AutoM ed M odel M anagement

Andrew Smith, Nikos Rizopoulos and Peter McBrien

Dept. of Computing, Imperial College London,
Exhibition Road, London SW7 2AZ

Abstract. Model Management (MM) is a way of raising the level of abstraction
in metadata intensive application areas. The key idea té¥iodel Management
is to develop a set ajeneric algorithmic operators that can be applied to a wide
range of database management problems. Solutions to prslokn then be spec-
ified at a high level of abstraction, by combining these ofpesainto a concise
script. The operators work on schemas and mappings betvebemsas, rather
than individual schema elements. In this demonstration resegmt a new ap-
proach to the implementation of Model Management operdtased on schema
transformation that provides some important advantagesexisting methods.

1 Introduction

Initial work in MM focused on simply on creating structuradppings between schemas,
but more recent work has extended this by defining instansecasemantics for the
operators [1]. A system that implements the MM operators augports the running
of MM scripts is called avilodel Management System (MM S). The tool presented
in this demonstration, extends theJAOMED data integration system [2] to create a
transformation-based MMS that supports instance basedrd@®, and is capable of
manipulating schemas from a wide range of data modellingdages. This confirms
Berstein’s conjecture [1] that thelwOM ED system is a suitable MMS candidate, and
has the following advantages over existing systems:

1. ModelGen is designed in a manner that is readily applicable to a widgeaaf
data modelling languages [3]. ER, SQL, XML and CSV schemasesranslated
by the prototype used in this demonstration.

2. The implementation dflatch allows for a wider set of semantic correspondences
than other methods [4].

3. Mappings in our mapping language can be composed by siaguing them to-
gether, whereas in other approaches this composition implea task.

4. We can easily distinguish between complete and parti@fined schema objects.

5. The MM operators are relatively easy to implement usingnaapping language.

Points 1 and 2 have been discussed in our previous work [Bddlve expand briefly
on points 3to 5 in Sections 2 and 3. We describe our demoiustriatSection 4.

2 BAV

We use the data integration technigBeth-As-View (BAV) [5] as the mapping lan-
guage in our MMS. A BAV mapping is made up of a sequenchbidifectional trans-
formations that together describe precisely how instan¢esachschema object in

the source schema are mapped to instances in the targetaemehvice versa. Each
transformation either adds, deletes or renames a sing&ebfguch as a single SQL
column, SQL primary key definition, XML elemeretc), thereby incrementally gener-
ating a new schema from an old schema. The extent of the scbiej@et being added
or deleted is defined as a query on the extents of the existimgnsa objects. This se-
guence of transformations is calleghathway. Example 1 illustrates a pathway with 9
transformation steps. It is important to note that the pathdescribes how schema ob-
jects inany of the schemas in the pathway are related to the source ayet smhemas.
BAV has a number of advantages [5] over other mapping langgiagrrently used in
MMSs [1]. Firstly, composing mappings, the most commonisf@ened operation in a
MMS [6], is easy. Given two BAV mappings; sz andsz_ss, their compositions; _ss
is simply the transformations in the two pathways listedetbgr. Secondly, because
BAV mappings are bidirectional, their inverse is directhadable, and hence3_s1 is
easily derived frons1_s3. Finally, BAV allows us to differentiate between partiadipd
completely defined schema objects, by providing two priragifor both addition and
deletion.add anddelete are used when we can completely define the extent of the
object we wish to add or remove, aadtend andcontract are used when we cannot.

3 Operator Implementation

The detailed information contained in each BAV mapping déemlus to implement
most of the MM operators simply and efficiently. As an examptasider théextract
operator used to return the portion of a view that is deriedldm a given schema.
To show how using BAV as our mapping language make this opeeasy to imple-
ment, consider the mapping in Example 1, used to create aofi¢he tableemployee
(eid, name, dept, DoB) in our demonstration example.

Example 1. View creation pathway

. addTable({{employee_view)), [{z} | {z,y} < {(employee, dept)); y =" IT’])

. addColumn({(employee_view, eid)), [{z, z} | {x} < ((employee_view))])

. addColumn({(employee_view, name)), [{z,y} | {z} — ((employee_view)); {z,y} «— ((employee, name))])
. extendColumn ({(employee_view, age)), Range V oid Any)

. contractColumn({(employee, DoB)), Range V oid Any)

contractColumn({(employee, dept)), Range [{z,y} | {z} < {(employee_view)); y =" IT'] Any)
contractColumn({(employee, name)), Range [{z,y} | {z,y} < ((employee_view, name)) Any])
contractColumn({(employee, eid)), Range [{z,y} | {z,y} — ((employee_view, eid)) Any])
contractTable({(employee)), Range [{z} | {z} <« ((employee_view)) Any])

©CONOUAWNPE

Transformations 1 to 3 use tla@ld primitive to create a new table and columns
whose extents are the ids and names of the people in the ITrtdepd. These new
schema objects are completely defined. In Transformatidfedployee, age)) is cre-
ated using thextend primitive with an extent query dRange Void Any, because we
cannot determine any part of its extent from the existingstdobjects. In transforma-
tions 5to 9 the original columns and table are removed taetbaa viewemployee_view
(eid, name, age) that includes only those employees from the IT department.

We can create the extract schema by extending the view eneatpping in Exam-
ple 1. We know from the definition axtend that any object created withlaoid Any

range cannot be derived from the source schemaEktract algorithm therefore needs
only to examine the mapping used to create the view, and eréccontract trans-
formation on any schema objects in the view that were added) extend with a
Range Void Any query. Hence the extracted schemantployee view(eid, name), ex-
cluding {(employee_view, age)).

4 Demonstration

1. (Sint, Sint-Sny, Sint-Slon) =

Merged SQL Schema Materialise Merge(snw Slon MatCh(Slonv Sny))
s, database , . . .
2.s;nt-8 = User defined view creation
o

® © | 'Y 3.(z, s’ _x) = ModelGen(s’, X ML)
H<—> 4. z_z’ = User defined XML additions
n .
®% ‘ ®] 5.2" _sint = Invert(sini-s’ o s’z o x_x’)

6.(xq,2’ xq) = Diff(xq, ' Sint)

SQL view SQL Diff Schema

s B 7.(8q,Tq-8q4) = ModelGen(z4, SQL)
® \ /® 8.54-5int = Invert(z’_xq 0 x4-54) 0 ' -Sint
Materialise . XML View XML Diff Schema 9. (Sm, Sm-Sd, Sm—Sin,t> = Merge(sd7 Sint, Sd—sint)
XML View x Xq)
© 10. s, _s; = User defined SQL update
of\ Joo , ,
i viewof 11.2".s; = ((2'-8int o Invert(sm-sint)) ®
Updated XML View x ,
' oo e (z'-xq 0 ©g-8q © Invert(s,,-84))) © Sm-S;

12 (xe, ' -xe) = Extract(z’, z’_s;)

Fig. 1. Demonstration Example

Fig. 1 illustrates the example scenario we will show in thedestration along with
the MM script that we will run. All the operators used in thereunt literature [1, 6] are
demonstrated here. Those that manipulate schefxasact, Diff, Merge, Match and
ModelGen, and those used to manipulate mappingsert, Compose ¢) and Con-
fluence (). Our system includes a GUI that allows inspection and qagrgf all the
schemas and mappings created by the script. The script sarbalchanged easily if
necessary.

The scenario involves an organisation with offices in NewkYamd London. They
use relational databases to store the details of their grapto The New York office has
a database with scherag,, while the London office has a database with schema

Step 1 Match andMerge): For administration purposes and in order to have avail-
able the details of all employees working in the organisstiie local databases in NY
and London have to be integrated. THatch operator returns a list of semantic map-
pings, which describe semantic correspondences betweesbjacts ofs,,,, and sy,
egequivalence, disjointness and incompatibility [4]. Thesenantic mappings can be
verified and improved by the person performing the integratlTheMerge operator
takes these semantic mappings as input and produces tigeaitete® schema,,,; to-
gether with data mappings betweey,, s+ ands;on,sin: [7]. The integrated schema

sint €an be queried to supply the details of all the employeesearotiyanisation and
other related information.

Step 2 (User Intervention): A view of s;,,; is created that contains only the IDs
and names of the employees.

Step 3 ModelGen): The views' is translated into XML format using thidodel-
Gen operator to produce. This schema can now be sent to other departments with the
organisation.

Step 4 (User Intervention): The HR department amends thtensah with the mar-
ital status and the date of birth of each employee produahgmeaz’.

Steps 5 and 6[Liff): The changes to schemaare propagated to the integrated
schema;,,;. Using a combination of thimvert and Compose- operators the mapping
from 2’ to0 s;,,; is identified.Diff takes this mapping and produces a XML scherpa
that contains the differences betweg€rands;,,;.

Step 7 ModelGen): The schema, is first translated into a relational schema
usingModelGen.

Steps 8 and 9Merge): The mapping betweesy, ands,,; is created usindgnvert
and Composed|). This is the input to théMerge operator, which produces a merged
schema,,. s,, contains the changes the HR department applied to schema

Steps 10 (User Intervention): The merged schemas further updated to produce
schemas;.

Steps 11, 12Extract): In step 11, the mapping from) to 2’ is created using the,

@ andInvert operators. This is used by thtract operator to check that all the objects
in the XML schema’ are derivable from the new databaseg,

Apart from the fact that this demonstration is a completelénmntation of data
level MM operators, the fact that it is based on BAV means veesdso able to demon-
strate the querying of any schema in Fig. 1, based on datailmeldy of the other
schemas in Fig. 1.

References

1. Bernstein, P.A., Melnik, S.: Model management 2.0: malaijing richer mappings. In: SIG-
MOD Conference. (2007) 1-12

2. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBriemd N. Rizopoulos: AutoMed: A BAV
Data Integration System for Heterogeneous Data SourcesCAISE04. Volume 3084 of
LNCS., Springer Verlag (2004) 82-97

3. Smith, A., McBrien, P.: A generic data level implemergatiof modelgen. In: BNCOD.
(2008) To appear

4. Magnani, M., Rizopoulos, N., McBrien, P., Montesi, D.:h8ma integration based on uncer-
tain semantic mappings. In: ER’05. LNCS, Springer (2005)4%L

5. McBrien, P., Poulovassilis, A.: Data integration by Imedtional schema transformation rules.
In: ICDE. (2003) 227-238

6. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.. Sapjng executable mappings in
model management. In: SIGMOD Conference. (2005) 167-178

7. Rizopoulos, N., McBrien, P.: A general approach to theegation of conceptual model
transformations. In: CAISE’'05. Volume 3520 of LNCS., Sygién (2005) 326-341

