
AutoMed Model Management

Andrew Smith, Nikos Rizopoulos and Peter McBrien

Dept. of Computing, Imperial College London,
Exhibition Road, London SW7 2AZ

Abstract. Model Management (MM) is a way of raising the level of abstraction
in metadata intensive application areas. The key idea behind Model Management
is to develop a set ofgeneric algorithmic operators that can be applied to a wide
range of database management problems. Solutions to problems can then be spec-
ified at a high level of abstraction, by combining these operators into a concise
script. The operators work on schemas and mappings between schemas, rather
than individual schema elements. In this demonstration we present a new ap-
proach to the implementation of Model Management operatorsbased on schema
transformation that provides some important advantages over existing methods.

1 Introduction

Initial work in MM focused on simply on creating structural mappings between schemas,
but more recent work has extended this by defining instance based semantics for the
operators [1]. A system that implements the MM operators andsupports the running
of MM scripts is called aModel Management System (MMS). The tool presented
in this demonstration, extends the AUTOMED data integration system [2] to create a
transformation-based MMS that supports instance based semantics, and is capable of
manipulating schemas from a wide range of data modelling languages. This confirms
Berstein’s conjecture [1] that the AUTOMED system is a suitable MMS candidate, and
has the following advantages over existing systems:

1. ModelGen is designed in a manner that is readily applicable to a wide range of
data modelling languages [3]. ER, SQL, XML and CSV schemas can be translated
by the prototype used in this demonstration.

2. The implementation ofMatch allows for a wider set of semantic correspondences
than other methods [4].

3. Mappings in our mapping language can be composed by simplyadding them to-
gether, whereas in other approaches this composition is a complex task.

4. We can easily distinguish between complete and partiallydefined schema objects.
5. The MM operators are relatively easy to implement using our mapping language.

Points 1 and 2 have been discussed in our previous work [3, 4] and we expand briefly
on points 3 to 5 in Sections 2 and 3. We describe our demonstration in Section 4.

2 BAV

We use the data integration techniqueBoth-As-View (BAV) [5] as the mapping lan-
guage in our MMS. A BAV mapping is made up of a sequence ofbidirectional trans-
formations that together describe precisely how instancesof eachschema object in



the source schema are mapped to instances in the target schema and vice versa. Each
transformation either adds, deletes or renames a single object (such as a single SQL
column, SQL primary key definition, XML element,etc), thereby incrementally gener-
ating a new schema from an old schema. The extent of the schemaobject being added
or deleted is defined as a query on the extents of the existing schema objects. This se-
quence of transformations is called apathway. Example 1 illustrates a pathway with 9
transformation steps. It is important to note that the pathway describes how schema ob-
jects inany of the schemas in the pathway are related to the source and target schemas.

BAV has a number of advantages [5] over other mapping languages currently used in
MMSs [1]. Firstly, composing mappings, the most commonly performed operation in a
MMS [6], is easy. Given two BAV mappings,s1 s2 ands2 s3, their composition,s1 s3

is simply the transformations in the two pathways listed together. Secondly, because
BAV mappings are bidirectional, their inverse is directly available, and hences3 s1 is
easily derived froms1 s3. Finally, BAV allows us to differentiate between partiallyand
completely defined schema objects, by providing two primitives for both addition and
deletion.add anddelete are used when we can completely define the extent of the
object we wish to add or remove, andextend andcontract are used when we cannot.

3 Operator Implementation

The detailed information contained in each BAV mapping enables us to implement
most of the MM operators simply and efficiently. As an example, consider theExtract
operator used to return the portion of a view that is derivable from a given schema.
To show how using BAV as our mapping language make this operator easy to imple-
ment, consider the mapping in Example 1, used to create a viewof the tableemployee

(eid, name, dept, DoB) in our demonstration example.

Example 1. View creation pathway

1. addTable(〈〈employee view〉〉, [{x} | {x, y} ← 〈〈employee, dept〉〉; y =′ IT ′])
2. addColumn(〈〈employee view, eid〉〉, [{x, x} | {x} ← 〈〈employee view〉〉])
3. addColumn(〈〈employee view, name〉〉, [{x, y} | {x} ← 〈〈employee view〉〉; {x, y} ← 〈〈employee, name〉〉])
4. extendColumn(〈〈employee view, age〉〉, Range V oid Any)
5. contractColumn(〈〈employee, DoB〉〉, Range V oid Any)
6. contractColumn(〈〈employee, dept〉〉, Range [{x, y} | {x} ← 〈〈employee view〉〉; y =′ IT ′] Any)
7. contractColumn(〈〈employee, name〉〉, Range [{x, y} | {x, y} ← 〈〈employee view, name〉〉Any])
8. contractColumn(〈〈employee, eid〉〉, Range [{x, y} | {x, y} ← 〈〈employee view, eid〉〉Any])
9. contractTable(〈〈employee〉〉, Range [{x} | {x} ← 〈〈employee view〉〉 Any])

Transformations 1 to 3 use theadd primitive to create a new table and columns
whose extents are the ids and names of the people in the IT department. These new
schema objects are completely defined. In Transformation 4,〈〈employee, age〉〉 is cre-
ated using theextend primitive with an extent query ofRange V oid Any, because we
cannot determine any part of its extent from the existing schema objects. In transforma-
tions 5 to 9 the original columns and table are removed to create the viewemployee view

(eid, name, age) that includes only those employees from the IT department.
We can create the extract schema by extending the view creation mapping in Exam-

ple 1. We know from the definition ofextend that any object created with aV oid Any



range cannot be derived from the source schema. TheExtract algorithm therefore needs
only to examine the mapping used to create the view, and perform a contract trans-
formation on any schema objects in the view that were added using extend with a
Range V oid Any query. Hence the extracted schema isemployee view(eid, name), ex-
cluding〈〈employee view, age〉〉.

4 Demonstration

1. 〈sint, sint sny, sint slon〉 =

Merge(sny, slon, Match(slon, sny))

2. sint s′ = User defined view creation

3. 〈x, s′ x〉 = ModelGen(s′, XML)

4. x x′ = User defined XML additions

5. x′ sint = Invert(sint s′ ◦ s′ x ◦ x x′)

6. 〈xd, x′ xd〉 = Diff(xd, x′ sint)

7. 〈sd, xd sd〉 = ModelGen(xd, SQL)

8. sd sint = Invert(x′ xd ◦ xd sd) ◦ x′ sint

9. 〈sm, sm sd, sm sint〉 = Merge(sd, sint, sd sint)

10.sm si = User defined SQL update

11.x′ si = ((x′ sint ◦ Invert(sm sint))⊕

(x′ xd ◦ xd sd ◦ Invert(sm sd))) ◦ sm si

12.〈xe, x′ xe〉 = Extract(x′, x′ si)

Fig. 1. Demonstration Example

Fig. 1 illustrates the example scenario we will show in the demonstration along with
the MM script that we will run. All the operators used in the current literature [1, 6] are
demonstrated here. Those that manipulate schemas:Extract, Diff, Merge, Match and
ModelGen, and those used to manipulate mappings:Invert, Compose (◦) and Con-
fluence (⊕). Our system includes a GUI that allows inspection and querying of all the
schemas and mappings created by the script. The script can also be changed easily if
necessary.

The scenario involves an organisation with offices in New York and London. They
use relational databases to store the details of their employees. The New York office has
a database with schemasny, while the London office has a database with schemaslon.

Step 1 (Match andMerge): For administration purposes and in order to have avail-
able the details of all employees working in the organisation the local databases in NY
and London have to be integrated. TheMatch operator returns a list of semantic map-
pings, which describe semantic correspondences between the objects ofsny andslon,
egequivalence, disjointness and incompatibility [4]. Thesesemantic mappings can be
verified and improved by the person performing the integration. TheMerge operator
takes these semantic mappings as input and produces the integrated schemasint to-
gether with data mappings betweensny,sint andslon,sint [7]. The integrated schema



sint can be queried to supply the details of all the employees in the organisation and
other related information.

Step 2 (User Intervention): A views′ of sint is created that contains only the IDs
and names of the employees.

Step 3 (ModelGen): The views′ is translated into XML format using theModel-
Gen operator to producex. This schema can now be sent to other departments with the
organisation.

Step 4 (User Intervention): The HR department amends the schemax with the mar-
ital status and the date of birth of each employee producing schemax′.

Steps 5 and 6 (Diff): The changes to schemax are propagated to the integrated
schemasint. Using a combination of theInvert and Compose (◦) operators the mapping
from x′ to sint is identified.Diff takes this mapping and produces a XML schemaxd

that contains the differences betweenx′ andsint.
Step 7 (ModelGen): The schemaxd is first translated into a relational schemasd

usingModelGen.
Steps 8 and 9 (Merge): The mapping betweensd andsint is created usingInvert

and Compose (◦). This is the input to theMerge operator, which produces a merged
schemasm. sm contains the changes the HR department applied to schemax.

Steps 10 (User Intervention): The merged schemasm is further updated to produce
schemasi.

Steps 11, 12 (Extract): In step 11, the mapping fromsi to x′ is created using the◦,
⊕ andInvert operators. This is used by theExtract operator to check that all the objects
in the XML schemax′ are derivable from the new database,si.

Apart from the fact that this demonstration is a complete implementation of data
level MM operators, the fact that it is based on BAV means we are also able to demon-
strate the querying of any schema in Fig. 1, based on data heldin any of the other
schemas in Fig. 1.

References

1. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In: SIG-
MOD Conference. (2007) 1–12

2. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien and N. Rizopoulos: AutoMed: A BAV
Data Integration System for Heterogeneous Data Sources. In: CAiSE04. Volume 3084 of
LNCS., Springer Verlag (2004) 82–97

3. Smith, A., McBrien, P.: A generic data level implementation of modelgen. In: BNCOD.
(2008) To appear

4. Magnani, M., Rizopoulos, N., McBrien, P., Montesi, D.: Schema integration based on uncer-
tain semantic mappings. In: ER’05. LNCS, Springer (2005) 31–46

5. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transformation rules.
In: ICDE. (2003) 227–238

6. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting executable mappings in
model management. In: SIGMOD Conference. (2005) 167–178

7. Rizopoulos, N., McBrien, P.: A general approach to the generation of conceptual model
transformations. In: CAiSE’05. Volume 3520 of LNCS., Springer (2005) 326–341


