

Figure 6.10: Attribute Merge and Distinction rules for the ER model

4. Meta-Constraint Restrictions: conditions and/or actions of a generic rule

might be restricted in the translated model-specific rule, if they violate the

meta-constraints of the data model the rule is translated into, e.g. the dele-

tion of a link-nodal construct in a generic rule might be restricted by the

corresponding ER model rule, if the link-nodal is a key attribute.

We can now apply our translation methodology for deriving the ER merging rules.

The naming conforming rules for the ER model can be produced from the generic

rules by Exact Translation. The Nodal Merge and Distinction rules are translated

into Entity Merge and Distinction rules for the ER model. The Link-Nodal

Merge and Distinction rules are translated into Attribute Merge and Distinction

rules for the ER model. Figure 6.10 shows as an illustrative example the Attribute

Merge and Distinction rules for the ER model, which have been produced by just

translating the renameLNgen transformations to renameAttribute transformations.

Example 6.4. ER Naming Conforming Using the example of the intro-

duction, we remind the reader the ER schemas Ser
1 and Ser

2 to be integrated

in Figure 6.11.

Consider that all compatibility mappings between Ser
1 and Ser

2 objects are

the ones listed below:

6.3. High-level Schema Merging 208

(a) Ser
1

(b) Ser
2

Figure 6.11: ER schemas Ser
1 and Ser

2

〈er:〈〈paper〉〉,
S

∩/, er:〈〈book〉〉〉

〈er:〈〈paper, bibtex〉〉,
S

∩/, er:〈〈book, bookid〉〉〉

〈er:〈〈paper, title〉〉,
S

∩/, er:〈〈book, title〉〉〉

〈er:〈〈paper, year〉〉,
S

∩/, er:〈〈book, year〉〉〉

〈er:〈〈author〉〉, S
∩, er:〈〈author〉〉〉

〈er:〈〈author, name〉〉, S
∩, er:〈〈author, name〉〉〉

〈er:〈〈writtenby, paper, author〉〉,
S

∩/, er:〈〈writtenby, book, author〉〉〉

Based on the above mappings, the rules that can be applied in the nam-

ing conforming phase are: the Entity Distinction rule due to the mapping

〈er:〈〈author〉〉, S
∩, er:〈〈author〉〉〉 and the Attribute Distinction rule due to the

mapping 〈er:〈〈author, name〉〉, S
∩, er:〈〈author, name〉〉〉. In the latter case, the

objects have identical names name, they are not equivalent and they are

attached to an entity with the same name author.

The Entity Distinction rule generates the following transformations. The

transformations are prefixed with the schema they should be executed on.

Ser
1 .renameNode(er:〈〈author〉〉,er:〈〈paper author〉〉)

Ser
2 .renameNode(er:〈〈author〉〉,er:〈〈book author〉〉)

Regarding the attributes er:〈〈author, name〉〉 in both schemas, the Edge Dis-

6.3. High-level Schema Merging 209

(a) Ser
1

(b) Ser
2

Figure 6.12: ER schemas S ′′er
1 and S ′′er

2 produced after the naming conforming of
Ser
1 and Ser

2

tinction rule would generate similar transformations to rename the objects.

However, during the application of the generated transformations, we notice

that the conditions of the Attribute Distinction rule do not hold any longer.

In particular, due to the rename transformations of the er:〈〈author〉〉 entities,

the attributes are no longer attached to nodes with identical names but have

been transformed into er:〈〈paper author, name〉〉 and er:〈〈book author, name〉〉.

The resulting schemas S ′′er
1 and S ′′er

2 produced after the naming conforming

phase are illustrated in Figure 6.12.

⋄

The unioning rules for the ER model can also be produced from the generic rules by

Exact Translation. For example, the translation of the generic Addition of Union

rule into the ER model is performed as follows. The addNodalgen transformation

of the generic rule is translated into an addEntity transformation. The next two

transformations of the generic rule add a union and an exclusion constraint. These

constraints map to a ER generalization constraint, as we have already seen in Sec-

tion 3.4. Therefore, the next two transformations of the generic rule are translated

into a single addGeneralization transformation by exact translation. The final rule,

called the Addition of Union Entity rule, is the following:

6.3. High-level Schema Merging 210

〈er:〈〈E1〉〉,
S

∩/, er:〈〈E2〉〉〉

uniqueName(E1, E2, E
′,

S

∩/)

addEntity(er:〈〈E ′〉〉, er:〈〈E1〉〉 ++ er:〈〈E2〉〉)

addGeneralization(er:〈〈E ′, E1, E2〉〉)

Example 6.5. ER Unioning In our running example, in the unioning

phase first the schemas S ′′er
1 and S ′′er

2 are extended to produce a single

schema where all the objects of both schemas appear and then the Addi-

tion of Union Entity and the Addition of Intersection Entity rules are

applied.

The Addition of Union Entity is applied due to the mapping 〈er:〈〈paper〉〉,

S

∩/, er:〈〈book〉〉〉. The rule generates the following transformations:

addEntity(er:〈〈paperORbook〉〉, er:〈〈paper〉〉 ++ er:〈〈book〉〉)

addGeneralization(er:〈〈paperORbook, paper, book〉〉)

The Addition of Intersection Entity rule is applied due to the mapping

〈er:〈〈paper author〉〉, S
∩, er:〈〈book author〉〉〉 3 and generates the transformations:

addEntity(er:〈〈paperANDbookauthor〉〉, [{x} | {x} ← er:〈〈paper author〉〉;

{x} ← er:〈〈book author〉〉])

addSubset(er:〈〈paper author, paperANDbookauthor〉〉)

addSubset(er:〈〈book author, paperANDbookauthor〉〉)

The final schema Ser
12 produced in the unioning phase is illustrated in Fig-

ure 6.13.

⋄

Finally in the restructuring phase, Meta-Constraint Restriction cases can be identi-

fied when translating from the generic rules to ER model rules.

3The er:〈〈author〉〉 entities have been renamed during the naming conforming phase

6.3. High-level Schema Merging 211

Figure 6.13: Schema Ser
12 produced after unioning schemas S ′′er

1 and S ′′er
2 .

For example, consider the Generalization of Link-Nodals rule in Figure 6.9, which is

translated into the Generalization of Attributes rule in the ER model and ap-

plied for two disjoint attributes er:〈〈X1, N1, C〉〉 and er:〈〈X2, N2, C〉〉. The addLNgen

operation of the generic rule can be redefined in the ER model using Exact Trans-

lation into a addLNer operation. The addLNer operation before performing the cor-

responding high level transformation, i.e. addAttribute(er:〈〈X,N,C〉〉), identifies the

common constraints of the existing attributes and then cascades them into the new

attribute. The constraints that are relevant to an ER attributes are whether the at-

tributes are nullable or not, and whether the attributes are keys. The less restrictive

case is adopted by the transformation.

If the attributes er:〈〈X1, N1, C〉〉 and er:〈〈X2, N2, C〉〉 have identical nullability con-

straints C, i.e. both attributes are either nullable or non-nullable, the generalized

attribute will adopt the same constraints C. In addition, if both attributes are keys

on the table they are attached to, checked using the auxiliary key/1 function, then

6.3. High-level Schema Merging 212

the added attribute also becomes a key:

addLNer(er:〈〈X,N〉〉,Q,er:〈〈X1, N1, C〉〉,er:〈〈X2, N2, C〉〉) :-

addAttribute(er:〈〈X,N,C〉〉, Q),

(key(er:〈〈X1, N1〉〉),key(er:〈〈X2, N2〉〉, addKey(er:〈〈X,N〉〉)).

If the attributes do not agree on their constraints, C1 6= C2, i.e. one is nullable

and the other non-nullable, the generalized attribute will be nullable, which is less

restrictive. Notice that in this case, we already know that one of the attributes

cannot be a key, in particular the nullable attribute, whichever that is:

addLNer(er:〈〈X,N〉〉,Q,er:〈〈X1, N1, C1〉〉,er:〈〈X2, N2, C2〉〉) :-

C1 6= C2, addAttribute(er:〈〈X,N, null〉〉, Q).

The deleteLNgen function in the Generalization of Link-Nodals rule can be redefined

using a Meta-Constraint Restriction. In the ER model, the attribute cannot be

deleted if it is a key because it identifies each instance of the entity:

deleteLNer(er:〈〈X,N,C〉〉,Q) :-

¬ key(er:〈〈X,N〉〉), deleteAttribute(er:〈〈X,N,C〉〉,Q).

Example 6.6. Restructuring: Generalization of Attributes

In our running example, in the restructuring phase the Generalization of At-

tributes can be applied on schema Ser
12 due to the mapping 〈er:〈〈paper, bibtex〉〉,

S

∩/, er:〈〈book, id〉〉〉. The two attributes are generalized into er:〈〈paperORbook,

id, notnull〉〉, which also becomes the key of the table er:〈〈paperORbook〉〉.

The er:〈〈paper, bibtex〉〉 and er:〈〈book, id〉〉 attributes are not deleted because

they are keys. The rule generates the following transformations:

addAttribute(er:〈〈paperORbook, id, notnull〉〉,

er:〈〈paper, bibtex〉〉 ++ er:〈〈book, id〉〉)

addKey(er:〈〈paperORbook, id〉〉)

Additionally, the Generalization of Attributes rule can be applied due to

the mapping 〈er:〈〈paper, year〉〉,
S

∩/, er:〈〈book, year〉〉〉. The two attributes are

6.3. High-level Schema Merging 213

Figure 6.14: The final result of the integration of schemas Ser
1 and Ser

2

generalized into er:〈〈paperORbook, year, notnull〉〉 and then they are deleted

since they are not key attributes:

addAttribute(er:〈〈paperORbook, year, notnull〉〉,

er:〈〈paper, year〉〉] ++ er:〈〈book, year〉〉)

deleteAttribute(er:〈〈paper, year〉〉,

[{x, y} | {x, y} ← er:〈〈paperORbook, year〉〉; {x} ← er:〈〈paper〉〉]

deleteAttribute(er:〈〈book, year〉〉,

[{x, y} | {x, y} ← er:〈〈paperORbook, year〉〉; {x} ← er:〈〈book〉〉]

Further restructuring rules, including the Generalization of ER Rela-

tionships rule, produce the final integrated ER schema, which is illustrated

in Figure 6.14. Comparing this schema with the final integrated HDM

schema of S1 and S2, illustrated in Figure 6.7, shows that the ER schema

is almost the exact translation of the HDM schema into the ER model.

However, the HDM schema also includes some additional nodes produced

due to the lack of distinction between nodes that represent nodal objects

and nodes of link-nodal constructs.

⋄

6.4. Top-K Schema Merging 214

6.4 Top-K Schema Merging

In the previous sections, we introduced our schema merging process and showed

how each integrated schema is produced based on a single schema mapping. In this

section, we give an example of the final outcome of our top-K schema integration

approach.

In our top-K schema integration approach, there are top-K schema mappings (Def-

inition 4.11) produced in the matching process. Each schema mapping sm is asso-

ciated with a degree of belief or plausibility l, derived from the matching process.

For each smi with belief or plausibility li, we perform the schema merging process

presented in the previous sections and produce an integrated schema Si. It could be

the case that for distinct schema mappings smi, smj, i 6= j, an identical integrated

schema Sij is produced. The belief or plausibility of each schema Si is equivalent

to the normalized sum of the beliefs or plausibilities of the schema mappings smi

schema Si has been derived from. Thus, the final outcome of our schema integration

approach is a list of at most K integrated schemas, ranked based on their belief or

plausibility, which we call the top-K integrated schemas (Definition 4.12).

Example 6.7. Top-K schema merging

In this example, we are going to merge the ER schemas Ser
1 and Ser

2 pre-

sented in the introduction and illustrated in Figure 6.11. We are going to

merge the two schemas based on the uncertain semantic mappings (USMs)

between pairs

6.4. Top-K Schema Merging 215

p1 ≡ [er:〈〈paper〉〉, er:〈〈book〉〉]

p2 ≡ [er:〈〈paper, bibtex〉〉, er:〈〈book, id〉〉]

p3 ≡ [er:〈〈paper, title〉〉, er:〈〈book, title〉〉]

p4 ≡ [er:〈〈paper, year〉〉, er:〈〈book, year〉〉]

p5 ≡ [er:〈〈author〉〉, er:〈〈author〉〉]

p6 ≡ [er:〈〈author, name〉〉, er:〈〈author, name〉〉]

The USMs are illustrated in Figure 1.4 and they are formally listed below:

m1({
S

/∼}) = .65,m1({
S

∩/}) = .35

〈er:〈〈paper〉〉,m1, er:〈〈book〉〉〉

〈er:〈〈paper, bibtex〉〉,m1, er:〈〈book, id〉〉〉

m2({
S

∩/}) = .90,m2({
S

/∼}) = .10

〈er:〈〈paper, title〉〉,m2, er:〈〈book, title〉〉〉

〈er:〈〈paper, year〉〉,m2, er:〈〈book, year〉〉〉

m3({
S
=}) = 1.0

〈er:〈〈author〉〉,m3, er:〈〈author〉〉〉

〈er:〈〈author, name〉〉,m3, er:〈〈book, name〉〉〉

m4({
S

∩/}) = 1.0

〈er:〈〈writtenby, paper, author〉〉,m3, er:〈〈writtenby, paper, author〉〉〉

All the remaining pairs of objects between the two schemas are incompati-

ble.

Notice that all the BPAs (Definition 4.7) above, m1, m2, m3 and m4, as-

sign probability mass to singleton semantic relationships. Thus, the belief

and plausibility for each of these semantic relationships is equivalent to

its probability mass (Definition 4.8). For example, for the pair of objects

6.4. Top-K Schema Merging 216

sm p1 p2 p3 p4 p5 p6 p7 Belief/Plausibility

#1
S

/∼
S

/∼
S

∩/
S

∩/
S
=

S
=

S

∩/ 0.3422

#2
S

∩/
S

/∼
S

∩/
S

∩/
S
=

S
=

S

∩/ 0.1843

#3
S

/∼
S

∩/
S

∩/
S

∩/
S
=

S
=

S

∩/ 0.1843

#4
S

∩/
S

∩/
S

∩/
S

∩/
S
=

S
=

S

∩/ 0.0992

#5
S

/∼
S

/∼
S

/∼
S

∩/
S
=

S
=

S

∩/ 0.0380

#6
S

/∼
S

/∼
S

∩/
S

/∼
S
=

S
=

S

∩/ 0.0380

#7
S

∩/
S

/∼
S

/∼
S

∩/
S
=

S
=

S

∩/ 0.0204

#8
S

∩/
S

/∼
S

∩/
S

/∼
S
=

S
=

S

∩/ 0.0204

#9
S

/∼
S

∩/
S

/∼
S

∩/
S
=

S
=

S

∩/ 0.0204

#11
S

/∼
S

∩/
S

∩/
S

/∼
S
=

S
=

S

∩/ 0.0204

#11
S

∩/
S

∩/
S

/∼
S

∩/
S
=

S
=

S

∩/ 0.0110

#12
S

∩/
S

∩/
S

∩/
S

/∼
S
=

S
=

S

∩/ 0.0110

#13
S

/∼
S

/∼
S

/∼
S

/∼
S
=

S
=

S

∩/ 0.0042

#14
S

∩/
S

/∼
S

/∼
S

/∼
S
=

S
=

S

∩/ 0.0022

#15
S

/∼
S

∩/
S

/∼
S

/∼
S
=

S
=

S

∩/ 0.0022

#16
S

∩/
S

∩/
S

/∼
S

/∼
S
=

S
=

S

∩/ 0.0012

Table 6.2: 16 possible schema mappings for the integration of Ser
1 and Ser

2

er:〈〈paper〉〉, er:〈〈book〉〉 we have

Bel({
S

/∼}) =
∑

A⊆{
S

/∼}.A∈Θrel

m1(A) = m1({
S

/∼}) = 0.65

Based on the above USMs, there are two possible semantic relationships for

pairs p1, p2, and two possible semantic relationships for pairs p3, p4. Thus,

the USMs specify (2 × 2) × (2 × 2) = 16 possible schema mappings in

total. The semantic relationship for each pair of objects in these 16 schema

mappings is illustrated in Table 6.2. The belief/plausibility of each schema

mapping in the table is computed as the product of the beliefs/plausibilities

of the semantic relationships for each pair the schema mapping is composed

of. For example, to compute the belief/plausibility of schema mapping

#1 we multiply the beliefs/plausibilities of each relationship for each pair:

0.65.65× 0.9× 0.9× 1× 1× 1 = 0.3422.

6.4. Top-K Schema Merging 217

email?

affiliation?
author

name

bio?

paper

title

proceedings

pages?

year

bibtex

book
title

publisher?

year

id

writtenby

writtenby

0:M

0:M

1:N

1:N

Figure 6.15: Schema S1 produced based on schema mappings #1 and #3

Assume that we are interested in the top-3 schema mappings, i.e. schema

mappings #1, #2 and #3. For each schema mapping, we are going to apply

ER merging rules based on the generic merging rules in Section 6.3.

sm #1 : First, we investigate the naming conforming rules and we identify

that there are no rules that can be applied. For example, sm #1 spec-

ifies that the attributes in p3, er:〈〈paper, title〉〉 and er:〈〈book, title〉〉, are

equivalent. However, the Attribute Distinction rule (Figure 6.10(b))

is not satisfied and does not have to be applied because the attributes

are of entities with distinct names, paper and book, i.e. the first con-

dition of the rule is violated. Then, we investigate unioning rules, but

none of them are applied since there are no subsumption, intersection

nor disjointness relationships between any ER entities. Finally, no

restructuring rules can be applied even though there are disjoint ER

attributes (pairs p3 and p4) and a disjoint ER relationship (pair p7),

because their associated ER entities are not disjoint as the rules re-

quire, e.g. the Generalization of Link-Nodals rule in Figure 6.9. Thus,

the integrated schema for sm #1 is produced by superimposing the

two schemas. The final schema S1 is illustrated in Figure 6.15.

sm #2 : This schema mapping is different from sm #1 only on the semantic

relationship for p1. During merging, again there are no rules that

can be applied during naming conforming. In the unioning phase,

6.4. Top-K Schema Merging 218

writtenby
email?

affiliation?
author

1:N 0:M

name

bio?

paperORbook

book
publisher?

paper
proceedings

pages?

id

bibtex

title

year

Figure 6.16: Schema S2 produced based on schema mapping #2

the disjoint ER entities of p1 allow the application of the Addition of

Union Entity rule, presented in Section 6.3, and a new ER entity is

added er:〈〈paperORbook〉〉. Finally, in the restructuring phase, as in

Example 6.6, we can apply both the Generalization of Attributes rule

for the disjoint pairs of attributes p3 and p4 and the Generalization of

ER Relationships rule for the disjoint ER relationships of pair p7. The

final schema S2 is illustrated in Figure 6.16.

sm #3 : This schema mapping is different from sm #1 only on the semantic

relationship for p2. Pair p2 is a pair of attributes which are considered

in sm #3 to be disjoint and do not have identical names. Therefore,

as in sm #1, there are no naming conforming rules to be applied,

nor unioning and restructuring rules. Thus, the integrated schema for

sm #3 is schema S1, as well.

Thus, our top-K schema merging approach produces two schemas S1 and S2.

The belief of these two schemas is the normalized sum of the beliefs of the

schema mappings the schemas are derived from. The total belief of schema

mappings sm #1, sm #2 and sm #3 is 0.3422+ 0.1843+ 0.1843 = 0.7108.

Therefore, schema S1, which is derived from schema mappings #1 and #3,

is assigned belief 0.3422+0.1843
0.7108

= 0.74, and schema S2, which is derived from

schema mapping #2, is assigned belief 0.1843
0.7108

= 0.26. The final result of

merging Ser
1 and Ser

2 is a list of two integrated schemas (together with their

BAV view definitions produced by the application of the merging rules)

6.5. Summary 219

annotated with a degree of belief: [(S1, 0.74), (S2, 0.26)].

⋄

6.5 Summary

In this chapter, we have presented our approach to schema merging.

To avoid the complexity of high-level data models, we introduce our merging ap-

proach on the low-level HDM. We examine exhaustively each possible schema map-

ping between a pair of objects and each possible sub-schema configuration. Each

case identified is used to specify a low-level merging rule. Our merging rules are

formally defined and they are precise, using BAV transformations to integrate the

input schemas.

We improve existing approaches (reviewed in Section 2.3.3) by either

• producing view definitions between the input and integrated schemas: There

are existing approaches in the literature [59, 101, 89] that define an integrated

schema based on semantic mappings (equivalence, subsumption, etc). How-

ever, these approaches do not specify view definitions between the input and

integrated schemas. Without view definitions, data cannot be queried using

the integrated schema.

• or by using semantic mappings (equivalence, subsumption, etc) instead of data

mappings: There are existing approaches in the literature [87, 74, 12] that de-

fine view definitions between the input and the integrated schemas, but these

approaches are based on given data mappings between the input schema ob-

jects. These data mappings are essentially arbitrary queries between the in-

put schema objects, therefore a lot of this work is related to reasoning about

queries, which we do not do in our approach. Instead, we perform schema

6.5. Summary 220

merging based on semantic mappings, which are more high-level correspon-

dences between schema objects. In addition, semantic mappings are most com-

monly identified by existing schema matching approaches (Table 2.1), while

the identification of data mappings is a widely accepted hard problem [31].

Another advantage of our approach is that it allows the existence of a generic schema

merging framework, which is model independent and which can be translated to

high-level data models. In this chapter, we presented the methodology to derive the

generic schema merging framework and how it can be used to produce ER merging

rules. In addition, our proposed framework allows us to reason about the extent our

merging rules can be automated, and the soundness and completeness of the view

definitions we create.

The final outcome of our top-K schema merging is a list of at most K integrated

schemas each one associated with a degree of uncertainty, which we call top-K

integrated schemas.

Chapter 7

Conclusions and Future Work

In this dissertation, we have presented our schema integration framework based on

uncertain semantic mappings. Our framework represents and manages the inher-

ent uncertainty of the schema matching process and provides a low-level approach

on schema merging extensible for high-level schemas. In this final chapter of this

dissertation, we give our final conclusions on the research we conducted.

The objective in schema integration is the combination of data from different data

sources by creating a unified schema of the data. To achieve this, there are two

main tasks: schema matching and schema merging. In schema matching, a

schema mapping is identified consisting of a list of semantic mappings between

the input schema objects, while schema merging uses the identified schema mapping

to produce the final integrated schema.

It is widely accepted that schema matching is a very hard task and that in general

there is no unique solution to the problem. Even though researchers agree that

automatic schema matching software are error prone, there are few attempts in the

literature that consider providing feedback to the user about the correctness of the

schema mapping discovered during matching.

In our approach, we have attempted to capture the correctness of the schema map-

221

222

ping discovered by automatic schema matching software by representing the uncer-

tainty of the matching tool about the semantic mappings between schema objects.

Our approach introduces the notion of uncertain semantic mapping for schema

objects. Uncertain semantic mappings can be used to specify the levels of certainty

of correctness for the possible semantic relationships between the objects. For ex-

ample, a matching tool could report that it is certain that two objects s1 and s2

are not equivalent, but it is 40% certain that s1 subsumes s2, 30% certain that s1

and s2 are intersecting, 20% certain that they are disjoint and 10% that they are

incompatible.

The uncertain semantic mappings discovered during matching define an uncertain

schema mapping, which allows several different integrations of the input schemas.

In fact, the number of possible integrations is exponential. Thus, we are only inter-

ested in identifying the most certain integrated schemas, i.e. the top-K integrated

schemas.

The decision on whether a top-1 or a top-K, K> 1, schema integration approach is

used depends on the objectives of the user and the application setting. In a fully

automated environment, the top-K approach should be used since we show in this

dissertation that it produces schema mappings with higher accuracy than the top-1

approach. In a semi-automated environment, we have identified two user objectives.

If the user wants to identify the single correct schema mapping, then the top-1

approach should be used. The user can then examine and correct either the schema

mapping discovered or the resulting integrated schema. If the user finds the manual

cost of correcting the schema mapping prohibiting, then the top-K approach should

be used. In our top-K approach, the pairs of objects which the tool is least certain

about their mappings are directly available to the user. Thus, the user can only

correct the mappings of these pairs, which is more cost effective than correcting the

whole schema mapping. Additionally, the user can go through the top-K schema

mappings and select the one she prefers.

7.1. Comparison to Related Work 223

Regarding the top-K integrated schema, our schema merging process generates each

integrated schema based on a list of semantic mappings identified during schema

matching. Our merging process is based on a set of formal low-level rules, which

we have identified by exhaustively investigating each possible semantic mapping

between a pair of objects in each possible sub-schema configuration. Each low-level

rule specifies both the structure of the integrated schema and view definitions

between the input and the integrated schemas.

In this dissertation, we show that based on the low-level merging rules we can

produce a generic schema merging framework, which we can extend to support dif-

ferent high-level data models. Thus, our merging approach can be used to integrate

schemas of both low-level and high-level data models.

Due to the formal definition of the merging rules, we are able to prove that our

merging process does not cause any information loss nor gain. Thus, the final

integrated schema produced is both sound and complete.

7.1 Comparison to Related Work

Our top-K schema integration framework subsumes existing approaches [20, 83,

62, 35, 9, 2, 38, 65, 33, 73, 10, 34, 47, 112] that do not take into consideration

the uncertainty of schema matching and produce one schema mapping for each

matching task, and thus a single integrated schema is produced. We can simulate

these approaches by identifying the top-1 schema mapping and the top-1 integrated

schemas. The experimental evaluation of our prototype implementation shows that

using our approach improves the accuracy of existing matching algorithms [104, 75,

73] even for the identification of the top-1 schema mapping.

As far as we know, there are only two other existing approaches [46, 81] that take

into account the uncertainty during schema matching. Our approach subsumes both

7.2. Future Work 224

approaches which can only be used for identifying compatibility mappings, while our

framework supports, in addition to compatibility, five more precise semantic map-

pings. Additionally, in both [46] and [81] the final result of the schema matching

process does not depict the uncertainty of the matching tool but rather the confi-

dence assigned by the user to each matching algorithm.

As far as we know, there is no other schema merging approach that uses as in-

put uncertain mappings between schemas. In our merging approach, an uncertain

schema mapping results into top-K integrated schemas, which are materialized and

each one is assigned a level of uncertainty. In [37], which is the work most related

to this problem, the authors do not deal with schema merging per se but instead

investigate answering queries based on uncertain mappings.

Regarding the production of each individual integrated schema, our approach im-

proves against existing approaches [87, 74, 12] that only define the structure of the

integrated schema. Our approach also generates view definitions between the input

and integrated schemas. Compared to [31], which also generates view definitions,

our approach is more general since it provides a generic framework for the integra-

tion of schemas of any high-level data model, while in [31] only the relational data

model is considered.

7.2 Future Work

In the future, we could work on both improving our prototype implementation and

examining research problems that our approach could be applied on.

Regarding our prototype implementation, we could improve our matching experts by

investigating more sophisticated training processes for the derivation of uncertain

semantic mappings. This could potentially improve the accuracy of the schema

mappings and the integrated schemas our tool produces. Additionally, we could

7.2. Future Work 225

incorporate further schema matching algorithms to both improve the accuracy of our

tool and empirically prove that our approach improves the results these algorithms

already produce.

For a better evaluation of our approach, it would be useful to produce and examine

test cases with more precise semantic mappings between schemas. Our current data

set taken from [73] only considered compatibility mappings and therefore we were

not able to evaluate the full potential of our framework, which can deal with six

types of semantic mappings.

It would also be very interesting to investigate whether our approach can be extended

for the identification of data mappings. Currently, we identify uncertain semantic

mappings. It would be interesting to see how uncertainty can be represented on data

mappings, such as “name equals to the concatenation of first-name and last-name”.

Regarding future research directions, we have identified that lately the issue of

uncertainty in schema integration has been considered in several research papers

[31, 49, 66]. One area where uncertainty is inherent and where our research would

have direct application is dataspaces [49]. Dataspaces have been proposed as a data

management abstraction in settings where there is an increasing number of diverse,

interrelated data sources with no means of managing them in a convenient princi-

pled way. In these settings, mappings are approximate, queries are not structured

and data are imprecise. Even in this situation, there is a need for a basic func-

tionality over all data sources regardless how integrated they are, e.g. supporting

keyword queries without the existence of a single integrated schema. When more

sophisticated operations are required, schema integration can be performed locally

in an incremental pay-as-you-go fashion. In these cases, some cost needs to be paid

for better integration results and better query answers.

Our work, which allows the automatic identification of top-K integrated schemas, is

directly applicable in dataspaces, since integration can be performed at no user cost.

7.2. Future Work 226

If more accurate results are required, then the process described in this dissertation

can be used, where users examine the top-K integrated schemas and select the ones

they prefer. In this case, the users have to pay a small cost to improve the integration

and thus query results.

Another research area we could apply our approach on is model management [11]. In

model management, schemas are treated as bulk objects using high-level operators

such as Match, Merge, Compose, etc. We could investigate how these opera-

tors can be extended to support uncertainty. Our research has effectively already

extended the Match operator, which performs schema matching, and the Merge

operator, which performs schema merging. Additionally, we could investigate the

remaining operators. For example, the Compose operator combines certain map-

pings between schemas S1 and S2, and S2 and S3, to produce a mapping between S1

and S3. It would be interesting to see what is the meaning of combining uncertain

mappings and how uncertain mappings can be combined.

Appendix A

Low-Level Schema Merging Rules

In this appendix we list all low-level schema merging rules.

A.1 Naming Conforming

The naming conforming rules are:

〈〈〈N1〉〉,
S
=, 〈〈N2〉〉〉

¬ identicalNames(N1, N2)

commonName(N1, N2, N
′)

renameNode(〈〈N1〉〉, 〈〈N
′〉〉)

renameNode(〈〈N2〉〉, 〈〈N
′〉〉)

¬ 〈〈〈N1〉〉,
S
=, 〈〈N2〉〉〉

identicalNames(N1, N2)

distinctNames(N1, N2, N
′
1, N

′
2)

renameNode(〈〈N1〉〉, 〈〈N
′
1〉〉)

renameNode(〈〈N2〉〉, 〈〈N
′
2〉〉)

〈〈e1, N1, N2〉〉
S
=〈〈e2, N1, N2〉〉

¬ identicalNames(e1, e2)

commonName(e1, e2, e
′)

renameEdge(〈〈e1, N1, X1〉〉, 〈〈e
′, N1, X1〉〉)

renameEdge(〈〈e2, N2, X2〉〉, 〈〈e
′, N2, X2〉〉)

¬ 〈〈e1, N1, N2〉〉
S
=〈〈e2, N1, N2〉〉

identicalNames(e1, e2)

distinctNames(e1, e2, e
′
1, e

′
2)

renameEdge(〈〈e1, N1, N2〉〉, 〈〈e
′
1, N1, N2〉〉)

renameEdge(〈〈e2, N1, N2〉〉, 〈〈e
′
2, N1, N2〉〉)

227

A.2. Unioning 228

A.2 Unioning

The unioning rules are:

〈〈〈N2〉〉,
S
⊂, 〈〈N1〉〉〉

addConstraint(〈〈 ⊆, 〈〈N2〉〉, 〈〈N1〉〉〉〉)

〈〈〈N1〉〉,
S
∩, 〈〈N2〉〉〉

uniqueName(N1,N2,N
′,

S
∩)

addNode(〈〈N ′〉〉, [{x} | {x} ← 〈〈N1〉〉;

{x} ← 〈〈N2〉〉])

addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N1〉〉〉〉)

addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N2〉〉〉〉)

〈〈〈N1〉〉,
S

∩/, 〈〈N2〉〉〉

uniqueName(N1,N2,N
′,

S

∩/)

addNode(〈〈N ′〉〉, 〈〈N1〉〉 ++ 〈〈N2〉〉)

addConstraint(〈〈∪, 〈〈N ′〉〉, 〈〈N1〉〉, 〈〈N2〉〉〉〉)

addConstraint(〈〈6∩, 〈〈N1〉〉, 〈〈N2〉〉〉〉)

A.3 Restructuring

The Redundant Edge Removal rules are:

〈〈e1, N1/2, N
′
1〉〉

S
=〈〈e2, N1/2, N

′
2〉〉

〈〈N ′
2〉〉

S
⊂〈〈N ′

1〉〉

constraints(〈〈N ′
1〉〉, 〈〈e1, N1/2, N

′
1〉〉,

Constraints)

genDeleteCons(Constraints)

moveDependents(e1, e2)

deleteEdge(〈〈e1, N1/2, N
′
1〉〉, [{x, y} |

{x, y} ← 〈〈e2, N1/2, N
′
2〉〉])

〈〈e1, N1, N
′
1〉〉

S
=〈〈e2, N2, N

′
2〉〉

〈〈N2〉〉
S
⊂〈〈N1〉〉

〈〈N ′
2〉〉

S
⊂〈〈N ′

1〉〉

constraints(〈〈N1〉〉, 〈〈e1, N1, N
′
1〉〉,

Constraints1)

constraints(〈〈N ′
1〉〉, 〈〈e1, N1, N

′
1〉〉,

Constraints′1)

genDeleteCons(Constraints1)

genDeleteCons(Constraints′1)

moveDependents(e1, e2)

deleteEdge(〈〈e1, N1, N
′
1〉〉, 〈〈e2, N2, N

′
2〉〉)

A.3. Restructuring 229

〈〈e1, N1, N
′
1〉〉

S
=〈〈e2, N2, N

′
2〉〉

〈〈N2〉〉
S
⊂〈〈N1〉〉

〈〈N ′
1〉〉

S
⊂〈〈N ′

2〉〉

constraints(〈〈N1〉〉,〈〈e1, N1, N
′
1〉〉,ConstraintsE1)

constraints(〈〈N ′
2〉〉,〈〈e2, N2, N

′
2〉〉,ConstraintsE2)

uniqueName(e1, e2, e
′, S
=)

addEdge(〈〈e′, N2, N
′
1〉〉, [{x, y} |

{x, y} ← 〈〈e2, N2, N
′
2〉〉])

genDeleteCons(ConstraintsE1)

moveDependents(e1,e
′)

deleteEdge(〈〈e1, N1, N
′
1〉〉, [{x, y} |

{x, y} ← 〈〈e′, N2, N
′
1〉〉])

genDeleteCons(ConstraintsE2)

moveDependents(e2,e
′)

deleteEdge(〈〈e2, N2, N
′
2〉〉, [{x, y} |

{x, y} ← 〈〈e′, N2, N
′
1〉〉])

A.3. Restructuring 230

The Specialization of Edges rules are:

〈〈e1, N1/2, N
′
1〉〉

S
=〈〈e2, N1/2, N

′
2〉〉

〈〈N ′
1〉〉

S
∩〈〈N ′

2〉〉

createdNodal(〈〈N ′
1〉〉, 〈〈N

′
2〉〉, 〈〈N

′〉〉)

uniqueName(e1, e2, e
′, S
=)

constraints(〈〈N ′
1〉〉, 〈〈e1, N1/2, N

′
1〉〉,

Constraints1)

constraints(〈〈N ′
2〉〉, 〈〈e2, N1/2, N

′
2〉〉,

Constraints2)

commonCons(Constraints1, Constraints2,

Constraints)

addEdge(〈〈e′, N1/2, N
′〉〉, [{x, y} |

{x, y} ← 〈〈e2, N1/2, N
′
2〉〉])

addConsList(Constraints, 〈〈N ′〉〉,

〈〈e′, N1/2, N
′〉〉)

genDeleteCons(Constraints1)

moveDependents(e1,e
′)

deleteEdge(〈〈e1, N1/2, N
′
1〉〉, [{x, y} |

{x, y} ← 〈〈e′, N1/2, N
′〉〉])

genDeleteCons(Constraints2)

moveDependents(e2,e
′)

deleteEdge(〈〈e2, N1/2, N
′
2〉〉, [{x, y} |

{x, y} ← 〈〈e′, N1/2, N
′〉〉])

〈〈e1, N1, N
′
1〉〉

S
=〈〈e2, N2, N

′
2〉〉

〈〈N2〉〉
S
⊂〈〈N1〉〉

〈〈N ′
1〉〉

S
∩〈〈N ′

2〉〉

createdNodal(〈〈N ′
1〉〉, 〈〈N

′
2〉〉, 〈〈N

′〉〉)

uniqueName(e1, e2, e
′, S
=)

constraints(〈〈N1〉〉, 〈〈e1, N1, N
′
1〉〉,

Constraints1)

constraints(〈〈N ′
1〉〉, 〈〈e1, N1, N

′
1〉〉,

Constraints′1)

constraints(〈〈N ′
2〉〉, 〈〈e2, N2, N

′
2〉〉,

Constraints′2)

commonCons(Constraints′1,

Constraints′2, Constraints)

addEdge(〈〈e′, N2, N
′〉〉, [{x, y} |

{x, y} ← 〈〈e2, N2, N
′
2〉〉])

addConsList(Constraints, 〈〈N ′〉〉,

〈〈e′, N2, N
′〉〉)

genDeleteCons(Constraints1)

genDeleteCons(Constraints′1)

moveDependents(e1,e
′)

deleteEdge(〈〈e1, N1, N
′
1〉〉, [{x, y} |

{x, y} ← 〈〈e′, N2, N
′〉〉])

genDeleteCons(Constraints′2)

moveDependents(e2,e
′)

deleteEdge(〈〈e2, N2, N
′
2〉〉, [{x, y} |

{x, y} ← 〈〈e′, N2, N
′〉〉])

A.3. Restructuring 231

〈〈e1, N1, N
′
1〉〉 = 〈〈e2, N2, N

′
2〉〉

〈〈N1〉〉
S
∩〈〈N2〉〉

createdNodal(〈〈N1〉〉, 〈〈N2〉〉, 〈〈N〉〉)

〈〈N ′
1〉〉

S
∩〈〈N ′

2〉〉

createdNodal(〈〈N ′
1〉〉, 〈〈N

′
2〉〉, 〈〈N

′〉〉)

uniqueName(e1, e2, e
′, S
=)

constraints(〈〈N1〉〉,〈〈e1, N1, N
′
1〉〉,Constraints1)

constraints(〈〈N2〉〉,〈〈e2, N2, N
′
2〉〉,Constraints2)

commonCons(Constraints1,Constraints2,Constraints)

constraints(〈〈N ′
1〉〉,〈〈e1, N1, N

′
1〉〉,Constraints′1)

constraints(〈〈N ′
2〉〉,〈〈e2, N2, N

′
2〉〉,Constraints′2)

commonCons(Constraints′1,Constraints′2,Constraints′)

addEdge(〈〈e′, N,N ′〉〉, [{x, y} |

{x, y} ← 〈〈e2, N2, N
′
2〉〉])

addConsList(Constraints,〈〈N〉〉,〈〈e′, N,N ′〉〉)

addConsList(Constraints′,〈〈N ′〉〉,〈〈e′, N,N ′〉〉)

genDeleteCons(Constraints1)

genDeleteCons(Constraints′1)

moveDependents(e1,e
′)

deleteEdge(〈〈e1, N1, N
′
1〉〉, [{x, y} |

{x, y} ← 〈〈e′, N,N ′〉〉])

genDeleteCons(Constraints2)

genDeleteCons(Constraints′2)

moveDependents(e2,e
′)

deleteEdge(〈〈e2, N2, N
′
2〉〉, [{x, y} |

{x, y} ← 〈〈e′, N,N ′〉〉])

A.3. Restructuring 232

The Optional Edge Removal rules are:

〈〈e2, N1/2, N
′
2〉〉

S
⊂〈〈e1, N1/2, N

′
1〉〉

〈〈N ′
2〉〉

S
⊂〈〈N ′

1〉〉

〈〈e1, N1/2, N
′
1〉〉⊳ 〈〈N

′
1〉〉

〈〈N ′
2〉〉⊲ 〈〈e2, N1/2, N

′
2〉〉

constraints(〈〈N ′
2〉〉, 〈〈e2, N1/2, N

′
2〉〉,

Constraints)

genDeleteCons(Constraints)

moveDependents(e2,e1)

deleteEdge(〈〈e2, N1/2, N
′
2〉〉, [{x, y} |

{x, y} ← 〈〈e1, N1/2, N
′
1〉〉; {y} ← 〈〈N

′
2〉〉)

〈〈e2, N2, N
′
2〉〉

S
⊂〈〈e1, N1, N

′
1〉〉

〈〈N2〉〉
S
⊂〈〈N1〉〉

〈〈N ′
2〉〉

S
⊂〈〈N ′

1〉〉

〈〈e1, N1, N
′
1〉〉⊳ 〈〈N

′
1〉〉

〈〈N ′
2〉〉⊲ 〈〈e2, N2, N

′
2〉〉

constraints(〈〈N ′
2〉〉, 〈〈e2, N2, N

′
2〉〉,

Constraints)

genDeleteCons(Constraints)

moveDependents(e2,e1)

deleteEdge(〈〈e2, N2, N
′
2〉〉, [{x, y} |

{x, y} ← 〈〈e1, N1, N
′
1〉〉; {y} ← 〈〈N

′
2〉〉)

〈〈e2, N2, N
′
2〉〉

S
⊂〈〈e1, N1, N

′
1〉〉

〈〈N2〉〉
S
∩〈〈N1〉〉

〈〈N ′
2〉〉

S
⊂〈〈N ′

1〉〉

〈〈e1, N1, N
′
1〉〉⊳ 〈〈N

′
1〉〉

〈〈N ′
2〉〉⊲ 〈〈e2, N2, N

′
2〉〉

constraints(〈〈N ′
2〉〉, 〈〈e2, N2, N

′
2〉〉,

Constraints)

genDeleteCons(Constraints)

moveDependents(e2,e1)

deleteEdge(〈〈e2, N2, N
′
2〉〉, [{x, y} |

{x, y} ← 〈〈e1, N1, N
′
1〉〉; {y} ← 〈〈N

′
2〉〉)

A.3. Restructuring 233

The Addition of Edge Intersection rules are:

〈〈e1, N1/2, N
′
1/2〉〉

S
∩〈〈e2, N1/2, N

′
1/2〉〉

uniqueName(N1/2, N1/2, N
′,

S
∩)

uniqueName(N ′
1/2, N

′
1/2, N

′′,
S
∩)

addNode(〈〈N ′〉〉, [{x} |

{x, y} ← 〈〈e1, N1/2, N
′
1/2〉〉;

{x, y} ← 〈〈e2, N1/2, N
′
1/2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N1/2〉〉〉〉)

addNode(〈〈N ′′〉〉, [{x} |

{y, x} ← 〈〈e1, N1/2, N
′
1/2〉〉;

{y, x} ← 〈〈e2, N1/2, N
′
1/2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′′〉〉, 〈〈N ′
1/2〉〉〉〉)

〈〈e1, N1/2, N
′
1〉〉

S
∩〈〈e2, N1/2, N

′
2〉〉

〈〈N ′
2〉〉

S
⊂〈〈N ′

1〉〉

uniqueName(N1/2, N1/2, N
′,

S
∩)

uniqueName(N ′
1, N

′
2, N

′′,
S
∩)

addNode(〈〈N ′〉〉, [{x} |

{x, y} ← 〈〈e1, N1/2, N
′
1〉〉;

{x, y} ← 〈〈e2, N1/2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N1/2〉〉〉〉)

addNode(〈〈N ′′〉〉, [{x} |

{y, x} ← 〈〈e1, N1/2, N
′
1〉〉;

{y, x} ← 〈〈e2, N1/2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′′〉〉, 〈〈N ′
2〉〉〉〉)

〈〈e1, N1, N
′
1〉〉

S
∩〈〈e2, N2, N

′
2〉〉

〈〈N2〉〉
S
⊂〈〈N1〉〉

〈〈N ′
2〉〉

S
⊂〈〈N ′

1〉〉

uniqueName(N1, N2, N
′,

S
∩)

uniqueName(N ′
1, N

′
2, N

′′,
S
∩)

addNode(〈〈N ′〉〉, [{x} |

{x, y} ← 〈〈e1, N1, N
′
1〉〉;

{x, y} ← 〈〈e2, N2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N2〉〉〉〉)

addNode(〈〈N ′′〉〉, [{x} |

{y, x} ← 〈〈e1, N1, N
′
1〉〉;

{y, x} ← 〈〈e2, N2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′′〉〉, 〈〈N ′
2〉〉〉〉)

〈〈e1, N1, N
′
1〉〉

S
∩〈〈e2, N2, N

′
2〉〉

〈〈N1〉〉
S
⊂〈〈N2〉〉

〈〈N ′
2〉〉

S
⊂〈〈N ′

1〉〉

uniqueName(N1, N2, N
′,

S
∩)

uniqueName(N ′
1, N

′
2, N

′′,
S
∩)

addNode(〈〈N ′〉〉, [{x} |

{x, y} ← 〈〈e1, N1, N
′
1〉〉;

{x, y} ← 〈〈e2, N2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N1〉〉〉〉)

addNode(〈〈N ′′〉〉, [{x} |

{y, x} ← 〈〈e1, N1, N
′
1〉〉;

{y, x} ← 〈〈e2, N2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′′〉〉, 〈〈N ′
2〉〉〉〉)

A.3. Restructuring 234

〈〈e1, N1/2, N
′
1〉〉

S
∩〈〈e2, N1/2, N

′
2〉〉

〈〈N ′
1〉〉

S
∩〈〈N ′

2〉〉

createdNodal(〈〈N ′
1〉〉,〈〈N

′
2〉〉,〈〈N〉〉)

uniqueName(N1/2, N1/2, N
′,

S
∩)

uniqueName(N ′
1, N

′
2, N

′′,
S
∩)

addNode(〈〈N ′〉〉, [{x} |

{x, y} ← 〈〈e1, N1/2, N
′
1〉〉;

{x, y} ← 〈〈e2, N1/2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N1/2〉〉〉〉)

addNode(〈〈N ′′〉〉, [{x} |

{y, x} ← 〈〈e1, N1/2, N
′
1〉〉;

{y, x} ← 〈〈e2, N1/2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′′〉〉, 〈〈N〉〉〉〉)

〈〈e1, N1, N
′
1〉〉

S
∩〈〈e2, N2, N

′
2〉〉

〈〈N2〉〉 ⊂ 〈〈N1〉〉

〈〈N ′
1〉〉

S
∩〈〈N ′

2〉〉

createdNodal(〈〈N ′
1〉〉,〈〈N

′
2〉〉,〈〈N〉〉)

uniqueName(N1, N2, N
′,

S
∩)

uniqueName(N ′
1, N

′
2, N

′′,
S
∩)

addNode(〈〈N ′〉〉, [{x} |

{x, y} ← 〈〈e1, N1, N
′
1〉〉;

{x, y} ← 〈〈e2, N2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N2〉〉〉〉)

addNode(〈〈N ′′〉〉, [{x} |

{y, x} ← 〈〈e1, N1, N
′
1〉〉;

{y, x} ← 〈〈e2, N2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′′〉〉, 〈〈N〉〉〉〉)

〈〈e1, N1, N
′
1〉〉

S
∩〈〈e2, N2, N

′
2〉〉

〈〈N1〉〉
S
∩〈〈N2〉〉

createdNodal(〈〈N1〉〉,〈〈N2〉〉,〈〈N12〉〉)

〈〈N ′
1〉〉

S
∩〈〈N ′

2〉〉

createdNodal(〈〈N ′
1〉〉,〈〈N

′
2〉〉,〈〈N

′
12〉〉)

uniqueName(N1, N2, N
′,

S
∩)

uniqueName(N ′
1, N

′
2, N

′′,
S
∩)

addNode(〈〈N ′〉〉, [{x} |

{x, y} ← 〈〈e1, N1, N
′
1〉〉;

{x, y} ← 〈〈e2, N2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′〉〉, 〈〈N12〉〉〉〉)

addNode(〈〈N ′′〉〉, [{x} |

{y, x} ← 〈〈e1, N1, N
′
1〉〉;

{y, x} ← 〈〈e2, N2, N
′
2〉〉)]

addConstraint(〈〈 ⊆, 〈〈N ′′〉〉, 〈〈N ′
12〉〉〉〉)

A.3. Restructuring 235

The Generalization of Edges rules are:

〈〈e1, N1/2, N
′
1〉〉

S

∩/〈〈e2, N1/2, N
′
2〉〉

〈〈N ′
1〉〉

S

∩/〈〈N ′
2〉〉

createdNodal(〈〈N ′
1〉〉, 〈〈N

′
2〉〉, 〈〈N

′〉〉)

uniqueName(e1, e2, e
′,

S

∩/)

constraints(〈〈N ′
1〉〉, 〈〈e1, N1/2, N

′
1〉〉, Constraints′1)

constraints(〈〈N ′
2〉〉, 〈〈e2, N1/2, N

′
2〉〉, Constraints′2)

commonCons(Constraints′1, Constraints′2, Constraints′)

constraints(〈〈N1/2〉〉, 〈〈e1, N1/2, N
′
1〉〉, Constraints1)

constraints(〈〈N1/2〉〉, 〈〈e2, N1/2, N
′
2〉〉, Constraints2)

commonCons(Constraints1, Constraints2, Constraints)

addEdge(〈〈e′, N1/2, N
′〉〉, 〈〈e1, N1/2, N

′
1〉〉++〈〈e2, N1/2, N

′
2〉〉)

addConsList(Constraints, 〈〈N1/2〉〉, 〈〈e
′, N1/2, N

′〉〉)

addConsList(Constraints′, 〈〈N ′〉〉, 〈〈e′, N1/2, N
′〉〉)

genDeleteCons(Constraints1)

moveDependents(e1,e
′)

deleteEdge(〈〈e1, N1/2, N
′
1〉〉, [{x, y} | {x, y} ← 〈〈e

′, N1/2, N
′〉〉; {y} ← 〈〈N ′

1〉〉])

genDeleteCons(Constraints2)

moveDependents(e2,e
′)

〈〈e1, N1, N
′
1〉〉

S

∩/〈〈e2, N2, N
′
2〉〉

〈〈N2〉〉
S
⊂〈〈N1〉〉

〈〈N ′
1〉〉

S

∩/〈〈N ′
2〉〉

createdNodal(〈〈N ′
1〉〉, 〈〈N

′
2〉〉, 〈〈N

′〉〉)

uniqueName(e1, e2, e
′,

S

∩/)

constraints(〈〈N1〉〉, 〈〈e1, N1, N
′
1〉〉, Constraints1)

constraints(〈〈N2〉〉, 〈〈e2, N2, N
′
2〉〉, Constraints2)

commonCons(Constraints1, Constraints2, Constraints)

constraints(〈〈N ′
1〉〉, 〈〈e1, N1, N

′
1〉〉, Constraints′1)

A.3. Restructuring 236

constraints(〈〈N ′
2〉〉, 〈〈e2, N2, N

′
2〉〉, Constraints′2)

commonCons(Constraints′1, Constraints′2, Constraints′)

addEdge(〈〈e′, N1, N
′〉〉, 〈〈e1, N1, N

′
1〉〉++〈〈e2, N2, N

′
2〉〉)

addConsList(Constraints, 〈〈N1〉〉, 〈〈e
′, N1, N

′〉〉)

addConsList(Constraints′, 〈〈N ′〉〉, 〈〈e′, N1, N
′〉〉)

genDeleteCons(Constraints1)

moveDependents(e1,e
′)

deleteEdge(〈〈e1, N1, N
′
1〉〉, [{x, y} | {x, y} ← 〈〈e

′, N1, N
′〉〉; {y} ← 〈〈N ′

1〉〉])

genDeleteCons(Constraints2)

moveDependents(e2,e
′)

deleteEdge(〈〈e2, N2, N
′
2〉〉, [{x, y} | {x, y} ← 〈〈e

′, N1, N
′〉〉; {y} ← 〈〈N ′

2〉〉])

〈〈e1, N1, N
′
1〉〉

S

∩/〈〈e2, N2, N
′
2〉〉

〈〈N1〉〉
S
∩〈〈N2〉〉

createdNodal(〈〈N1〉〉, 〈〈N2〉〉, 〈〈N12〉〉)

〈〈N ′
1〉〉

S

∩/〈〈N ′
2〉〉

createdNodal(〈〈N ′
1〉〉, 〈〈N

′
2〉〉, 〈〈N

′′〉〉)

uniqueName(N1,N2,N
′,

S

∩/)

uniqueName(e1,e2,e
′,

S

∩/)

constraints(〈〈N1〉〉, 〈〈e1, N1, N
′
1〉〉, Constraints1)

constraints(〈〈N2〉〉, 〈〈e2, N2, N
′
2〉〉, Constraints2)

commonCons(Constraints1, Constraints2, Constraints)

constraints(〈〈N ′
1〉〉, 〈〈e1, N1, N

′
1〉〉, Constraints′1)

constraints(〈〈N ′
2〉〉, 〈〈e2, N2, N

′
2〉〉, Constraints′2)

commonCons(Constraints′1, Constraints′2, Constraints′)

addNode(〈〈N ′〉〉, 〈〈N1〉〉++〈〈N2〉〉)

addEdge(〈〈e′, N ′, N ′′〉〉, 〈〈e1, N1, N
′
1〉〉++〈〈e2, N2, N

′
2〉〉)

addConsList(Constraints, 〈〈N ′〉〉, 〈〈e′, N ′, N ′′〉〉)

addConsList(Constraints′, 〈〈N ′′〉〉, 〈〈e′, N ′, N ′′〉〉)

A.3. Restructuring 237

genDeleteCons(Constraints1)

moveDependents(e1,e
′)

deleteEdge(〈〈e1, N1, N
′
1〉〉, [{x, y} | {x, y} ← 〈〈e

′, N ′, N ′′〉〉; {y} ← 〈〈N ′
1〉〉])

genDeleteCons(Constraints2)

moveDependents(e2,e
′)

deleteEdge(〈〈e2, N2, N
′
2〉〉, [{x, y} | {x, y} ← 〈〈e

′, N ′, N ′′〉〉; {y} ← 〈〈N ′
2〉〉])

〈〈e1, N1, N
′
1〉〉

S

∩/〈〈e2, N2, N
′
2〉〉

〈〈N1〉〉
S

∩/〈〈N2〉〉

createdNodal(〈〈N1〉〉, 〈〈N2〉〉, 〈〈N
′〉〉)

〈〈N ′
1〉〉

S

∩/〈〈N ′
2〉〉

createdNodal(〈〈N ′
1〉〉, 〈〈N

′
2〉〉, 〈〈N

′′〉〉)

uniqueName(e1, e2, e
′,

S

∩/)

constraints(〈〈N1〉〉, 〈〈e1, N1, N
′
1〉〉, Constraints1)

constraints(〈〈N2〉〉, 〈〈e2, N2, N
′
2〉〉, Constraints2)

commonCons(Constraints1, Constraints2, Constraints)

constraints(〈〈N ′
1〉〉, 〈〈e1, N1, N

′
1〉〉, Constraints′1)

constraints(〈〈N ′
2〉〉, 〈〈e2, N2, N

′
2〉〉, Constraints′2)

commonCons(Constraints′1, Constraints′2, Constraints′)

addEdge(〈〈e′, N ′, N ′′〉〉, 〈〈e1, N1, N
′
1〉〉++〈〈e2, N2, N

′
2〉〉)

addConsList(Constraints, 〈〈N ′〉〉, 〈〈e′, N ′, N ′′〉〉)

addConsList(Constraints′, 〈〈N ′′〉〉, 〈〈e′, N ′, N ′′〉〉)

genDeleteCons(Constraints1)

moveDependents(e1,e
′)

deleteEdge(〈〈e1, N1, N
′
1〉〉, [{x, y} | {x, y} ← 〈〈e

′, N ′, N ′′〉〉; {x} ← 〈〈N1〉〉])

genDeleteCons(Constraints2)

moveDependents(e2,e
′)

deleteEdge(〈〈e2, N2, N
′
2〉〉, [{x, y} | {x, y} ← 〈〈e

′, N ′, N ′′〉〉; {x} ← 〈〈N2〉〉])

Appendix B

Generic Merging Rules

In this appendix we list all generic merging rules for nodals and link-nodals. The

rules about links are identical to the low-level rules on edges.

B.1 Naming Conforming Rules

〈〈〈N1〉〉,
S
=, 〈〈N2〉〉〉

¬ identicalNames(N1, N2)

commonName(N1, N2, N
′)

renameNodalgen(〈〈N1〉〉, 〈〈N
′〉〉)

renameNodalgen(〈〈N2〉〉, 〈〈N
′〉〉)

¬ 〈〈〈N1〉〉,
S
=, 〈〈N2〉〉〉

identicalNames(N1, N2)

distinctNames(N1, N2, N
′
1, N

′
2)

renameNodalgen(〈〈N1〉〉, 〈〈N
′
1〉〉)

renameNodalgen(〈〈N2〉〉, 〈〈N
′
2〉〉)

LN1
S
=LN2

¬ identicalNames(LN1,LN2)

commonName(LN1, LN2, LN
′)

renameLNgen(LN1, LN
′)

renameLNgen(LN2, LN
′)

¬ LN1
S
=LN2

identicalNames(LN1, LN2)

distinctNames(LN1, LN2, LN
′
1, LN

′
2)

renameLNgen(LN1, LN
′
1)

renameLNgen(LN2, LN
′
2)

238

B.2. Unioning 239

B.2 Unioning

〈〈〈N2〉〉,
S
⊂, 〈〈N1〉〉〉

addConstraintgen(〈〈 ⊆, 〈〈N2〉〉, 〈〈N1〉〉〉〉)

〈〈〈N1〉〉,
S
∩, 〈〈N2〉〉〉

uniqueName(N1,N2,N
′,

S
∩)

addNodalgen(〈〈N
′〉〉, [{x} | {x} ← 〈〈N1〉〉;

{x} ← 〈〈N2〉〉])

addConstraintgen(〈〈 ⊆, 〈〈N
′〉〉, 〈〈N1〉〉〉〉)

addConstraintgen(〈〈 ⊆, 〈〈N
′〉〉, 〈〈N2〉〉〉〉)

〈〈〈N1〉〉,
S

∩/, 〈〈N2〉〉〉

uniqueName(N1,N2,N
′,

S

∩/)

addNodalgen(〈〈N
′〉〉, 〈〈N1〉〉 ++ 〈〈N2〉〉)

addConstraintgen(

〈〈∪, 〈〈N ′〉〉, 〈〈N1〉〉, 〈〈N2〉〉〉〉)

addConstraintgen(〈〈6∩, 〈〈N1〉〉, 〈〈N2〉〉〉〉)

B.3 Restructuring

The Redundant Link-Nodal Removal rule is:

〈〈X1, N1〉〉
S
=〈〈X2, N2〉〉

〈〈X2〉〉
S
⊂〈〈X1〉〉

constraints(〈〈X1〉〉, 〈〈X1, N1〉〉, Constraints)

genDeleteCons(Constraints)

deleteLNgen(〈〈X1, N1〉〉, [{x, y} |

{x, y} ← 〈〈X2, N2〉〉])

B.3. Restructuring 240

The Specialization of Link-Nodals rule is:

〈〈X1, N1〉〉
S
=〈〈X2, N2〉〉

〈〈X1〉〉
S
∩〈〈X2〉〉

createdNodal(〈〈X1〉〉, 〈〈X2〉〉, 〈〈X
′〉〉)

uniqueName(N1, N2, N
′, S
=)

constraints(〈〈X1〉〉,〈〈X1, N1〉〉,Constraints1)

constraints(〈〈X2〉〉,〈〈X2, N2〉〉,Constraints2)

commonCons(Constraints1,Constraints2,Constraints)

addLNgen(〈〈X
′, N ′〉〉, [{x, y} |

{x, y} ← 〈〈X1, N1〉〉])

addConsList(Constraints,〈〈X ′〉〉,〈〈X ′, N ′〉〉)

genDeleteCons(Constraints1)

deleteLNgen(〈〈X1, N1〉〉, [{x, y} |

{x, y} ← 〈〈X ′, N ′〉〉])

genDeleteCons(Constraints2)

deleteLNgen(〈〈X2, N2〉〉, [{x, y} |

{x, y} ← 〈〈X ′, N ′〉〉])

The Optional Link-Nodal Removal rule is:

〈〈X2, N2〉〉
S
⊂〈〈X1, N1〉〉

〈〈X2〉〉
S
⊂〈〈X1〉〉

〈〈X1〉〉⊳ 〈〈X1, N1〉〉

〈〈X1〉〉⊲ 〈〈X1, N1〉〉

〈〈X2〉〉⊲ 〈〈X2, N2〉〉

deleteLNgen(〈〈X2, N2〉〉, [{x, y} |

{x, y} ← 〈〈X1, N1〉〉; {x} ← 〈〈X2〉〉])

B.3. Restructuring 241

The Addition of Link-Nodal Intersection rules are:

〈〈X1/2, N1〉〉
S
∩〈〈X1/2, N2〉〉

uniqueName(X1/2, X1/2, X
′,

S
∩)

addNodalgen(〈〈X
′〉〉, [{x} |

{x, y} ← 〈〈X1/2, N1〉〉;

{x, y} ← 〈〈X1/2, N2〉〉)]

addConstraintgen(

〈〈 ⊆, 〈〈X ′〉〉, 〈〈X1/2〉〉〉〉)

〈〈X1, N1〉〉
S
∩〈〈X2, N2〉〉

〈〈X2〉〉
S
⊂〈〈X1〉〉

uniqueName(X1, X2, X
′,

S
∩)

addNodalgen(〈〈X
′〉〉, [{x} |

{x, y} ← 〈〈X1, N1〉〉;

{x, y} ← 〈〈X2, N2〉〉)]

addConstraintgen(〈〈 ⊆, 〈〈X
′〉〉, 〈〈X2〉〉〉〉)

〈〈X1, N1〉〉
S
∩〈〈X2, N2〉〉

〈〈X1〉〉
S
∩〈〈X2〉〉

createdNodal(〈〈X1〉〉, 〈〈X2〉〉, 〈〈X
′〉〉)

uniqueName(X ′, X ′, X ′′,
S
∩)

addNodalgen(〈〈X
′′〉〉, [{x} |

{x, y} ← 〈〈X1, N1〉〉;

{x, y} ← 〈〈X2, N2〉〉)]

addConstraintgen(〈〈 ⊆, 〈〈X
′′〉〉, 〈〈X ′〉〉〉〉)

The Link-Nodal Generalization rule is:

〈〈X1, N1〉〉
S

∩/〈〈X2, N2〉〉

〈〈X1〉〉
S

∩/〈〈X2〉〉

createdNodal(〈〈X1〉〉, 〈〈X2〉〉, 〈〈X
′〉〉)

uniqueName(N1, N2, N
′,

S

∩/)

constraints(〈〈X1〉〉,〈〈X1, N1〉〉,Constraints1)

constraints(〈〈X2〉〉,〈〈X2, N2〉〉,Constraints2)

commonCons(Constraints1,Constraints2,Constraints)

addLNgen(〈〈X
′, N ′〉〉, [{x, y} | {x, y} ← 〈〈X1, N1〉〉]++[{x, y} | {x, y} ← 〈〈X2, N2〉〉])

addConsList(Constraints,〈〈X ′〉〉,〈〈X ′, N ′〉〉)

deleteLNgen(〈〈X1, N1〉〉, [{x, y} | {x, y} ← 〈〈X
′, N ′〉〉; {x} ← 〈〈X1〉〉])

deleteLNgen(〈〈X2, N2〉〉, [{x, y} | {x, y} ← 〈〈X
′, N ′〉〉; {x} ← 〈〈X2〉〉])

Bibliography

[1] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and Aristides Gionis. Au-

tomated ranking of database query results. In CIDR, pages 888–899, 2003.

[2] Ken Barker amon Lawrence. Integrating relational database schemas using a

standardized dictionary. In ACM Symposium on Applied Computing (SAC),

pages 225–230, 2001.

[3] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminating

fuzzy duplicates in data warehouses. In VLDB, pages 586–597, 2002.

[4] Marcelo Arenas and Leonid Libkin. XML data exchange: consistency and

query answering. In PODS, pages 13–24, 2005.

[5] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm.

Schema and ontology matching with COMA++. In SIGMOD, pages 906–

908, 2005.

[6] Michelle Q. Wang Baldonado, Kevin Chen-Chuan Chang, Luis Gravano, and

Andreas Paepcke. The Stanford digital library metadata architecture. Int. J.

on Digital Libraries, 1(2):108–121, 1997.

[7] C. Batini and M. Lenzerini. A methodology for data schema integration in

the entity relationship model. IEEE Transactions on Software Engineering,

10(6):650–664, 1984.

242

BIBLIOGRAPHY 243

[8] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodolo-

gies for database schema integration. ACM Computing Surveys, 18(4):323–364,

1986.

[9] Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Ben-

eventano. Semantic integration of heterogeneous information sources. Data

Knowl. Eng., 36(3):215–249, 2001.

[10] Jacob Berlin and Amihai Motro. Database schema matching using machine

learning with feature selection. In CAiSE, pages 452–466, 2002.

[11] Philip A. Bernstein. Applying model management to classical meta data prob-

lems. In CIDR, pages 209–222, 2003.

[12] J. Biskup and B. Convent. A formal view integration method. In SIGMOD,

pages 398–407, 1986.

[13] Dina Bitton and David J. DeWitt. Duplicate record elimination in large data

files. ACM Trans. Database Syst., 8(2):255–265, 1983.

[14] Shawn Bowers and Lois M. L. Delcambre. The uni-level description: A uniform

framework for representing information in multiple data models. In ER, pages

45–58, 2003.

[15] M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos.

AutoMed: A BAV data integration system for heterogeneous data sources. In

CAiSE, pages 82–97, 2004.

[16] Michael Boyd and Peter McBrien. Comparing and transforming between data

models via an intermediate hypergraph data model. J. Data Semantics IV,

pages 69–109, 2005.

[17] Tim Bray and C. M. Sperberg-McQueen. Extensible markup language (XML),

1996. http://www.w3.org/TR/WD-xml-961114.html.

BIBLIOGRAPHY 244

[18] P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of schema merg-

ing. In EDBT, volume 580 of LNCS, pages 152–167, 1992.

[19] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong.

Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.

[20] Arnon Rosenthal C. Clifton, E. Housman. Experience with a combined ap-

proach to attribute-matching across heterogeneous databases. In DS-7, volume

124 of IFIP Conference Proceedings, pages 429–451, 1998.

[21] M.A. Casanova and V.M.P. Vidal. Towards a sound view integration method-

ology. In SIGACT–SIGMOD, pages 36–47, 1983.

[22] S. Ceri and G. Pelagatti. Distributed Databases: Principles and systems.

McGraw-Hill, 1994.

[23] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum.

Probabilistic ranking of database query results. In VLDB, pages 888–899,

2004.

[24] P.P. Chen. The Entity-Relationship model — toward a unified view of data.

ACM Transactions on Database Systems, 1(1):9–36, 1976.

[25] Laura Chiticariu and Wang Chiew Tan. Debugging schema mappings with

routes. In VLDB, pages 79–90, 2006.

[26] Kajal T. Claypool and Elke A. Rundensteiner. Sangam: A framework for

modeling heterogeneous database transformations. In ICEIS (1), pages 219–

224, 2003.

[27] E.F. Codd. A relational model of data for large shared data banks. Commu-

nications of the ACM, 13(6):377–387, 1970.

[28] C. J. Date. An Introduction to Database Systems. Addison-Wesley, 8th edition

edition, 2004.

BIBLIOGRAPHY 245

[29] C.J. Date, H. Darwen, and N.A. Lorentzos. Temporal Data and the Relational

Model. Morgan Kaufmann, 2003.

[30] Thomas Devogele, Christine Parent, and Stefano Spaccapietra. On spatial

database integration. International Journal of Geographical Information Sci-

ence, 12(4):335–352, 1998.

[31] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y. Halevy, and Pedro

Domingos. iMAP: Discovering complex mappings between database schemas.

In SIGMOD, pages 383–394, 2004.

[32] H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations.

In Web, Web-Services, and Database Systems, pages 221–237, 2002.

[33] H. Do and E. Rahm. COMA - a system for flexible combination of schema

matching approaches. In VLDB, pages 610–621, 2002.

[34] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map ontolo-

gies on the Semantic Web. In WWW, pages 662–673, 2002.

[35] AnHai Doan, Pedro Domingos, and Alon Y. Levy. Learning source description

for data integration. In WebDB, pages 81–86, 2000.

[36] Carmel Domshlak, Avigdor Gal, and Haggai Roitman. Rank aggregation for

automatic schema matching. IEEE Trans. Knowl. Data Eng., 19(4):538–553,

2007.

[37] Xin Luna Dong, Alon Y. Halevy, and Cong Yu. Data integration with uncer-

tainty. In VLDB, pages 687–698, 2007.

[38] David W. Embley, David Jackman, and Li Xu. Multifaceted exploitation of

metadata for attribute match discovery in information integration. In Work-

shop on Information Integration on the Web, pages 110–117, 2001.

BIBLIOGRAPHY 246

[39] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data

exchange: semantics and query answering. Theor. Comput. Sci., 336(1):89–

124, 2005.

[40] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: getting

to the core. In PODS, pages 90–101, 2003.

[41] P. Fankhauser, M. Kracker, and E. J. Neuhold. Semantics vs Structural Re-

semblance of Classes. SIGMOD Record, 20(4):59–63, 1991.

[42] Christiane Fellbaum, editor. WordNet - An Electronic Lexical Database. MIT

Press, 1998.

[43] C. Francalanci and B. Pernici. View integration: A survey of current develop-

ments. Technical Report 93-053, Dipartimento di Elettronica e Informazione,

P.zza Leonardo da Vinci 32, 20133 Milano, Italy, 1993.

[44] M. Friedman, A. Levy, and T. Millstein. Navigational plans for data inte-

gration. In 16th National Conference on Artificial Intelligence, pages 67–73,

1999.

[45] Avigdor Gal. Why is schema matching tough and what can we do about it?

SIGMOD Record, 35(4):2–5, 2006.

[46] Avigdor Gal, Ateret Anaby-Tavor, Alberto Trombetta, and Danilo Montesi.

A framework for modeling and evaluating automatic semantic reconciliation.

VLDB Journal, 14(1):50–67, 2005.

[47] F. Hakimpour and A. Geppert. Global schema generation using formal on-

tologies. In ER, volume 2503 of LNCS, pages 307–321, 2002.

[48] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data management

infrastructure for semantic web applications. In WWW, pages 556–567, 2003.

BIBLIOGRAPHY 247

[49] Alon Y. Halevy, Michael J. Franklin, and David Maier. Principles of dataspace

systems. In PODS, pages 1–9, 2006.

[50] Patrick A. V. Hall, J. Owlett, and Stephen Todd. Relations and entities. In

IFIP Working Conference on Modelling in Data Base Management Systems,

pages 201–220, 1976.

[51] Stephen Hayne and Sudha Ram. Multi-user view integration system (MUVIS):

An expert system for view integration. In ICDE, pages 402–409, 1990.

[52] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem for

large databases. In SIGMOD, pages 127–138, 1995.

[53] Lieming Huang, Matthias Hemmje, and Erich J. Neuhold. Admire: an adap-

tive data model for meta search engines. Computer Networks, 33(1-6):431–448,

2000.

[54] R. Hull. Managing sematic heterogeneity in databases: A theoretical perspec-

tive. In PODS, pages 51–61, 1997.

[55] V. Kashyap and A. Sheth. Semantic and schematic similarities between

database objects: a context-based approach. VLDB Journal, 5(4):276–304,

1996.

[56] David Kensche, Christoph Quix, Mohamed Amine Chatti, and Matthias Jarke.

Gerome: A generic role based metamodel for model management. Journal of

Data Semantics, 8:82–117, 2007.

[57] Phokion G. Kolaitis. Schema mappings, data exchange, and metadata man-

agement. In PODS, pages 61–75, 2005.

[58] Laks V. S. Lakshmanan, Nicola Leone, Robert B. Ross, and V. S. Subrah-

manian. Probview: A flexible probabilistic database system. ACM Trans.

Database Syst., 22(3):419–469, 1997.

BIBLIOGRAPHY 248

[59] J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of attribute equivalence

in databases with application to schema integration. IEEE Transactions on

Software Engineering, 15(4):449–463, April 1989.

[60] Maurizio Lenzerini. Data integration: A theoretical perspective. In ACM

SIGACT-SIGMOD-SIGART, pages 233–246, 2002.

[61] Alon Y. Levy. Logic-based techniques in data integration. Logic-based artificial

intelligence, pages 575–595, 2000.

[62] Wen-Syan Li and Chris Clifton. SEMINT: A tool for identifying attribute

correspondences in heterogeneous databases using neural networks. Data and

Knowledge Engineering, 33:49–84, 2000.

[63] Dekang Lin. An information-theoretic definition of similarity. In ICML, pages

296–304, 1998.

[64] M. Castellanos M. Garcia-Solaco and F. Saltor. Discovering Interdatabase

Resemblance of Classes for Interoperable Databases. In RIDE-IMS, pages

26–33, 1993.

[65] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema

matching with Cupid. In VLDB, pages 49–58, 2001.

[66] Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y. Halevy, Shawn R.

Jeffery, David Ko, and Cong Yu. Web-scale data integration: You can afford

to pay as you go. In CIDR, pages 342–350, 2007.

[67] Jayant Madhavan and Alon Y. Halevy. Composing mappings among data

sources. In VLDB, pages 572–583, 2003.

[68] Matteo Magnani, Nikos Rizopoulos, Peter McBrien, and Danilo Montesi.

Schema integration based on uncertain semantic mappings. In ER, pages

31–46, 2005.

BIBLIOGRAPHY 249

[69] Lu Mao, Khalid Belhajjame, Norman W. Paton, and Alvaro A. A. Fernandes.

Defining and using schematic correspondences for automatically generating

schema mappings. In CAiSE, pages 79–93, 2009.

[70] P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model trans-

formations. In CAiSE, volume 1626 of LNCS, pages 333–348, 1999.

[71] P.J. McBrien and A. Poulovassilis. A semantic approach to integrating XML

and structured data sources. In CAiSE, volume 2068 of LNCS, pages 330–345,

2001.

[72] P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema

transformation rules. In ICDE, pages 227–238, 2003.

[73] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile

graph matching algorithm and its application to schema matching. In ICDE,

pages 117–128, 2002.

[74] Sergey Melnik, Philip A. Bernstein, Alon Y. Halevy, and Erhard Rahm. Sup-

porting executable mappings in model management. In SIGMOD, pages 167–

178, 2005.

[75] Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Rondo: a programming

platform for generic model management. In SIGMOD, pages 193–204, 2003.

[76] Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández. Schema mapping

as query discovery. In VLDB, pages 77–88, 2000.

[77] T. Mitchel. Machine Learning. McGraw-Hill, 1997.

[78] Isi Mitrani. Probabilistic modelling. Cambridge University Press, 1998.

[79] A. Motro and P. Buneman. Constructing superviews. In SIGMOD, pages

54–64, 1981.

BIBLIOGRAPHY 250

[80] Shamkant B. Navathe, Ramez Elmasri, and James A. Larson. Integrating user

views in database design. IEEE Computer, 19(1):50–62, 1986.

[81] Henrik Nottelmann and Umberto Straccia. Information retrieval and machine

learning for probabilistic schema matching. Inf. Process. Manage., 43(3):552–

576, 2007.

[82] L. Palopoli, G. Terracina, and D. Ursino. The system DIKE: Towards the semi-

automatic synthesis of cooperative information systems and data warehouses.

In ADBIS-DASFAA, pages 108–117, 2000.

[83] Luigi Palopoli, Domenico Saccà, and Domenico Ursino. Semi-automatic se-

mantic discovery of properties from database schemas. In IDEAS, pages 244–

253, 1998.

[84] Simon Parsons and Anthony Hunter. A review of uncertainty handling for-

malisms. In Applications of Uncertainty Formalisms, pages 8–37, 1998.

[85] Z. Pawlak. Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer

Academic, Dordrecht, 1991.

[86] Rachel Pottinger and Philip A. Bernstein. Merging models based on given

correspondences. In VLDB, pages 826–873, 2003.

[87] Rachel Pottinger and Philip A. Bernstein. Schema merging and mapping

creation for relational sources. In EDBT, pages 73–84, 2008.

[88] Rachel Pottinger and Alon Y. Halevy. Minicon: A scalable algorithm for

answering queries using views. VLDB Journal, 10(2-3):182–198, 2001.

[89] Christoph Quix, David Kensche, and Xiang Li. Generic schema merging. In

CAiSE, pages 127–141, 2007.

[90] E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema

matching. VLDB Journal, 10:334–350, 2001.

BIBLIOGRAPHY 251

[91] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current ap-

proaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[92] N. Rizopoulos. Automatic discovery of semantic relationships between schema

elements. In ICEIS, pages 3–8, 2004.

[93] N. Rizopoulos, M. Magnani, P.J. McBrien, and D. Montesi. Uncertainty in

semantic schema integration. In BNCOD’05 (2), pages 13–16, 2005.

[94] N. Rizopoulos and P.J. McBrien. A general approach to the generation of

conceptual model transformations. In CAiSE, volume 3520 of LNCS, pages

326–341, 2005.

[95] Nikos Rizopoulos and Peter McBrien. Schema merging based on semantic

mappings. In BNCOD, pages 193–198, 2009.

[96] Fèlix Saltor, Malú Castellanos, and Manuel Garćıa-Solaco. Suitability of

data models as canonical models for federated databases. SIGMOD Record,

20(4):44–48, 1991.

[97] Glenn Shafer. A mathematical theory of evidence. Princeton University Press,

1976.

[98] A. Sheth and J. Larson. Federated database systems. ACM Computing Sur-

veys, 22(3):183–236, 1990.

[99] A. Sheth, J. Larson, A. Cornelio, and S. Navathe. A tool for integrating

conceptual schemas and user views, 1988.

[100] Guanglei Song, Kang Zhang, and Jun Kong. Model management through

graph transformation. Visual Languages and Human-Centric Computing,

pages 75–82, 2004.

BIBLIOGRAPHY 252

[101] S. Spaccapietra and C. Parent. View integration: A step forward in solving

structural conflicts. IEEE Transactions on Knowledge and Data Engineering,

6(2):258–274, 1994.

[102] S. Spaccapietra, C. Parent, and Y. Dupont. Model independent assertions for

integration of heterogenous schemas. VLDB Journal, 1(1):81–126, 1992.

[103] Robert D. Stevens, Alan J. Robinson, and Carole A. Goble. myGrid: per-

sonalised bioinformatics on the information grid. In ISMB (Supplement of

Bioinformatics), pages 302–304, 2003.

[104] Mark Stevenson and Mark A. Greenwood. A semantic approach to ie pattern

induction. In ACL, pages 379–386, 2005.

[105] Michael Stonebraker and Dorothy Moore. Object-Relational DBMSs: The

Next Great Wave. Morgan Kaufmann, 1996.

[106] Partha Pratim Talukdar, Marie Jacob, Muhammad Salman Mehmood, Koby

Crammer, Zachary G. Ives, Fernando Pereira, and Sudipto Guha. Learning

to create data-integrating queries. PVLDB, 1(1):785–796, 2008.

[107] Jeffrey D. Ullman. Information integration using logical views. Theoretical

Computer Science, 239(2):189–210, 2000.

[108] Guilian Wang, Joseph A. Goguen, Young-Kwang Nam, and Kai Lin. Critical

points for interactive schema matching. In APWeb, pages 654–664, 2004.

[109] Jiying Wang, Ji-Rong Wen, Frederick H. Lochovsky, and Wei-Ying Ma.

Instance-based schema matching for web databases by domain-specific query

probing. In VLDB, pages 408–419, 2004.

[110] Y. Richard Wang and Stuart E. Madnick. The inter-database instance iden-

tification problem in integrating autonomous systems. In ICDE, pages 46–55,

1989.

BIBLIOGRAPHY 253

[111] G. Wiederhold. Mediators in the architecture of future information systems.

IEEE Computer, 25(3):38–49, 1992.

[112] Li Xu and David W. Embley. Discovering direct and indirect matches for

schema elements. In DASFAA, pages 39–46, 2003.

[113] L.A. Zadeh. Fuzzy sets. Information Control, 8:338–353, 1965.

[114] Lucas Zamboulis, Nigel J. Martin, and Alexandra Poulovassilis. Bioinformatics

service reconciliation by heterogeneous schema transformation. In DILS, pages

89–104, 2007.

