
A Generic Data Level Implementation of ModelGen

Andrew Smith and Peter McBrien

Dept. of Computing, Imperial College London,
Exhibition Road, London SW7 2AZ

Abstract. The model management operator ModelGen translates a schema ex-
pressed in one modelling language into an equivalent schema expressed in an-
other modelling language, and in addition produces a mapping between those
two schemas. This paper presents an implementation of ModelGen which in ad-
dition allows for the translation of data instances from the source to the target
schema, and vice versa. The translation mechanism is distinctive from others in
that it takes a generic approach that can be applied to any modelling language.

1 Introduction

ModelGen is a model management [1] operator that translates a schema from one
data modelling language (DML) into an equivalent schema in another DML and also
produces a mapping between the schemas. To date, no implementation of ModelGen
completely meets these criteria [2].

In this paper we describe a generic implementation of ModelGen that creates data
level translations between schemas by the composition of generic transformations, as
well as a bidirectional mapping from the source to the target schema. A distinguishing
feature of this work is that the choice of transformations does not rely on knowledge of
the source DML. An implementation of ModelGen such as this is useful in a number
of circumstances. For example, an e-business may wish to move data between its back
end SQL database and its XML based web pages without having to re-engineer the
mappings every time the database schema or web pages are changed.

There are two specific prerequisites to translating schemas between DMLs automat-
ically. Firstly we need an accurate and generic UMM capable of describing the schemas
and the constructs of both the source and the target DML, so the system can recognise
when a given schema matches those constructs. In this paper we make use of the hy-
pergraph data model (HDM) [3] to accurately describe constructs and schemas. The
constructs of a number of DMLs, including XML, UML class diagrams, ER and SQL,
have already been defined in terms of the HDM [3, 4]. Secondly we need an information
preserving [5] way of transforming the resulting HDM schema such that the structure
of its constructs match those of the target DML. We use the Both-As-View (BAV) data
integration technique [6] to transform schemas.

Figure 1 gives an overview of our approach. In step 1 the source schema Ss is
translated into an equivalent HDM schema, Shdm−s. Next, a series of transformations
are applied to Shdm−s to transform it to Shdm−t that is equivalent to a schema in the
target DML. In step 3 the constructs in Shdm−t are translated into their equivalents in
the target DML to create St.

Fig. 1. Overview of the approach taken

Step one of this process depends on existing definitions of high level DML con-
structs in the HDM. The contribution we make in this paper is to show how steps 2
and 3 can be automated without having to know the DML used to create Ss. Firstly we
present an algorithm for identifying schema objects within the HDM schema that match
constructs in the target DML and secondly we present an automatic way of choosing
the transformation rules at run time that transform a schema expressed in the HDM and
its data into an equivalent schema that matches the constructs of the target DML.

The remainder of this paper is structured as follows: Section 2 gives a brief overview
of the HDM and the BAV data integration technique and introduces an example schema.
We also describe BAV composite transformations and introduce a new one. In Section 3
we present our algorithm for matching HDM schema objects with constructs in a target
DML. Section 4 introduces the algorithm we use to select appropriate composite trans-
formations for the translation. Section 5 gives an example translation. In Section 6 we
present some experimental results and some analysis. Section 7 describes other propos-
als for ModelGen as well as some specific model to model translators. Finally Section 8
offers some conclusions.

2 HDM and BAV

The HDM uses a set of three simple constructs: nodes, edges and constraints, to model
high level constructs in a given DML. HDM nodes and edges can have associated data
values or extents. Each element in the XML instance document is assigned a unique
object identifier (OID) shown next to the element. If the node representing the ele-
ment is not a leaf node and does not have any key nodes associated with it then this
OID becomes the extent of the node. For example, Figure 3 shows how HDM repre-
sents the XML Schema and accompanying XML instance document in Figure 2. The
extent of HDM node 〈〈dept〉〉 is {01,04,07}. If there is a key associated with the ele-
ment then the extent of the element node is that of the key. For example the extent of
〈〈person〉〉 is {1,2}. The extent of an edge is a tuple made up of values from the nodes
or edges it joins. For example the extent of HDM edge 〈〈 ,person,name〉〉 is {〈1,’John
Smith’〉, 〈2,’Peter Green’〉}.

When defining the constructs of high level DMLs in the HDM each construct falls
into one of four categories [3], the following three of which we use in this paper when
describing the XML Schema and SQL data models:

– Nodal constructs can exist on their own and are represented by a node. The root
node of an XML Schema and an SQL table are examples of a nodal constructs.

– Link-Nodal constructs are associated with a parent construct and are represented
by a node and an edge linking the node to the parent. XML attributes and elements
are link-nodal constructs, as are SQL columns.

– Constraint constructs have no extent but rather constrain the values that can occur
in the constructs they are associated with. They are represented in HDM by one or
more of the HDM constraint operators [3]. Those used in this paper are: inclusion
(⊆), mandatory (.), unique (/) and reflexive (id→). A SQL foreign key is an example
of a constraint construct that is represented in the HDM by an inclusion constraint
between two HDM nodes representing SQL columns.

The variants of a high level construct can be modelled using different combina-
tions of constraints. For example, the fact that the XML attribute, id, in Figure 2 is a
required attribute is modelled in HDM by adding a . operator between 〈〈person〉〉
and 〈〈 ,person,id〉〉. This means that every value in 〈〈person〉〉 must also appear in the
edge i.e. there can be no value of the parent element without an associated attribute
value. An attribute that does not have the required flag set would not generate this
extra constraint.

<xsd:complexType name = "person_type">
<xsd:sequence>
<xsd:element name = "name" type = "xsd:string" />

</xsd:sequence>
<xsd:attribute name = "id" type = "xsd:int" use = "required"/>
</xsd:complexType>
<xsd:element name = "staff">
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "dept" maxOccurs = "unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "person" type = "person_type"

minOccurs = "0" maxOccurs = "unbounded" />
</xsd:sequence>
<xsd:attribute name = "dname" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:key name = "personkey">
<xsd:selector xpath = "./dept/person" />
<xsd:field xpath = "@id" />

</xsd:key>
</xsd:element>

<staff> 00
<dept dname = ’Finance’> 01

<person id = "1"> 02
<name>John Smith</name> 03

</person>
</dept>
<dept dname=’HR’> 04

<person id = "2"> 05
<name>Peter Green</name> 06

</person>
</dept>
<dept dname=’IT’> 07
</dept>
</staff>

Fig. 2. Sxml
Fig. 3. Shdm−xml

We use the BAV data integration technique [6] to transform our schemas. A BAV
transformation pathway is made up of a sequence of transformations which either
add, delete or rename a single schema object thereby generating a new schema. The ex-
tent of the new schema object or of the one removed is defined as a query on the extents

of the existing schema objects. In this way the information preserving transformation
pathway made up of schemas and transformation operations is created that shows in
detail how a source schema is transformed into a target schema. This transformation
pathway forms a mapping between the schemas.

2.1 Composite Transformations

BAV transformations are fine grained and allow for accurate translations, but since each
step only changes one schema object a large number of transformations are needed for
most operations. To avoid the need to programme each transformation step separately,
information preserving composite transformations (CTs) can be defined that are tem-
plates, describing common patterns of transformation steps.

Three such CTs are used when we translate between schemas in the XML Schema
and SQL modelling languages. Two of those used, namely id node expand and inc-
expand, have been previously defined [3] and are shown graphically in Figures 5

and 6, respectively. The third CT, expand mv, is defined by the pseudo code in Al-
gorithm 1 and illustrated in Figure 4. It is useful when translating from a DML that
supports multivalued attributes (such as XML Schema) into to a target DML that does
not (such as SQL). In the figure, the ./ symbol represents a join operation between
〈〈 ,T,B〉〉 and 〈〈 ,T,TA〉〉 i.e. the constraints linked to the join apply to both edges. The
contains predicate [3] in the algorithm holds when its first argument appears as a con-
struct in the formula that is in the second argument. We will see in Section 5 how these
three CTs can be used to translate the XML schema in Figure 2 to SQL.

Fig. 4. expand mv
Fig. 5.
id node expand

Fig. 6. inc expand

3 AutoMatch

The detailed constraint language used in the HDM allows us to accurately identify
groups of HDM constructs that correspond to an equivalent high level DML construct.
Table 3 shows the constraints associated with the various constructs in SQL. 〈〈T〉〉 is
an HDM node representing an SQL table, 〈〈C〉〉 represents a column in that table and
〈〈 ,T,C〉〉 links the two nodes. In the final line of the table 〈〈C〉〉 represents a foreign key
column and 〈〈T〉〉 the table the foreign key links to.

Algorithm 1: expand mv(〈〈B〉〉,〈〈 ,A,B〉〉)
if 〈〈A〉〉 / 〈〈 ,A,B〉〉 then

Exception
addNode(〈〈T〉〉,〈〈 ,A,B〉〉)
addNode(〈〈TA〉〉,[{x} | {x, y} ← 〈〈 , A, B〉〉])
addEdge(〈〈 ,T,TA〉〉,[{{x, y}, x} | {x, y} ← 〈〈 , A, B〉〉])
addEdge(〈〈 ,T,B〉〉,[{{x, y}, y} | {x, y} ← 〈〈 , A, B〉〉])
addCons(〈〈TA〉〉 ⊆ 〈〈A〉〉)
addCons(〈〈T〉〉 / 〈〈 ,T,TA〉〉 ./ 〈〈 ,T,TA〉〉)
addCons(〈〈T〉〉 . 〈〈 ,T,B〉〉 ./ 〈〈 ,T,B〉〉)
addCons(〈〈T〉〉 id→ 〈〈 ,T,TA〉〉 ./ 〈〈 ,T,B〉〉)
addCons(〈〈TA〉〉 . 〈〈 ,T,TA〉〉)
addCons(〈〈B〉〉 . 〈〈 ,T,B〉〉)
foreach c ∈ Cons forwhich contains(〈〈 , A, B〉〉, c) do

deleteCons(c)
deleteEdge(〈〈 ,A,B〉〉,〈〈T〉〉)

SQL Construct Variant HDM Constraints
Column null 〈〈T 〉〉 . 〈〈 , T, C〉〉, 〈〈T 〉〉 / 〈〈 , T, C〉〉
Column not null 〈〈C〉〉 . 〈〈 , T, C〉〉, 〈〈T 〉〉 / 〈〈 , T, C〉〉, 〈〈T 〉〉 . 〈〈 , T, C〉〉
Primary Key 〈〈T 〉〉 id→ 〈〈 , T, C〉〉, 〈〈C〉〉 . 〈〈 , T, C〉〉, 〈〈T 〉〉 / 〈〈 , T, C〉〉

〈〈T 〉〉 . 〈〈 , T, C〉〉
Foreign Key 〈〈C〉〉 ⊆ 〈〈T 〉〉

Table 1. SQL constructs and the associated constraints

In Figure 3, the constraints associated with 〈〈 ,person,name〉〉 match those of a not
null SQL column as shown in Table 3, where 〈〈person〉〉 acts as the table node and
〈〈name〉〉 the column node. Conversely the constraints on 〈〈 ,staff,dept〉〉 do not match
any of the SQL constructs.

AutoMatch as shown in Algorithm 2, loops through all the edges in S, edges(S),
comparing the associated constraints with those generated when a construct from the
target DML is expressed in the HDM. Each edge in edges(S) has a target model con-
struct label attached to it that is initially set to null. We use this label to identify the target
DML construct that the HDM schema object has been matched to. A similar algorithm
is used to identify matches between HDM constraint constructs in S, and constructs in
the target DML.

get constraints(S, e) returns the list of constraint operators in S that are attached
to e. get target constraint constraints returns the constraint list for ts. For exam-
ple, if ts was a SQL column, the function would return the first and second lines
from Table 3. match(dc, tc) returns true if dc matches any of the variants of ts. la-
bel dependent schema objects(e, ts) sets the label of e in edges(S) to ts. If the
HDM representation of ts includes constructs other than e these are also labelled with
the appropriate target DML construct.

Consider 〈〈 ,person,name〉〉 in Figure 3. If our target model was SQL then the al-
gorithm would identify this edge as part of a SQL column. 〈〈person〉〉.label would be
set to table and 〈〈 ,person,name〉〉.label and 〈〈name〉〉.label would be set to column.

Algorithm 2: AutoMatch(S,TM)
Input: S:an HDM schema, TM :the list of target DML constructs
return true if all edges have been labelled, otherwise false
all labelled := true;
foreach e in edges(S) do

dc := get constraints(S, e);
foreach ts in TM do

if e.label = null then
tc := get target construct constraints(ts);
if match(dc, tc) then

label dependent schema objects(e, ts);

if e.label = null then
all labelled := false;

return all labelled;

In contrast 〈〈 ,dept,person〉〉 cannot be matched to any target DML structures and so
〈〈 ,dept,person〉〉.label remains null.

4 AutoTransform

AutoTransform transforms the unidentified HDM constructs of our source schema into
equivalent groups of HDM constructs that match those representing a construct in the
target DML. It is based on a search of the set of possible schemas that can be created by
applying CTs to unidentified schema elements. This set is called the world space [7]
of the problem. It can be represented as a graph whose nodes are the individual HDM
schemas and whose edges are the CTs needed to get from one HDM schema to the
next. The world space graph for the example in Section 5 is shown in Figure 7. The
algorithm performs a depth first search on the world space starting from the initial state
and executing CTs until a solution or a dead end is reached.

Fig. 7. The world space graph for the example

To limit the number of possible actions that may be performed at each node of the
world space graph, each action must satisfy certain preconditions before it can be exe-

cuted. In our algorithm the preconditions rely on the structure of the graph surrounding
the schema object the CT is to be applied to. Some of the CTs and their precondi-
tions are shown in Table 2. In addition to those mentioned in Section 2.1 we include
um redirection [3]. The DNC in the table means we Do Not Care (DNC) whether the
precondition is met or not. If we assume so is the current schema object the precondi-
tions are:

edge is so an edge
leaf is so a leaf node or connected to a leaf node
reflexive is there a reflexive constraint attached to so
join does so take part in a join

Transformation edge leaf reflexive join
inc expand Y N N N
um redirection Y N DNC N
expand mv Y Y N N
id node expand N Y N N

Table 2. The preconditions of the CTs used in the example

As an example consider the inc expand transformation. It can only be applied to an
edge, the edge must not be attached to leaf node, there must not be a reflexive constraint
on the edge and the edge must not take part in a join. As we saw in the previous section,
AutoMatch was unable to match 〈〈 ,dept,person〉〉 in Figure 3 to any target DML con-
struct. We see, however, that this edge matches all the preconditions for inc expand.
These preconditions provide a heuristic method of selecting the CTs to execute. Those
CTs that match the preconditions for a given node in the world space graph are put into
a list and those have the fewest DNCs, i.e. that match the preconditions most closely,
are put at the top of the list.

AutoTransform works as follows, first AutoMatch is run to label edges(S). If Au-
toMatch is able to label all the edges in edges(S) the transformation has been a success,
the current schema is added to the result pathway and the algorithm returns the pathway.
Otherwise, the algorithm loops through all the edges in edges(S) looking for those with
null labels. When one is found the matching cts function is called to create an ordered
list of CTs whose preconditions match the structure of the graph surrounding the edge.
The hashmap, CT tried, is checked to make sure the CT at the top of the list has not
been tried on the current edge in the current schema. If it has the next CT is tried. If not
the CT is applied to the edge to create schema S′. The current schema, S, is then added
to the result pathway and CT tried is updated with the current edge and schema. The
algorithm is then called again with the transformed schema and the tail of the pathway.

If no suitable transformation can be found for any of the unidentified schema ele-
ments then the head function is used to remove the most recent schema from the result
pathway to allow backtracking. For example, in Figure 7 if we came to a dead end after
step 1 we could backtrack to schema S and try the inc expand transformation on e2. If

Algorithm 3: AutoTransform(S, TM, CT, pathway)
Input: S: an HDM schema, TM : the list of target DML constructs,
CT : the set of possible CTs, pathway: the transformation pathway, initially []
return a transformation pathway describing how to transform the source schema into one
that matches the constructs of the target DML
CT tried = new HashMap;
if AutoMatch(S, TM) then

pathway := Concatenate(S, pathway);
return pathway;

else
S′ := null;
foreach e in edges(S) do

if e.label = null then
mt[] := matching cts(S, e);
foreach t in mt[] do

if !CT tried.(t) contains (S,e) then
S′ := the result of applying t to e;
pathway := Concatenate(S, pathway);
CT tried.put((S, e), t);
AutoTransform(S′, TM, CT, pathway);

if S’ = null then
S′ := head(pathway);
if S’ = null then

Exception;
else

AutoTransform(S′, TM, CT, tail(pathway));

the result path is empty then we have failed to transform the schema. If it does not fail
the algorithm is run again on S′ with the updated result pathway.

5 Example transformation from XML to SQL

In this section, we show how AutoTransform is used to transform the schema shown in
Figure 3 into one that matches the structure of an SQL schema represented in the HDM.
The world space for the example is shown in Figure 7 and the list of CTs selected by
the algorithm is shown below.

1. inc expand(〈〈person〉〉,〈〈 ,dept,person〉〉)
2. expand mv(〈〈deptpersondept〉〉,〈〈 ,dept,deptpersondept〉〉)
3. inc expand(〈〈dept〉〉,〈〈 ,staff,dept〉〉)
4. expand mv(〈〈staffdeptstaff〉〉,〈〈 ,staff,staffdeptstaff〉〉)

In the first iteration AutoMatch returns 〈〈 ,dept,person〉〉 and 〈〈 ,staff,dept〉〉with null
labels. If we consider 〈〈 ,dept,person〉〉 first, and compare the structure of the surround-
ing schema with the preconditions in Table 2, we see that two CTs match. inc expand

Fig. 8. After applying CT 1
Fig. 9. After applying CT 2

Fig. 10. Final HDM Schema

matches with one DNC, whereas um redirection has two DNCs, so inc expand is exe-
cuted. The resulting schema is shown in Figure 8. In the second iteration 〈〈 ,staff,dept〉〉
and the newly created edge 〈〈 ,dept,deptpersondept〉〉will be returned with null labels by
AutoMatch. The only CT whose preconditions are met by 〈〈 ,dept,deptpersondept〉〉 is
expand mv. The resulting schema is shown in Figure 9. Two similar iterations that
execute CTs 3 and 4, transform 〈〈 ,staff,dept〉〉 to create the schema shown in Fig-
ure 10, where all the HDM constructs match those of the SQL model. The 〈〈person〉〉,
〈〈deptperson〉〉, 〈〈dept〉〉, and 〈〈staffdept〉〉 nodes become tables, the nodes linked to them
become columns in those tables. The remaining ⊆ constraints become foreign keys.

The final HDM schema is, however, not equivalent to a well designed SQL schema.
The algorithm has identified 〈〈dept〉〉 and 〈〈staff〉〉 as tables but there is no key column
for either table. As part of Step 3 from Figure 1 a number of target DML specific rules
to overcome cases such as this are defined. Here id node expand(〈〈dept〉〉) can be
applied to 〈〈dept〉〉 and 〈〈staff〉〉 to create 〈〈dept pk〉〉 and an edge linking it to 〈〈dept〉〉,
along with 〈〈staff pk〉〉 and an edge linking it to 〈〈staff〉〉 that represent key columns for
the tables.

6 Analysis and Experimental Results

In analysing AutoMatch, we count the number of checks for equality between the
source graph structures and those of the target DML. If we let the number of objects in
the graph be numo and the number of constructs, including all variants, in the target

dept
staff pk
00
00
00

staffdept
staffdeptstaff staffdeptdept
00 01
00 06
00 09

dept
dept pk dname
01 Finance
06 HR
09

person
id name
1 John Smith
2 Peter Green

deptperson
deptpersondept deptpersonid
01 1
06 2

deptperson.deptpersondept → dept.dept pk, deptperson.deptpersonid → person.id
staffdept.staffdeptstaff → staff.staff pk, staffdept.staffdeptdept → dept.dept pk

Fig. 11. Translated SQL Schema

DML be nums, then the total number of checks is numo× nums. This is O(numo) in
the number of objects in the schema, since nums is a constant. In the example nums is
four since there are four different constructs in the SQL model that we represent in the
HDM.

We can analyse AutoTransform by counting the number of times we need to run
AutoMatch. In the worst case, no structures in the source graph are identified as match-
ing target structures by AutoMatch, and we will need to iterate numo times. If we
further assume we have numt different composite transformations to choose from,
and a world space graph of depth x, in a worst case scenario we will need to visit
(numo×numt)x nodes in the world space graph. Within each node of the world space
graph we will need to perform the checks in AutoMatch.

It is clearly vital to limit both the size of nume × numt and x. There is a trade off
here though. The more CTs we use the more likely we are to reach our goal in fewer
steps, but each extra one will increase the size of the world space graph exponentially.
To get around this, the CTs we use have stringent preconditions so that in practice the
number that can be chosen at each iteration of the algorithm is limited. We also want
to limit the chances of costly backtracking in the algorithm. The preconditions also
help here in that they ensure as far as possible that CTs are only chosen in the correct
circumstances. In our experiments so far we have found that very little backtracking
is necessary and in most cases the most useful transformation is chosen first. We have
successfully translated a number of different ER, SQL and XML schemas using the six
existing CTs [3] and the new CT defined in Algorithm 1.

Figure 12 shows the number of match operations verses the number of schema ob-
jects required to translate various subsets of an XML Schema representation of DBLP
into SQL. The gradient is steepest when schema objects from the source DML that have
not direct equivalent in the target DML are added to the source schema, in this case
nested XML Schema complex types. Where the graph is flatter constructs that could
be matched directly with the target model, like XML Schema attributes, were added.
Figure 13 shows matches vs schema objects for the translation of a SQL database to
ER. Again the graph is steeper when tables with foreign keys are added.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90

M
at

ch
es

Schema Objects

dblp

Fig. 12. DBLP XML Schema to SQL

 0

 10

 20

 30

 40

 50

 60

 70

 4 6 8 10 12 14 16

M
at

ch
es

Schema Objects

dblp

Fig. 13. SQL database to ER

The experimental results described here were produced using the AUTOMED [8] in-
ter model data integration tool. AUTOMED implements the BAV schema transformation
approach and uses the HDM as its UMM.

7 Related Work

The work most closely related to ours is that done by Atzeni et al in their MIDST
system [9, 10]. They also generate data-level translations by composition of elementary
transformations to translate schemas and data between a number of different DMLs.
Each DML, however, is defined with a number of variants. This is not necessary with
our approach. In contrast to our schema level approach the rules they use are applied
across an entire pair of data models and must be predefined for each pair of models in
the system. Our rules are chosen at run time independently of the source DML.

The design of our UMM also differs from that used in MIDST. They create a com-
plex, high-level model that includes abstractions of all the constructs of the models the
UMM is to represent. We, on the other hand, use a set of simple UMM constructs and
use combinations of these to create any complex structures needed. This is a more flex-
ible approach and is the one most commonly adopted, Batini et al., in their survey of a
data integration methods [11], suggest that a simpler UMM has advantages over more
complex models.

Schema only implementations of ModelGen include Rondo [12] and AutoGen [13].
Numerous examples of systems for translating between specific models exist in the lit-
erature. XML and relational schemas [14] as well as ER and relational [15] and ER and
XML schemas [16]. More recent work on object relational to SQL translation has been
done by Mork and Bernstein [17].

8 Conclusion

This paper has presented a generic data level implementation of the ModelGen model
management operator that returns the translated schema along with its data instances as
well as a mapping from the source to the target schema. We have shown how a schema

and its associated data instances can be translated from one DML to another by the ap-
plication of information preserving CTs. We have described an algorithm for choosing
the most suitable CT at each stage of the translation process and a mechanism for de-
termining when a given schema matches the constructs of the target DML. Finally we
presented some experimental results. Our on going work in this area includes investi-
gating the translation of OWL schemas into the other DMLs we currently support.

References

1. Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A vision of management of complex models.
SIGMOD Record 29(4) (2000) 55–63

2. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In:
SIGMOD Conference. (2007) 1–12

3. Boyd, M., McBrien, P.: Comparing and transforming between data models via an interme-
diate hypergraph data model. J. Data Semantics IV (2005) 69–109

4. McBrien, P., Poulovassilis, A.: A semantic approach to integrating XML and structured data
sources. In: Advanced Information Systems Engineering. Volume 2068 of LNCS., Springer
Verlag (2001) 330–345

5. Hull, R.: Relative information capacity of simple relational database schemata. SIAM J.
Comput. 15(3) (1986) 856–886

6. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transformation
rules. In: ICDE. (2003) 227–238

7. Weld, D.S.: An introduction to least commitment planning. AI Magazine 15(4) (1994) 27–61
8. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien and N. Rizopoulos: AutoMed: A

BAV Data Integration System for Heterogeneous Data Sources. In: CAiSE04. Volume 3084
of LNCS., Springer Verlag (2004) 82–97

9. Atzeni, P., Cappellari, P., Bernstein, P.A.: Modelgen: Model independent schema translation.
In: ICDE. (2005) 1111–1112

10. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-independent schema and data translation.
In: EDBT. (2006) 368–385

11. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for
database schema integration. ACM Comput. Surv. 18(4) (1986) 323–364

12. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A programming platform for generic model
management. In: SIGMOD Conference. (2003) 193–204

13. Song, G.L., Kong, J., Zhang, K.: Autogen: Easing model management through two levels of
abstraction. J. Vis. Lang. Comput. 17(6) (2006) 508–527

14. Jayavel Shanmugasundaram et al.: Efficiently publishing relational data as XML documents.
VLDB Journal: Very Large Data Bases 10(2–3) (2001) 133–154

15. Premerlani, W.J., Blaha, M.R.: An approach for reverse engineering of relational databases.
Commun. ACM 37(5) (1994) 42–49, 134

16. Arijit Sengupta, S.M., Doshi, R.: XER - Extensible Entity Relationship Modeling. In et al.,
J.H., ed.: Proceedings of the XML 2003 Conference, Philadelphia, PA, USA (2003)

17. Mork, P., Bernstein, P.A., Melnik, S.: Teaching a schema translator to produce o/r views. In:
ER. (2007) 102–119

