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Abstract

Shared databases made up of numerous heterogeneous components and used by large
numbers of people are wide spread in both industry and academia. Writing programs to
access and maintain these databases is a time consuming and difficult task that can take
up a significant proportion of an enterprise IT manager’s resources. The situation has
worsened recently as new Data Definition Languages (DDLs) like XML and RDFS
have come to be used. In general, solutions to these problems are specified at the data level
and have to be rewritten if the schema is changed, cannot be applied to other application
areas and are generally language and implementation specific.

Model Management (MM) is an approach that provides a way of overcoming the
problems with these data level solutions. The motivation behind MM is to raise the level
of abstraction in these application areas from the data level to the schema level. The key
idea is to develop a set of operators that can be applied to schemas, and the mappings
between them, as a whole rather than to individual data elements. The operators should
be applicable to a wide range of problems in database management and work on schemas
and mappings specified in a wide range of DDLs. Solutions to database management
problems can then be specified at a high level of abstraction by combining these operators
into a concise and reusable script.

A system that implements the MM operators is called a Model Management System
(MMS). Two key abstractions are required for a such a system: firstly, a common language
that can describe the schemas from the different DDLs, called a Common Data Model
(CDM), and second, a way of describing the mappings between those schemas, called a
mapping language. The main contribution of this thesis is the implementation of a MMS
that uses a CDM with some unique features and adopts a new approach to the design of
the mapping language based on schema transformation.

The CDM we use is the Hypergraph Data Model (HDM). The HDM can represent
schemas from a wide range of existing DDLs and is differentiated from other CDMs by
supporting a generic constraint language. We show in this thesis how this offers significant
advantages particularly in the implementation of the ModelGen operator which translates
schemas from one DDL to another. One of the contributions of this thesis is the addition
of a type system, based on a primitive type hierarchy, which allows us to accurately
materialise schemas created by ModelGen.

Our mapping language is Both As View (BAV). A BAV mapping is made up of a
sequence of bidirectional primitive transformations that together form a pathway and de-
scribes precisely how instances of each schema object in the source schema are mapped
to instances in the target schema and vice versa. This is an implementation of the schema
transformation approach and has advantages over methods currently used in MMSs be-
cause the transformation pathways we create tell us precisely how individual schema ob-
jects are transformed from the source to the target schema. The work presented in this
thesis takes advantage of these features to create novel implementations of the current
model management operators.
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Chapter 1

Introduction

1.1 Motivation

Writing programs to access and maintain large shared databases is one of the most

time-consuming and difficult tasks in database management. Anecdotal evidence

suggests that up to 40% of the work done in enterprise IT departments is dedi-

cated to this task [BM07]. Examples of tasks that fall into this category include

data integration, schema evolution and change propagation. Difficulties arise be-

cause shared databases are often made up of heterogeneous components that may

use different Data Definition Languages (DDLs), use different object names to

identify constructs that already exist in the shared database, and so on.

The question of how best to access and maintain this heterogeneous data has

been highlighted as an important research area in all the recent database-research

self-assessments [BBC+98, BDD+89, AAB+05]. The problem has gained an even

greater significance over recent years with the rise of the use of semi-structured

DDLs, such as XML, and the need to combine this data with existing relational

systems [AAB+05].

Most programs written to solve these problems make use of low-level programming

interfaces that provide access to individual schema objects, but provide no way of

manipulating the schema as a whole. This means a lot of effort is expended writing

programs that navigate around schemas to locate the objects that need to be changed

even before a change can be made. This is time consuming, prone to error and has

the knock-on effect that any changes to the schema mean a change to the program. A

second drawback is that these programs tend to be language and application specific.

15



1.2. Model Management 16

For example a program designed for relational databases using SQL to process the

schema objects will be of no use if an XML document needs to be processed. Finally,

programs written to address one aspect of database management, for example data

integration, can seldom be used to do any other database management tasks, such

as schema evolution, even though many of the basic operations such as merging

schemas and extracting differences between schemas are the same.

As early as 1959 McGee [McG59] realised that identifying generic operations and

making them available to programmers would greatly ease the application develop-

ment task. In the 1970’s this idea culminated in the pioneering work by Codd [Cod70]

on the relational model and algebra. Instead of navigational access to individual

records and data values, Codd suggested a set of algebraic operations on entire

relations, such as selection, projection, and join. This approach freed application

code from ordering, indexing, and access path dependencies. The relational algebra

helped to drastically simplify the programming of data-intensive applications and

has been called the single most important development in the database field [Dat95].

Now that many different DDLs are used in addition to the relational model, a

further level of abstraction is needed to once again identify those generic operations

that can be applied across DDLs. These operators need to be able to manipulate

the metadata artifacts such as schemas and mappings between schemas as a whole,

rather than the individual objects within a schema.

1.2 Model Management

A way of raising the level of abstraction in metadata intensive application areas,

called Model Management (MM), was proposed by Bernstein et al. in [BHP00].

The key idea behind MM is to develop a set of generic algorithmic operators that

can be used together to solve a wide range of data management problems in a DDL

independent way. Each operator is designed to perform a common data management

task that can be applied to a wide range of problems in the field. The initial hope

was that MM operators could be applied to a range of ‘models’ including things like

work flows and programming interfaces as well as schemas [BHP00]. More recent

work has narrowed the focus somewhat [BM07]. In common with the other current

MM prototypes [KQLL07, ACB05, MRB03, MBHR05], we have focused solely on

schema based DDLs in this thesis.

Using MM, solutions to data management problems can be specified at a high level
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of abstraction by combining the operators into a concise script which can then be

applied to any particular instance of the problem. A change in the schema or even

the DDL used does not necessitate any change to the script which can simply be

run using the new schemas as input.

Instead of individual schema objects the MM operators work on schemas as a whole.

This is in contrast to Codd’s relational operators that work on individual objects

and only within a relational schema. The original set of operators proposed by Bern-

stein [BHP00] has been refined [Mel04, MBHR05, BM07, BH07] and now includes

operators that perform schema translation, merging, materialised view selection and

view complement as well as operators to manipulate the mappings between schemas.

The challenge in MM is to design a framework in which these operators can be

implemented in a DDL independent way such that the output of one task can be

used as input to subsequent tasks thereby allowing the operators to be combined

into a script.

It is hoped that model management will offer the same large improvement in pro-

grammer productivity in metadata intensive applications that Codd’s work did in

data intensive applications [Mel04]. However, only when a commercial MMS suc-

ceeds – possibly based on the work in this thesis – will we be able to determine if

this claim is true.

1.3 Example

To help motivate the model management approach, consider the following database

management scenario illustrated in Figure 1.1. This example is based on that given

in [MBHR05] but is extended to include different DDLs.

The IT department of a large organisation designs a small database to store infor-

mation about employees. In step 1 on the figure the ER design is translated into a

SQL database which is materialised. Data is added to the database and it is used

for a while. A request then comes from HR for a list of names and ids of employees

who work in the finance department to be sent to them as an XML file. The DBA

creates the necessary SQL view which is translated into XML and sent. This is

shown in steps 2 and 3.

HR uses this schema but later decides it needs some additional information about

employee marital status and date of birth. These attributes are added to the XML
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Figure 1.1: An Inter DDL Change Propagation Scenario

schema at step 4. In step 5 of the process the additions are merged with the SQL

database to keep it up to date.

Before materialising the newly merged schema the database designer looks at the

merged schema and realises some improvements can be made so in step 6, she

updates the design and the new improved SQL schema is materialised. Finally the

XML schema sent to HR is updated so that it correctly represents a view of the new

database. This is shown in step 7.

As we can see there are a number of steps in this process and doing each one manually

would be time consuming and prone to error. It also likely that at a later date a

similar set of changes may need to be done. A degree of automation would clearly

be beneficial.

We will show, as we progress through this thesis, that human involvement is only

necessary in this process when design decisions need to be made, i.e. steps 2, 4 and

6 in Figure 1.1. The steps that do not involve design, for example the merging

and schema translations, can all handled by the MM operators. This represents

a significant reduction in effort for the DBA. For example she does not have to

manually identify the fields added by HR to the XML view and then add them to

the SQL database. This can be handled automatically by the MMS. It also means

that if this process needs to be done again the same script can be run and the DBA

need again only be involved in 3 steps of the process. This is in stark contrast to ad

hoc solutions that need to be reengineered at the schema object level for each new
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change.

1.4 Existing Approaches

A system that implements the operators and supports the running of scripts is

called a Model Management System (MMS) [BHP00]. Two key abstractions

are necessary to create the necessary framework for a MMS. Firstly a Common

Data Model (CDM)1 capable of expressing schemas from a wide range of DDLs

to allow schemas from any DDL to be handled in a uniform way. Secondly we

require a flexible and DDL independent mapping language able to describe the

relationships between the schemas in the system.

The current approaches to the creation of this framework can be divided into two

classes. Firstly there are those that support only intensional or structural map-

pings. These mappings do not provide access to the instances of the schemas they

map between and so cannot be applied to data management problems such as data

integration or change propagation where such access is required. Rondo [MRB03],

the earliest MMS, and AutoGen [SKZ06] fall into this class.

Moda [MBHR05] falls into the second class of system. It supports extensional

or instance-based semantics, allowing the manipulation of the data held in the

schemas. It also implements a wide range of operators but is limited to the rela-

tional model. MIDST [ACB05] allows instance based schema translation within a

framework that is extensible but so far the other operators have not been imple-

mented. GeRoMeSUITE [KQLL07] is another system that provides instance based

implementations of a number of operators in a DDL independent framework, but it

does not support scripting or the automatic translation of schemas from one DDL

to another.

1.5 A MMS based on AutoMed

The approach we propose to the creation of the framework required for a MMS is

based on the AutoMed system [BKL+04]. AutoMed is a framework and software

1In some MM literature [Mel04] the term Universal Meta Model (UMM) is used instead of
CDM. In this thesis we will use the term CDM as this is more commonly adopted in wider database
literature [Dat95]
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package made up of graphical tools, and a Java API, that has been used successfully

to address a wide range of data management problems such as schema based data

integration, schema evolution [MP02] and data warehousing [FP04]. We make use

of the existing features of AutoMed to produce the first full implementation of a

MMS that supports instance based mappings and a wide range of DDLs.

Bernstein and Melnik highlight a number of problem areas [BM07] that affect all

the current systems that are addressed by our approach:

1. None of the CDMs currently used provide a generic constraint language which

means that during schema translation specific translators must be written for

constraints.

2. Compose(◦) is the most commonly used operator [MBHR05] but it has been

shown that first order mapping languages like relational algebra, are not closed

under composition [Kol05, FKPT05]. The mapping language used by a full

MMS should therefore be second order.

3. No current system supports DDL independent instance based schema transla-

tions, and none return a mapping from the source schema to the target which

means the results cannot be used as part of a script execution.

We now briefly introduce the AutoMed system, describing how schemas and map-

pings are represented in it and the particular advantages it gives us over existing

approaches.

The CDM underlying AutoMed is the Hypergraph Data Model (HDM) [MP98]

which provides a way of representing schemas from a wide range of DDLs, including

XML, SQL, ER, ORM and UML class diagrams [BM05, MP01] in a simple hy-

pergraph structure. Figure 1.3 shows an HDM schema that is a representation of

the SQL schema shown in Figure 1.2. It is made up of three types of construct:

nodes, represented by circles; edges, the lines linking the nodes and constraints,

the symbols contained in the dashed grey boxes. Each object in the source schema

is represented in the system as a combination of instances of these three constructs.

An instance of an HDM schema is a structure that includes a function that maps

nodes and edges in the schema to values in the domain of discourse of the data

source the HDM schema is representing. These values are called the extent of the

node or edge. Example 1.1 shows an instance of the schema in Figure 1.32.

2schema objects in BAV operations are surrounded by double chevrons
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Emp

eid name dept

1 Peter Smith 100
21 Susan Brown 101

Figure 1.2: An instance of the SQL schema Seg

Figure 1.3: HDM representation of a SQL table

Example 1.1 Original Schema Instance

ExtSeg−hdm,I1(node:〈〈Emp〉〉) = {(1), (21)}
ExtSeg−hdm,I1(node:〈〈Emp:eid〉〉) = {(1), (21)}
ExtSeg−hdm,I1(edge:〈〈 , Emp,Emp:eid〉〉) = {(1,1), (21,21)}
ExtSeg−hdm,I1(node:〈〈Emp:name〉〉) = {(‘Peter Smith’), (‘Susan Brown’)}
ExtSeg−hdm,I1(edge:〈〈 , Emp,Emp:name〉〉) = {(1,‘Peter Smith’), (21,‘Susan Brown’)}
ExtSeg−hdm,I1(node:〈〈Emp:dept〉〉) = {(100), (101)}
ExtSeg−hdm,I1(edge:〈〈 , Emp,Emp:dept〉〉) = {(1,100), (21,101)}

2

The constraint operators, shown in dashed boxes in the figure, make up a language

capable of representing the constraints of high level DDLs in a general way, and

so address the first open issue raised above. The constraint operators are used

to restrict the allowable extents of the nodes and edges they connect. Three are

shown in the figure: mandatory (/), unique (.) and reflexive (→). The mandatory

constraint ensures that any value in the extent of a node is also in the extent of the

edge. Unique ensures that a value in the extent of a node appears at most once in

the extent of the edge. Reflexive ensures that if a value appears in the extent of the

node there must be an identity tuple containing it in the extent of the edge. This

constraint language is capable of expressing constraints in a DDL independent way

thereby addressing the first drawback of current systems mentioned at the beginning

of this section.
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In common with other MMSs [MBHR05, KQLL07] we use a high level declarative

language to describe our mappings. The AutoMed mapping language is called

Both-As-View (BAV) and is an implementation of the schema transforma-

tion [MP98] approach that is at the core of our system. Indeed Bernstein suggested

in 2007 [BM07] that the techniques described in [MP98] could form the basis for

further work in MM.

Schema transformation is the process of transforming a schema by applying a prim-

itive transformation that adds or removes a single schema object thereby creating

a new schema. Sequences of these transformations can be used to perform complex

transformations. This is a new approach to MM that offers two specific advantages

over existing systems. Firstly, the primitive transformations tell us exactly how an

object in a target schema was derived from the source schema. This is in contrast

to query based approaches where the semantics associated with a particular schema

object in a query may not be obvious. The fine grained nature of the transforma-

tions allows us to split the processing of a schema into small steps that are easier to

process. Secondly, the mappings and resultant schema are created at the same time

whereas in existing approaches this requires two separate steps. This is useful when

implementing MM operators that require both a mapping and schema as a result.

In AutoMed this sequence of transformations is called a BAV transformation

pathway. It describes in detail how a source schema, along with its data instances,

is transformed into a target schema. At each step, one primitive transformation is

applied to the current schema to create a new schema that differs from the old one

by one schema object. Each primitive BAV operation is automatically reversible

allowing us to invert a transformation pathway if required.

Associated with each primitive transformation, is a query expressing the extent of

the new or deleted schema object in terms of elements in the current schema. The

queries can be posed in any query language, for example XQuery or SQL. These

DDL specific languages, however, are not suitable for a MMS. In our implementation

the queries are posed in the functional list comprehension language Intermediate

Query Language (IQL) [Pou01, JTMP03], which supports higher order functions

and can express queries in a DDL independent manner. The fact that we can use

second order queries in our mappings makes them closed for composition [FKPT05]

and addresses the second drawback of existing systems mentioned at the beginning

of this section.

In this thesis BAV pathways are always made up of a growth phase, in which target
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schema objects are added to the source schema and a shrinking phase, in which

the original source schema objects are removed. In the growth phase the queries in

the transformations express the extent of the target objects the transformations are

creating in terms of source objects and thus provide a Global As View (GAV)-

like interpretation of the target schema. In the shrinking phase the extents of the

source objects are expressed in terms of target objects, providing a Local As View

(LAV)-like interpretation. In the implementation presented in this thesis we only

support GAV query reformulation.

In summary, the HDM and BAV combine to give us a very accurate and fine-

grained description of the schemas and mappings to use in our MMS. The reversible

transformation pathways that form the mappings describe not only how the source

schema is transformed into a result schema and vise versa, but also include the query

rewriting rules necessary to populate these schemas. In particular the benefits of

the AutoMed approach are:

• The HDM has been shown to be capable of accurately representing many

high level DDLs [BM05]. It also includes a constraint language capable of

expressing constraints from these high level DDLs in a DDL independent way.

• BAV pathways provide us with a mapping and transformation language that

allows us to describe mappings between many DDLs more fully and accurately

than previous approaches.

• The IQL allows us to create the second order queries necessary for the imple-

mentation of Compose.

• The detailed information contained in each transformation in a BAV pathway

helps us to implement the MM operators.

• BAV transformation pathways are bidirectional allowing us to invert them

automatically.

NewEmp

eid name

1 Peter Smith

Figure 1.4: An instance of the SQL schema S ′eg

As an example of how we implement MM operators in AutoMed, consider the

following BAV pathway fragment that is the growth phase of a pathway that trans-

forms Seg into the schema with instance S ′eg shown in Figure 1.4.
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1 add(table:〈〈NewEmp〉〉, [{e} | {e} ← table:〈〈Emp〉〉; e = 1])
2 add(column:〈〈NewEmp, eid, int, notnull〉〉, [{e, e} | {e, e} ← column:〈〈Emp, eid〉〉; e = 1])
3 add(column:〈〈NewEmp, name, varchar, notnull〉〉, [{e,n} | {e,n} ← column:〈〈Emp, name〉〉; e = 1])

We can use the MM operator Extract to return only the portion of a schema that

participates in a mapping, and a mapping from the original schema to the ex-

tracted schema. The schema objects from Seg that participate in the mapping are

all those that are used to create objects in S ′eg. In AutoMed we can work out

what these are by analysing the queries in the transformations that add objects to

S ′eg. For example, Transformation 2 uses column:〈〈Emp, eid〉〉 to define the extent

of column:〈〈NewEmp, eid〉〉 in S ′eg, so we know this needs to be in the result schema

of Extract. Similarly for table:〈〈Emp〉〉 and column:〈〈Emp, name〉〉. In contrast we can

see that column:〈〈Emp, dept〉〉 is not used in any of the queries. It should therefore

not be in the result schema. The only instances of the source schema objects that

participate in the mapping are those that meet the conditions of the queries in the

add transformations. These are the instances we include, giving us the result schema

shown in Figure 1.5. The pathway that creates this table is shown below:

4 add(table:〈〈extract Emp〉〉, [{e} | {e} ← table:〈〈Emp〉〉; e = 1])
5 add(column:〈〈extract Emp, eid, int, notnull〉〉, [{e, e} | {e, e} ← column:〈〈Emp, eid〉〉; e = 1])
6 add(column:〈〈extract Emp, name, varchar, notnull〉〉,

[{e,n} | {e,n} ← column:〈〈Emp, name〉〉; e = 1])

Emp

eid name

1 Peter Smith

Figure 1.5: An instance of result schema produced by Extract

We can see how we take advantage of the fine grained nature of BAV transformations

to easily see exactly which objects in the source schema participate in the mapping.

We also take advantage of the underlying HDM representation to implement the

operators in a DDL independent way.

1.6 Contributions

The main contribution of this thesis is the first full implementation of a MMS

that supports instance based mappings and implements all the operators proposed

by Bernstein [BM07], excluding Match, in a DDL independent way. Match has

been excluded because one of our colleagues in the AutoMed group is working

independently on this problem [RM05] and we hope to integrate that work with
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what we describe in this thesis in the future. The specific contributions made with

regards to MMSs are:

• Algorithms to implement instance based versions of the currently defined MM

operators [BM07] excluding Match. This addresses the third drawback of

existing systems mentioned in Section 1.4.

• A DDL independent algorithm for ModelGen [SM08a, SM08b] that returns a

mapping between the source and target schemas, and allows automatic trans-

lation between any two DDLs supported by AutoMed. This addresses the

final drawback in Section 1.4.

• Implementation of the MM operators, excluding Match, as part of the Au-

toMed API.

• The addition of a type system to the HDM and a method for translating

primitive type information between different DDLs in our MMS, using a novel

approach based on a common type hierarchy. This allows us to create more

accurate materialised target schemas [SM06].

• New AutoMed wrappers for XML Schema and RDFS.

• A method for translating Second Order source to target tuple generat-

ing dependencies (SO s-t tgds) into executable BAV pathways.

1.7 Outline

The rest of the thesis is laid out as follows. In Chapter 2 we provide some more

detailed background on Model Management. We describe the abstractions necessary

for implementing a MMS and an example of the widely studied declarative mapping

language that we use as a basis for our mapping language, SO s-t tgds. We give the

instance based semantics definitions of the current MM operators and we end with

brief descriptions of the existing MMS prototypes.

Chapter 3 introduces the existing AutoMed system. We describe the HDM and the

BAV mapping and transformation language in detail and give a very brief description

of IQL. We go on to show how high level DDLs are represented in the HDM, using

SQL, ER, XML Schema and RDFS as examples. The representations of XML

Schema and RDFS described in this chapter are new contributions to AutoMed
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made by this thesis. We also describe how equivalence preserving composite BAV

transformations can be used to restructure HDM schemas. We end the chapter by

presenting our method for creating BAV mappings that have the same expressive

power as SO s-t tgds.

Chapter 4 presents an addition we have made to AutoMed in the form of a common

type hierarchy that allows us to translate primitive data type information between

DDLs. We describe how this type hierarchy can be used to spot some data type

translation errors and also reduce the need for run time checking of data if a target

schema is materialised. The work described in this chapter was published in [SM06].

In Chapter 5 we describe our implementation of the ModelGen operator using a

novel approach that can be applied to schemas expressed in a wide range of DDLs.

The translation is done via the HDM and makes extensive use of the HDM’s unique

constraint language. We introduce two algorithms, the first of which matches HDM

schema objects with the HDM representation of target DDL constructs and the sec-

ond transforms any HDM objects that do not match using the composite transfor-

mations introduced in Chapter 3, into ones that more closely match the target con-

structs. Preconditions are placed on the choice of composite transformation to guide

the process. The work presented in this chapter was published in [SM08a, SM08b].

We also applied the technique described here to P2P systems in [LSM07, LSM08].

Chapter 6 presents our implementation of the remaining MM operators, excluding

Match, within our framework. We make extensive use of the information stored in

each of the primitive BAV transformations that make up the input mappings in the

implementation of each operator. The underlying HDM representation of all the

objects in AutoMed means that our implementations are DDL independent. At

the end of the chapter we give a brief description of the MM API we have developed

as an extension to the existing AutoMed API, and how to use the to write MM

programs. A demonstration of the work in this chapter was published in [SRM08].

In Chapter 7 we describe how MM scripts can be used to solve problems in a number

of different domains. Specifically we show in detail how the example introduced in

Section 1.3 can be implemented using our system. We illustrate this work with some

screen shots from AutoMedas well as the BAV pathways and schemas returned by

our operators.

Finally Chapter 8 offers a summary of the work presented in this thesis and some

ideas for future work.



Chapter 2

Model Management Systems

In this chapter we discuss the basic requirements for a Model Management Sys-

tem (MMS). We describe the abstractions necessary to implement a MMS as well

as the instance based semantics of the MM operators. We finish the chapter by

describing the existing MMSs as described in the literature.

The term Model Management System was coined by Bernstein [BHP00]. It de-

scribes a system capable of solving a wide range of data management problems by

the application of operators that take schemas and the mappings between them as

parameters. Examples of these operators include Merge, an operator that merges

two schemas that are linked by a mapping into a single schema, and ModelGen, that

translates schemas from one DDL into another DDL. This schema level approach

is in contrast to previous solutions where operations are performed on individual

schema objects.

In [BHP00] the basic requirements for a MMS are set out as:

• A mechanism for representing schemas from a wide range of data descrip-

tion languages (DDLs), and storing these representations. This mechanism

should be simple, yet expressive enough to fully describe schemas from many

different DDLs.

• An appropriate representation for mappings between schemas that is DDL

independent. Again this should be expressive enough to describe mappings

between many different DDLs.

• Efficient implementations of the MM operators.

27
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• A mechanism for combining these operators into a script or program.

Meeting these requirements allows solutions to metadata management problems to

be specified at a high level of abstraction in the form of a script, which can be used

to solve the problem regardless of the specific schemas or DDLs involved. These

operators can be said to provide a schema manipulation language in the same way

that SQL and relational algebra provide a data manipulation language.

2.1 Schemas

The DDL used for a particular task may depend of a number of factors, such as

the data source, schema designer preference, company policy, etc. Indeed a number

of different DDLs may be used within a single project. The first of the two key

abstractions necessary for a MMS is thus a way of representing the schemas from

all DDLs we wish to support in the system. To overcome the heterogeneity, a

Common Data Model (CDM) [SL90], capable of describing the constructs of all

the different DDLs is required.

The design of a CDM falls into two main categories: graphical models and text

based models. Graphical solutions are a popular choice as they provide a visual

representation of the schema, making them easier to understand. We will discuss

each approach along with other issues of importance to CDM design, with the help

of a CDM used in a current MMS.

The next decision to make is what type of constructs to include in the CDM. One

approach is to create a complex, high-level CDM that includes all the constructs in

the DDLs used in the MMS. MIDST is an example of this approach [ACB06]. The

alternative approach is to use combinations of a set of simple constructs to create

any constructs from the high level DDL. This more flexible approach is the one most

commonly adopted, both in MMSs and in systems that map between specific pairs

of modelling languages [MZ98, MRB03, ACM02, CR03, BD03, BM05].

Another important feature that the CDM needs is a way of expressing the constraint

constructs such as cardinality and integrity constraints from the DDLs in a MMS.

We now define what we mean by a schema and an instance of that schema. There

are a number of different and seemingly contradictory ways of doing this described

in the literature. For example, in some of the literature a schema is defined as a set
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of instances [MBHR05, BS81]. However, in this thesis we will use the unnamed and

logic programming perspective described in [AHV95], where a schema is defined as a

non-empty set of relation names. In Definition 2.1 we use the term schema object

instead of relation in keeping with the way schemas have been described up to this

point in AutoMed. We choose the logic programming perspective because much

of the work described here has to do with mappings that are frequently described

in the literature using this method [BM07, FKP05, MIR94].

Definition 2.1 Schema

A schema is a structure of the form S = 〈ExtensionalObject, Σ〉 where Extension-

alObject is a set of extensional schema objects and Σ is a set of schema objects

that constrain instances of the schema.

Given the following sets of strings: Labels for naming objects, DDLNames for

naming DDLs and ConstructNames for naming constructs in a DDL, a schema

object, i.e. the elements of both ExtensionalObject and Σ are defined as follows:

Schema:DDL:construct:〈〈se1, . . . , sen〉〉

where

• Schema is the schema this schema object is part of

• DDL ∈ DDLNames and construct ∈ ConstructNames are the names of the

DDL and construct of this object

• sei ∈ SchemeElement for 1 ≤ i ≤ n, is the scheme of the schema object.

• SchemeElement = ExtensionalObject ∪ Labels. A SchemeElement can be

an existing member of ExtensionalObject or a string from Labels. The or-

dering of the scheme elements is significant.

Differentiating between Labels and ExtensionalObject allows us to identify atomic

schema objects as those which have just elements of Labels in the scheme and non-

atomic as those which have elements of both ExtensionalObject and Labels.

The key scheme of a schema object includes the names of any extensional objects

that it references and a single identifying label. In general we will use only the key

scheme of a schema object in mappings and queries.
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We use Schema, DDL and construct to disambiguate schema objects. If these are not

necessary for the disambiguation we will leave them out.

2

Using the notation of Definition 2.1, the SQL schema shown in Figure 2.1 is expressed

as: S1 = 〈ExtensionalObject, Σ〉 where

ExtensionalObject = {table:〈〈Emp〉〉, column:〈〈table:〈〈Emp〉〉, eid, notnull〉〉,
column:〈〈table:〈〈Emp〉〉, name, notnull〉〉, column:〈〈table:〈〈Emp〉〉, dept, notnull〉〉,
table:〈〈Dept〉〉, column:〈〈table:〈〈Dept〉〉, did, notnull〉〉,
column:〈〈table:〈〈Dept〉〉, dname, notnull〉〉,
column:〈〈table:〈〈Dept〉〉, numEmps, null〉〉} and

Σ = {primary key:〈〈Emp pk, table:〈〈Emp〉〉, eid〉〉,
foreign key:〈〈Dept fk, table:〈〈Emp〉〉, dept, table:〈〈Dept〉〉, did〉〉,
primary key:〈〈Dept pk, table:〈〈Dept〉〉, did〉〉}

Consider column:〈〈table:〈〈Emp〉〉, eid, notnull〉〉. The scheme of the object is made of

the existing schema object table:〈〈Emp〉〉, the string eid that names the column and

the string notnull that specifies that this is a variant of column that should not

accept null values. The key scheme of this object is column:〈〈table:〈〈Emp〉〉, eid〉〉.

If an existing schema object that is part of a scheme only has a single scheme element,

as is the case here for table:〈〈Emp〉〉, we can simplify the notation and include only

the schema object name. We can thus denote the schema object above more simply

as column:〈〈Emp, eid, notnull〉〉. We will apply this simplification in the rest of this

thesis.

An instance of a schema is defined as follows:

Definition 2.2 Schema Instance

Let S be a schema and {〈〈so1〉〉, . . . , 〈〈son〉〉} the set of extensional schema objects

and Σ be the set of constraint objects in S. An instance, k, of S is a structure for

which there exists a function

ExtS,k(〈〈soi〉〉) → P(Seq(V als)) 1 ≤ i ≤ n

where P denotes power set and Seq(V als) is a tuple of values in the Universe of

Discourse we wish to describe with the schema S.
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Emp

eid name dept

1 Peter Smith 100
21 Susan Brown 101

Dept

did dname numEmps?

100 Finance 23
101 HR 15

Emp.dept → Dept.did

(a) Inst1(Semp)

Emp

eid name dept

5 Joe Brown 100

Dept

did dname numEmps?

100 Finance 23
Emp.dept → Dept.did

(b) Inst2(Semp)

Figure 2.1: Two instances of Semp

We now define an instance, Instk(S), of schema, S as:

Instk(S) = {ExtS,k(〈〈so1〉〉) ∪ . . . ∪ ExtS,k(〈〈son〉〉)}

where ExtS,k(〈〈so1〉〉), . . . , ExtS,k(〈〈son〉〉) satisfy all the constraints in Σ. Each schema

object in Σ represents a boolean expression which has as variables the extensional

schema objects referenced in its scheme. These expressions must evaluate to true

for the constraint to be satisfied.

When writing Instk(S) we will generally include the schema object as a prefix to its

extent tuple to allow us to identify the object that the tuple in the extent of the

schema is associated with. When writing the extent of a single schema object we do

not do this.

We define the set of all possible instances, AllInst(S), of S as:

AllInst(S) = Inst1(S) ∪ Inst2(S)∪ . . .

We assume set based semantics for our schemas.

2

When writing an instance of a schema object that references other schema objects

in the way that an SQL table references its columns, it is common practice to simply

write a predicate whose variables represent the referenced schema objects [AHV95,

FKPT05], rather than writing instances of each object in the schema. For example,

consider Semp in Figure 2.1, the schema used to store some of the details of the

employees in the organisation we introduced in the introduction. We could write

a predicate representing the Emp table as table:〈〈Emp〉〉(e, n, d) where the variables

represent the extents of the columns eid, name and dept respectively. A particular
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instance of the schema then grounds the variables in these predicates. For example

Inst1(Semp) shown in Figure 2.1 (a) may be written in this way as:

Inst1(Semp) = {table:〈〈Emp〉〉(1,‘Peter Smith’,100),

table:〈〈Emp〉〉(2,‘Susan Brown’,101),

table:〈〈Dept〉〉(100,‘Finance’,23),table:〈〈Dept〉〉(101,‘HR’,15)}

Note that the above representation of the schema instance is not ambiguous as there

is a total order over the columns of table:〈〈Emp〉〉 and table:〈〈Dept〉〉. We will use this

notation for the rest of this chapter.

Any subset of Inst1(Semp) is also an instance of the schema as long as the values in

the subset still satisfy the constraints. So,

Inst′1(Semp) = {table:〈〈Emp〉〉(2,‘Susan Brown’,101), table:〈〈Dept〉〉(101,‘HR’,15)}.

is a valid instance of Semp but

{table:〈〈Emp〉〉(2,‘Susan Brown’,101),table:〈〈Dept〉〉(100,‘Finance’,23)}

is not since it violates the constraint foreign key:〈〈Dept fk, Emp, dept, Dept, did〉〉.

We call a schema along with its current instance a data source.

2.2 Mappings

For most high level DDLs, at least one language for describing the relationship

between two schemas and their instances has been proposed. In MM these relation-

ships are called mappings and the language used to describe them, a mapping

language. Examples of mapping languages are relational algebra, used with the

relational model, and XQuery [BCF+03] used with XML. Using such a DDL specific

mapping language in a MMS has obvious limitations. We could not, for example,

use relational algebra to define a mapping between a relational schema and an XML

schema.

One approach to the design of an inter DDL mapping language often adopted in data

integration systems designed to combine data from two specific DDLs is to manip-

ulate specific high level DDLs directly using their native transformation languages.

Numerous examples of these systems exist in the literature for the integration of

XML and relational schemas [FTS00, SSB+01, BFH+03, CKS+00] where SQL is
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used to manipulate the relational schemas and a language like XQuery, the XML

schemas. In the more general setting of a MMS this has the obvious disadvantage

of not scaling well if more DDLs are added to the MMS.

A more common approach in MM is to use a declarative mapping language that

can represent mappings between different DDLs at a high level, abstracting away

the implementation details [Mel04, BHP00]. It is the approach adopted by all the

current MMSs [KQLL07, MBHR05, MRB03].

A mapping can be viewed as a set of logical dependencies between the schemas it

connects [AHV95]. Extensional or instance based mappings describe the rela-

tionship between instances of the source schema and instances of the target schema.

All the mappings we use in this thesis will be extensional.

Definition 2.3 Mapping

We define a mapping, mapS1,S2 , to be a tuple of the form:

(S1, S2, ΣS1,S2)

where S1 is the source schema, S2 is the target schema, and ΣS1,S2 is a set of con-

straints that instances of the mapping must satisfy.

2

Mappings between schemas have been studied in great detail in the context of data

integration [Len02] and data exchange [FKMP05]. In both cases it is necessary to

create mappings between source and target schemas. The target schema(s) may

be virtual as is the case in data integration or materialised as is the case in data

exchange.

Two main approaches have been taken to creating mappings between source and

target schemas [Len02]. We describe each method briefly below.

Global As View (GAV) The GAV approach is based on the idea that each object

in the target (global) schema can be expressed in terms of a view over the

source (local) schemas, so when a new object is added to the global schema

its extent is defined in terms of objects in the local schemas. Mappings of this

type tell us explicitly how to retrieve the data when evaluating a query over an

object in the global schema. In most GAV systems query answering is based
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on a simple unfolding strategy. This explicit mapping does, however, restrict

the design of the global schema.

The GAV approach is most useful when integrating a stable set of sources.

Adding a new source or extending one that is already part of the system can

mean rewriting existing mappings. Examples of systems adopting the GAV

approach are TSIMMIS [GMPQ+97] and Garlic [RAH+96].

Local As View (LAV) In the LAV approach, the content of each local schema is

expressed in terms of a view over the global schema. If a new local schema

object is added to the existing global schema its extent is expressed in terms

of objects in the global schema. This can make it easier to design a good

global or target schema because the design can be made independently of

the sources. It can, however, make queries over the global schema harder to

evaluate [Ull97, Hal01]. LAV works best if there is a stable, well-established

global schema. It is easier to add more source schemas to systems based on a

LAV approach as the mappings for each component schema are independent

of each other. There is no danger that a new mapping assertion will affect the

existing system.

Information Manifold [Ull97] is an example of the LAV approach in operation.

It expresses the global schema in terms of a Description Logic and uses con-

junctive queries to retrieve data from the component schemas. A number of

XML-based systems also adopt this approach.

In a MM setting more powerful mapping methods are needed. In general creating

a target schema from a given source schema requires the mapping of conjunctive

queries on the source schema to conjunctive queries on the target schema, something

neither GAV nor LAV can do.

Global local as view (GLAV) [FLM99] uses both GAV and LAV mappings to

define the relationship between the global and local schemas. Conjunctions are

allowed on both sides of a GLAV rule. The GLAV approach has been widely

adopted [BH07, Kol05, KQLJ07] as the mapping language in current work on MM.

In particular, s-t tgds [FKMP05] which we describe below, have been used to provide

a logical characterisation of the GLAV mappings necessary in a MMS.

To describe how the instances of a source schema are mapped to the target schema

we define an instance of a mapping as follows:
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Definition 2.4 Mapping instance

Given mapS1,S2 = (S1, S2, ΣS1,S2), an instance of the mapping, MapInstk(mapS1,S2),

is a set of tuples, 〈x, y〉, where x ∈ AllInst(S1) and y ∈ AllInst(S2), that satisfy the

constraints in ΣS1,S2 .

We define all the instances of a mapping, AllMapInst(mapS1,S2), to be all sets of

tuples, 〈x, y〉, where x ∈ AllInst(S1) and y ∈ AllInst(S2), that satisfy the constraints

in ΣS1,S2 . 2

It is important to note that S1 and S2 may have their own sets of constraints, so an

instance of the mapping needs to satisfy the constraints on the source and target

schemas as well as those in the mapping.

We can make the following statements about mapS1,S2 . If ΣS1,S2 is empty the map-

ping is unconstrained. For example, a mapping between two unrelated databases

such as a bank customer database and a library catalogue would result in an empty

set of constraints. On the other hand if AllMapInst(mapS1,S2) = ∅ the constraint set

contains contradictory elements.

In a MMS, the target schema may be generated, by executing the mapping or a

MM operator, or it may be an existing schema. We see examples of both of these

in the scenario described in the introduction. Examples of a target schema being

generated can be found in step 2 where the XML view is created and in step 5,

where schemas are merged to create a new schema. An example of a schema that

already exists can be found in step 4 where the HR department created a mapping

from the existing XML view to the new HR XML Schema. This new XML Schema

may have existing constraints that need to be satisfied and may have data in it that

is not derived from the source schema.

2.2.1 Second Order s-t tgds - A Mapping Language for MM

Second Order source to target tuple generating dependencies (SO s-t

tgds) are a declarative way of describing mappings between schemas and have re-

cently emerged as the mapping language of choice in MMSs [BM07, Kol05, BH07]

and have been adopted as a way of describing mappings in recent MMS proto-

types [KQLJ07, MBHR05]. This declarative approach is particularly useful in a

MMS because mappings between a number of different DDLs may be needed and
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it allows the implementation details of the individual DDLs to be abstracted away.

Before defining SO s-t tgds we review previous approaches.

SO s-t tgds are based on the tuple generating dependencies (tgds) described

in [AHV95]. A tgd is a first-order formula of the form:

∀~x.ϕ(~x) → ∃~y.ψ(~x,~y)

such that ϕ(~x) is a conjunction of atomic schema objects and constants and ψ(~x,~y)

is a conjunction of atomic schema objects and constants with variables in ~x and

~y, where ~y may be empty. The instance tuples of the atoms in ψ(~x,~y) are ‘gener-

ated’ by the instance tuples and relations in ϕ(~x), hence the name tuple generating

dependency.

Fagin et al [FKMP05] extended the use of tgds to describe mappings between two dif-

ferent schemas. Tgds that specifically describe the relationship between a source and

target schema are called source-to-target tuple-generating dependencies (s-t tgds).

Definition 2.5 s-t tgds and t-s tgds

Let S1 be the source schema and S2 be the target schema, such that S1 and S2 have

no atoms in common. A tgd

∀~x.ϕS1(~x) → ∃~y.ψS2(~x,~y),

is said to be source-to-target (s-t) if ϕS1(~x) is restricted to use only atoms of S1 and

constants, and ψS2(~x,~y) is restricted to use only atoms of S2 and constants. It is

target to source(t-s) if S1 is the target schema and S2 is the source schema. 2

The following are some examples of the different types of simple s-t tgds that we

might find in the constraint set of a mapping mapS1,S2 = (S1, S2, ΣS1,S2), and corre-

spond to Figure 2.2. In both examples schemas d1 and d2 consist of a single schema

object, table:〈〈Emp〉〉(e, n, d). In this and subsequent examples in this section we will

not add the construct name to the schema object name as all the constructs we refer

to are SQL tables. We also assume here that an SQL table is an atomic object as

this is the interpretation used in the literature about embedded dependencies and

s-t tgds [AHV95, MIR94, FKMP05]. We show in the next chapter that AutoMed

allows us to manipulate a table’s columns and constraints separately.
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Figure 2.2: Mapping examples

1. {∀e, n, d.(d1 :::〈〈Emp〉〉(e, n, d) → d2 :::〈〈Emp〉〉(e, n, d))} - Mapping between iden-

tical schemas or d2 is a superset of d1.

2. {∀e, n, d.(d1 :::〈〈Emp〉〉(e, n, d) → d2 :::〈〈Emp〉〉(5,Joe Brown,100))} - Maps all

instances of the source schema to a single instance of the target schema.

Example 2.1 Mapping example

The finance department in our organisation decide they need to have a separate

database of all their employees. We will call the schema for this database, SfinEmp.

Two instances are shown in Figure 2.3. They wish to keep their database synchro-

nised with the main employee database so to allow this they create a bidirectional

mapping between Semp in Figure 2.1, and SfinEmp.

FinEmp

eid name

1 Peter Smith

FinDept

did numEmps

100 23
(a) Inst1(SfinEmp)

FinEmp

eid name

5 Joe Brown

FinDept

did numEmps

100 23
(b) Inst2(SfinEmp)

Figure 2.3: Two instances of SfinEmp

The following mapping describes the relationship between instances of Semp and

SfinEmp. Here, and in all the following equations we will assume the universal

quantifiers at the beginning of each s-t tgd are present.
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mapSemp,SfinEmp
= (Semp, SfinEmp, ΣSemp,SfinEmp

) where ΣSemp,SfinEmp
=

{Semp :::〈〈Emp〉〉(e,n, d) ∧ Semp :::〈〈Dept〉〉(d , ′Finance′,ne) →
SfinEmp :::〈〈FinEmp〉〉(e,n) ∧ SfinEmp :::〈〈FinDept〉〉(d ,ne),

SfinEmp :::〈〈FinEmp〉〉(e,n) ∧ SfinEmp :::〈〈FinDept〉〉(d ,ne) →
Semp :::〈〈Emp〉〉(e,n, d) ∧ Semp :::〈〈Dept〉〉(d , ′Finance′,ne)}

If the instances of Semp are those shown in Figure 2.1 and those of SfinEmp are those

shown in Figure 2.3 then:

AllMapInst(mapSemp,SfinEmp
) =

{〈Inst1(Semp), Inst1(SfinEmp)〉, 〈Inst2(Semp), Inst2(SfinEmp)〉} 2

Each atom on the RHS of the arrow in the first tgd in mapSemp,SfinEmp
can be fully

derived from the LHS and no extensional quantifiers are required. This is an example

of a full tgd and we write it as follows:

∀~x.ϕ(~x) → ψ(~x) (2.1)

Every full tgd can be rewritten as a finite set of full tgds with a single atom on

its right hand side using the Lloyd-Topor transformations [Llo87, FKMP05]. Equa-

tion 2.1 can thus be rewritten as shown below:

∀~x.ϕ(~x) → ∧k
i=1Ri(~xi) ≡ ∀~x.ϕ(~x) → Ri(~xi) for i = 1 to k (2.2)

This is often a convenient way of writing tgds. Dependencies with a single schema

object on the RHS are called single-head tgds. Those with more than one schema

object on the RHS are called multi-head.

It follows from this result that the first tgd, which is an s-t tgd, in Example 2.1 can
be rewritten to give us the following set of single head full s-t tgds.

{Semp:::〈〈Emp(e,n, d)〉〉 ∧ Semp:::〈〈Dept(d , ′Finance′,ne)〉〉 → SfinEmp:::〈〈FinEmp(e,n)〉〉,
Semp:::〈〈Emp(e,n, d)〉〉 ∧ Semp:::〈〈Dept(d , ′Finance′,ne)〉〉 → SfinEmp:::〈〈FinDept(d ,ne)〉〉}

The DBA in the finance department has a look at SfinEmp and notices that
table:〈〈FinDept〉〉 is redundant as all the values are the same and it is not even linked
to table:〈〈FinEmp〉〉 by a foreign key. He creates a new schema, S ′finEmp, that includes
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only table:〈〈FinEmp〉〉 and updates the mapping accordingly to create mapSemp,S′finEmp

(Semp, S
′
finEmp, {Semp :::〈〈Emp〉〉(e,n, d) ∧ Semp :::〈〈Dept〉〉(d , ′Finance′,ne) →

S ′finEmp :::〈〈FinEmp〉〉(e,n),

S ′finEmp :::〈〈FinEmp〉〉(e,n) →
∃d, ne(Semp :::〈〈Emp〉〉(e,n, d) ∧ Semp :::〈〈Dept〉〉(d , ′Finance′,ne))})

Consider the second tgd in the mapping above which is a t-s tgd. There is an
important difference between this tgd and the ones we have been discussing, in that
this tgd requires the existential quantifiers ∃en and ∃d, on the RHS. This is an
example of a tgd that is not full. It is important to note that multi-head tgds that
are not full, such as this one, cannot always be rewritten as a conjunction of single-
head tgds because the existential quantifiers cannot be guaranteed to be consistent
across the single-head tgds generated. In our example, if we rewrote the second tgd
in the mapping as we have the first we would get

{S ′finEmp :::〈〈FinEmp〉〉(e,n) → ∃d(Semp :::〈〈Emp〉〉(e,n, d)),

S ′finEmp :::〈〈FinEmp〉〉(e,n) → ∃d, ne(Semp :::〈〈Dept〉〉(d , ′Finance′,ne))}

If we now added a new member of staff 〈〈FinEmp〉〉(3,‘Paul Jones’) we could in-

stantiate these tgds as follows:

{〈{S ′finEmp :::〈〈FinEmp〉〉(3,‘Paul Jones’)},{Semp :::〈〈Emp〉〉(3,‘Paul Jones’,100)}〉,
〈{S ′finEmp :::〈〈FinEmp〉〉(3,‘Paul Jones’)},{Semp :::〈〈Dept〉〉(101,‘HR’,15)}〉}

These two tgds do not correctly reflect the fact that, in the original mapping, d is

consistent across all the terms of the RHS of the formula.

Creating implications with a single atomic schema object on the RHS is an important

step in composing mappings [KQLJ07, FKPT05]. In particular Fagin et al [FKPT05]

showed that problems like this make it impossible to correctly compose mappings

containing non-full tgds. This is a major problem for a MMS as Compose is one of

the most commonly used MM operators [BM07, MBHR05]. Their investigation of

the problem led them to introduce SO tgds, a class of existential second order for-

mulae. These are tgds extended with existentially quantified function symbols that

range over the entire equation. To create an SO tgd we Skolemise any existentially

quantified variables on the RHS of a non-full tgd. They are defined as follows:

Definition 2.6 SO s-t tgds and SO t-s tgds
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An SO s-t tgd is a formula of the form:

∃~f(∀~x1.ϕ1 → ψ1 ∧ · · · ∧ ∀ ~xn.ϕn → ψn)

where ~f is a collection of functions symbols. Each ~xi is a vector of variables in

the source schema. Each ϕi is a conjunction of schema object predicates and/or

equalities over constants and variables defined in the source schema. Each ψi is

a conjunction of schema object predicates, constants and variables defined in the

source schema, and the function symbols in ~f. In a SO t-s tgd the source and target

schema are switched.

2

It was shown in [FKPT05] that every tgd is equivalent to an SO tgd where each ex-
istentially quantified variable is translated into a Skolem function. We can therefore
rewrite the t-s tgd in the example above as follows:

∃dept, numEmp(S ′finEmp :::〈〈FinEmp〉〉(e,n) →
Semp :::〈〈Emp〉〉(e,n, dept(e)) ∧ Semp :::〈〈Dept〉〉(d , ′Finance′,numEmp(e)) ∧ d = dept(e)) (2.3)

where dept is a Skolem function that creates a unique value for the department id

column based on their employee id and numEmp is a separate Skolem function that

creates different unique values for the numEmps column. Note that we can include

the Skolem function as part of the definition of the object or as a separate term.

It is also shown in the same paper that every SO tgd is equivalent to an SO tgd in a
‘normal form’ where the right-hand sides of all the implications, i.e. the ψi are atomic
formulae, as is required by existing composition algorithms [KQLJ07, FKPT05]. We
can thus rewrite Equation 2.3 as:

∃dept, numEmp(S ′finEmp :::〈〈FinEmp〉〉(e,n) → Semp :::〈〈Emp〉〉(e,n, dept(e))∧
S ′finEmp :::〈〈FinEmp〉〉(e,n) → Semp :::〈〈Dept〉〉(dept(e), ′Finance′,numEmp(dept(e))))

As part of this rewriting, any Skolem functions or constants that appear as terms

in the original formula are included in the head of the object(s) that use them. In

this example dept(e) has been included in the head of Semp :::〈〈Dept〉〉.

Let us again consider the example of mapping S ′finEmp:::〈〈FinEmp〉〉(3,‘Paul Jones’)

back into Semp, but this time using the SO t-s tgd we have just created. We use dept

to create a unique value for the did column based on the employee id, and similarly

use numEmp to create unique values for the numEmps column. In this case the

parameter for the Skolem function is the value created for the department id, as the
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number of employees is functionally dependent on the department id. We will call

these unique values uv1 and uv2. We therefore have:

AllMapInst(mapS′finEmp,Semp
) =

{〈{S ′finEmp :::〈〈FinEmp〉〉(3,‘Paul Jones’)},{Semp :::〈〈Emp〉〉(3,‘Paul Jones’,uv1)}〉,
〈{S ′finEmp :::〈〈FinEmp〉〉(3,‘Paul Jones’)},{Semp :::〈〈Dept〉〉(uv1,’Finance’,uv2)}〉}

This allows us to identify Paul Jones as a member of Finance. This is in contrast

to first order non-full tgds where, as we saw above, information is lost if we rewrite

them as a conjunction of formulae with one term on the RHS.

2.3 MM Operators

Given a common representation for schemas from the various DDLs in our MMS and

a way of describing mapping between them, we are now ready to define operators

that work on these two abstractions. In this section we describe the MM operators

most commonly cited in the literature [BM07, MBHR05, Mel04, BH07]. These op-

erators cover well known but disparate problems in data management. They have

typically been studied in isolation with respect to specific languages. The defini-

tions here distill the essential aspects of these problems into language independent

operators that can be used to create scripts and programs.

The operators are shown in Table 2.3 as method calls. The presentation of the

operators in this thesis takes a more programmatic approach to the definition of the

operators than previous descriptions. We feel this helps to make MM look more like

a programming language for metadata rather than a collection of operators.

MM Operator Signature
Mapping mapS1,S3 = Compose(Mapping mapS1,S2 , Mapping mapS2,S3)
Mapping mapS1,S2 = Confluence(Mapping mapS1,S2 , Mapping mapS1,S2)
Mapping mapS1,S2 = Match(Schema S1, Schema S2)
〈Schema Sm, Mapping mapSm,S1 , Mapping mapSm,S2〉 =

Merge(Schema S1, Schema S2, Mapping mapS1,S2)
〈Schema Sd, Mapping mapS1,Sd

〉 = Diff(Schema S1, Mapping mapS1,S2)
〈Schema Sx, Mapping mapS1,Sx〉 = Extract(Schema S1, Mapping mapS1,S2)
〈Schema St, Mapping mapS1,St〉 = ModelGen(Schema S1, TargetDDL l)
ExecutableMapping mapS1,S2 =

TransGen(Mapping mapS1,S2 , ExecutableMappingLanguage l)

Table 2.1: The MM Operators
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Before describing the main model management operators it is necessary to define

four auxiliary operators: Invert, Id, Domain, Range.

Definition 2.7 Auxiliary Model Management Operators

Let S1 and S2 be schemas and mapS1,S2 = (S1, S2, ΣS1,S2) be a mapping between

them.

• Domain(Mapping mapS1,S2) = {x | ∃y.〈x, y〉 ∈ AllMapInst(mapS1,S2)}

• Range(Mapping mapS1,S2) = {y | ∃x.〈x, y〉 ∈ AllMapInst(mapS1,S2)}

• Invert(Mapping mapS1,S2) = {〈y, x〉 | 〈x, y〉 ∈ AllMapInst(mapS1,S2)}

• Id(Schema S1) = {〈x, x〉 | x ∈ AllInst(S1)}
2

Example 2.2 shows an example of each of these auxiliary operators.

Example 2.2 Auxiliary operators

Assume that we remove table:〈〈Dept〉〉 from Semp in the previous examples to leave

us with S ′emp containing table:〈〈Emp〉〉 and its columns and key. Assume also that

the instances of table:〈〈Emp〉〉 shown in Figure 2.1 remain and we add the following

new instance:

Inst3(S′emp) = {〈〈Emp〉〉(14,‘Catherine Thomas’,100),〈〈Emp〉〉(15,‘Neal Fischer’,100)}

We define the following mapping

(S ′emp, S
′
finEmp, {S ′emp :::〈〈Emp〉〉(e,n, 100) → S ′finEmp:::〈〈FinEmp〉〉(e,n)})

The following are instances of this mapping:

MapInst1(mapS′emp,S′finEmp
) =

〈{S ′emp :::〈〈Emp〉〉(1,‘Peter Smith’,100)},{S ′finEmp :::〈〈FinEmp〉〉(1,‘Peter Smith’)}〉
MapInst2(mapS′emp,S′finEmp

) =

〈{S ′emp :::〈〈Emp〉〉(5,‘Joe Brown’,100)},{S ′finEmp :::〈〈FinEmp〉〉(5,‘Joe Brown’)}〉
MapInst3(mapS′emp,S′finEmp

) =

〈{S ′emp :::〈〈Emp〉〉(14,‘Catherine Thomas’,100),S ′emp :::〈〈Emp〉〉(15,‘Neal Fischer’,100)},
{S ′finEmp :::〈〈FinEmp〉〉(14,‘Catherine Thomas’),S ′finEmp :::〈〈FinEmp〉〉(15,‘Neal Fischer’)}〉
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The Domain and Range of the mapping are as follows:

Domain(mapS′emp,S′finEmp
) = {{〈〈Emp〉〉(1,‘Peter Smith’,100)},{〈〈Emp〉〉(5,‘Joe Brown’,100)},

{〈〈Emp〉〉(14,‘Catherine Thomas’,100),〈〈Emp〉〉(15,‘Neal Fischer’,100)}}

Range(mapS′emp,S′finEmp
) = {{〈〈FinEmp〉〉(1,‘Peter Smith’)},{〈〈FinEmp〉〉(5,‘Joe Brown’)},

{〈〈FinEmp〉〉(14,‘Catherine Thomas’),〈〈FinEmp〉〉(15,‘Neal Fischer’)}}

The instances of the mappings returned by the Invert and Id operators are as follows:

AllMapInst(Invert(mapS′emp,S′finEmp
)) ⊇ {

〈{S ′finEmp :::〈〈FinEmp〉〉(1,’Peter Smith’)},{S ′emp :::〈〈Emp〉〉(1,’Peter Smith’,100)}〉,
〈{S ′finEmp :::〈〈FinEmp〉〉(5,’Joe Brown’)},{S ′emp :::〈〈Emp〉〉(5,’Joe Brown’,100)}〉,
〈{S ′finEmp :::〈〈FinEmp〉〉(14,‘Catherine Thomas’),S ′finEmp :::〈〈FinEmp〉〉(15,‘Neal Fischer’)},
{S ′emp :::〈〈Emp〉〉(14,‘Catherine Thomas’,100),S ′emp :::〈〈Emp〉〉(15,‘Neal Fischer’,100)}〉}

AllMapInst(Id(S′finEmp)) ⊇ {
〈{S ′finEmp :::〈〈FinEmp〉〉(1,’Peter Smith’)},{S ′finEmp :::〈〈FinEmp〉〉(1,’Peter Smith’)}〉,
〈{S ′finEmp :::〈〈FinEmp〉〉(5,’Joe Brown’)},{S ′finEmp :::〈〈FinEmp〉〉(5,’Joe Brown’)}〉,
〈{S ′finEmp :::〈〈FinEmp〉〉(14,‘Catherine Thomas’),S ′finEmp :::〈〈FinEmp〉〉(15,‘Neal Fischer’)},
{S ′finEmp :::〈〈FinEmp〉〉(14,‘Catherine Thomas’),S ′finEmp :::〈〈FinEmp〉〉(15,‘Neal Fischer’)}〉}

2

We will now discuss each of the other operators. It is important to note that

the definitions of Merge, Diff and Extract given later in this section capture only

the necessary conditions on the operators. They do not require the operators to

produce unique or minimal solutions. Definitions for minimal solutions for these

operators are given in [Mel04]; however, it has been shown [MBHR05, BM07] that

these conditions can lead to seemingly correct solutions being rejected and make

the materialisation of solutions impossible in some cases even when a useful, non-

minimal solution exits. Our emphasis in this thesis is on the efficient implementation

of the operators within our framework rather than their theoretical characteristics,

so we will not include the minimality conditions in our definitions and will not try to

verify minimality when we come to describe our implementations of these operators

in Chapter 6.

2.3.1 Compose

It is often necessary to manipulate mappings directly by composing or combining

them. The MM operator Compose provides this functionality. It is defined as

follows [Mel04]:
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Definition 2.8 Compose, ◦

Given two mappings mapS1,S2 and mapS2,S3 , mapS1,S3 is a composition if

AllMapInst(mapS1,S3) = AllMapInst(mapS1,S2) ◦ AllMapInst(mapS2,S3)

which means that

AllMapInst(mapS1,S3) =

{〈Insti(S1), Instk(S3)〉 | ∃Instj(S2) s. t. 〈Insti(S1), Instj(S2)〉 ∈ AllMapInst(mapS1,S2)

and 〈Instj(S2), Instk(S3)〉 ∈ AllMapInst(mapS2,S3)}
2

Note that this definition of Compose does not provide a semantic mapping. For

example assume we have two objects that use different names for the same semantic

concept in S1 and S3. Unless these two objects are both linked to the same object

in S2 by the mappings mapS1,S2 and mapS2,S3 we assume they are distinct.

Work on composing mappings, which is the most commonly used MM operator [BH07,

BM07], led to the introduction of SO s-t tgds. It was shown in [FKPT05] that com-

position is not closed under first order s-t tdgs. We use Figure 2.4 to describe the

results about composition of s-t tgds:

1. If the constraints in both mapS1,S2 and mapS2,S3 are sets of full s-t tgds then

the constraints in mapS1,S3 are also definable as a set of full s-t tgds. This is

shown in Figure 2.4(a) where the composition of 〈{Inst1(S1)},{Inst1(S2)}〉 and

〈Inst1(S2),Inst1(S3)〉 is 〈Inst1(S1),Inst1(S3)〉 and 〈{Inst2(S1)},{Inst2(S2)}〉 and

〈Inst2(S2),Inst2(S3)〉 is 〈Inst2(S1),Inst2(S3)〉.

2. If the constraints in mapS1,S2 are full s-t tgds and the constraints in mapS2,S3

are s-t tgds (not necessarily full) then the constraints in mapS1,S3 are definable

as a set of s-t tgds that are not necessarily full. This is shown in Figure 2.4(b).

Inst2(S1) is mapped to two instances of S ′3 each of which have different values

for the existentially quantified variable. AllMapInst(mapS1,S′3) reflects this by

mapping Inst2(S1) to both Inst2(S
′
3) and Inst3(S

′
3) using the same existentially

quantified variable as was used in mapS2,S′3 .

3. Finally, if the constraints in mapS1,S2 and mapS2,S3 are sets of arbitrary s-t tgds

(not necessarily full) then the constraints in mapS1,S3 may not be definable in

any first order language. This is shown in Figure 2.4 (c) where the tgds that

define the instances of mapS1,S′2 include an existentially quantified variable.
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Figure 2.4: Compose

Inst2(S
′
2) and Inst3(S

′
2) have different values for this variable. They are then

mapped to instances of S ′3. mapS1,S′3 cannot differentiate between the two

instances of S ′3 because the existentially quantified variable refers to values in

S ′2 and not in S ′3.

We resolve this situation by using the SO tgds introduced in the previous section.

They allow us to relate S1 to S2 using a Skolem function based on some value in S1

that is also present in S3. We will discuss this in more detail when we present our

implementation of Compose in Chapter 6.
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2.3.2 Confluence

In complex change propagation scenarios it may be the case that changes are made to

a schema by a number of different agents, be they users or automatic processes, that

need to be propagated. These may result in mappings between two given schemas

via different intermediate schemas. Confluence can ‘unify’ pairs of these mappings

The original definition given in [MBHR05] assumes a first order mapping language

with no Skolem functions. As we have described above, our mapping language can

make use of Skolem functions. To take this into account we adjust the definition of

Confluence to deal with following situation. If one of the input mappings generates

a Skolem value for a given target object, and the corresponding transformation in

the other mapping maps a data value to the target object, then the domain of

the objects in input mappings is the same but the range is different. In one case

the Skolem value and in the other the data value. The original definition leads us

to reject this mapping instance because the values from the two input mappings

conflict. We, however, include this instance using the actual values, as this allows

us to create a more complete mapping.

Definition 2.9 Confluence, ⊕

Given two mappings mapS1,S2 and map′S1,S2
, we define confluence as:

mapS1,S2 ⊕map′S1,S2
← (AllMapInst(mapS1,S2) ∩ AllMapInst(map′S1,S2

))

∪ {〈x, y〉 ∈ AllMapInst(mapS1,S2) | x /∈ Domain(map′S1,S2
) ∧ y /∈ Range(map′S1,S2

)}
∪ {〈x, y〉 ∈ AllMapInst(map′S1,S2

) | x /∈ Domain(mapS1,S2) ∧ y /∈ Range(mapS1,S2)}
∪ {〈x, y〉 ∈ AllMapInst(mapS1,S2) | x ∈ Domain(map′S1,S2

)∧
∃z such that 〈x, z〉 ∈ AllMapInst(map′S1,S2

) ∧ ContainsSkolem(z)}
∪ {〈x, y〉 ∈ AllMapInst(mapS1,S2) | y ∈ Range(map′S1,S2

)∧
∃z such that 〈z, y〉 ∈ AllMapInst(map′S1,S2

) ∧ ContainsSkolem(z)}
∪ {〈x, y〉 ∈ Inst(map′S1,S2

) | x ∈ Domain(mapS1,S2)∧
∃z such that 〈x, z〉 ∈ AllMapInst(mapS1,S2) ∧ ContainsSkolem(z)}

∪ {〈x, y〉 ∈ AllMapInst(map′S1,S2
) | y ∈ Range(mapS1,S2)∧

∃z such that 〈z, y〉 ∈ AllMapInst(mapS1,S2) ∧ ContainsSkolem(z)}

where the function ContainsSkolem(z) returns true if z contains any Skolem values.

2



2.3. MM Operators 47

Confluence extracts the submapping on which mapS1,S2 and map′S1,S2
agree and adds

to it the correspondences between all those instances of S1 and S2 that participate

either only in mapS1,S2 or map′S1,S2
.

Figure 2.5: Confluence

Figure 2.5 shows two mappings between S1 and S2 and the mapping generated by

confluence. 〈{Inst4(S1)},{Inst4(S2)}〉 is an example of a mapping instance that both

mappings agree on. 〈{Inst1(S1)},{Inst1(S2)}〉 participates in Mapping1 but not in

Mapping2 so is in the confluence mapping. Similarly 〈{Inst6(S1)},{Inst6(S2)}〉 par-

ticipates only in Mapping2. Mapping1 maps Inst2(S1) to Inst3(S2) while Mapping2

maps Inst5(S1) to Inst3(S2), i.e. the domains differ but the ranges are the same so

we do not include these instances in the confluence mapping. Similarly Inst3(S1) is

mapped to two different instances in S2 so is not included either. Confluence will

thus create a mapping with the following instances:

AllMapInst(mapconfS1,S2) ⊇ {〈{Inst1(S1)},{Inst1(S2)}〉, 〈{Inst6(S1)},{Inst6(S2)}〉,
〈{Inst4(S1)},{Inst4(S2)}〉 }

If the mappings that are inputs to Confluence are both total and surjective then

mapS1,S2 ⊕map′S1,S2
= AllMapInst(mapS1,S2) ∩ AllMapInst(map′S1,S2

).
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2.3.3 Match

Applications such as data and schema integration require mappings be created be-

tween schemas based on certain criteria. The operator Match takes two schemas as

input and returns a set of mappings that holds between the two schemas.

The Match operator is written as follows:

Mapping mapS1,S2 = Match(Schema S1, Schema S2) where S1 and S2 are the schemas

to be matched and mapS1,S2 is the set of mappings between them.

Match differs from the other model management operators in that it has no formal

semantics. It returns mappings between schemas in a particular application context.

Sometimes these can be discovered semi-automatically [RB01, RM05] but it is always

necessary to have some human involvement in the process. It may also be the case

that the mappings returned by Match are partial or even inaccurate. Match is not

discussed in detail here but work in this area using the methods described in this

thesis can be found in [RM05]. We hope to integrate this work with what is described

in this thesis in future.

2.3.4 Merge

Merging is a component of two specific problems in data management: view inte-

gration and data integration [BLN86]. In view integration the inputs are views of a

single schema that is the merged schema. In this case the integration can be driven

by mappings between the two views that describes the overlap [PB08] between

them. In database integration the data sources are independent.

The inputs to the operator defined below addresses the problem of view integration.

The first requirement is that all the information from the two input schemas is

retained in the merged schema. Secondly, it should be possible to recreate the input

schemas from the merged schema. The definition below captures these desiderata:

Definition 2.10 Merge

Let mapS1,S2 = (S1, S2, ΣS1,S2) be a mapping between S1 and S2.

〈Schema Sm, Mapping mapSm,S1 , Mapping mapSm,S2〉 =

Merge(Schema S1, Schema S2, Mapping mapS1,S2) holds if and only if:
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Figure 2.6: Merge

1. mapSm,S1 and mapSm,S2 are (possibly partial) surjective mappings onto S1 and

S2 respectively, where a surjective mapping is one where every instance of S1

can be derived from Sm using the mapping mapSm,S1 and similarly for S2.

2. mapS1,S2 = Invert(mapSm,S1) ◦mapSm,S2 .

3. Sm = Domain(mapSm,S1) ∪ Domain(mapSm,S2).

2

Condition 1 ensures that Sm contains all the information in S1 and S2. Condition

2 guarantees that the input mapping can be reconstructed. In other words we can

recreate mutually consistent instances of S1 and S2. Condition 3 ensures that any

instance in the merged schema must be in one of the two mappings we have created.

We see these conditions illustrated in Figure 2.6. In the figure the arrows represent

mappings. The start of arrows are the domain of the mapping while the arrow

heads are the range. We can see that Sm contains all the instances of S1 and S2.

Composing the inverse of mapSm,S1 with mapSm,S2 gives us {〈Inst1(S1),Inst1(S2)〉,
〈Inst3(S1),Inst3(S2)〉} which matches AllMapInst(mapS1,S2). Finally, each instance of

Sm is in the domain of either mapSm,S1 or mapSm,S2 .
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The semantics described above are similar to those for view integration, where all the

instances in the two input schemas can be related via a mapping, i.e. the mapping

is complete. These are the semantics we will follow here as they are those given by

Melnik and Bernstein [Mel04, MBHR05] in the MM proposal for the Merge operator.

Pottinger et al [PB03, PB08] and Gubanov et al [GBM08] provide algorithms for

schema merge where the mapping is not complete; this, however, falls outside the

scope of what we will discuss here.

2.3.5 Extract

It is often necessary to identify which parts of a source schema have counterparts in

the target schema if for example we wish to use part of the source schema in a data

warehouse. An operator used to solve this problem should return a subschema of

S1 that participates in mapS1,S2 i.e. those parts of S1 that have a counterpart in S2.

Finding a subschema of S1 that can still have mapS1,S2 applied to it is a simplified

version of the problem of materialised view selection [ACN00, LBU01, CHS02]. The

objective of materialised view selection is to find a set of views that allows us to

answer a given query workload. Extract, on the other hand, returns a single view of

S1 that can still be used to answer the specific query mapS1,S2 .

The problem is also related to query rewriting using views [Hal01] where we rewrite

the query over Sx, which behaves as the view, rather than S1, which behaves as the

database the view is of.

The DDL independent nature of Extract makes it difficult to create optimal solutions

as is the case when SQL or subsets thereof are the mapping language [ACN00].

In [LBU01] it is argued that selecting views that are minimal to a given set of views

but not with respect to all views is a good solution, in other words a non-minimal

Extract result is still useful.

Definition 2.11 Extract

Let mapS1,S2 be a mapping from S1 to S2.

〈Schema Sx, Mapping mapS1,Sx〉 = Extract(Schema s1, Mapping mapS1,S2) holds if and

only if:
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1. mapS1,Sx ◦ Invert(mapS1,Sx) ◦ mapS1,S2 = mapS1,S2

2. AllInst(Sx) = Range(mapS1,Sx).

2

Condition 1 ensures that we can get the same result applying mapS1,Sx to S1 as we

do applying mapS1,S2 to S1 and condition 2 that the only instances in Sx are those

that take part in the resultant mapping, mapS1,Sx .

As we said at the beginning of this section, the conditions in this definition provide

only the minimal conditions for the operator. Indeed, a solution that will always

satisfy the above definition is to make Sx = S1 and the mapping Id(S1). It is often

possible, however, to come up with a better solution as we will see in Chapter 6.

We see the conditions of Extract illustrated in Figure 2.7. We can see that all

instances of Sx are derived from mapS1,Sx as required by condition 2 in the definition.

Inst5(S1) is mapped to S2 by mapS1,S2 so it appears in Sx. In the case of Inst1(S1)

not all of the instance is mapped to S2 i.e. only a portion of the instance is part of

the domain of the mapping. This will happen when there are select conditions in the

constraints in ΣS1,S2 . In this case only the portion of the instance that is mapped

to S2 is added to the extract schema. In Inst2(S1) and Inst4(S1) it is the key fields

of both instances that are mapped to Inst3(S2). The extract mapping maps them

both to the same instance in Sx. This will happen when we have a project in our

mapping. This leaves us with a schema that contains just those instances that are

part of the mapping.

2.3.6 Diff

As well as being able to create a schema that contains only those instances that take

part in a mapping, it is also useful in some cases to be able to create a schema that

contains only those instances that do not take part in a mapping. An example is if

a view of a database is used as part of a data warehouse. Updates to this view can

cause a heavy load on the database affecting all the relations, including those not

taking part in the view. In this scenario we can use the Diff operator to create a

view of the database that contains only those relations that are not part of the view

which could be materialised and used by those users who do not need the relations

in the data warehouse, thus reducing the load on the main database. This is closely

related to the concept of the view complement [BS81, CP84, LV03].
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Figure 2.7: Extract

It should be clear from the above that merging the results of Diff with those from

Extract will give us back the original schema. Note that the results of Diff and

Extract may overlap. The following definition of Diff given in [MBHR05] formalises

this notion:

Definition 2.12 Diff

Given S1, S2 and mapS1,S2 ,

〈Schema Sd, Mapping mapS1,Sd
〉 = Diff(SchemaS1,Mapping mapS1,S2) holds if and only

if, for any Sx and mapS1,Sx satisfying

〈Sx,mapS1,Sx〉 = Extract(S1,mapS1,S2)

the following condition holds:

〈S1,mapS1,Sx ,mapS1,Sd
〉 = Merge(Sx, Sd, Invert(mapS1,Sx) ◦mapS1,Sd

)

2
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Figure 2.8: Diff

The condition in the definition ensures that Diff returns a schema that, when com-

bined with an extract schema, Sx, allows us to recreate S1.

As with Extract, the definition above can be trivially satisfied by making Sd = S1

and the mapping Id(S1).

The requirement that we should be able to recreate the original schema by merging

Sd with the output of Extract means we must be able to uniquely identify the in-

stances of Sd. For example if our DDL were SQL and we were to project only a key

column in mapS1,S2 then Sd must include any columns that depend on it, i.e. those

columns not projected, plus the key. We need to include the key column otherwise

we will not know how to relate the data instances together when we merge Sd with

an extract schema as required by the definition.

Similarly if we project a non key column with the key column in mapS1,S2 then

Sd must contain the columns we have not projected and the key that allows us to

uniquely recreate the original instance.

We see examples of Diff illustrated in Figure 2.8. The mappings and schemas in this

figure are the same as those shown in Figure 2.7. Note that the whole of Inst2(S1)

and Inst4(S1) appear in AllInst(Sd), i.e. the key and non-key values, because we need
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to be able to uniquely identify these instances when we merge Sd with Sx to recreate

S1 as required by the definition.

2.3.7 ModelGen

Data management problems often involve data stored in schemas created using more

than one DDL. A key feature of a MMS is the ability to process all these schemas

in a seamless fashion. ModelGen is the model management [BHP00] operator that

provides this functionality. It translates a schema created using one DDL into

a corresponding schema expressed in another DDL and also produces a mapping

between the schemas. Without this functionality a MMS is restricted to operating

on schemas from a single DDL.

There is no formal definition of ModelGen given in the literature. We define it here

as follows:

Definition 2.13 ModelGen

Given S1 and DDL l

〈Schema S2, Mapping mapS1,S2〉 = ModelGen(Schema S1, TargetDDL l)

holds if and only if:

• AllInst(S1) = Domain(mapS1,S2)

• AllInst(S2) ⊇ Range(mapS1,S2).

Condition 1 ensures that all the instances of S1 are translated into the new DDL.

Condition 2 ensures that S2 contains at least the instances that have an equivalent

in S1. 2

ModelGen is useful in a number of circumstances. For example, an e-business may

wish to move data between its back end SQL database and its XML based web pages

without having to re-engineer the mappings every time the database schema or web

pages are changed. The advantages become even more apparent if the SQL database

was designed using an ER model. The mappings created by ModelGen would also

allow the MMS the seamlessly update the ER model based on any changes to the

XML view.
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2.3.8 TransGen

So far we have seen mappings between existing schemas, and database instances that

satisfy those mappings. Ideally, however, our MMS should be able to create a target

schema and any associated instances, based on a given mapping. For this we need

to translate our mappings into transformations in an executable mapping language.

We will call this executable mapping language the transformation language. This

translation is the role of the TransGen operator.

Definition 2.14 TransGen

Given S1 and transformation language l

〈ExecutableMapping mapS1,S2〉 =

TransGen(Mapping mapS1,S2ExecutableMappingLanguage l)

if and only if applying ExecutableMapping mapS1,S2 to S1 creates S2 along with all

its instances. 2

TransGen is motivated by the statement: ”It’s easier to write mappings than write

code” [BH07]. It gives us the freedom to describe mappings in a generic, non-

implementation specific way. The s-t tgds described above are the most popular

formalism but others could be used. TransGen allows us to execute the same map-

pings in different transformation languages, i.e. we can use the same mappings in a

system that uses a number of DDL specific transformation languages and a system

that uses a single transformation language applied to all schemas in the MMS.

Two approaches have been taken in current MMSs. MIDST [ACB06] uses a single

transformation language, Datalog, to directly manipulate the schema descriptions

that are stored in an SQL database. Algorithms exist to translate the transformed

schemas into their native DDL. GeRoMeSuite translates declarative mappings di-

rectly into the transformation language of the DDL the schema is expressed in,

using a specific algorithm for each DDL [KQLJ07]. Moda uses XSL and XSLT

transformations [MBHR05].

SQL DDL is an example of an executable mapping language. The following is the

output from TransGen(mapSemp,SfinEmp
,SQL) where mapSemp,SfinEmp

is the mapping in

Example 2.1.
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CREATE SCHEMA SFinEmp;

CREATE VIEW SFinEmp.FinEmp(eid,name) AS

SELECT eid,name FROM Emp, Dept

WHERE did = dept AND dname=’Finance’;

CREATE VIEW SFinEmp.FinDept(did,numEmps) AS

SELECT did,numEmps FROM Emp, Dept

WHERE did = dept AND dname=’Finance’;

It should be noted that the declarative mappings are independent of the transforma-

tion language into which they are translated. We can change the value of the l pa-

rameter in TransGen to change the transformation to, for example, Datalog [AU79].

The following is the output from TransGen(mapSemp,SfinEmp
,Datalog)

finEmp(X,Y) :- emp(X,Y,Z), dept(Z,W,V), W=finance.

finDept(Z,V) :- emp(X,Y,Z), dept(Z,W,V), W=finance.

2.4 Model Management Scripts

We saw in the example in the introduction that the maximal benefit of the operators

is achieved if a number are executed sequentially in a script. Formally, a model

management script is a sequential list of model management operators. In some

cases reordering is possible but this is not always the case [MBHR05]. The variables

and constants in a script represent schemas and mappings. When a script is executed

the variables are replaced with actual schemas and mappings. A script can be said

to have completed successfully if the script returns a non-empty result.

Example 2.3 MM script

This example shows how we can use a simple MM script to combine some of the

results from examples in the previous sections. Assume we have two databases

that store employee data, one contains table:〈〈Emp〉〉 from Semp in Figure 2.1, while

the other contains some additional personal information. The schemas for the two

databases are defined as follows:
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CREATE SCHEMA SEmp;

CREATE TABLE SEmp.Emp(

eid int not null,

name varchar not null,

dept int not null,

CONSTRAINT Emp_pk PRIMARY KEY (eid)

);

CREATE SCHEMA SPers;

CREATE TABLE SPers.EmpPersonal(

eid int not null,

name varchar not null,

gender varchar not null,

dob varchar null,

CONSTRAINT Pers_pk PRIMARY KEY (eid)

);

We now wish to create a single database with all the employee information in it.

First we need to create a mapping between the two schemas that tells us how the

data in one relates to the other. A data expert creates the following mapping:

mapSemp,Spers = (Semp, Spers, ΣSemp,Spers), where ΣSemp,Spers =

{Semp :::〈〈Emp〉〉(e,n, d) → ∃g, dob(Spers :::〈〈EmpPersonal〉〉(e,n, g(e), dob(e)))}

Where g and dob are Skolem functions. As we can see from the mapping there are

columns that are common to both schemas. Instead of merging the two schemas

in their entirety, we can save ourselves work by adding only those instances from

Spers that do not already appear in Semp. We can use the Diff operator to create a

schema that only contains schema objects and their instances that do not appear in

Semp and then merge it with Semp using the Merge operator. Instead of doing this

operation by hand every time a change is made to either schema, we can use our

MMS and the following MM script to automatically do the merging for us any time

a change is made.

1. 〈Sd,mapSpers,Sd
〉 := Diff(Spers,Invert(mapSemp,Spers))

2. mapSemp,Sd
:= mapSemp,Spers ◦mapSpers,Sd

3. 〈Sm,mapSm,Semp ,mapSm,Sd
〉 := Merge(Semp,Sd,mapSemp,Sd

)
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We can run this script on any pair of schemas that have a mapping between them.

Here we just give the results of applying each operator to show how they can be

used in subsequent steps. In Chapter 6 we will give more detailed descriptions of

how the operators produce their results.

Step 1:

Sd = {table:〈〈Pers diff〉〉, column:〈〈Pers diff, eid〉〉, column:〈〈Pers diff, gender〉〉, column:〈〈Pers diff, dob〉〉,
primary key:〈〈Pers pk,Pers diff, eid〉〉}

mapSpers,Sd
= (Spers, Sd, {Spers ::table:〈〈EmpPersonal(e,n,g,dob)〉〉 →

Sd ::table:〈〈Pers diff(e,g,dob)〉〉})

Note that we need to retain the primary key column of EmpPersonal in Sd so that

we can link the tuples of Sd to those of Spers.

Step 2:

mapSemp,Sd
= (Semp, Spers, {Semp ::table:〈〈Emp〉〉(e,n, d) →

∃g, dob(Spers ::table:〈〈EmpPersonal〉〉(e,n, g(e), dob(e)))}) ◦
(Spers, Sd, {Semp ::table:〈〈EmpPersonal(e,n,g,dob)〉〉 → Sd ::table:〈〈EmpDiff(e,g,dob)〉〉})

= (Semp, Sd, {Semp ::table:〈〈Emp〉〉(e,n, d) →
∃g, dob(Sd ::table:〈〈EmpDiff(e,g(e),dob(e)))〉〉})

Step 3:

Sm = {table:〈〈EmpMerge(e,n,d,g,dob)〉〉}
mapSm,Semp

= (Sm, Semp, {Sm ::table:〈〈EmpMerge(e,n,d,g,dob)〉〉 → Semp ::table:〈〈Emp〉〉(e,n, d)})
mapSm,Sd

= (Sm, Sd, {Sm ::table:〈〈EmpMerge(e,n,d,g,dob)〉〉 →
Sd ::table:〈〈EmpDiff〉〉(e, g , dob)})

2

2.5 Other MMSs

We will now summarise the MMSs in the current literature. These systems all take

different approaches to the design of both the CDM and the mapping language.

Their features are shown in Table 2.2. We will briefly describe each one and show

how they represent the SQL database in Figure 2.1 and, where the system supports

instance-based mappings, the mapping in Example 2.1. We end each section by

assessing how well each of these systems meets the criteria laid out for a MMS in
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the first section of this chapter. At the end of this section we discuss how studying

these other systems informed decisions we made in the design of our prototype.

MMS Name Multi DDL Automatic schema Executable Other Supports
support translation mappings operators scripting

Rondo Y N N Y Y
MIDST Y Y Y N N
Moda N N Y Y Y
AutoGen Y N N Y N
GeRoMeSuite Y N Y Y N

Table 2.2: Current Model Management System Prototypes

2.5.1 Rondo

Rondo [Mel04, MRB03] was the first MMS prototype. It uses a labelled directed

graph as the CDM and simple binary tuples called morphisms to describe mappings

between schemas.

The Rondo CDM provides a common visual representation of schemas for all the

DDLs that Rondo supports. Rules exist in the system to translate high level schemas

into this generic representation which the MM operators then manipulate. Figure 2.9

shows how the schema in Figure 2.1 is represented in the Rondo CDM. The ovals in

the graph denote identifiers, the rectangles denote literals and the links between the

various elements are shown using labelled directed edges. This provides an intuitive

view of the schema and allows us to easily compare schemas from different DDLs.

Rondo can represent SQL and XML schemas in this CDM. Rondo uses an SQL

database to store the translated CDM representation.

The morphisms that form the mapping language relate an object in a source schema

to one in a target schema. They were chosen as the mapping language for Rondo

because their semantics are simple and well understood [AB01, MRB03] but they

provide no information about what will happen to the instances of the schema

objects they map. It may be the case that all, some or none of the instances of the

source schema object should appear in the target schema object. The morphism

does not tell us which will be the case. They are useful in tasks such as schema

translation where manipulation of the schema instances is not required.

The original version of Rondo [MRB03] implements all the common MM operators

but it does not support extensional semantics. This limits its usefulness for a number
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Figure 2.9: Figure 2.1 represented in the Rondo schema language
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of common metadata management problems, such as data integration and data

exchange.

The following set of morphisms represents an intensional mapping between Semp and

SfinEmp.

〈Semp :SQL:table:〈〈Emp〉〉, SfinEmp:SQL:table:〈〈FinEmp〉〉〉
〈Semp :SQL:column:〈〈Emp, eid〉〉, SfinEmp:SQL:column:〈〈FinEmp, eid〉〉〉
〈Semp :SQL:column:〈〈Emp, name〉〉, SfinEmp :SQL:column:〈〈FinEmp, name〉〉〉

We can see that these mappings are very simple but they lose the fact that only

employees who are in the finance department should be in table:〈〈FinEmp〉〉. They

have been shown to be very efficient to implement [MRB03, Mel04] but their obvious

drawback is their lack of extensional semantics.

A limited form of extensional semantics in the form of path morphisms, were added to

Rondo [MBHR05], but these are limited in their scope. They support only specific

types of relational mapping where the relational schema can be represented as a

tree.

Shortcomings:

• Limited extensional semantics

2.5.2 Moda

Moda [MBHR05], a system based on Rondo, supports instance based mappings

in the form of logic formulae. Moda was designed to test the viability of using

executable mappings to implement the MM operators rather than as a full blown

MMS. It only supports relational schemas and does not implement ModelGen.

The implementation of the operators makes use of a library of building blocks that

were developed for elementary formula manipulation. The library includes algo-

rithms for unification, resolution, transforming a formula into implicative normal

form and others. The tool generates XSL transformations to migrate data between

source and target schemas.

Moda only supports relational schemas. It uses first order embedded dependencies

to describe its mappings. The Moda representation of the mapping in Example 2.1

is shown below:
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SM Abstracts
OID sOID Name
101 1 Emp
102 1 Dept

SM AttributeOfAbstract
OID sOID Name IsKey IsNullable AbsOID Type
201 1 eid T F 101 int
202 1 name F F 101 varchar
203 1 dept F F 101 int
204 1 dept T F 102 int
205 1 dname F F 102 varchar
206 1 numEmps F T 102 int

Figure 2.10: A MIDST representation of the schema in Figure 2.1(a)

mapS1,S2 = (S1, S2, ΣS1,S2) where ΣS1,S2 =

{∀e, n, d(S1.Emp(e, n, d), S1.Dept(d, ′Finance′, ne) →
S2.FinEmp(e, n), S2.F inDept(d, ne)),

∀e, n(S2.FinEmp(e, n), S2.F inDept(d, ne) →
(S1.Emp(e, n, d), S1.Dept(d, ′Finance′, ne)))}

We see that the set of embedded dependencies in ΣS1,S2 , includes a ‘reverse’ con-

straint allowing the mapping to be traversed forwards and backwards.

Shortcomings:

• Supports only one DDL.

• Mapping language is first order so mappings are not always composable.

2.5.3 MIDST

A data level implementation of ModelGen based on executable Datalog mappings can

be found in MIDST [ACB05]. The common representation of the high level DDL

schemas is stored directly in SQL using a relational data dictionary. A representation

of the schema in the MIDST CDM is shown in Figure 2.10. This has the advantage

of being efficient, but is much more difficult for a user to understand than graphical

representations.

MIDST uses a complex, high-level CDM that includes all the constructs of the DDLs

used in the MMS. It makes use of a supermodel that includes the features of all the

constructs of the DDLs known to the system. For example, the

SM AttributeOfAbstract construct models attributes from a number of different

DDLs and includes features such as IsKey and IsNullable that may be needed by a

DDL in the system.
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SM InstOfAbstract

OID dOID AbsOID

1001 1 101
1002 1 101
1003 1 102
1004 1 102

SM InstAttributeOfAbstract

OID dOID AttOID i-AbsOID Value

2001 1 201 1001 1
2002 1 202 1001 Peter Smith
2003 1 203 1001 100
2004 1 201 1002 21
2005 1 202 1002 Susan Brown
2006 1 203 1002 101
2007 1 204 1003 100
2008 1 205 1003 Finance
2008 1 205 1003 23
2009 1 204 1004 101
2010 1 205 1004 HR

Figure 2.11: A MIDST representation of the SQL database instance in Figure 2.1

Each construct in the supermodel has its own table which stores all the instances of

that abstract construct. The data dictionary is visible so new high level constructs

can be added to the super model tables as new DDLs are added to the system.

The approach in this thesis, on the other hand, will use a set of simple CDM con-

structs and use combinations of these to create any complex structures needed.

Batini et al. [BLN86], in their survey of data integration methods, suggest that a

simpler CDM has advantages over more complex models.

MIDST supports extensional semantics, allowing the manipulation, not only of the

schema, but also of the data held in it. Figure 2.11 shows how the database instance

in Figure 2.1 can be represented using the MIDST data dictionary.

The translation between DDLs is done as follows: First the source data is copied into

the CDM. This representation is then transformed into the target DDL by composing

a number of elementary translation steps that are stored in the system. Each step

is defined by a specific rule that defines a common restructuring task. The data is

then copied from source to CDM to target using instance-level datalog [AU79] rules

that mimic the schema transformation rules. Using a generic mapping language

like Datalog allows MIDST to support flexible and extensible data translation for a

number of DDLs.

MIDST has the disadvantage that data must be copied between the source model

and the CDM and again from the CDM to the target system. A further significant

disadvantage is that this method does not return a set of mappings between the

source and target schemas. This means they cannot be used in a MM script where

the mappings between source and target are needed as parameters to other operators.
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Figure 2.12: The SQL schema from Figure 2.1 represented in RGG

Shortcomings:

• Very complicated supermodel with limited scalability

• Only implements ModelGen at present

• No support for scripting.

2.5.4 AutoGen

AutoGen [SKZ06] takes a different approach to mappings, providing a visual metaphor

by using graph transformations as the mapping paradigm. The CDM used by Auto-

Gen is the reserved graph grammar (RGG) [ZZKS05]. Figure 2.12 shows the schema

from Figure 2.1 represented in RGG.

As we can see from the figure, schemas are represented as a directed node-edge

diagram. A node represents a schema object and an edge denotes a relationship.

For example, in the figure, the directed edges represent the table/column relationship

between the nodes.

AutoGen provides interfaces for the manipulation of these graphical data models.

The approach consists of two levels of graphical operators: low-level customisable

operators and high-level generic operators, both of which consist of a set of graph

transformation rules. AutoGen automatically produces low-level operators from

input schemas, based on the data source the schema came from, and mappings

according to a high-level operator.

RGG does not support instance based semantics so the mapping from Example 2.1

cannot be represented. A simple renaming mapping for the Emp table is shown in

Figure 2.13.
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Figure 2.13: A simple mapping represented in AutoGen

The lack of an instance based semantics for RGG and the difficulty of processing

graph transformation mappings has prevented any further development of the Au-

toGen system.

Shortcomings:

• No extensional semantics

• CDM and mappings cannot be implemented efficiently

• No support for scripting

2.5.5 GeRoMeSuite

GeRoMeSuite represents the most complete current MMS apart from that described

in this thesis. GeRoMeSuite [KQLL07] implements a number of the most common

operators including Compose, Match and Merge. It additionally provides an en-

vironment that simplifies the implementation of other operators. It is based on

their generic role based DDL, GeRoMe [KQCJ07], in which each schema object has

added to it a set of role objects that represent specific properties of the schema

object. Roles may be added to or removed from elements at any time to allow for a

flexible definition of schemas. Roles can expose different views to different operators

on the same schema object. Thus, operators concentrate on features which affect

their functionality and can ignore those that do not affect their functionality. The

operators, thus, only have to be implemented for the CDM, GeRoMe, and not for

each specific DDL.
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Figure 2.14: The schema from Figure 2.1 represented in GeRoMe

Figure 2.14 shows the schema from Figure 2.1 represented in GeRoMe. The grey

boxes denote schema objects and the white boxes attached to them represent the

different roles they play. The two tables Emp and Dept have associated attributes

and thus play an Aggregate (Ag) role. The attributes themselves play an Attribute

(At) role. The role also refers to the data type of each attribute. Here the data type

domains are represented by the Domain (D) role. The key attributes are defined

using separate schema objects representing the key constraint. The objects play an

Injective (Inj) role to indicate that an attribute is unique, and an Identifier (Id) role

to specify the aggregate for which the attribute is the key. The foreign key constraint

in the schema is also represented by a separate schema object which plays a Foreign

Key (FK) role. This points to a Reference (Ref) role which is played by the attribute

that references the key of the other table.

The instance of the database in Figure 2.1 is represented in GeRoMe as follows:

inst(#0, Emp)

attr(#0, eid, #1), value(#1, 1)

attr(#0, eid, #2), value(#2, 2)

attr(#0, name, #3), value(#3, ’Peter Smith’)

attr(#0, name, #4), value(#4, ’Susan Brown’)

attr(#0, dept, #5), value(#5, 100)

attr(#0, dept, #6), value(#6, 101)

inst(#7, Dept)

attr(#7, did, #8), value(#8, 100)

attr(#7, did, #9), value(#9, 101)

attr(#7, dname, #10), value(#10, ’Finance’)

attr(#7, dname, #11), value(#11, ’HR’)
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attr(#7, numEmps, #12), value(#12, 23)

attr(#7, numEmps, #13), value(#13, 15)

The inst predicate represents an instance of an object that plays an Aggregate role,

attr an attribute and value the value of the associated attribute. The abstract

identifiers, prefixed with a #, link the various predicates so that a complete instance

of the schema can be created.

Mappings in GeRoMeSuite are represented using SO s-t tgds. The mapping in

Example 2.1 is represented in GeRoMeSuite as follows:

inst(o0, Emp) ∧ inst(o1, Dept)∧
attr(o0, eid, o2) ∧ value(o2, e) ∧ attr(o0, name, o3) ∧ value(o3, n) ∧ attr(o0, dept, o4) ∧ value(o4, d)

attr(o1, did, o5) ∧ value(o5, di) ∧ attr(o1, did, o6) ∧ value(o6,
′ Finance′)

→ inst(o7, FinEmp) ∧ inst(o8, FinDept)∧
attr(o7, eid, o9) ∧ value(o9, e) ∧ attr(o7, name, o10) ∧ value(o10, n)

attr(o8, did, o11) ∧ value(o11, d) ∧ attr(o8, numEmps, o12) ∧ value(o12, ne)

These SO s-t tgds are applicable to GeRoMe schema objects which can also be

used to represent a wide range of DDLs. However, they do not provide an intuitive

description of the mapping. This much is admitted by the authors [KQLJ07]. Indeed

they do not expect users of their system to use their formalism to describe mappings,

rather these mappings are created using a GUI. They can also be specified as Prolog

rules and then imported into the system.

The system provides algorithms to translate these mappings into a suitable trans-

formation in the mapping language for the data source of the original schema. Cur-

rently it supports SQL and XQuery.

Shortcomings:

• Queries must be translated into the model specific language of the original

schema

• The role based model is complex and difficult for a user to understand.

• There is no current support for creating MM scripts.
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2.5.6 ATLAS and Model Driven Engineering

ATLAS [FBJV05] is a Model-Driven Engineering (MDE) system based on stan-

dards published by the Object Management Group (OMG) [Obj]. It provides

a programming environment that treats schemas as first class entities in the same

way that MM does. The approach is geared towards MDE rather than databases

and the system does not aim to implement the MM operators but rather to provide

a programming environment that allows the manipulation of schemas in a more

general way. Programs could then potentially be written using this environment to

implement the MM operators. This is a different approach to the problems MM

aims to address and so a full discussion is beyond the scope of this thesis.

2.5.7 Discussion

Research into the systems mentioned above helped inform the decisions we made

when designing our MMS. Early experience with MMSs showed that mappings often

needed to be inverted [MBHR05]. With this in mind we followed the approach

adopted in Moda of basing our mappings on sets of s-t tgds that include an inverse

as part of the mapping and so can be easily inverted. It was also found that Compose

was the most commonly used operator and was impossible to implement fully in a

first order language [FKPT05]. In common with GeromeSuite we use second order

mappings which have been shown to be closed under composition [FKPT05].

An attempt to extend the morphisms used in Rondo to executable mappings based

on relational algebra was only partially successful because of the DDL specific nature

of the executable language they chose. In GeromeSuite [KQLL07] mappings are

translated into the query language of the source schema rather than being translated

into a universal language. This means translators must be written for each DDL

in the MMS, an approach that does not scale well. Using a general purpose query

language makes these mappings easier to execute. This is the approach taken in

MIDST [ACB05], which uses Datalog. We adopt a similar approach using the DDL

independent query language IQL [Zam08].

CDMs are central to a DDL independent MMS, but a drawback is that writing map-

pings using the CDM constructs is often difficult because the relationship between

the CDM constructs and the high level constructs they represent is not always ob-

vious. This is particularly apparent in MIDST and GeromeSuite. We overcome this

by using a unique scheme syntax that allows us to reference the underlying CDM
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objects through an intuitive description of the high level schema objects which we

describe in detail in the next chapter.

A graphical CDM with a few simple constructs is used to model a wide range of DDLs

in Rondo [MRB03], AutoGen [SKZ06] and GeromeSuite, and is the approach we

have adopted. The choice of a text based model in MIDST which models individual

aspects of each DDL in the MMS does not seem to scale well.

As we have seen none of the current systems implement all five of the criteria for a

MMS. We will show in this thesis that our system meets all these criteria and so is

a more complete MMS than those that exist at the moment. The main limitation

of our system is that it does not have an implementation of Match; however, we

hope to integrate the ongoing work of Rizopoulos [RM05, MRMM05] in the future

to overcome this.



Chapter 3

AutoMed Model Management

Abstractions

In this chapter we describe the framework we use for implementing our MMS. We

first describe the DDL we use as our CDM in AutoMed and show how schemas

from a wide range of structured DDLs can be represented in it. We then go on

to describe the schema transformation based mapping and transformation language

that we use to represent both inter and intra DDL mappings in AutoMed. Finally

we show how we can create transformations in AutoMed that are equivalent to a

set of SO s-t tgds.

3.1 The AutoMed CDM

The CDM we use in AutoMed is the Hypergraph Data Model (HDM) [MP98].

It is a hypergraph based DDL that makes use of a small set of simple constructs to

describe other, more complex, DDLs1 that also includes a DDL independent way of

expressing constraints.

The HDM has the following features that make it a good candidate for use as a

CDM in a MMS:

• It supports instance-based semantics

1In keeping with common terminology, we refer to these more complex DDLs as higher level
from now on because they have a higher level of complexity

70
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• It has been shown to be able to model a wide range of DDLs including ER,

EER, SQL, UML class diagrams, ORM [MP99, BM05] and XML [MP01] doc-

uments not constrained by XML Schema.

• It supports simple DDL independent constraints.

In this thesis we extend the definition of the HDM in [MP98, BM05] to include

primitive data types, giving in Definition 3.1 a typed HDM.

Definition 3.1 HDM Schema

Given a set of strings called Labels that we may use for modelling the real world, and

another disjoint set of strings called TypeNames that we may use to name primitive

data types, an HDM schema, S, is a quadruple 〈Types,Nodes, Edges, Cons〉 where:

1. Types ⊆ {t | t ∈ TypeNames} i.e. Types is the set of primitive data types

used in this schema. In general we will omit Types from the schema definition

unless it is significant to the discussion. Primitive data types in AutoMed

are discussed in detail in Chapters 4.

2. Nodes ⊆ {hdm:node:〈〈nn , t〉〉 | nn ∈ Names, t ∈ Types}
i.e. Nodes is the set of nodes in the graph, each denoted by its name enclosed

in double chevron marks. t denotes the primitive data type of this node if it

has one. If the node is untyped its scheme is simply 〈〈nn〉〉.

3. Edges ⊆ {hdm:edge:〈〈ne , s1 , . . . , sn〉〉 |
ne ∈ Names ∪ { } ∧ s1 ∈ ExtensionalObject ∧ . . . ∧ sn ∈

ExtensionalObject}
i.e. Edges is the set of edges in the graph where each edge is denoted by

its name, together with the list of nodes/edges that it connects, enclosed in

double chevron marks. ‘ ’ denotes an unnamed edge.

4. ExtensionalObject = Nodes ∪ Edges

5. Cons ⊆ {c(s1, . . . , sn) | c ∈ Funcs ∧ s1 ∈ ExtensionalObject ∧ . . . ∧ sn ∈
ExtensionalObject} i.e. Cons is a set of boolean-valued functions (i.e. con-

straints) whose variables are members of ExtensionalObject and where the

set of functions Funcs forms the HDM constraint language.

The constraint language used in this thesis is defined in Definition 3.4 but

may be extended to handle new DDLs. It includes as many constraints as are
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necessary to model the various constraints in the DDLs we wish to process

with AutoMed, and to differentiate between the variations of a construct

that may exist in a high level DDL.

6. SchemaObjects = ExtensionalObject ∪ Cons
2

The key scheme of an HDM node does not include the data type while the key scheme

of an edge includes all the nodes or edges it links. An example HDM schema, using

the key schemes of the objects, is shown in Example 3.1.

Example 3.1 An HDM Schema

Let Seg = 〈Nodes, Edges, Cons〉 such that

Nodes = {node:〈〈Emp〉〉, node:〈〈Emp:eid〉〉, node:〈〈Emp:name〉〉, node:〈〈Emp:dept〉〉}
Edges = {edge:〈〈 , Emp, Emp:eid〉〉, edge:〈〈 , Emp, Emp:name〉〉, edge:〈〈 , Emp, Emp:dept〉〉}
Cons = {}

2

The HDM supports instance-based semantics. Each node has an extent that is the

set of values from the data source object associated with the node. We see later

on in this chapter how we create a mapping from a data source to a HDM schema.

Each edge also has an extent, where the values the edge extent contains must also

appear in the extent of the nodes and edges that the edge connects. The extent of

an edge is a collection of tuples with the first element of the tuple coming from the

first node or edge in the edge scheme and the second tuple element from the second

node or edge. An HDM instance is defined as follows:

Definition 3.2 HDM Instance

Let V als be the set of all values in the domain we wish to model, Seq(V als) be

any sequence of those values, S be an HDM schema, ExtensionalObject the set of

extensional objects in S and Types the set of HDM types. An instance k of S is a

set

ExtS,k(ExtensionalObject) → P(Seq(V als)), where P is the power set,

such that the extent of a schema object 〈〈so〉〉 ∈ ExtensionalObject,

written ExtS,k(〈〈so〉〉), is a set of values containing members of Seq(V als).
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The extent of a node will be a set of values, and the extent of an edge is a set of

n-ary tuples where n is the number of nodes/edges the edge connects.

We also add the following restrictions:

1. ExtS,k(node:〈〈n, t〉〉) ⊆ Ext(t) where t ∈ Types

2. ∀ 1 ≤ i ≤ n.(a1, . . . , an) ∈ ExtS,k(edge:〈〈e, s1 , · · · sn〉〉) → ai ∈ ExtS,k(si)

3. ∀c ∈ Cons the expression c(v1/ExtS,k(v1), · · · , vn/ExtS,k(vn)) evaluates to

true, where v1, · · · , vn are the variables of c.

All the instances of S are defined as:

AllInst(S) = Inst1(S) ∪ Inst2(S) ∪ . . .

As in our definition of a general schema instance, cf. Definition 2.2, when writing

Instk(S) we will generally include the schema object as a prefix to its extent tuple to

allow us to identify the object that the tuple in the extent of the schema is associated

with. When writing the extent of a single HDM schema object we do not do this.
2

An example of an HDM instance, I1, of the schema Seg is shown in Example 3.2.

Note that when writing the extent of a schema object we will generally only use the

key scheme.

Example 3.2 HDM Instance ExtSeg,I1(node:〈〈Emp〉〉) = {(1), (21)}
ExtSeg ,I1(node:〈〈Emp:eid〉〉) = {(1), (21)}
ExtSeg ,I1(edge:〈〈 , Emp, Emp:eid〉〉) = {(1,1), (21,21)}
ExtSeg ,I1(node:〈〈Emp:name〉〉) = {(‘Peter Smith’), (‘Susan Brown’)}
ExtSeg ,I1(edge:〈〈 , Emp, Emp:name〉〉) = {(1,‘Peter Smith’), (21,‘Susan Brown’)}
ExtSeg ,I1(node:〈〈Emp:dept〉〉) = {(100), (101)}
ExtSeg ,I1(edge:〈〈 , Emp, Emp:dept〉〉) = {(1,100), (21,101)}

2

In the same way that nodes and edges are used to represent the data constructs

of higher level DDLs, high level constraint expressions and any constraints on the

data constructs, are represented by six constraint constructs [BM05]. These are

summarised in Definition 3.4. When used together, these constructs give a rich
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framework in which to express cardinality constraints, keys and other types of con-

straints found in high level DDLs. In the following, variables that begin with s are

assumed to be members of ExtensionalObject. For each constraint definition we

give both a functional form, e.g. inclusion(s1, s2) that is useful in mapping rules

that talk about a constraint in general, and an equivalent infix form, e.g. s1 ⊆ s2,

which is used in the diagrams and when we write specific constraint expressions.

In [BM05] a project function, that provides a method of producing a view of an

HDM edge is defined as shown in Definition 3.3.

Definition 3.3 HDM project

If s is an HDM edge, and t is a tuple such that the elements of t are a subset of the

elements in the extent of s, and 〈sx, . . . sy〉 is a tuple of schemes that appear in s

then the HDM project function π(〈sx, . . . , sy〉, s, t), will return the values of t that

correspond to 〈sx, . . . , sy〉, i.e.

π(〈sx, . . . , sy〉, 〈〈ne , s1 , . . . , sx , . . . , sy , . . . , sn〉〉,
(a1, . . . , ax, . . . , ay, . . . , an)) = (ax, . . . , ay)

Note that for this thesis the project function operates only on single tuples.
2

We now review of the definitions of the constraint constructs given in [BM05].

Definition 3.4 HDM Constraint Constructs

The HDM comprises at least the following constraint constructs: Funcs = {union(∪),

inclusion(⊆), exclusion( 6 ∩), mandatory(¤), unique(¢), reflexive(
id→)} where

the functions are defined as follows:

1. union(s, s1, . . . , sn) ≡ s = s1 ∪ . . . ∪ sn: The extent of s equals the unions of

the extents of s1 to sn i.e. ∀k, ExtS,k(s) = ExtS,k(s1) ∪ . . . ∪ ExtS,k(sn)

2. inclusion(s1, s2) ≡ s1 ⊆ s2: The extent of s1 is a subset of s2,

i.e. ∀k, ExtS,k(s1)− ExtS,k(s2) = ∅

3. exclusion(s1, . . . , sn) ≡ (s1 6 ∩ . . . 6 ∩ sn): The extents of a set of nodes or edges

are disjoint. i.e. ∀1 ≤ x < y ≤ n and ∀k, ExtS,k(sx) ∩ ExtS,k(sy) = ∅.
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Figure 3.1: Seg, an HDM schema that represents an SQL table with the columns
Emp(eid,name,dept)

4. mandatory(〈s1, . . . , sm〉, s) ≡ 〈s1, . . . , sm〉¤ s: Let 1 ≤ i ≤ m, then all nodes

and edges si are connected by edge s and every combination of values in the

extents of s1, . . . , sm must appear at least once in the extent of s. i.e. ∀k,

{(a1, . . . , am) | a1 ∈ ExtS,k(s1) ∧ . . . ∧ am ∈ ExtS,k(sm)} −
{(π(s1, s, t), . . . , π(sm, s, t)) | t ∈ ExtS,k(s)} = ∅

5. unique (〈s1, · · · , sm〉, s) ≡ 〈s1, · · · , sm〉 ¢ s: Let 1 ≤ i ≤ m, then all nodes

and edges si are connected by edge s, and no combination of values in the

extents of s1, . . . , sm may appear more than once in the extent of s, i.e. ∀k,

{t | t ∈ ExtS,k(s) ∧ t′ ∈ ExtS,k(s) ∧ t 6= t′ ∧
π(s1, s, t) = π(s1, s, t

′), . . . , π(sm, s, t) = π(sm, s, t′)} = ∅

6. reflexive(s1, s) ≡ s
id→ s1: If an instance of s1 appears in edge s, then one of

those instances of s must be an identity tuple, i.e. ∀k,

{π(s1, s, t) | t ∈ ExtS,k(s)}−
{π(s1, s, t) | t ∈ ExtS,k(s) ∧ t = (π(s1, s, t), π(s1, s, t))} = ∅

2

The constraints defined above are used to determine which possible instances, k, of

schema S are valid. For example

node:〈〈Emp:dept〉〉¤edge:〈〈 , Emp, Emp:dept〉〉 holds for Example 3.2 since every value

that appears in node:〈〈Emp:dept〉〉 also appears in edge:〈〈 , Emp, Emp:dept〉〉.

Example 3.3 is an HDM schema with the above constraint added as well as a number

of others. Figure 3.1 is a graphical representation of this schema. We can see by

inspection that the HDM instance in Example 3.2 satisfies all these constraints.
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Example 3.3 An HDM Schema with Constraints

Let Seg = 〈Nodes, Edges, Cons〉 such that

Nodes = {node:〈〈Emp〉〉, node:〈〈Emp:eid〉〉, node:〈〈Emp:name〉〉, node:〈〈Emp:dept〉〉}
Edges = {edge:〈〈 ,Emp, Emp:eid〉〉, edge:〈〈 , Emp,Emp:name〉〉, edge:〈〈 , Emp, Emp:dept〉〉}
Cons = {node:〈〈Emp:dept〉〉¤ edge:〈〈 , Emp,Emp:dept〉〉,

node:〈〈Emp〉〉¤ edge:〈〈 ,Emp, Emp:dept〉〉,
node:〈〈Emp〉〉¢ edge:〈〈 ,Emp, Emp:dept〉〉,
node:〈〈Emp:name〉〉¤ edge:〈〈 ,Emp, Emp:name〉〉,
node:〈〈Emp〉〉¤ edge:〈〈 ,Emp, Emp:name〉〉,
node:〈〈Emp〉〉¢ edge:〈〈 ,Emp, Emp:name〉〉,
node:〈〈Emp:eid〉〉¤ edge:〈〈 ,Emp, Emp:eid〉〉,
node:〈〈Emp〉〉¤ edge:〈〈 ,Emp, Emp:eid〉〉,
node:〈〈Emp〉〉¢ edge:〈〈 ,Emp, Emp:eid〉〉,
node:〈〈Emp〉〉 id→ edge:〈〈 , Emp, Emp:eid〉〉}

2

The constraints described above can be used in combinations to model different

types of high level DDL constraint such as keys and cardinality constraints. For

example, in Seg, there are mandatory and unique constraints from node:〈〈Emp〉〉
to edge:〈〈 , Emp, Emp:eid〉〉, edge:〈〈 , Emp, Emp:dept〉〉 and edge:〈〈 , Emp, Emp:name〉〉.
This means that each value of node:〈〈Emp〉〉 must appear exactly once in each of the

edges. When we come to describe how SQL schemas can be translated into HDM

we will show that this combination of constraints together with the mandatory

constraints from node:〈〈Emp:eid〉〉, node:〈〈Emp:dept〉〉 and node:〈〈Emp:name〉〉 to their

respective edges, is equivalent to the SQL constraint on a non nullable column.

The extra reflexive constraint to edge:〈〈 , Emp, Emp:eid〉〉 models the fact that the

values in node:〈〈Emp:eid〉〉 match those in node:〈〈Emp〉〉. This models the concept of

a primary key constraint.

3.2 Representing High Level DDLs in AutoMed

To represent a high level DDL in AutoMed we need to create a wrapper [BKL+04]

that describes how schemas from the DDL should be represented and processed

in our system. These include information about the constructs of the DDL, the
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primitive data types and a classification for the DDL which we use when we do inter

DDL translation.

In general, the constructs of any DDL can be divided into extensional constructs,

i.e. those that represent sets of data vales from a certain domain, and constraint

constructs that represent restrictions on the extensional constructs. We divide the

extensional constructs of the high level DDL into three classes [MP99]:

• Nodal: These may be present independently of any other constructs. An

ER entity is an example of a nodal construct as it can be present without

requiring the presence of any other particular constructs. The extent of a

nodal construct is a simple set of values. The scheme of a nodal construct

contains the name of an HDM node used to represent it.

• Link: These link two other constructs and cannot exist in isolation. An ER

relationship is an example of a link construct as it links entities and cannot

exist on its own. The extent of a link construct is a set of tuples that form

a subset of the cross product of the extents of the constructs it links. The

first element in the scheme of a link construct is the name of the HDM edge

representing the construct followed by the names of the HDM constructs this

edge links and optionally some constraints. These constraints may appear

anywhere after the first element of the scheme.

• Link-Nodal: These are nodal constructs that can only exist if they are linked

to a parent construct. They are represented in the HDM by an edge associating

a new node with some existing node or edge. A column in SQL is an example

of a link-nodal construct. The extent of a link-nodal construct is a set of

binary tuples whose first value comes from the existing node or edge and

second from the newly created node. The first element in the scheme of a link

nodal construct is the name of the existing HDM node or edge and the second

is the name of the high level link nodal object. The name of the new HDM

node created is the name of this object prefixed by a colon and the name of

the existing HDM node or edge. There may be additional constraints in the

scheme.

The production rules defined below describe how each high level construct is trans-

lated into an equivalent set of HDM constructs [BM05].

Definition 3.5 HDM Production Rules
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HDM production rules take the following form:

〈high level construct〉 〈high level construct scheme〉(~a) ; 〈HDM scheme〉(ai)*

〈condition〉1 ⇒ 〈HDM constraint〉1*〈HDMscheme〉1*
...

〈condition〉n ⇒ 〈HDM constraint〉n*〈HDMscheme〉n*

Where

• 〈high level construct〉 is the name of the construct in the high level

DDL.

• 〈high level construct scheme〉 is the scheme of the high level con-

struct.

• (~a) is a vector of variables representing the extent of the construct.

• 〈HDMscheme〉(ai)* is a list of 0 or more HDM schemes used to

represent those aspects of the high level construct that have an

extent. Zero such schemes will be denoted by ⊥.

• 〈condition〉 is a list of 0 or more boolean expressions over elements of

〈high level construct scheme〉. For each 1 ≤ i ≤ n, if the 〈condition〉i
is satisfied then 〈HDM constraint〉i* and 〈HDMscheme〉i* are added

to the HDM schema.

2

The AutoMed representation of any typed high level DDL will also include a set

of primitive data type names that correspond to the data types used in the DDL.

The extents of the individuals in this set are allowable values for the primitive data

type as defined by the data source. For example, the extent of shortxml will be that

defined by the XML Schema standard in [BM04], i.e. the integers from -32768 to

32767.

In the following two sections we review the way SQL and the ER model have been

represented in the HDM [BM05]. Then in Sections 3.2.3 and 3.2.4 we present new

work that shows how selected constructs in XML Schema and RDFS can be repre-

sented in HDM.
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Emp

eid name dept

1 Peter Smith 100
14 Catherine Thomas 101
21 Susan Brown 101

Dept

did dname numEmps?

100 Finance 23
101 HR 15
102 IT

Emp.dept → Dept.did

Figure 3.2: Inst4(Semp)

3.2.1 SQL

In this section, we review previous work by other members of the AutoMed group

that shows how SQL constructs can be defined in terms of HDM constructs [BM05].

We use the database shown in Figure 3.2 to exemplify the discussion.

An SQL table is a nodal construct as it can exist independently of any other schema

objects. We define the extent of a table to be the extent of its primary key column(s).

It is represented as an HDM node. The scheme is simply the name of the table.

The production rule is as follows:

nodal :table:〈〈T 〉〉(x) ; node:〈〈T 〉〉(x)

The extent of the HDM node is the extent of the primary key of the table and the

node is untyped. The results of applying the production rule to the tables from

Figure 3.2 are as follows:

sql:table:〈〈Emp〉〉(x) ; node:〈〈Emp〉〉(x)

sql:table:〈〈Dept〉〉(x) ; node:〈〈Dept〉〉(x)

An SQL column cannot exist independently of its table and so is a link nodal

construct represented in the HDM by a node and edge. The edge links the column

node to the node representing the table the column is part of. The scheme for

a column has four components: first, the name of the table the column is part

of, second, a name for the column, third, the data type of the column and finally a

constraint specifying whether or not the column accepts null values. The production

rule is as follows:

link-nodal sql:column:〈〈T ,C ,D ,N 〉〉(x, y) ;
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node:〈〈T :C, typeTrans(D, Typesc)〉〉(y), edge:〈〈 , T, T :C〉〉(x, y)
true ⇒ node:〈〈T :C〉〉¤ edge:〈〈 , T, T :C〉〉, node:〈〈T 〉〉¢ edge:〈〈 , T, T :C〉〉
N = notnull ⇒ node:〈〈T 〉〉¤ edge:〈〈 , T, T :C〉〉

The typeTrans(D, Typesc) function calculates the HDM equivalent of the SQL data

type, D. The method for working this out is described in detail in Chapter 4. The

key scheme of this construct is sql:column:〈〈T ,C 〉〉. The second and third lines

of the production rule add constraints to the HDM graph. The second line adds

mandatory and unique constraints that constrain each instance of node:〈〈T :C〉〉 to

be associated with an instance of edge:〈〈 , T, T :C〉〉 and each instance of node:〈〈T 〉〉
to be associated with at most one instance of edge:〈〈 , T, T :C〉〉. The third line states

that if the column is defined as notnull then for each value in node:〈〈T 〉〉 (i.e. for

each value of the primary key of the table) there must be an associated value in

edge:〈〈 , T, T :C〉〉.

When applied to sql:column:〈〈Emp, name, varchar, notnull〉〉 in Figure 3.2, the produc-

tion rule above generates the following expansion:

sql:column:〈〈Emp, name, varchar, notnull〉〉 ;

node:〈〈Emp:name, typeTrans(varchar, Typesc)〉〉, edge:〈〈 , Emp, Emp:name〉〉
true ⇒ node:〈〈Emp:name〉〉¤ edge:〈〈 ,Emp, Emp:eid〉〉

⇒ node:〈〈Emp〉〉¢ edge:〈〈 ,Emp, Emp:eid〉〉
N = notnull ⇒ node:〈〈Emp〉〉¤ edge:〈〈 ,Emp, Emp:eid〉〉

typeTrans(varchar, T ypesc) returns string so the new node generated by this rule is

node:〈〈Emp:name, string〉〉. If we let I4 = Inst4(Semp) the extent of column:〈〈Emp, name〉〉
is {(1,‘Peter Smith’),(21,‘Susan Brown’),(14,‘Catherine Thomas’)}

and that of the constructs generated by the rule above are:

ExtSemp−hdm,I4(node:〈〈Emp:name〉〉) =

{(‘Peter Smith’), (‘Susan Brown’), ( ‘Catherine Thomas’)},
ExtSemp−hdm,I4(edge:〈〈 ,Emp, Emp:name〉〉) =

{(1,‘Peter Smith’), (21,‘Susan Brown’), (14,‘Catherine Thomas’)}

If we a applied the rule to column:〈〈Dept, numEmps〉〉 we would not get a mandatory

constraint from node:〈〈Dept〉〉 to edge:〈〈 , Dept, Dept:numEmps〉〉 because the column

is nullable.

The primary key construct is a constraint construct and so has no extent. Primary

keys may be made up of more than one column. In order to correctly model these
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compound keys, it is necessary to use an edge natural join [BM05], defined in

Definition 3.6.

Definition 3.6 The edge natural join

A view over HDM edges may be formed by joining edges together to form a new

virtual edge:

〈〈E ,A,B〉〉(x, y) ./ 〈〈E ,A,C 〉〉(x, z) = 〈〈E ,A,B ,C 〉〉(x, y, z)
2

Using the definition above, the production rule for a primary key is as follows:

constraint sql:primary key:〈〈PK ,T ,C1 , · · · ,Cn〉〉 ; ⊥
true ⇒ node:〈〈T 〉〉 id→ edge:〈〈 , T, T :C1〉〉 ./ · · · ./ edge:〈〈 , T, T :Cn〉〉

PK is the name of the primary key, T is the table this is the key of and C1 · · ·Cn

are the columns that make up the key. This construct has no extent, so no HDM

extensional constructs are produced. The reflexive constraint, when combined with

unique and mandatory constraints entails that the extent of the key column(s) gives

the extent of the table.

The expansion of the production rule when applied to the primary key on the

sql:column:〈〈Emp, eid〉〉 in Figure 3.2 is

sql:primary key:〈〈Emp pk, 〈〈Emp, eid〉〉〉〉 ; ⊥
true ⇒ node:〈〈Emp〉〉 id→ edge:〈〈 , Emp, Emp:eid〉〉

A foreign key is also a constraint construct. The production rule to produce the

equivalent HDM constraints is as follows. Note that we use π here in the conventional

relational algebra manner:

constraint sql:foreign key:〈〈FK ,T ,C1 , . . . ,Cn ,Tf ,Cf1 , . . . ,Cfn 〉〉 ; ⊥
true ⇒ π

node:〈〈T :C1〉〉,...,node:〈〈T :Cn〉〉(edge:〈〈 , T, T :C1〉〉 ./, . . . , ./ edge:〈〈 , T, T :Cn〉〉) ⊆
π

node:〈〈Tf :Cf1〉〉,...,node:〈〈Tf :Cfn〉〉(edge:〈〈 , Tf , Tf :Cf1〉〉 ./, . . . , ./ edge:〈〈 , Tf , Tf :Cfn〉〉)

FK is the name of the foreign key, T is the table the foreign key is from, C1, . . . , Cn

are the columns making up the foreign key, while Tf and Cf1 , . . . , Cfn are the table
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and columns the foreign key references. In the common case where the foreign keys

are not compound keys, i.e. n = 1, the constraint simplifies to node:〈〈T :C1〉〉 ⊆
node:〈〈Tf :Cf1〉〉. The result of applying the production rule to the foreign key linking

sql:column:〈〈Emp, dept〉〉 in to sql:column:〈〈Dept, did〉〉 in Figure 3.2 is shown below:

sql:foreign key:〈〈Dept fk, Emp, 〈〈Emp, dept〉〉, Dept, 〈〈Dept, did〉〉〉〉 ; ⊥
true ⇒ node:〈〈Emp:dept〉〉 ⊆ node:〈〈Dept:did〉〉

We can now fully represent Figure 3.2 in terms of the HDM. Figure 3.3 shows the

resulting graph.

Figure 3.3: The SQL schema from Figure 3.2 as represented in the HDM

3.2.2 An ER Modelling Language

In this section we review how other members of the AutoMed group showed how

a typed, extensional ER model can be represented in the HDM [BM05] (see [Pat04,

IYEP95] for surveys of variations of ER modelling languages). We will assume that

the types are those in the SQL 2003 standard [EMK+04]. We will use Figure 3.4 to

help describe this process.

Figure 3.4: An ER schema

An ER entity is a nodal construct. Its scheme is simply the name of the entity. It

is represented as an HDM node with the same name as the entity. The production

rule is as follows:

nodal ER:entity:〈〈E 〉〉(x) ; node:〈〈E〉〉(x)
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As with SQL, the extent of an entity is that of the key attribute of that entity. The

entities in Figure 3.4 are transformed into HDM constructs using the production

rules shown below:

ER:entity:〈〈Emp〉〉(x) ; node:〈〈Emp〉〉(x)

ER:entity:〈〈Dept〉〉(x) ; node:〈〈Dept〉〉(x)

An ER attribute is a link-nodal construct. The scheme includes the entity the

attribute is associated with, a name for the attribute, and a constraint specifying

whether or not the attribute accepts null values or whether it is a key attribute. It

is represented in the HDM by a node and an edge. The edge links the attribute

node to the node representing the entity the attribute is part of. The production

rule is as follows:

link-nodal ER:attribute:〈〈E ,A,D ,C 〉〉(x, y) ;

node:〈〈E:A, typeTrans(D, Typesc)〉〉(y), edge:〈〈 , E, E:A〉〉(x, y)
true ⇒ node:〈〈E:A〉〉¤ edge:〈〈 , E, E:A〉〉, node:〈〈E〉〉¢ edge:〈〈 , E, E:A〉〉
C = notnull ⇒ node:〈〈E〉〉¤ edge:〈〈 , E, E:A〉〉
C = key ⇒ node:〈〈E〉〉¤ edge:〈〈 , E, E:A〉〉, node:〈〈E〉〉 id→ edge:〈〈 , E,E:A〉〉

This production rule is similar to that for an SQL column, however we include the

key constraint as part of the attribute definition. When applied to

ER:attribute:〈〈Dept, dname〉〉 in Figure 3.4 the production rule generates:

ER:attribute:〈〈Dept, dname, varchar, notnull〉〉(x, y) ;

node:〈〈Dept:dname, typeTrans(varchar, Typesc)〉〉(y), edge:〈〈 , Dept, Dept:dname〉〉(x, y)
true ⇒ node:〈〈Dept:dname〉〉¤ edge:〈〈 , Dept, Dept:dname〉〉
notnull ⇒ node:〈〈Dept〉〉¢ edge:〈〈 ,Dept, Dept:dname〉〉

⇒ node:〈〈Dept〉〉¤ edge:〈〈 ,Dept, Dept:dname〉〉

As in the example above, the typeTrans function returns string.

An ER relationship construct like works in,Emp,Dept in Figure 3.4 is a link con-

struct. The scheme comprises a name for the relationship as well as a name and

cardinality constraint for each of the entities the relationship associates. The pro-

duction rule is as follows:
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ER:relationship:〈〈R, E1, L1:U1, . . . , En, Ln:Un〉〉( ~xn) ; edge:〈〈R, E1, · · · , En〉〉( ~xn)
L1 = 1 ⇒ node:〈〈E1〉〉¤ edge:〈〈R, E1, . . . , En〉〉
U1 = 1 ⇒ node:〈〈E1〉〉¢ edge:〈〈R, E1, . . . , En〉〉

⇒ ...
Ln = 1 ⇒ node:〈〈En〉〉¤ edge:〈〈R, E1, . . . , En〉〉
Un = 1 ⇒ node:〈〈En〉〉¢ edge:〈〈R, E1, . . . , En〉〉

The HDM schema objects created by applying the production rule to

ER:relationship:〈〈works in, Emp, Dept〉〉 are shown below.

ER:relationship:〈〈works in, Emp, 1:1, Dept, 1:N〉〉(x1, x2) ; edge:〈〈works in,Emp, Dept〉〉(x1, x2)
L1 = 1 ⇒ node:〈〈Emp〉〉¤ edge:〈〈works in, Emp,Dept〉〉
L2 = 1 ⇒ node:〈〈Dept〉〉¤ edge:〈〈works in, Emp, Dept〉〉
U1 = 1 ⇒ node:〈〈Emp〉〉¢ edge:〈〈works in, Emp,Dept〉〉

The final ER construct we encounter in Figure 3.4 is the key construct. This is a

constraint construct and is very similar to a relational primary key as we can see

from the production rule, a difference being that the schema for an ER key does not

include a name.

constraint ER:key:〈〈E ,A1 , · · · ,An〉〉 ; ⊥
true ⇒ node:〈〈E〉〉 id→ edge:〈〈 , E, E:A1〉〉 ./ . . . ./ edge:〈〈 , E,E:An〉〉

Using the rules described above we can translate the ER model in Figure 3.4 into

the HDM graph shown in Figure 3.5.

A subset constraint states that one entity is a subset of another entity. The produc-

tion rule is as follows:

constraint ER:subset:〈〈E ,Es〉〉 ; ⊥
true ⇒ node:〈〈Es〉〉 ⊆ node:〈〈E〉〉

A generalisation forms a containment relationship between an entity and one or

more other entities. In other words these other entities form disjoint subsets of the

first entity. The production rule for a generalisation is as follows:
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Figure 3.5: The ER schema from Figure 3.4 as represented in the HDM

constraint ER:generalisation:〈〈E ,E1 , · · ·En〉〉 ; ⊥
true ⇒ node:〈〈E1〉〉 ⊆ node:〈〈Emp〉〉
true ⇒ ...

true ⇒ node:〈〈En〉〉 ⊆ node:〈〈Emp〉〉
true ⇒ node:〈〈E1〉〉 6∩ · · · 6∩ node:〈〈En〉〉
true ⇒ node:〈〈E〉〉 = node:〈〈E1〉〉 ∪ · · · ∪ node:〈〈En〉〉

3.2.3 Selected XML Schema Constructs

In this section we present new work that describes how we use AutoMed to

wrap XML documents constrained by a schema expressed in the XML Schema

DDL 2 [TBMM01]. In common with other MMSs that can process XML [MRB03,

KQLL07], we do not model all the XML Schema constructs. We have chosen

constructs that represent the main extensional and constraint constructs of XML

Schema. They are element, attribute, complexType, all, key and keyref.

We will use the XML document and schema shown in Figure 3.6 as our example in

this section. The AutoMed representation of the schema is shown in Figure 3.7.

The schema Sxml allows either <staff> or <dummy> to be root elements, however, as

2Note that when we talk about XML Schema, with a uppercase S, we are referring to the DDL.
An XML schema, with a lowercase s, is a specific instance of a schema expressed in the XML
Schema DDL.
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<xsd:complexType name = "emp_type">

<xsd:all>

<xsd:element name = "name" type = "xsd:string" />

</xsd:all>

<xsd:attribute name = "eid" type = "xsd:int" use = "required"/>

</xsd:complexType>

<xsd:element name = "staff">

<xsd:complexType>

<xsd:all>

<xsd:element name = "dept" maxOccurs = "unbounded">

<xsd:complexType>

<xsd:all>

<xsd:element name = "dname" type = "xsd:string" />

<xsd:element name = "numEmps" type = "xsd:string" minOccurs = "0" />

<xsd:element name = "emp" type = "emp_type"

minOccurs = "0" maxOccurs = "unbounded" />

</xsd:all>

<xsd:attribute name = "did" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

</xsd:all>

</xsd:complexType>

<xsd:key name = "empKey">

<xsd:selector xpath = "staff/dept/emp" />

<xsd:field xpath = "@eid" />

</xsd:key>

</xsd:element>

<xsd:element name = "dummy" />

<staff> &0

<dept did = "100"> &1

<dname>Finance</dname> &2

<numEmps>23</numEmps> &3

<emp eid = "1"> &4

<name>Peter Smith</name> &5

</emp>

</dept>

<dept did = "101"> &6

<dname>HR</dname> &7

<dname>Human Resources</dname> &8

<numEmps>15</numEmps> &9

<emp eid = "21"> &10

<name>Susan Brown</name> &11

</emp>

<emp eid = "14"> &12

<name>Catherine Thomas</name> &13

</emp>

</dept>

<dept did = "102"> &14

<dname>IT</dname> &15

</dept>

</staff>

Figure 3.6: The schema Sxml (top) and an instance Inst1(Sxml) (bottom)
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we are wrapping the instance document and it has <staff> as its root element, we

use this in our schema representation. The empty circles in the figure are attributes,

the filled in circles with arrows attached to them are complex elements and the filled

in circles attached to lines without arrows are simple elements. The dashed rectangle

is a key constraint. We will explain what we mean by complex and simple elements

below.

Figure 3.7: The graphical AutoMed representation of Sxml

We generate the necessary AutoMed schema objects by executing Algorithm 3.1.

It performs a depth first traversal of the XML instance document, starting with the

root element, and creates AutoMed objects based on the schema associated with

the XML instance document. It takes three parameters, an XML element P which

will initially be null, the XML document X we are wrapping, and an AutoMed

schema S that will initially be empty.

Lines 11, 18 and 24 all add objects to the AutoMed schema. The precise objects

they add are described in the production rule definitions given in the rest of this

section (the descriptions being an extension of the definitions given in [MP01]).

Each XML element has a unique object identifier (OID) associated with it, corre-

sponding to its place in its XML instance document. In the bottom part of Fig-

ure 3.6, these OIDs are shown next to the elements. The function getOID(e) returns

the set of OIDs associated with the element e. For example

getOID(complexElement:〈〈staff, dept〉〉)

will return {&1,&6,&14}. Note that we preface each OID with a & to differentiate

these values from data values.
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Algorithm 3.1: xml to automed(Element P, DocumentX, Schema S)

Input: Element P , Document X, Schema S
Output: The AutoMed schema
if P is null then1

Let E[1] := X.root;2

Let n := 1;3

else4

Let E[n] be an array of the child elements of P ;5

for i := 1 to n do6

Let e := E[i];7

Let L be the value for the minOccurs attribute of e;8

Let U be the value for the maxOccurs attribute of e;9

if e is an element of complexType then10

S := S ∪ complexElement:〈〈P, e, L, U〉〉;11

if P is null then12

xml to automed(e,X, S);13

else14

xml to automed(P/e, X, S);15

else if e is an element of simpleType then16

Let D be the data type of e;17

S := S ∪ simpleElement:〈〈P, e,D, L, U〉〉;18

Let A[m] be an array of all the attributes associated with P ;19

for i:=1 to m do20

Let a := A[i];21

Let D be the data type of a;22

Let U be the value for the required attribute of a;23

S := S ∪ attribute:〈〈P, a, D, U〉〉;24

return S ;25
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The exact representation of an XML element in the AutoMed will vary according

to its type. The first type of element we discuss is the complexElement. We use the

term complexElement to describe an element of schema definition is of complexType.

We do this because we are modelling the elements that have been defined to be of

complexType rather than the type itself. Complex types are used to define the hier-

archical structure of an XML document. There are two variations of the construct:

named complexTypes, such as emp type in Figure 3.6, and unnamed complexTypes.

The complexType definition under dept is an unnamed complexType.

A complexElement is written as complexElement:〈〈P, E, L, U〉〉, where P is the XPath

expression of the parent schema object or null if E is the root element. In the

following production rules we use the function sc(P ) to translate any slashes in the

XPath expression of the parent schema object, P , into colons. We do this to maintain

consistency with the naming conventions of the other DDLs in AutoMed. The

production rule for complexElement whose parent element is not null is as follows:

link-nodal xml:complexElement:〈〈P ,E ,L,U 〉〉(x, y) ∧ P is not null ;

node:〈〈sc(P ):E〉〉(y), edge:〈〈 , sc(P ), sc(P ):E〉〉(x, y)
true ⇒ node:〈〈sc(P ):E〉〉¤ edge:〈〈 , sc(P ), sc(P ):E〉〉,

⇒ node:〈〈sc(P ):E〉〉¢ edge:〈〈 , sc(P ), sc(P ):E〉〉
(L ≥ 1) ⇒ node:〈〈sc(P )〉〉¤ edge:〈〈 , sc(P ), sc(P ):E〉〉
(U ≤ 1) ⇒ node:〈〈sc(P )〉〉¢ edge:〈〈 , sc(P ), sc(P ):E〉〉

This type of complexElement is represented in the HDM by an untyped node and

an edge. The remaining lines of the production rule give various cases by which

additional structures are added to the HDM schema depending on the exact def-

inition of the complex element. The second line generates mandatory and unique

constraints because each instance of node:〈〈P :E〉〉 must be associated to exactly one

instance of node:〈〈P 〉〉, i.e. each instance of a complex element must be associated

with exactly one instance of the parent element. The third and fourth lines deter-

mine if a mandatory or unique constraint should be added to the HDM depending

on the cardinality of the element. These are defined by the values of minOccurs and

maxOccurs.

<dept> in Figure 3.6 is a complexElement whose parent is <staff>. The result of

applying the production rule to it is shown below:

xml:complexElement:〈〈staff, dept, 1, unbounded〉〉(x, y) ;

node:〈〈staff:dept〉〉(y), edge:〈〈 , staff, staff:dept〉〉(x, y)
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true ⇒ node:〈〈staff:dept〉〉¤ edge:〈〈 , staff, staff:dept〉〉
⇒ node:〈〈staff:dept〉〉¢ edge:〈〈 , staff, staff:dept〉〉

L = 1 ⇒ node:〈〈staff〉〉¤ edge:〈〈 , staff, staff:dept〉〉

The extent of complexElement:〈〈ce〉〉 is some set of made up values that allow us to

uniquely identify the position of a given instance of the object. Its exact value de-

pends on whether there is a key associated with the complexElement we are modelling

or not. In AutoMed we define this value to be a binary tuple whose first element

is the extent of the parent schema object and the second is either given by the func-

tion getOID(complexElement:〈〈ce〉〉) described above, if there is no key, or the value

of the key object if there is. For example, the extent of complexElement:〈〈staff, dept〉〉
which does not have a key, is {(&0,&1),(&0,&6),(&0,&14)} making the extent of

node:〈〈staff:dept〉〉 {(&1),(&6),(&14)} and of

edge:〈〈 , staff:dept, staff:dept:employee〉〉 {(&0,&1),(&0,&6),(&0,&14)}. The extent

of complexElement:〈〈staff/dept, emp〉〉 which does have a key associated with it is

{(&1,1),(&6,21),(&6,14)}

If the root element of the XML instance document we are wrapping is a complex-

Element, as is the case in our example, it is represented by a single untyped HDM

node with the same name. The cardinality of the root element is always 1..1. The

production rule is as follows:

link-nodal xml:complexElement:〈〈null,E,1,1〉〉(x, y) ; node:〈〈E〉〉(y)

The result of applying the production rule above to the root element of Inst1(Sxml)

is shown below:

xml:complexElement:〈〈null, staff, 1, 1〉〉 ; node:〈〈staff〉〉

The extent of the root element will always be the OID &0, so here the extent of

node:〈〈staff〉〉 is &0.

We call an element, that is not of complex type, a simpleElement. Each simpleEle-

ment that is not the root element is nested inside a parent complexElement. The

production rule is as follows:

link-nodal xml:simpleElement:〈〈P ,E ,D ,L,U 〉〉(x, y) ∧ P is not null ;

node:〈〈sc(P ):E, typeTrans(D, Typesc)〉〉(y), edge:〈〈 , sc(P ), sc(P ):E〉〉(x, y)
true ⇒ node:〈〈sc(P ):E〉〉¤ edge:〈〈 , sc(P ), sc(P ):E〉〉
(L ≥ 1) ⇒ node:〈〈sc(P )〉〉¤ edge:〈〈 , sc(P ), sc(P ):E〉〉
(U ≤ 1) ⇒ node:〈〈sc(P )〉〉¢ edge:〈〈 , sc(P ), sc(P ):E〉〉
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D is the data type of the element and L and U are the values for minOccurs and

maxOccurs respectively. The extent of node:〈〈sc(P ):E〉〉 is the set of values that ap-

pear in the simpleElement. These values can be repeated so, unlike in the production

rule for complexElement, there is no unique constraint between node:〈〈sc(P ):E〉〉 and

edge:〈〈 , sc(P ), sc(P ):E〉〉. The result of applying the production rule to

simpleElement:〈〈staff/dept, dname〉〉 in Fig. 3.6 is shown below:

xml:simpleElement:〈〈staff/dept, dname, string, 1, 1〉〉(x, y) ;

node:〈〈sc(staff/dept):dname, typeTrans(xsd:string, Typesc)(y)〉〉,
edge:〈〈 , sc(staff/dept), sc(staff/dept):dname〉〉(x, y)

true ⇒ node:〈〈sc(staff/dept):dname〉〉¤ edge:〈〈 , sc(staff/dept), sc(staff/dept):dname〉〉
U = 1 ⇒ node:〈〈sc(staff/dept)〉〉¢ edge:〈〈 , sc(staff/dept)sc(staff/dept):dname〉〉

The result of typeTrans(xsd:string,Typesc) is string. If we let I1 = Inst1(Sxml−hdm)

where Sxml−hdm is the schema in Figure 3.8, the extents of the HDM constructs

generated by the rule above are:

ExtSxml−hdm,I1(node:〈〈staff:dept:dname, string〉〉) = {(Finance),(HR)}
ExtSxml−hdm,I1(edge:〈〈 , staff:dept, staff:dept:dname〉〉)=
{(&1,Finance),(&6,HR),(&6,Human Resources)}

If the root element is a simpleElement we use the following production rule to trans-

late it into the HDM:

link-nodal xml:simpleElement:〈〈null,E,D,L,U〉〉(x, y) ; node:〈〈E, typeTrans(D, Typesc)〉〉(y)

If the root element of the XML instance document is a simpleElement it is represented

by a single typed HDM node with the same name.

XML attributes are represented in a similar manner to simpleElements. The produc-

tion rule is as follows:

link-nodal xml:attribute:〈〈P ,A,D ,U 〉〉(x, y) ;

node:〈〈sc(P ):A, typeTrans(D,Typesc)〉〉(y), edge:〈〈 , sc(P ), sc(P ):A〉〉(x, y)
true ⇒ 〈〈sc(P):A〉〉¤ 〈〈 , sc(P), sc(P):A〉〉, 〈〈sc(P)〉〉¢ 〈〈 , sc(P), sc(P):A〉〉
(U = required) ⇒ 〈〈sc(P)〉〉¤ 〈〈 , sc(P), sc(P):A〉〉

A is the name of the attribute and U is the XML Schema use attribute. Note that

since each attribute can only have one parent instance, there is always a unique

constraint between node:〈〈sc(P )〉〉 and edge:〈〈 , sc(P ), sc(P ):A〉〉. The only variation

in the mapping depends on the presence of an XML Schema use attribute, which if

set to required would imply the presence of a mandatory constraint between the
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HDM node representing the element, and the edge to the node. For example, the

result of applying the production rule to the did attribute in Figure 3.6 is shown

below

xml:attribute:〈〈staff/dept, did, xsd:int, required〉〉(x, y) ;

node:〈〈sc(staff/dept):did, typeTrans(xsd:int,Typesc)(y)〉〉,
edge:〈〈 , sc(staff/dept), sc(staff/dept):did〉〉(x, y)

true ⇒ node:〈〈sc(staff/dept):did〉〉¤ edge:〈〈 , sc(staff/dept), sc(staff/dept):did〉〉
⇒ node:〈〈sc(staff/dept):did〉〉¢ edge:〈〈 , sc(staff/dept), sc(staff/dept):did〉〉

U = required ⇒ node:〈〈sc(staff/dept)〉〉¤ edge:〈〈 , sc(staff/dept), sc(staff/dept):did〉〉

The result of typeTrans(xsd:int,Typesc) is integer.

The key and keyref constructs in XML Schema are constraint constructs. As we

stated above, if there is a key associated with a complexElement then the extent of

that complexElement is the extent of the key object. This allows us to create the

following production rule for key:

constraint xml:key:〈〈K , S ,F 〉〉 ; ⊥
true ⇒ 〈〈sc(S )〉〉 id→ 〈〈 , sc(S ), sc(S ):F 〉〉

Where K is the name of the key, S the selector, which will be a complexElement

and F the field of the key definition which will be the key object whose extent the

complexElement referenced in S takes. If F is an attribute then we ignore the ‘@’ at

the beginning of the attribute name.

The expansion of the production rule for the key construct in Figure 3.6 is shown

below

xml:key:〈〈employeeKey, staff/dept/emp, eid〉〉 ; ⊥
true ⇒ node:〈〈sc(staff/dept/emp)〉〉 id→ edge:〈〈 , sc(staff/dept/emp), sc(staff/dept/emp):eid〉〉

The keyref construct behaves in a similar way to an SQL foreign key and translates

to an inclusion constraint in the HDM. We limit ourselves to keyref objects link a

single pair of constructs.

constraint xml:keyref:〈〈KR,KS ,KF , S ,F 〉〉 ; ⊥
true ⇒ 〈〈sc(S ):F 〉〉 ⊆ 〈〈sc(KS ):KF 〉〉

KR is the name of the keyref, KS is the selector of the key construct this keyref

refers to, and KF the field. S and F are the selector and field of the keyref itself.
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Figure 3.8: Shdm−xml

There are no examples of keyref constructs in our schema.

Figure 3.8 shows the full HDM representation of the XML Schema in Figure 3.6.

3.2.4 Selected RDFS constructs

In this section we present new work that describes how selected RDFS [BG04]

constructs can be modelled in the HDM. RDFS is the schema language for RDF

which was created as the foundation language for the Semantic Web [BLHL01].

RDF allows us to make statements about resources on the web. Each statement

contains the following three parts:

the subject identifies the resource or literal about which the statement is made

the predicate defines the relationship between the subject and the object of the

statement

the object represents a resource or literal which is the ‘target’ of the predicate

As an example, assume the URI, http://www.acme.com/staff/ps203.html, points

to Peter Smith’s home page and acts as a unique id for him, and that the predi-
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Figure 3.9: An RDF representation of a person’s name

staffdef:Emp rdf:type rdfs:Class .

staffdef:Dept rdf:type rdfs:Class .

staffdef:hasName rdf:type rdf:Property .

staffdef:hasName rdfs:domain staffdef:Emp .

staffdef:hasName rdfs:range xsd:string .

staffdef:hasId rdf:type rdf:Property .

staffdef:hasId rdfs:domain staffdef:Emp .

staffdef:hasId rdfs:range xsd:int .

staffdef:hasDept rdf:type rdf:Property .

staffdef:hasDept rdfs:domain staffdef:Emp .

staffdef:hasDept rdfs:range staffdef:Dept .

staffdef:hasDid rdf:type rdf:Property .

staffdef:hasDid rdfs:domain staffdef:Dept .

staffdef:hasDid rdfs:range xsd:int .

staffdef:hasNumEmps rdf:type rdf:Property .

staffdef:hasNumEmps rdfs:domain staffdef:Dept .

staffdef:hasNumEmps rdfs:range xsd:int .

staffdef:hasDname rdf:type rdf:Property .

staffdef:hasDname rdfs:domain staffdef:Dept .

staffdef:hasDname rdfs:range xsd:string .

Figure 3.10: Srdfs, a representation of the SQL schema from Figure 2.1 in RDFS

cate http://www.acme.com/staffdef/hasName is used to indicate the name of an

employee. We can make the following statement about Peter Smith using an RDF

triple:

Peter’s name is Peter Smith :

(http://www.acme.com/staff/ps01.htm1,

http://www.acme.com/staffdef/hasName, Peter Smith)

RDF can also be shown in a graphical format. Figure 3.9 shows the statement above

represented graphically.

RDFS [BG04] is the DDL for RDF. It provides constructs to describe the subjects,

objects and predicates in a RDF document as well as relationships between them.

The subject and object components of an RDF triple are declared as rdfs:class

constructs in RDFS. We model classes as nodes in the HDM, as shown in the fol-
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staffinst:http://www.acme.com/staff/ps01.htm1 rdf:type staffdef:Emp

staffinst:http://www.acme.com/staff/sb21.htm1 rdf:type staffdef:Emp

staffinst:http://www.acme.com/staff/ct14.htm1 rdf:type staffdef:Emp

staffinst:http://www.acme.com/dept/finance.htm1 rdf:type staffdef:Dept

staffinst:http://www.acme.com/dept/hr.htm1 rdf:type staffdef:Dept

staffinst:http://www.acme.com/staff/ps01.htm1 staffdef:hasName Peter Smith

staffinst:http://www.acme.com/staff/sb21.htm1 staffdef:hasName Susan Brown

staffinst:http://www.acme.com/staff/ct14.htm1 staffdef:hasName Catherine Thomas

staffinst:http://www.acme.com/dept/finance.htm1 staffdef:hasDid 100

staffinst:http://www.acme.com/dept/finance.htm1 staffdef:hasDid 101

staffinst:http://www.acme.com/dept/finance.htm1 staffdef:hasDName Finance

staffinst:http://www.acme.com/dept/finance.htm1 staffdef:hasDName HR

staffinst:http://www.acme.com/dept/finance.htm1 staffdef:hasNumEmps 23

staffinst:http://www.acme.com/dept/finance.htm1 staffdef:hasNumEmps 15

staffinst:http://www.acme.com/staff/ps01.htm1 staffdef:hasDept

staffinst:http://www.acme.com/dept/finance.htm1

staffinst:http://www.acme.com/staff/sb21.htm1 staffdef:hasDept

staffinst:http://www.acme.com/dept/hr.htm1

staffinst:http://www.acme.com/staff/ct14.htm1 staffdef:hasDept

staffinst:http://www.acme.com/dept/hr.htm1

Figure 3.11: Inst1(Srdfs)

lowing production rule:

nodal rdfs:class:〈〈C 〉〉(x) ; node:〈〈C〉〉(x)

For example rdfs:class:〈〈staffdef : Emp〉〉 in Figure 3.10 will generate

node:〈〈staffdef:Emp〉〉. In the figure we abbreviate the namespace,

http://www.acme.com/staffdef#, to staffdef. The extent of a class is the subject

component of any rdf:type predicates whose object matched the class name. If we

let I1 = Inst1(Srdfs) in Figure 3.11 then

ExtSrdfs,I1(class:〈〈staffdef : Emp〉〉) =

{staffinst:http://www.acme.com/staff/ps01.htm1,
staffinst:http://www.acme.com/staff/sb21.htm1,

staffinst:http://www.acme.com/staff/ct14.htm1}

Here the namespace http://www.acme.com/staffinstances# is abbreviated as

staffinst.

One can define subclass relationships between classes in RDFS. They are represented

in the HDM by the inclusion constraint, as shown in the production rule below:
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constraint rdfs:subClassOf:〈〈Csub ,C 〉〉 ; ⊥
true ⇒ node:〈〈Csub〉〉 ⊆ node:〈〈C〉〉

rdfs:Resource is a superclass of all RDFS classes. It is represented in the HDM

as node:〈〈Resource〉〉, which is present in all HDM schemas that represent an RDFS

schema.

rdfs:Literal is the class of all literal values such as integers and strings. Lit-

erals in RDFS can be plain or typed and are modelled by a single node called

node:〈〈rdfs:Literal〉〉 in the HDM, which is always present in the same way as

node:〈〈rdfs:Resource〉〉 is. The permissible types in RDFS are the datatypes defined

for XML Schema [BM04].

The predicates in an RDF triple are described in RDFS by the property construct.

It defines a binary predicate, P (x, y). There are two types of properties in RDFS:

object properties which are relations whose range is an object class or is unde-

fined

datatype properties which are relations whose range is a datatype

As both of these depend on the existence of the classes and/or data types they link,

we represent them in the HDM as link constructs.

An object property links two classes. The first argument of the predicate is a mem-

ber of an object class which may be defined to be the domain class of the property.

The second is a member of an object class which may be defined to be the range class.

If the domain of a property is not specified, it is assumed to be node:〈〈rdfs:Resource〉〉.
If the range is not specified it is assumed to be node:〈〈rdfs:Resource〉〉.

A datatype property, with range D, states that the value of the property, i.e. the

range, is a subset of the values allowed by the datatype D. Permissible datatypes

include RDF literals and XML Schema datatypes. The individuals in a datatype

class are members of the sets defined for the equivalent XML Schema datatype or

a set of RDF literals. Datatype properties essentially assign a data type to a class.

We represent this in the HDM by assigning a type to the HDM node representing

the class. We discuss how we translate high level datatypes such as this into the

HDM in Chapter 4.
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The production rules for object properties in RDFS are as follows, where CD is the

domain class of the property and CR the range class:

link rdfs:property:〈〈P ,CD ,CR〉〉(x, y) ; edge:〈〈P, CD, CR〉〉(x, y)

link rdfs:property:〈〈P ,null ,CR〉〉(x, y) ; edge:〈〈P, rdfs:Resource, CR〉〉(x, y)

link rdfs:property:〈〈P ,CD ,null〉〉(x, y) ; edge:〈〈P,CD, rdfs:Resource〉〉(x, y)

link rdfs:property:〈〈P ,null ,null〉〉(x, y) ; edge:〈〈P, rdfs:Resource, rdfs:Resource〉〉(x, y)

The production rules for a datatype property are:

link rdfs:property:〈〈P ,CD ,DataType〉〉(x, y) ; edge:〈〈P, CD, rdfs:Literal〉〉(x, y)

link rdfs:property:〈〈P ,null ,DataType〉〉(x, y) ; edge:〈〈P, rdfs:Resource, rdfs:Literal〉〉(x, y)

Below are the production rules for the staffdef:hasDept and staffdef:hasName prop-

erties in Figure 3.10. As in the case of XML Schema, we translate any slashes in

the names of the properties or classes into colons.

rdfs:property:〈〈staffdef:hasDept, staffdef:Emp, staffdef:Dept〉〉(x, y) ;

edge:〈〈staffdef:hasDept, staffdef:Emp, staffDef:Dept〉〉(x, y)

rdfs:property:〈〈staffdef:hasName, staffdef:Emp, xsd:string〉〉(x, y) ;

edge:〈〈staffdef:hasName, staffdef:Emp, rdfs:Literal〉〉(x, y)

Given the instance in Figure 3.11, the extent of

property:〈〈staffdef:hasDept, staffdef:Emp, staffdef:Dept〉〉 is

{(staffinst:http://www.acme.com/staff/ps01.htm1,
staffinst:http://www.acme.com/dept/finance.htm1),

(staffinst:http://www.acme.com/staff/sb21.htm1,

staffinst:http://www.acme.com/dept/hr.htm1),
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(staffinst:http://www.acme.com/staff/ct14.htm1,

staffinst:http://www.acme.com/dept/hr.htm1)}

The rdfs:subPropertyOf construct defines a predicate whose tuples are a subset

of those of the parent property. It is modelled in the HDM using an inclusion

constraint, as shown in the following production rule:

constraint rdfs:subPropertyOf:〈〈Psub ,CD ,CR〉〉 ; ⊥
true ⇒ edge:〈〈Psub, CD, CR〉〉 ⊆ edge:〈〈P, CD, CR〉〉

We have no instances of rdfs:subProperty constructs in our example.

Figure 3.12 shows the HDM representation of the RDF schema in Figure 3.10.

Figure 3.12: An HDM representation of the RDFS schema in Figure 3.10

There are other RDFS constructs that allow users to specify the class that a specific

individual is a member of and add labels and comments to a schema that we do not

model in the HDM at present. There are also constructs that allow the representa-

tion of containers in RDFS. We do not explicitly model these but the functionality

they provide is also provided by the IQL query language [JTMP03] that is part of

the AutoMed system.
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3.3 Mapping and Transformation Language

In the previous section we saw how AutoMed allows us to express schemas from

a wide range of high level DDLs. In this section we describe a declarative language

that allows us to define mappings and transformations between those schemas and

their instances.

We use the schema transformations technique Both-As-View (BAV) [MP03], as

the mapping and transformation language for our MMS framework. BAV uses a

DDL independent combination of primitive transformations to create and remove

schema objects, and a query language that can be applied to any AutoMed schema

object to specify the instances of those objects. This allows us to create target

schemas made up of objects expressed in any DDL supported by AutoMed.

A transformation in BAV is made up of a sequence of bidirectional primitive trans-

formations that together describe how instances of each schema object in the target

schema are derived from instances of schema objects in the source schema and vice

versa. Each primitive transformation either adds, deletes or renames a single schema

object (such as a single SQL column, SQL primary key definition, XML element,

HDM node etc), thereby incrementally generating a new schema from an old schema.

The scheme of each new object must be different from those of the existing objects in

the schema so that we can uniquely identify each object. The extent of the schema

object being added or deleted is defined as a complete or partial query on the ex-

tents of the existing schema objects. The sequence of transformations is called a

pathway. It is important to note that the schemas created during the execution of

a BAV pathway are intensional and are not intended to be materialised, so do not

place too heavy a burden on the system. Only the target schema at the end of a

pathway is ever materialised.

In this thesis a BAV pathway has two distinct phases. We first execute transforma-

tions that add target objects to the source schema. This is called the growth phase

of the pathway. At the end of the growth phase the schema created will have all the

schema objects of the source and target schemas. We then execute transformations

to remove the source objects from this schema. This is called the shrinking phase

of the pathway.

The queries in the growth phase of a pathway describe the target objects in terms of

source objects while in the shrinking phase, the queries provide a description of the

source schema objects in terms of target objects. These two phases of the pathway



3.3. Mapping and Transformation Language 100

are equivalent to GAV and LAV mappings as described in the previous chapter. At

present only GAV query reformulation is implemented in AutoMed [Zam08].

The primitive BAV transformations are defined below. In the definitions, s is an

AutoMed schema object and q the query that specifies the extent of s.

1. add(〈〈s〉〉,q): When applied to a schema S this transformation generates a new

schema S ′ that differs from S by having a new object 〈〈s〉〉. The query q

specifies the extent of 〈〈s〉〉 in terms of the existing object in S. If 〈〈s〉〉 is a

constraint then q is omitted.

2. delete(〈〈s〉〉,q): This transforms S into schema S ′ that differs from S in that

a object 〈〈s〉〉 is missing. The query q specifies the extent of the object to be

removed in terms of the remaining objects in S. This allows us to recover the

extent of 〈〈s〉〉. delete is the inverse of the add transformation. If we start with

S and perform an add(〈〈s〉〉,q) and then a delete(〈〈s〉〉,q) we will end up with S

again. As above if s is a constraint q is omitted.

3. rename(〈〈s〉〉,〈〈s’〉〉): Given S this transformation creates S ′ that has a new ob-

ject with scheme 〈〈s’〉〉 but is missing the object 〈〈s〉〉. rename is its own inverse

i.e. if we start with S a rename(〈〈s〉〉,〈〈s’〉〉) followed by a rename(〈〈s’〉〉,〈〈s〉〉) will

get us back to S.

4. extend(〈〈s〉〉,Range ql qu): When applied to schema S this produces a new

schema S ′ that differs from S in that there is a new object 〈〈s〉〉. The minimum

extent of 〈〈s〉〉 is given by the query ql and may take the special value Void if,

for all I, no values in ExtS′,I(〈〈s〉〉) can be derived from S. The maximum

extent of 〈〈s〉〉 is given by qu which may take the special value Any if, for all I,

no limit on ExtS′,I(〈〈s〉〉) can be derived from S.

5. contract(〈〈s〉〉,Range ql qu): This is the inverse of extend. Given S it produces

S ′ that differs from S in that a object 〈〈s〉〉 is missing. The queries ql and qu

have the same meaning as for extend.

6. ident(S,S’,os): This transformation creates a pathway between two schemas

with identical schema objects and allows us to link two data sources. The os

parameter allows us to set different operational semantics for the transforma-

tion [JTMP04] which determines how the extent of an object in S or S ′ is

calculated if the extent contains values from both data sources. In this thesis

we use union semantics which means a value will be returned if it appears in

either of the data sources.
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Each successful transformation t is reversible by a transformation t−1. For example

the transformation add(〈〈s〉〉, q) can be reversed by delete(〈〈s〉〉, q).

It is important to note that if there is no delete or contract transformation for an

object in the source schema that object will still be present, unchanged, in the target

schema.

The add, delete and rename transformations are examples of exact transforma-

tions [Len02]. If the new schema we create with the transformation is S ′, the schema

object is s and the result of the query in the transformation for instance I is q(I),

then the logical semantics of add, delete and rename are as follows:

∀I.ExtS′,I(〈〈s〉〉) = q(I)

The extend and contract transformation on the other hand change the information

capacity of the schema. After an extend the information capacity of S ′ will be greater

than S and after a contract it will be less. If ql(I) represents a lower bound on the

extent of 〈〈s〉〉 and qu(I) an upper bound then the semantics of extend and contract

are:

∀I.ql(I) ⊆ ExtS′,I(〈〈s〉〉) ⊆ qu(I)

If we are unable to place a lower bound on the extent of 〈〈s〉〉, ql(I) is replaced by the

keyword Void; similarly if we are unable to place an upper bound on the extent of

〈〈s〉〉, qu(I) is replaced by the keyword Any. Table 3.1 shows the information capacity

of the primitive transformations when applied to the HDM constructs we described

in Section 3.1. Note that we do not apply the contract or extend primitives to

constraint constructs as these do not have extents and so there is no need to be able

to define upper and lower bound queries. This applies to any constraint construct

in AutoMed.

If we have queries defining both the upper and lower bounds of the new schema we

have a complete transformation. If we only have a lower bound the transforma-

tion is sound [Len02].

The embedded queries q, ql and qu can be expressed in any query language, for in-

stance the DDL specific languages SQL or XPath. In the AutoMed MMS we use

the Intermediate Query Language (IQL) [JTMP03], a typed comprehension-

based functional language based on FPL [PS93]. This offers clean semantics and
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Primitive Transform Reverse Transformation Conditions Info
S → S′ S′ → S on S, S′ capacity
add(node:〈〈n〉〉,q) delete(node:〈〈n〉〉,q) 〈〈n〉〉 6∈ Nodes, 〈〈n〉〉 ∈ Nodes′ S ≡ S′

add(edge:〈〈e〉〉,q) delete(edge:〈〈e〉〉,q) 〈〈e〉〉 6∈ Edges, 〈〈e〉〉 ∈ Edges′ S ≡ S′

add(cons:〈〈c〉〉) delete(cons:〈〈c〉〉) 〈〈c〉〉 6∈ Cons, 〈〈c〉〉 ∈ Cons′ S ≡ S′

rename(node:〈〈n〉〉, rename(node:〈〈n′〉〉, 〈〈n〉〉 ∈ Nodes, 〈〈n〉〉 6∈ Nodes′ S ≡ S′

node:〈〈n′〉〉) node:〈〈n〉〉) 〈〈n ′〉〉 6∈ Nodes, 〈〈n ′〉〉 ∈ Nodes′

rename(edge:〈〈e〉〉, rename(edge:〈〈e′〉〉, 〈〈e〉〉 ∈ Edges, 〈〈e〉〉 6∈ Edges′ S ≡ S′

edge:〈〈e′〉〉) edge:〈〈e〉〉) 〈〈e ′〉〉 6∈ Edges, 〈〈e ′〉〉 ∈ Edges′

extend(node:〈〈n〉〉,ql,qu) contract(node:〈〈n〉〉,ql,qu) 〈〈n〉〉 6∈ Nodes, 〈〈n〉〉 ∈ Nodes′ S ⊂ S′

extend(edge:〈〈e〉〉,ql,qu) contract(edge:〈〈e〉〉,ql,qu) 〈〈e〉〉 6∈ Edges, 〈〈e〉〉 ∈ Edges′ S ⊂ S′

Table 3.1: BAV primitive transformations for HDM schema S =
〈Nodes, Edges, Cons〉 to generate new schema S ′ = 〈Nodes′, Edges′, Cons′〉.

the ability to represent the type of query one finds in many DDL specific lan-

guages [BLS+94]. Using IQL allows us to express inter-schema properties across

different DDLs. A full discussion of IQL is unnecessary for this thesis, but we de-

scribe the features we need below (detailed information about the language can be

found in [Zam08]).

IQL supports list, bag and set semantics, allowing us to represent queries from a

wide range of high level query languages. It allows the use of the keyword distinct

in front of a query to remove duplicates. We assume a set based representation for

the instances in our schemas so we use this distinct keyword to enforce this when

necessary.

IQL queries are comprehensions of the form [h | q1; . . . ; qn], where h is an expression

termed the head and q1; . . . ; qn where n > 0, are qualifiers. The result of the

query can be found in the head. A qualifier may be either a filter or a generator.

Generators are of the form p ← e and iterate a pattern p over an expression e.

Filters are boolean-valued expressions that act as filters on the variable instantiations

generated by the generators of the comprehension.

The following is an example of a comprehension that returns the employee id and

names of the employees in Figure 3.2, who work in the finance department. In all

the mappings, transformations and queries in this section we will only use the key

scheme of the schema objects.

[{e,n} | {e,n} ← column:〈〈Emp, name〉〉; {e, d} ← column:〈〈Emp, dept〉〉;
{d , d} ← column:〈〈Dept, did〉〉; {d , dn} ← column:〈〈Dept, dname〉〉; dn = ‘Finance’]

The generators in the query iterate their patterns over the extents of the respective

columns. These results are filtered by dn = ‘Finance’ to give the final instantiation
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of the variables in the head as [{1,‘Peter Smith’}].

If we have a query that contains a single generator whose pattern exactly matches

the head then we abbreviate the query to be just the expression. For example

[{e, n} | {e, n} ← column:〈〈Emp, name〉〉] can be abbreviated to column:〈〈Emp, name〉〉.

We now describe an example that shows how a BAV transformation pathway can

be used to restructure an XML document.

Assume we start with the following schema (we will only include the key scheme of

the schema objects for bevity):

Sstaff = {xs:complexElement:〈〈null, staffByEmp〉〉, xs:complexElement:〈〈staffByEmp, Emp〉〉,
xs:attribute:〈〈staffByEmp/Emp, eid〉〉, xs:simpleElement:〈〈staffByEmp/Emp, dept〉〉}

We now apply the following transformation pathway that includes the function gen-

erateGID. generateGID acts like a Skolem function in that it generates unique iden-

tifiers which we will call Skolem values from now on. It takes four parameters:

schemaName, sid, a list of data values and an arbitrary string value. We set the

schemaName parameter to be the source schema if we use a generateGID in the

growth phase of a pathway, and the name of the target schema if we use a gener-

ateGID in the shrinking phase. The value of sid is stored in a hashmap and can be

recovered by using the generateSID function [KM05]. We do not make use of the

value in this thesis so the value of this parameter can be any variable that appears

in the pattern of the one of the generators in the query. The third parameter is

the list of data values upon which the Skolem values will be based. These will be

values that can be used to identify the tuples in the object being created, such as a

key value or an OID. The final parameter will generally be the name of the schema

object we are adding or removing. The same set of parameters given to generateGID

will always create the same set of unique values, a different set of parameters will

always create a different set of values.
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1 add(complexElement:〈〈null, staffByDept〉〉, complexElement:〈〈null, staffByEmp〉〉)
2 add(complexElement:〈〈staffByDept, Dept〉〉, [{x , doid} | {x} ← complexElement:〈〈null, staffByEmp〉〉;

{eoid , d} ← simpleElement:〈〈staffByEmp/Emp, dept〉〉;
doid ← generateGID(S, d, [d], ‘Dept’)])

3 add(attribute:〈〈staffByDept/Dept, did〉〉,
[{doid , d} | {eoid , d} ← simpleElement:〈〈staffByEmp/Emp, dept〉〉;
doid ← generateGID(S, d, [d], ‘Dept’)])

4 add(complexElement:〈〈staffByDept/Dept,Emp〉〉,
[{doid , eoid} | {eoid , e} ← complexElement:〈〈staffByEmp, Emp〉〉;
{eoid , d} ← simpleElement:〈〈staffByEmp/Emp, dept〉〉;
doid ← generateGID(S, d, [d], ‘Dept’)])

5 add(attribute:〈〈staffByDept/Dept/Emp, eid〉〉, attribute:〈〈staffByEmp/Emp, eid〉〉)
6 delete(xs:simpleElement:〈〈staffByEmp/Emp, dept〉〉,

[{eoid , did} | {doid , eoid} ← complexElement:〈〈staffByDept/Dept, Emp〉〉;
{doid , did} ← attribute:〈〈staffByDept/Dept, did〉〉])

7 delete(attribute:〈〈staffByEmp/Emp, eid〉〉, attribute:〈〈staffByDept/Dept/Emp, eid〉〉)
8 delete(xs:complexElement:〈〈staffByEmp/Emp〉〉,

[{x , eoid} | {eoid , e} ← attribute:〈〈staffByDept/Dept/Emp, eid〉〉;
{x} ← xs:complexElement:〈〈null, staffByDept〉〉])

9 delete(xs:complexElement:〈〈null, staffByEmp〉〉, xs:complexElement:〈〈null, staffByDept〉〉)

will create this schema:

S′staff = {xs:complexElement:〈〈null, staffByDept〉〉, xs:complexElement:〈〈staffByDept, Dept〉〉,
xs:attribute:〈〈staffByDept/Dept, did〉〉, xs:complexElement:〈〈staffByDept/Dept, Emp〉〉,
xs:attribute:〈〈staffByDept/Dept/Emp, eid〉〉}

Figure 3.13: XML schemas restructured using a BAV pathway

The two schemas are shown in Figure 3.13. Each transformation creates a new

schema. For example, Transformation 1 creates a schema that differs from S in

that there is a new schema object complexElement:〈〈null, staffByDept〉〉. The extent

of the new schema object is defined exactly by complexElement:〈〈null, staffByEmp〉〉
so we use an add transformation. This query is in terms of existing schema ob-
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jects and so does not change the information capacity of the newly created schema.

Transformations 2 to 5 similarly create intermediate schemas that have equiva-

lent information capacity. Together transformations 1 to 5 make up the growth

phase of the pathway. The remaining transformations remove the old schema ob-

jects one at a time to leave us with just the target schema. The queries associated

with these transformations are used by the query processor to answer queries posed

in the target schema.

The queries in Transformations 1 to 5 provide a GAV description of the target

schema. A conjunction of the queries in these transformations together describe

the instances of the target schema in terms of the source. On the other hand the

queries in Transformations 6 to 9 provide a LAV description. The queries in these

transformations describe instances of the source schema in terms of the target.

Recall that the extent of a complexElement that does not have a key construct

associated with it is not a data value but rather a synthetic value used to uniquely

identify the object in XML document hierarchy. In Transformations 2 to 4 we

use generateGID to create the required unique identifiers for the new

complexElement:〈〈staffByDept, Dept〉〉 object in the target schema.

To get unique identifiers for instances of complexElement:〈〈staffByDept/Dept, Emp〉〉
we use the values from complexElement:〈〈staffByEmp, Emp〉〉 as we know there is a

unique value for each instance of the object.

Executing the transformations above in AutoMed for the following XML docu-
ment:

<staffByEmp> &0

<Emp eid="1"> &1

<dept>6</dept> &2

</Emp>

<Emp eid="2"> &3

<dept>6</dept> &4

</Emp>

<Emp eid="3"> &5

<dept>10</dept> &6

</Emp>

<Emp eid="4"> &7

<dept>12</dept> &8

</Emp>

</staffByEmp>
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gives these extents for the newly created schema objects, where I1 is the instance of

the target schema that corresponds to the source instance above:3

ExtS′staff ,I1(complexElement:〈〈staffByDept, Dept〉〉) = {(&0,#1001),(&0,#1002),(&0,#1003)}
ExtS′staff ,I1(attribute:〈〈staffByDept/Dept, did〉〉) = {(#1001,6),(#1001,6),(#1002,10),(#1003,12)}
ExtS′staff ,I1(complexElement:〈〈staffByDept/Dept, Emp〉〉) =

{(#1001,&1),(#1001,&3),(#1002,&5),(#1003,&7)}
ExtS′staff ,I1(attribute:〈〈staffByDept/Dept/Emp, eid〉〉) = {(&1,1),(&3,2),(&5,3),(&7,4)}

If the extent of a schema object contains Skolem values as described above, and it

exists in the source or target data source, the Skolem values may be post processed

by the IQL query processor to unify them with any corresponding data values that

may exist.

If S ′staff is materialised, as shown below, and becomes a data source in our pathway

then any query on complexElement:〈〈staffByDept, Dept〉〉 that uses that data source

will return with the OIDs from the newly materialised XML instance document

rather than the Skolem values. Similarly queries on

complexElement:〈〈staffByDept/Dept, Emp〉〉 will return the OIDs from the target schema.

<staffByDept> &0

<Dept did="6"> &1

<Emp eid="1" /> &2

<Emp eid="2" /> &3

</Dept> &4

<Dept did="10"> &5

<Emp eid="3" /> &6

</Dept>

<Dept did="12"> &7

<Emp eid="4" /> &8

</Dept>

</staffByDept>

The relationship between the extents of the complexElements generated by the path-

way and those in the materialised target schema are shown in Table 3.2. The value

generated by the pathway is on the LHS and the value from the materialised target

schema is on the RHS of the arrow.

3We preface Skolem values with # in the same way as we preface the OIDs in an XML instance
with &, to differentiate them from data values
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〈〈staffByDept/Dept, Emp〉〉 〈〈staffByDept, Dept〉〉
&1 → &2 #1001 → &1
&3 → &3 #1002 → &5
&5 → &6 #1003 → &7
&7 → &7

Table 3.2: Post processing Skolem values

3.3.1 Translating High Level Schemas into HDM using BAV

In this section we describe the function HLtoHDM(S), implemented in our MMS,

that executes the production rules described in Section 3.2, using the BAV trans-

formations described above, to translate a high level schema into the HDM.

Each production rule specifies the HDM constructs that should be created as well

as the extent of the objects. We first translate nodal constructs. These production

rules are of the form

nodal DDL:c:〈〈so〉〉(x) ; node:〈〈so〉〉(x)

Each of these rules generates a single BAV transformation:

add(node:〈〈so〉〉,c:〈〈so〉〉)

We next translate link-nodal constructs. These have production rules of the general

form:

link-nodal DDL:c:〈〈so1 , so2 〉〉(x, y) ;

node:〈〈so2:so2〉〉(y), edge:〈〈 , so1, so1:so2〉〉(x, y)

true ⇒ node:〈〈so1:so2〉〉¤ edge:〈〈 , so1, so1:so2〉〉

As we have seen there may also be other parameters such as a data type and labels

that determine whether or not constraints should be added. We include a constraint

in this example to illustrate the adding of constraints but there need not always be a

constraint added as part of a link-nodal production rule. Each high level link-nodal

object is translated into an HDM node and edge and possibly some constraints. The

BAV transformations are as follows:

add(node:〈〈so1:so2〉〉,distinct [{y} | {x , y} ← c:〈〈so1, so2〉〉])
add(edge:〈〈 , so1, so1:so2〉〉,distinct c:〈〈so1, so2〉〉)
add(mandatory:(node:〈〈so1:so2〉〉, so1:so2))
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There may be additional transformations to add more constraints if the production

rule calls for it.

Next we translate link structures which have production rules of the general form:

link DDL:c:〈〈label , so1 , so2 〉〉( ~xn) ; edge:〈〈label, so1, son〉〉( ~xn)

This generates the following transformation:

add(edge:〈〈label, so1, so2〉〉,distinct c:〈〈label, so1, so2〉〉)

Again there may be additional parameters and constraints which we leave out here

as they are created in the same way as they are for link-nodal constructs.

Finally we translate any constraint structures. Each one specifies exactly the HDM

constraints to be added in the same way as the second line of the link-nodal example

did above.

At the end of this process HLtoHDM(S) returns a pathway that describes how S is

translated into the HDM.

3.3.2 Composite BAV Transformations

Each BAV transformation step only changes one schema object so a large number

of transformations are needed for most operations. To avoid the need to programme

each transformation step separately, information preserving composite transfor-

mations (CTs) can be defined that are template transformation pathways, describ-

ing common patterns of transformation steps. A number of CTs that we use in this

thesis are defined in [BM05]. The pathways that create these transformations can

be composed allowing us to use a sequence of CTs to perform complex transforma-

tions. As with all BAV pathways each CT has an automatically derivable inverse.

CTs are most commonly used when translating schemas from one DDL to another,

as we will see in Chapter 5.

Two examples CTs from [BM05] are shown in Figure 3.14. inclusion expand (go-

ing from left to right in the figure) and its inverse inclusion merge are shown in

Figure 3.14 (a) and um redirection, which is its own inverse, in Figure 3.14 (b).

inclusion merge allows us to merge node:〈〈A〉〉 and node:〈〈B〉〉 together, where the

extent of node:〈〈A〉〉 is a subset of the extent of node:〈〈B〉〉 and there is a mandatory
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constraint from node:〈〈A〉〉 to edge:〈〈 , A, C〉〉. As there may be values in the extent of

node:〈〈B〉〉 that do not appear in edge:〈〈 , A, C〉〉 we drop the mandatory constraint

while performing an inclusion merge, we also redirect any edges and constraints on

node:〈〈A〉〉 to node:〈〈B〉〉. Conversely, inclusion expand allows us to create a new

node:〈〈A〉〉 whose extent contains only those values from node:〈〈B〉〉 that are in the

extent of edge:〈〈 , B, C〉〉. We create a new edge from node:〈〈C〉〉 to node:〈〈A〉〉 and

add a mandatory constraint from node:〈〈A〉〉 to edge:〈〈 , B, C〉〉. We link node:〈〈A〉〉
and node:〈〈B〉〉 with an inclusion constraint.

um redirection allows us to move edge:〈〈 , A, C〉〉 from node:〈〈A〉〉 to node:〈〈B〉〉 be-

cause both node:〈〈A〉〉 and node:〈〈B〉〉 have a unique and mandatory constraint on

the common edge edge:〈〈 , A, B〉〉. These constraints together are equivalent to stat-

ing that there is a one to one correspondence between the values in node:〈〈A〉〉 and

node:〈〈B〉〉 so whatever is related to a value of node:〈〈A〉〉 through edge:〈〈 , A, C〉〉 is

equally related to the corresponding value in node:〈〈B〉〉.

Algorithm 3.2: expand multi value(Schema S, edge:〈〈 , A, B〉〉,String T)

S′ := S.add(node:〈〈T 〉〉,edge:〈〈 , A, B〉〉)1

S′ := S′.add(node:〈〈T :A〉〉,[{x} | {x, y} ← edge:〈〈 , A, B〉〉])2

S′ := S′.add(edge:〈〈 , T, T :A〉〉,[{{x, y}, x} | {x, y} ← edge:〈〈 , A, B〉〉])3

S′ := S′.add(edge:〈〈 , T, B〉〉,[{{x, y}, y} | {x, y} ← edge:〈〈 , A, B〉〉])4

S′ := S′.add(subset:(node:〈〈TA〉〉, node:〈〈A〉〉))5

S′ := S′.add(unique:(node:〈〈T 〉〉, edge:〈〈 , T, T :A〉〉 1 edge:〈〈 , T, T :A〉〉))6

S′ := S′.add(mandatory:(node:〈〈T 〉〉, edge:〈〈 , T, B〉〉 1 edge:〈〈 , T, B〉〉))7

S′ := S′.add(reflexive:(node:〈〈T 〉〉, edge:〈〈 , T, T :A〉〉 1 edge:〈〈 , T, B〉〉))8

S′ := S′.add(mandatory:(node:〈〈T :A〉〉, edge:〈〈 , T, T :A〉〉))9

S′ := S′.add(mandatory:(node:〈〈B〉〉, edge:〈〈 , T, B〉〉) )10

foreach c ∈ Cons forwhich contains (edge:〈〈 , A, B〉〉, c) do11

S′ := S′.delete(c)12

S′ := S′.delete(edge:〈〈 , A,B〉〉,node:〈〈T 〉〉);13

return pS,S′ ;14

In Algorithm 3.2 we present a new CT, expand multi value which is illustrated in

Figure 3.15. The presentation of this CT differs slightly from that in [BM05] because

we wish CTs in our MMS to return a BAV pathway. To allow this we keep track

of the current schema in the transformation and return a pathway from the input

schema to the final schema in the transformation.

The parameters to this CT are an edge, and a string that will be used as the name

of a new node created by the CT. It allows us to remove the edge between node:〈〈A〉〉
and node:〈〈B〉〉 and replace it with the new nodes node:〈〈T 〉〉 and node:〈〈T :A〉〉 and

edges linking node:〈〈T 〉〉 to node:〈〈T :A〉〉 and node:〈〈B〉〉. The new edges contain

identity tuples and so have the constraints shown in the figure. We also add an
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(a) inclusion expand and in-
clusion merge

(b) um redirection

Figure 3.14: Composite Transformations

inclusion constraint between the newly created node:〈〈T 〉〉 and node:〈〈A〉〉. This CT

is useful when translating from a DDL that supports multi-valued attributes (such

as XML Schema or some variants of the ER model) into a target DDL that does

not (such as SQL). In the figure, the ./ symbol represents a join operation between

edge:〈〈 , T, B〉〉 and edge:〈〈 , T, T :A〉〉. This means that the constraints linked to the

join apply to both edges.

Figure 3.15: expand multi value and contract multi value

The contains predicate used in line 11 holds when its first argument appears as a con-

struct in the formula that is in the second argument. As with any BAV transforma-

tion pathway, this CT has an automatically derivable inverse, contract multi value.

3.4 Translating SO s-t tgds into BAV pathways

In this section we describe how we create a BAV pathway, equivalent to the set of

SO s-t tgds in a mapping, that transforms the source schema into the target schema.

This is an implementation of TransGen(mapS1,S2 , BAV), where S1 is the source schema

and S2 the target schema.

Suppose that the finance department of the organisation we discussed in the previous

chapter has decided to assign each employee in the department a special finance id
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for added security. They decide to keep the association between the employee id

and finance id in a separate, secure table. The mapping shown below is between

Semp (shown in Figure 2.1) and the new database, SfinId.

mapSemp,SfinId
= (Semp, SfinId, ΣSemp,SfinId

) where ΣSemp,SfinId
=

{∃finId(Semp ::table:〈〈Emp〉〉(e, n, d) ∧ Semp ::table:〈〈Dept〉〉(d, ne, ‘Finance’) →
SfinId ::table:〈〈EmpIdFinId〉〉(e, finId(e)) ∧ SfinId ::table:〈〈FinEmpName〉〉(finId(e), n)),

∃dept(SfinId ::table:〈〈EmpIdFinId〉〉(e, f) ∧ SfinId ::table:〈〈FinEmpName〉〉(f, n) →
table:〈〈Emp〉〉(e, n, dept(e)) ∧ table:〈〈Dept〉〉(dept(e), ne(dept(e)), ‘Finance’))}

finId,dept and ne are Skolem functions which create different unique values for each

unique employee id.

The translation methodology we use to translate a mapping like the one above into

BAV transformations is as follows:

1. Translate the SO s-t tgds in the mapping into the ‘normal form’ described in

Section 2.2.1.

2. Translate the LHS of each SO s-t tgd into IQL to create a query q.

3. Create a BAV transformation for each implication in the normalised SO s-t

tgds, using q as the query.

4. Simplify the transformation pathway by removing any transformations that

simply copies an object in the source schema to the target schema.

Step 1: First we translate any SO s-t tgds in the mapping into the ‘normal form’ we
discussed in Section 2.2.1. There we showed that each SO s-t tgd can be rewritten
as a conjunction of implications with a single term on the RHS of each implication.

∃fid(table:〈〈Emp〉〉(e, n, d) ∧ table:〈〈Dept〉〉(d, ne, ′Finance′) → table:〈〈EmpIdFinId〉〉(e)∧
table:〈〈Emp〉〉(e, n, d) ∧ table:〈〈Dept〉〉(d, ne, ′Finance′) → column:〈〈EmpIdFinId, eid〉〉(e, e)∧
table:〈〈Emp〉〉(e, n, d) ∧ table:〈〈Dept〉〉(d, ne, ′Finance′) → column:〈〈EmpIdFinId, fid〉〉(e, fid(e))∧
table:〈〈Emp〉〉(e, n, d) ∧ table:〈〈Dept〉〉(d, ne, ′Finance′) → table:〈〈FinEmpName〉〉(fid(e))∧
table:〈〈Emp〉〉(e, n, d) ∧ table:〈〈Dept〉〉(d, ne, ′Finance′) →

column:〈〈FinEmpName, fid〉〉(fid(e), fid(e))∧
table:〈〈Emp〉〉(e, n, d) ∧ table:〈〈Dept〉〉(d, ne, ′Finance′) →

column:〈〈FinEmpName, name〉〉(fid(e), n))
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and

∃dept, ne(table:〈〈EmpIdFinId〉〉(e, f) ∧ table:〈〈FinEmpName〉〉(f, n) → table:〈〈Emp〉〉(e)∧
table:〈〈EmpIdFinId〉〉(e, f) ∧ table:〈〈FinEmpName〉〉(f, n) → column:〈〈Emp, eid〉〉(e, e)∧
table:〈〈EmpIdFinId〉〉(e, f) ∧ table:〈〈FinEmpName〉〉(f, n) → column:〈〈Emp, name〉〉(e, n)∧
table:〈〈EmpIdFinId〉〉(e, f) ∧ table:〈〈FinEmpName〉〉(f, n) → column:〈〈Emp, dept〉〉(e, dept(e))∧
table:〈〈EmpIdFinId〉〉(e, f) ∧ table:〈〈FinEmpName〉〉(f, n) → table:〈〈Dept〉〉(dept(e))∧
table:〈〈EmpIdFinId〉〉(e, f) ∧ table:〈〈FinEmpName〉〉(f, n) →

column:〈〈Dept, did〉〉(dept(e), dept(e))∧
table:〈〈EmpIdFinId〉〉(e, f) ∧ table:〈〈FinEmpName〉〉(f, n) →

column:〈〈Dept, numEmps〉〉(dept(e), ne(dept(e)))∧
table:〈〈EmpIdFinId〉〉(e, f) ∧ table:〈〈FinEmpName〉〉(f, n) →

column:〈〈Dept, dname〉〉(dept(e), ‘Finance’))

Step 2 : Create the IQL query. We create our IQL query by translating the LHS of

each SO s-t tgd in the mapping into IQL using the following rules:

• Each ‘∧’ becomes a ‘;’.

• DDL:construct:〈〈so〉〉(~x) becomes a generator of the form

{~x} ← DDL:construct:〈〈so〉〉.

• Conditions of the form x op c are translated as they are and become a filter in

the IQL query.

• Any constants among ~x are added to the end of the query and become equality

filters.

For example the query used to define the extent of table:〈〈EmpIdFinId〉〉 in the map-
ping above would be as follows when we have expanded the table object out to
specify each AutoMed object:

[{e} | {e} ← table:〈〈Emp〉〉; {e, e} ← column:〈〈Emp, eid〉〉; {e,n} ← column:〈〈Emp, name〉〉;
{e, d} ← column:〈〈Emp, dept〉〉; {d} ← table:〈〈Dept〉〉; {d , d} ← column:〈〈Dept, did〉〉;
{d ,ne} ← column:〈〈Dept, numEmps〉〉; {d , dn} ← column:〈〈Dept, dname〉〉; dn = ‘Finance’]

We can then simplify the query to include only those generators whose pattern
variables affect the value of the variables in the head of the query, assuming that we
have constraints in the schema that inform us that none of the generators we are
leaving out change the result. For example the IQL query above can be simplified
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to:

[{e} | {e, d} ← column:〈〈Emp, dept〉〉; {d , dn} ← column:〈〈Dept, dname〉〉; dn = ‘Finance’]

We must retain at least one generator for e and some way of restricting the val-

ues of e to those that meet the conditions imposed by the filter. e is the pri-

mary key of table:〈〈Emp〉〉 and from the way we define the extents of SQL:table and

SQL:column, the same value of e appears in column:〈〈Emp, eid〉〉,column:〈〈Emp, name〉〉
and column:〈〈Emp, dept〉〉 so we only need one of these objects. We must retain

column:〈〈Emp, dept〉〉 because it contains the foreign key linking table:〈〈Emp〉〉 to

table:〈〈Dept〉〉. d is the primary key of table:〈〈Dept〉〉 so by the same argument as

above we only need one of the columns. We must retain column:〈〈Dept, dname〉〉
because it contains the pattern for the filter we need.

The generators for these objects, along with the filter dn = ‘Finance’, are suffi-

cient to generate the values required, while maintaining the constraint that all the

employees returned by the query are from the Finance department.

Step 3: Create the BAV transformations. We now use the following rules to create

a transformation for each object that appears on the RHS of an implication in the

normalised SO s-t tgds. In the following, q is the query we created by translating

LHS into IQL as described above in Step 2 of the process.

If there are no Skolem functions or constants on the RHS of the implication we use

the following translation:

LHS → S :DDL:construct:〈〈so〉〉(~x) ⇒ op(S :DDL:construct:〈〈so〉〉, [{~x} | q])

where LHS is the left hand side of the implication.

If there are Skolem functions used on the RHS of the implication we use this rule:

∃~f.LHS → S :DDL:construct:〈〈so〉〉(~x, f(xi) ∈ ~f) ⇒
op(S :DDL:construct:〈〈so〉〉, {~x′} | q; y ← generateGID(S, xi, [xi], ‘f ’))

where xi ∈ ~x and ~x′ contains all the elements of ~x as well as an additional element y

which is the pattern variable for the generator containing the generateGID function.

y will contain Skolem values created by generateGID.
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If there are constants used on the RHS of the implication we use this rule:

LHS → S :DDL:construct:〈〈so〉〉(~x, c) ⇒ op(S :DDL:construct:〈〈so〉〉, {~x′} | q; y ← c)

where c is a constant. ~x′ contains all the elements of ~x as well as an additional

element y which is the pattern variable for the generator containing the constant.

Its value will be that of the constant.

In all these rules op is add for all the tgds that map from the source to the target

schema. The values in the target schema are all either directly derived from values

in the source or are Skolem values which have been calculated using data values

from the source schema. This use of the add primitive in transformation queries

involving Skolem values created by generateGID was introduced in [KM05].

For the tgds that map from the target to the source, op is delete if q fully defines

the extent of 〈〈so〉〉 and contract if it does not. The decision whether q does indeed

fully define the extent of 〈〈so〉〉 is made by the person creating the transformations.

Using these rules we generate the following transformation pathway from the map-

ping given above:

10 add(table:〈〈EmpIdFinId〉〉, table:〈〈Emp〉〉)
11 add(column:〈〈EmpIdFinId, eid〉〉, column:〈〈Emp, eid〉〉)
12 add(column:〈〈EmpIdFinId, fid〉〉, [{e, f } | {e, e} ← column:〈〈Emp, eid〉〉];

f ← generateGID(Semp, e, [e], ‘fid’))
13 add(table:〈〈FinEmpName〉〉, [{f } | {e, e} ← column:〈〈Emp, eid〉〉;

f ← generateGID(Semp, e, [e], ‘fid’)])
14 add(column:〈〈FinEmpName, fid〉〉, [{f , f } | {e, e} ← column:〈〈Emp, eid〉〉;

f ← generateGID(Semp, e, [e], ‘fid’)])
15 add(column:〈〈FinEmpName, name〉〉, [{f ,n} | {e,n} ← column:〈〈Emp, name〉〉;

f ← generateGID(Semp, e, [e], ‘fid’)])

Note that tgds cannot be used to specify constraints like primary or foreign keys.

We can, however, sometimes infer these constraints from the mapping. For ex-

ample, from the first tgd in mapSemp,SfinId
we can infer a foreign key between

column:〈〈EmpIdFinId, fid〉〉 and column:〈〈FinEmpName, fid〉〉. We can also infer that

column:〈〈EmpIdFinId, eid〉〉 is a primary key because its extent is derived from a pri-

mary key column, column:〈〈Emp, eid〉〉 in the source schema. In other case constraints

on the target schema must be added manually. For example, here we add a primary

key to column:〈〈FinEmpName, fid〉〉. The transformations to perform these actions

are as follows:
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Emp

eid name dept

1 Peter Smith 100
3 Paul Jones 100
5 Joe Brown 100
21 Susan Brown 101

Dept

did dname numEmps?

100 Finance 23
101 HR 15
102 IT

Figure 3.16: Inst5(Semp)

16 add(primary key:〈〈EmpIdFinId key,EmpIdFinId, 〈〈EmpIdFinId, eid〉〉〉〉)
17 add(primary key:〈〈FinEmpName key, FinEmpName, 〈〈FinEmpName, fid〉〉〉〉)
18 add(foreign key:〈〈FinEmp fkey, EmpIdFinId, 〈〈EmpIdFinId, fid〉〉,FinEmpName, 〈〈FinEmpName, fid〉〉〉〉)

Transformations 10 to 18 make up the growth phase of the transformation pathway.

If we assume we start with the instance of Semp shown in Figure 3.16, then the

values created by the pathway are shown in Figure 3.17. We can see that for a

given value of the key column column:〈〈EmpIdFinId, eid〉〉, the same Skolem value

is generated for column:〈〈EmpIdFinId, fid〉〉 and column:〈〈FinEmpName, fid〉〉. These

values ensure that the correct row in table:〈〈EmpFinId〉〉 is associated with the correct

row in table:〈〈FinEmpName〉〉.

If we now populate column:〈〈EmpIdFinId, fid〉〉 as shown in Figure 3.18(a), the query

processor can unify the Skolem values in column:〈〈FinEmpName, fid〉〉 with the data

values in column:〈〈EmpIdFinId, fid〉〉, using data recorded by generateGID [KM05], to

give us the database instance shown in Figure 3.18(b).

EmpIdFinId

eid fid

1 #1000
3 #1001
5 #1002

FinEmpName

fid name

#1000 Peter Smith
#1001 Paul Jones
#1002 Joe Brown

Figure 3.17: Values generated in SfinId by the growth phase of the pathway where
Inst5(Semp) is the source schema

EmpIdFinId

eid fid

1 F244
3 F167
5 F153

FinEmpName

fid name

#1000 Peter Smith
#1001 Paul Jones
#1002 Joe Brown

(a) Before post processing

EmpIdFinId

eid fid

1 F244
3 F167
5 F153

FinEmpName

fid name

F244 Peter Smith
F167 Paul Jones
F153 Joe Brown

(b) After post processing

Figure 3.18: Inst5(SfinId)

Because constraints are dealt with as schema objects in their own right, BAV path-

ways allow us to map constraints from source to target and also create constraints
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on the target schema if they are required. We see both cases illustrated in the path-

way above. The employee id is used as a key on table:〈〈EmpIdFinId〉〉 as it was on

table:〈〈Emp〉〉 and a new key on table:〈〈FinEmpName〉〉 is created along with a foreign

key linking the tables.

After these transformations have been executed we have a schema that contains

objects from both the source and target schemas. In the shrinking phase of the

pathway we remove the source schema objects from this combined schema. The SO

t-s tgds in our mapping tell us how the target objects in the combined schema can

be mapped to the existing source objects. We use them to create a query in terms

of target schema objects that allows us to recover the extent of the source objects

we remove in the shrinking phase. The transformations are as follows:

19 delete(foreign key:〈〈EmpDept fkey, Emp, 〈〈Emp, dept〉〉, Dept, 〈〈Dept, did〉〉〉〉)
20 delete(primary key:〈〈Emp key, Emp, 〈〈Emp, eid〉〉〉〉)
21 contract(column:〈〈Emp, dept〉〉,Range [{e, d} | {e, e} ← column:〈〈EmpIdFinId, eid〉〉;

d ← generateGID(SEmpDept, e, [e], ‘dept′)] Any)
22 contract(column:〈〈Emp, eid〉〉,Range column:〈〈EmpIdFinId, eid〉〉 Any)
23 contract(column:〈〈Emp, name〉〉, Range column:〈〈FinEmpName, name〉〉 Any)
24 contract(table:〈〈Emp〉〉, Range column:〈〈EmpIdFinId, eid〉〉 Any)
25 contract(column:〈〈Dept, dname〉〉,Range [{d , dn} | {e, e} ← column:〈〈EmpIdFinId, eid〉〉;

d ← generateGID(SEmpDept, e, [e], ‘dept′); dn ← ‘Finance’] Any)
26 contract(column:〈〈Dept, numEmps〉〉,Range [{d ,ne} | {e, e} ← column:〈〈EmpIdFinId, eid〉〉;

d ← generateGID(SEmpDept, e, [e], ‘dept′);ne ← generateGID(SEmpDept, d, [d], ‘numEmp′)] Any)
27 contract(column:〈〈Dept, did〉〉, Range [{d , d} | {e, e} ← column:〈〈EmpIdFinId, eid〉〉;

d ← generateGID(SEmpDept, e, [e], ‘dept′)] Any)
28 contract(table:〈〈Dept〉〉,Range [{d} | {e, e} ← column:〈〈EmpIdFinId, eid〉〉;

d ← generateGID(SEmpDept, e, [e], ‘dept′)] Any)

Note that we use the employee id to generate unique values for department id using

generateGID. Ideally we would like to use the department name but this is not a

candidate key so we would not be guarenteed unique values.

The person creating the transformations for the shrinking phase needs to make all

the transformations for the non-constraint objects contract because the instances of

the source schema objects we are removing contain employees who are not in the

Finance department, but the queries we are using to define their extents contain

only employees from the Finance department. This means we cannot fully define the

extents of the source schema objects with queries containing target schema objects.

The queries we use define a lower bound for the extents of the source schema objects

but not an upper bound so we add the keyword Any to indicate this fact.
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3.5 Chapter Summary

We have shown in this chapter how we can use the HDM as an effective CDM in a

MMS. We have also shown that declarative mappings given in the form of the widely

used SO s-t tgds can be simply translated into executable BAV transformations using

IQL as our query language. This is in contrast to using a language like SQL for

which there is no straightforward translation [MBHR05].

There are several advantages to using the BAV approach as a mapping and trans-

formation language in our MMS framework.

• The normalised form of SO tgds translates easily into BAV pathways.

• BAV pathways can be automatically inverted, making it trivial to calculate

the inverse of a mapping.

• Constraints are dealt with as objects in their own right that can easily be

copied or translated from a source to target schema.

• The target schema and mapping are created as part of the same process. There

is no need to create the mapping in a separate step after creating the target

schema.

• The method can be applied to a range of DDLs.



Chapter 4

Translating Primitive Data Types

in AutoMed

In the previous chapter we showed how we can do inter DDL schema and data

translation using AutoMed. We did not, however, describe how the data types of

the various objects in the source schema are translated into data types in the target

schema. We address this issue in this chapter.

The inter DDL translation of data types has received attention in the field of

database programming languages [AB87], but little has been written about how

primitive data types, i.e. integer, float, string etc., should be translated between

DDLs in a multi DDL system such as a MMS. Primitive, atomic or simple data

types, referred to from now on as primitive data types, are the simplest kind of

data type. They are used in DDLs to constrain the values that can appear in an

instance of a schema object to which they are assigned. Examples of primitive data

types include integer, float, boolean, string, etc. They represent a set of literals and

the extent of a schema object of a given primitive type must be a subset of that set

of literals. We refer to the set of primitive data types supported by a DDL as its

primitive type system.

In a MMS, where a number of different DDLs are supported, it is necessary to

have some way of translating the data types of one DDL to another. Existing

MMSs like Rondo and MIDST do simple pair-wise type name translations based on

the names of the data types. This is also a common approach in inter DDL data

integration [RB01, LVLG03]. This approach does not scale well as the number of

DDLs supported by a MMS increases and it can lead to some other more subtle

118
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problems:

• The data type of the source object may allow a greater range of values than

that of the target object. This could lead to run-time errors when the mate-

rialised target schema is populated with data from the source schema.

• Types representing an identical concept may support a different range of val-

ues. For example, a boolean in one DDL may represent ’true’ as 1 while

another may represent it as T. Again ignoring this when populating the target

schema would cause errors.

As a solution to the problem of translating primitive data types between DDLs

in a MMS, we present a graph based logical type hierarchy that can represent the

primitive data types of multiple DDLs based on the range of values they support

rather than just their names, and that links similar data types from different DDLs

by defining bi-directional mappings from the high level data types to a common,

extensible hierarchy of data types. We use this hierarchy as a type transfer

syntax that helps us choose a primitive type for a target schema object in an inter

DDL schema translation. We do not attempt to model the physical representation

of different data types in different DDLs. In addition we restrict the type hierarchy

to character-based types and those that can logically be represented as characters

such as integers, floats, chars etc. We do not provide a transfer syntax for things

like SQL BLOBs and CLOBs.

In addition to the above, the contributions this chapter makes are as follows:

• A way of translating data between schemas whose data types support different

values.

• A means of classifying transformations involving typed constructs into those

that are illegal, those that need to be checked at run time for data errors and

those for which no run time checks for data errors are required.

4.1 The AutoMed Type System

We saw in Chapter 2 that a data type can be included in the scheme of a schema

object and that this constrains the extent of that object to be a subset of the data

values associated with the type.
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During an inter DDL schema translation it is necessary to change the data type of

an object from a source DDL type to a target DDL type. The operation of explicitly

changing the data type of an object is called casting. Whether or not a type cast

will result in a loss of information is related to the question of whether two types

are equivalent and the notion of a subtype. Data types A and B are said to be

equivalent if all values in A can legally appear in B and vice versa. A subtype can

be defined as follows: A is a subtype of B if all values in A can legally appear in B.

From the above we can deduce that type A can be safely cast to type B, i.e. with

no loss of information, if A is equivalent to B or A is a subtype of B. For example,

casting from a short to a long in SQL is type safe, as is casting an integer to a

string, but going the other way is not.

Deciding whether types are equivalent or subtypes of each other is one of the tasks

in type checking. This can be either static or dynamic. Static type checking

can be done on declarative mappings that include type information. If these are

then translated into executable mappings, additional static checking can be done

before the mappings are executed to make sure no errors have been introduced in

the translation process. Dynamic checking is done when the executable mappings

are executed and is concerned with the actual data values being added to the target

schema. Minimising the amount of dynamic checking done is one of the goals of our

type hierarchy.

We define our own primitive type system that can link those of a source and target

DDL, as a type hierarchy in the form of a directed acyclic graph (DAG). We also

define a number of operations on the graph. Hierarchies exist as a way of describing

data types in some well known type systems, for example, Figure 4.1 is a portion

of the XML Schema [BM04] type hierarchy. However the familiar tree hierarchy of

Figure 4.1 has several shortcomings because the hierarchy does not fully model the

domain of data values in XML. In particular:

• Figure 4.1 does not distinguish between types which are disjoint in their extent,

such as positiveInteger (representing all positive integer values) and negativeIn-

teger (representing all negative integer values), and those which overlap, such

as int (representing −231..231 − 1) and unsignedInt (representing 0..232 − 1).

A mapping between source and target objects where the types are disjoint

should be ruled illegal, unless an explicit conversion has been defined, but a

mapping between objects that overlap should be allowed, with run-time range

checking.



4.2. The Type Hierarchy 121

Figure 4.1: A portion of the built-in data type hierarchy as defined for XML Schema
in [BM04]

• Figure 4.1, which shows a portion of the type hierarchy defined for XML

Schema, fails to identify all isa associations in the hierarchy. For example,

all unsignedShort values (which are in the range 0..216 − 1) are a subset of int

values. It is also the case that all values in XML can be stored in an object of

type string.

If the source object type is a subtype of the target object type, then the values

may be cast without run-time range checking, since the cast will never fail.

Representing the types in Figure 4.1 as a logical hierarchy allows us more flexibility

in how we define relationships between different types. In the following sections

we introduce a definition of the type hierarchy we use in AutoMed that is suited

to a MMS. In particular, it builds hierarchies solely on the range of data values

a type may take rather than relying on the names of the data types that may be

misleading. We then demonstrate how AutoMed translations between schemas in

different DDLs may be made type safe.

4.2 The Type Hierarchy

To facilitate the precise representation of types, we introduce in Definition 4.1, a

logical type hierarchy to be used to describe the types of a single or collection of

DDLs in a manner that allows us to address the problems discussed above. We will

show that this type hierarchy can also be used to capture some of the semantics of

types that are specific to a particular schema.

Definition 4.1 Type Hierarchy
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A type hierarchy THx is a tuple 〈Typesx, Extx,
t
=x,≺x, 6 ∩x, T ypeMappingx〉 that

includes:

• A finite set of type names Typesx that always includes the special value,

anyType. These will make up the nodes of the DAG.

• An Extx function that returns a set of values such that for

t ∈ Typesx → Extx(t) ⊆ Extx(anyTypex)

Extx(anyType) represents the set of data values in the domain of discourse of

the MMS.

• An equality relation,
t
=x, such that for t, t′ ∈ Typesx

t
t
=x t′ ⇐⇒ Extx(t) = Extx(t

′)

• A partial ordering relation ≺x, such that for t, t′ ∈ Typesx

t ≺x t′ ⇐⇒ Extx(t) ⊂ Extx(t
′)

∀t ∈ Typesx, t ≺x anyType

When all types t, t′ ∈ Typesx that have t
t
=x t′ are treated as a single node,

the ≺x relation builds the types into a connected directed acyclic graph.

t
=x and ≺x together make up the edges of the graph.

• A disjoint operator, 6 ∩x, such that for t, t′ ∈ Typesx

t 6 ∩x t′ ⇐⇒ Extx(t) ∩ Extx(t
′) = φ. This implies there is no pathway from t

to t′ in the graph and so we cannot cast between t and t′. If t 6 ∩x t′ then any

subtype of t will also be disjoint from t′.

• A set TypeMappinga,b
x of mapping tables, added on a per schema basis such

that

〈ta, tb, {〈s1
a, s

1
b〉,. . . , 〈sn

a , sn
b 〉}〉, where ta, tb ∈ Typesx, s1

a, . . . , s
n
a are subsets of

Ext(ta) and are disjoint. Similarly s1
b , . . . , s

n
b are subsets of Ext(tb) and are

disjoint.

These mapping tables allow us to map specific values, such as those used to

denote booleans, from one DDL to another.

We overload TypeMappingx to be used as a function with the following defi-

nition:

TypeMappingx(ta, tb, va) = First{(si
b) |

〈ta, tb,map〉 ∈ TypeMappingx ∧ 〈si
a, s

i
b〉 ∈ map ∧ va ∈ si

a}
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TypeMapping−1
x (ta, tb, va) = First{(si

b) |
〈tb, ta,map〉 ∈ TypeMappingx ∧ 〈si

b, s
i
a〉 ∈ map ∧ va ∈ si

a}
where i is any value from 1 to n and First returns the first element of a set

according to a sort order that is fixed for the system. We use

TypeMappingx(typea, typeb) to denote the specific mapping table that maps

typea to typeb.

We will leave the subscripts off the operators when their value is clear from

the context.

2

From the definitions above we can make statements about the types in an AutoMed

type hierarchy. For example we can say that t is a subtype of t′ if t ≺x t′.

Examples 4.1 and 4.2 illustrate how we create the type hierarchies for XML and

Postgres.

Example 4.1 XML Schema Logical Type Hierarchy

The logical type hierarchy for XML Schema, THxml, shown in Figure 4.2, can be

derived from Figure 4.1 as follows (note that in this and the next example we only

include an indicative subset of the types and relationships):

Typesxml = {anyType, stringxml, booleanxml, integerxml, positiveIntegerxml,

negativeIntegerxml, longxml, intxml, shortxml, unsignedShortxml}
Extxml = {stringxml → The set of finite-length sequences of valid XML characters

booleanxml → {true, false, 1, 0}, integerxml → {. . . , -1,-2,0,1,2, . . . },
positiveIntegerxml → {1,2,3, . . . },
negativeIntegerxml → {. . . , -3,-2,-1},
longxml → {−263, . . . , 263 − 1}, intxml → {−231, . . . , 231 − 1},
shortxml → {-32768, . . . ,32767}, unsignedShortxml → {0, . . . ,65535}}

t=xml = {anyType
t= stringxml}

≺xml = {shortxml ≺ intxml, unsignedShortxml ≺ intxml,

intxml ≺ longxml, longxml ≺ integerxml, integerxml ≺ stringxml, . . . }
6∩xml = {negativeIntegerxml 6 ∩ positiveIntegerxml,

negativeIntegerxml 6 ∩ unsignedShortxml}
TypeMappingxml = {}

2

In Example 4.2 we create a logical type hierarchy for Postgres based on the built-in

casting rules in Postgres that give us isa relationships. The resultant hierarcharchy

is shown in Figure 4.3.
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Figure 4.2: THxml showing the extra isa relationships we have created

Figure 4.3: A portion of the Postgres type system represented as a logical hierarchy

Note that in this logical hierarchy, integers are a subset of the type text, implying

that we can store an integer in a column of type text.

Example 4.2 Postgres Logical Type Hierarchy

Typespg = {anyType, textpg, varchar(n)pg, booleanpg, boolpg, integerpg, intpg, int4pg,

smallintpg, int2pg, bit(n)}
Extpg = {textpg → The set of all valid Postgres strings

varchar(n)pg → The set of all valid Postgres strings up to length n

booleanpg → {0,1,y,n,yes,no,t,f,true,false},
boolpg → {0,1,y,n,yes,no,t,f,true,false},
integerpg → {−231, . . . , 231 − 1}, intpg → {−231, . . . , 231 − 1},
int4pg → {−231, . . . , 231 − 1},
smallintpg → {-32768, . . . , 32767}, int2pg → {-32768, . . . , 32767},
bit(n)pg → The set of bit strings up to length n}

t=pg = {textpg
t= anyType, booleanpg

t= boolpg, intpg
t= integerpg, intpg

t= int4pg,

smallintpg
t= int2pg}

≺pg = {smallintpg ≺ integerpg, integerpg ≺ textpg, bit(1)pg ≺ bit(2)pg, . . . }
6∩pg = {}

TypeMappingpg = {}
2
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Figure 4.4: The AutoMed common type hierarchy

4.3 Inter DDL Data Type Translation

In this section we describe how we merge the type hierarchies of a source and target

schema to create an inter DDL type hierarchy that allows us to cast source data

types to target data types.

Our solution is based on a Common Type Hierarchy (CTH) which acts as an

intermediary between the primitive type systems of the source and target DDLs.

A user need only create a bidirectional mapping between the types in his DDL

and the common type hierarchy rather than having to know how to map to all the

other DDLs in the MMS. If the number of DDLs in the MMS is n, the number of

bidirectional mappings required using our method is n− 1 as opposed to the n(n−
1)/2 that are needed if mappings are created between each pair of DDLs in the MMS.

Our approach is similar to a method proposed in [HFG87] for translating between

different relational query languages via a common intermediate query language in

the PROTEUS system.

4.3.1 The Common Type Hierarchy

If the source and target schemas are defined in different DDLs we need a way of

linking the type hierarchy defined for the source model, the source type hierarchy,

to that defined for the target model, the target type hierarchy. We do this using

the CTH, the base version of which is shown in Definition 4.2. It is very general but

is extended and made more precise as it is used to link other type hierarchies as we

will see later. It is shown graphically in Figure 4.4.
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Using the CTH as an intermediary means that we only need to create a set of

associations between the data types of a DDL in our MMS and those of the CTH.

We do not need to define new associations to all existing DDLs each time we add a

new DDLs to our MMS. We use the CTH as the primitive type system for the HDM.

As AutoMed is implemented in Java, we have chosen the extents of the types in

the CTH to be based on the values supported by corresponding Java data types.

Definition 4.2 Common type hierarchy

Typesc = {anyType, stringc, longc, intc, shortc, bytec, doublec, f loatc, charc, booleanc}
Extc = {stringc → A set of all strings up the maximum length allowed by Java,

longc → {− 263, . . . , 263 − 1}, intc → {− 231, . . . , 231 − 1},
shortc → {− 32768, . . . , 32767}, bytec → {− 128, . . . , 127},
doublec → The set of 64-bit floating point numbers,
f loatc → The set of 32-bit floating point numbers,
charc → A set of single characters supported by the Java character set,
booleanc → {true, false}}

t=c = {anyType
t= stringc}

≺c = {bytec ≺ shortc, shortc ≺ integerc, integerc ≺ longc, longc ≺ stringc,

f loatc ≺ doublec, doublec ≺ stringc, booleanc ≺ stringc, charc ≺ stringc}
6∩c = {}

TypeMappingc = {}
2

4.3.2 Adding a High Level DDL Type System to AutoMed

Algorithm 4.1 defines the procedure for adding the associations between the high

level DDL types and those in the CTH necessary to add the type system of the

high level DDL to AutoMed. It is done by hand when adding a new DDL to

AutoMed and the resultant definition of the merged type hierarchy becomes part

of the wrapper for the new DDL. The parameters of AddTH, are: THx, the type

hierarchy of the source DDL, THc, the current CTH and Mx−c, a set of user defined

mappings from types in THx to those in THc.

We first add all the types, extents and type relationships from the new DDL to the

CTH (lines 1 to 7). We then try to find any existing data types in the CTH that

have an equivalent extent to any of the new data types. If such a data type is found

in the CTH we add an equality relationship between it and the new type to the

CTH (line 12). We also add any other type relationships that exist between the

CTH type and any other data types, to the new type (lines 14 to 18). If no such
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Algorithm 4.1: AddTH(THx,THc,Mx−c)

Typesc := Typesx ∪ Typesc;1

Extc := Extx ∪ Extc;2

t
=c :=

t
=x ∪ t

=c;3

≺c := ≺x ∪ ≺c;4

6 ∩c := 6 ∩x ∪ 6∩c;5

TypeMappingc := Mx−c ∪ TypeMappingx ∪ TypeMappingc;6

t
=c :=

t
=c ∪ anyTypex

t
= anyTypec7

foreach tx ∈ Typesx do8

equivalentTypeFound := false;9

foreach tc ∈ Typesc do10

if Ext(tx) ⊆ Ext(tc) ∧ Ext(tc) ⊆ Ext(tx) then11
t
=c :=

t
=c ∪ {tx t

=c tc};12

equivalentTypeFound := true;13

foreach t′c ∈ Typesc do14

if tc 6 ∩c t′c then15

6 ∩c := 6 ∩c ∪ {tx 6 ∩ t′c};16

if tc ≺c t′c then17

≺c:=≺c ∪{tx ≺ t′c};18

if !equivalentTypeFound then19

〈tc, t′c〉 := placeTypeInHierarchy(tx,Ext(tx));20

≺c := ≺c ∪{tx ≺ tc} ;21

≺c := ≺c ∪{t′c ≺ tx} ;22

return 〈Typesc, Extc, 6 ∩c,
t
=c,≺c, T ypeMappingc〉23
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equivalent type can be found we need to place the type in the hierarchy by finding

the data types in the CTH that most closely bound the extent of the new data type.

The function placeTypeInHierarchy performs this task (line 20). At present it must

be done by hand as it is not always readily deducible which branch of the CTH a

new data type should go into. For example the extent of an XML unsignedShort

is a subset of both string and int in the CTH. As this process only needs to carried

out once, when the wrapper for the DDL is designed, the overhead is very small.

During an inter DDL schema translation the associations created by Algorithm 4.1,

between the CTH and the source type hierarchy and between the CTH and the target

hierarchy, allow us to form an inter DDL type hierarchy. We now describe how

we use the type hierarchies defined in Examples 4.1 and 4.2 to create a merged

hierarchy that allows us to translate the types of schema objects between the two

DDLs.

We add the XML Schema logical hierarchy in Figure 4.2 with the following execution

of AddTH.

THc = AddTH(THxml, THc,

〈booleanxml, booleanc, {〈{0,false}, {false}〉, 〈{1,true}, {true}〉}〉)

We now add our Postgres type hierarchy from Figure 4.3 to AutoMedas follows:

THc = AddTH(THpg, THc,

〈boolpg, booleanc, {〈{0,n,no,f,false}, {false}〉, 〈{1,y,yes,t,true}, {true}〉}〉)

The two mapping tables we have created, TypeMappingc(booleanxml, booleanc) and

TypeMapping−1
c (booleanpg, booleanc) allow us to map from a boolean in XML to a

boolean in Postgres.

The CTH generated by the above process, and shown in Figure 4.5, provides us

with an inter DDL type hierarchy for the hierarchies in Figures 4.2 and 4.3. Each

rectangle represents a set of
t
= relationships and TypeMappings and the thin lines

with arrows on them represent the partial ordering provided by the ≺ operator.

4.3.3 Functions Based on the Inter DDL Type Hierarchy

We now define two functions that can be applied to an AutoMed type hierarchy.

The first, shown in Algorithm 4.2, translates a data type from one DDL to another

based on the CTH. The second, shown in Algorithm 4.3, provides a means of checking
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Figure 4.5: The CTH including the types from Figures 4.2 and 4.3

whether a mapping between objects in existing schemas may cause problems because

of the data types of the objects being mapped.

As an example, assume our CTH is the one shown in Figure 4.5 and we wish to

compute typeTrans(shortxml, T ypespg). The function finds the equality shortxml
t
=

smallintpg to give us the result smallintpg in line 2 of the algorithm. In some cases

we may not be able to find a data type from the target DDL in the CTH that

matches the source data type. In this case we execute the loop on lines 3 to 6 of

the algorithm moving up one level up the type hierarchy at a time, using the partial

orderings defined in ≺c, and trying to find a match between types from the source

DDL and the target DDL at each level of the hierarchy. We continue doing this until

we get to anyType. For example typeTrans(negativeIntegerxml, T ypespg) would not

find any Postgres types equivalent to negativeIntegerxml. We use ≺c to find a

Postgres type above negativeIntegerxml in the hierarchy. Looking at Figure 4.5

we see there are no Postgres types above negativeIntegerxml so we get the result

anyType.
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Algorithm 4.2: typeTrans(tsddl,Typestddl,Typesc)

Input: tsddl : the data type of a schema object in the source schema,
Typestddl: the types in the target DDL,
Typesc: the common type hierarchy

Output: ttddl: a primitive type ∈ Typestddl

if ∃t ∈ Typestddl such that tsddl
t
=c t then1

return t;2

foreach tc ∈ Typesc such that tsddl ≺c tc do3

t′ := typeTrans(tc, sddl, tddl);4

if t′ 6= anyType then5

return t′;6

return anyType;7

If the result of typeTrans is anyType we have lost the type information in the trans-

lation and the target needs to be materialised with some form of generic data type.

What precisely this is will depend on the target DDL. For example in XML, the

string type can represent all values and in Postgres columns can be assigned the

special unknown type.

Note that typeTrans never lets us move down the CTH as this would mean the target

data type is more restrictive than the source and not all the values from the source

may be valid, which is a situation we wish to avoid.

Algorithm 4.3: checkType(〈〈so〉〉,Typesc,tsddl,ttddl)

Input: 〈〈so〉〉: the source schema object,
Typesc: the common type hierarchy,
tsddl: the type of the source schema object,
ttddl: the type of the target schema object

Output: cons: a constraint string
if tsddl 6 ∩ ttddl ∈ 6∩c then1

throw IllegalCastException;2

if ∃tsddl
t
=c ttddl then3

return null ;4

foreach tc ∈ Typesc such that tsddl ≺c tc do5

if tc 6= anyType then6

cons := checkType(〈〈so〉〉,tc,tsddl);7

return cons ;8

else9

cons = Ext(so) ⊆ Ext(ttddl);10

return cons;11
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checkType identifies two different types of data type translation problem. Firstly,

in lines 1 and 2, it identifies illegal castings. If our pathway from source to target

includes data types t and t′ such that t 6 ∩t′ then the cast is illegal from Definition 4.1

and the function throws an exception. For example if the source object was of XML

type positiveInteger and the target negativeInteger, the IllegalCastException

would be thrown. Secondly on lines 3 to 11 the algorithm can tell when a translation

is possible but with a constraint. We look for the target type higher in this branch

of the CTH. If we find it then we return null. If we get to the top of the branch

and tc is anyType we know a constraint is necessary. We cannot be certain that

the extent of the source object will be within the extent of the target type. The

necessary constraint is created on line 10 and must be checked at run-time.

Assume we have an XML source schema that contains

simpleElement:〈〈staff/Dept, did, int〉〉
and that this object is mapped to the Postgres object

column:〈〈Dept, did, smallint〉〉.
We can use the function

checkType (simpleElement:〈〈staff/Dept, did, int〉〉,column:〈〈Dept, did, smallint〉〉)
to see if the mapping is type-safe. We first check to see if we can find the type

higher in the hierarchy. In this case we are unable to do this, and to get from intxml

to smallintpg we need to go down the hierarchy. Any time it is necessary to move

down the CTH to translate from one type to another, as in this case, we may only be

able translate a subset of the instances of the object, and so generate a constraint to

reflect this. Here we find the XML equivalent of smallintpg, i.e. shortxml and gen-

erate the constraint: Ext(simpleElement:〈〈staff/Dept, did, int〉〉) ⊆ Ext(shortxml). If

checkType returns null then the mapping is type safe for this object.

4.3.4 Avoiding data errors

One of the aims of the type system in AutoMed is to reduce run time type checking.

Transforming the types in a rigorous way allows us to do away with these checks

altogether in a number of cases and when some checks are unavoidable we will be

able to define what checks need to be done. AutoMed itself does not validate any

of the data type constraints but we assume a target system will, and that exceptions

will be raised if invalid data is sent to it. This is a situation we are aiming to avoid.

For example shortxml and smallintpg are both equivalent to shortc. We can say

with confidence that any value from a construct of type shortxml can be stored in a
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Emp

eid(int4) name(varchar) pension(bool) salary(integer)

1 Peter Smith yes 223400
21 Susan Brown no 23560

Figure 4.6: Postgres Schema

construct of type smallintpg. We thus know that values from objects of these types

can be safely interchanged without checking. Similarly if we run checkType on an

object whose type is shortxml and whose target type is intpg we would get a null

result and know that we can safely translate all instances of the source object into

the target.

As we saw in the example above, when we needed to move down the CTH to create a

data type translation, our system can let us know when run-time checking is needed.

4.4 Type Translation Example

Figure 4.6 shows a Postgres database we wish to translate into XML. We include

the data types of the columns in round brackets after the column name.

The initial data type of the AutoMed schema objects match the data type of the

corresponding data source objects and are assigned by the wrapper for the relevant

high level DDL. If a data source object does not have an associated type, for example

a SQL table or an XML complex element, we give it the type anyType.

We focus our attention on column:〈〈Emp, salary, integer〉〉 and

column:〈〈Emp, pension, bool〉〉. column:〈〈Emp, salary, integer〉〉 can contain any inte-

ger up to 231 − 1. However, the company has introduced a salary cap of 30000 and

so has chosen short as the data type for the salary element in the XML schema.

We thus face the possibility of errors because the largest positive number an XML

element with type short can hold is 32677. If there is a salary that is greater

than 32677 in the database and we created an XML instance document with that

value, the XML Schema verification on this document would cause an error. This

transformation is not type safe.

Similarly, if we try to put the boolean value ‘no’ from the pension column into

a boolean XML element the operation will fail, since this Postgres boolean value
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cannot be stored in a boolean XML element (which only supports the values

{0,1,true,false}). This transformation is also not type safe.

4.4.1 Example BAV Transformations with Data Types

The following example is the growth phase of the transformation pathway that

translates the database in Figure 4.6 into XML. The shrinking phase simply removes

the SQL schema objects and the data types are not of concern so we do not include

the shrinking phase in the example.

Example 4.3 Transformation pathway

In this example the mapping we are given does not include the data types of the tar-

get schema objects. We use the typeTrans function and the CTH shown in Figure 4.5

to do the type translation.

1 add(complexElement:〈〈null, staff, 1, 1〉〉, [{r} | r ← &0])
2 add(complexElement:〈〈staff, FinEmp, 0, unbounded〉〉,

[{r , e} | {e, e} ← column:〈〈Emp, eid〉〉; r ← &0])
3 add(attribute:〈〈staff/FinEmp, eid, typeTrans(int4, Typesxml), required〉〉,

column:〈〈Emp, eid〉〉)
4 add(simpleElement:〈〈staff/FinEmp, name, typeTrans(varchar,Typesxml), 1, 1〉〉,

column:〈〈Emp, name〉〉)
5 add(simpleElement:〈〈staff/FinEmp, pension, typeTrans(bool,Typesxml), 1, 1〉〉,

column:〈〈Emp, pension〉〉)
6 add(simpleElement:〈〈staff/FinEmp, salary, typeTrans(integer, Typesxml), 1, 1〉〉,

column:〈〈Emp, salary〉〉)
2

The datatype parameter of the typeTrans function in the transformations above is the

datatype of the source schema object whose extent the target object is derived from.

For example in Transformation 4 the extent of simpleElement:〈〈staff/FinEmp, name〉〉
is derived from column:〈〈Emp, name〉〉 whose data type is varchar.

In Transformation 5 transType uses TypeMappingTHc and TypeMapping−1
THc

to

explicitly map values of boolxml to booleanpg. This overcomes the incompatibility of

the XML Schema boolean and Postgres bool data types discussed earlier. Executing

the transformation pathway and materialising the resultant schema will give us the

XML Schema shown in Figure 4.7.
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<xsd:complexType name = "employee_type">
<xsd:sequence>
<xsd:element name = "name" type = "xsd:string" />
<xsd:element name = "pension" type = "xsd:boolean" />
<xsd:element name = "salary" type = "xsd:int" />

</xsd:sequence>
<xsd:attribute name = "eid" type = "xsd:int" use = "required"/>

</xsd:complexType>
<xsd:element name = "staff">
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "FinEmp" type = "employee_type"

minOccurs = "0" maxOccurs = "unbounded" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Figure 4.7: XML target schema

If we now assume that the XML Schema already exists and that

column:〈〈Emp, salary, integer〉〉 is mapped to simpleElement:〈〈staff/Emp, salary, short〉〉,
rather than an element of type int, we can use checkType to see if this is a type-safe

translation. Looking at Figure 4.5 we see that we have to move down the hierarchy

to get from integerpg to shortxml, so we know a constraint must be generated. To

work out what the constraint is we need find the equivalent type to shortxml in

Typespg. We can see this is smallintpg or int2pg. The function thus generates the

constraint:

Ext(column:〈〈Emp, salary, integer〉〉 ⊆ Ext(smallintpg))

The function also confirms that there are no disjoint pairs of types in the translation.

We can check the constraint before we transfer data to the source schema and so

be guaranteed that we will not transfer any values that break the type constraints

of the XML target schema. This allows us to see the value of 223400 in the salary

column of one of the employees was an error, probably caused by incorrect data

entry.

Using the type hierarchy has allowed us to translate the primitive data types of our

Postgres schema objects into their XML Schema equivalents including translating

the values of the Postgres bool type into valid values of the XML boolean type. In

the case of the existing target schema we have also identified a potential type casting

problem in one column that will need to be checked during run-time. Without the

explicit identification of this problem a MMS that materialised this target schema

would either need to check the data values of all the columns or adopt a no-checking

policy that could lead to unexpected problems as we saw in the example.
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4.5 Related Work

Data types are often discussed in a data integration and exchange context but are

seldom dealt with in any detail. TSIMMIS [GMPQ+97] provides for type informa-

tion to be stored in their Object Exchange Model [PGMW95] but does not use this

information to test the safety of transformations. WOL [DK97] is another language

for database transformations that stores type information; however, the language is

only able to describe transformations in relational and object-relational databases,

not generic inter DDL transformations. The Clio system [FKMP05, MHH00] uses

s-t tgds without any added type information to specify how and what source data

should appear in the target. This data-centric approach does not make use of type

information in the source schema to help map to the target schema. Some methods

ignore the problem altogether [BFH+03, LVLG03] and make no explicit mention of

how primitive data types from one DDL are transformed into the other model. In

ignoring type information these systems risk losing expressiveness during the trans-

formations [AB87] and allowing type-incompatible transformations to be written.

Rahm and Bernstein [RB01, MBR01] use a special synonym table to match data

types between different DDLs in Cupid [MBR01]. This method is effective when

mapping between two specific DDLs but does not meet the requirements of a MMS

that supports multiple DDLs.

4.6 Chapter Summary

In this chapter we have described how to translate primitive data type information

from one DDL to another. We do this using a common type hierarchy that means

we do not need to define pair-wise translations for all the DDLs supported by the

MMS, but only need to define how the data types of a DDL map to the common

type hierarchy. A formal definition of the type system has been provided and it has

been shown how this can be included in AutoMed.



Chapter 5

ModelGen in AutoMed

One of the most important features of a MMS is the ability to process schemas from

multiple DDLs. The operator ModelGen provides this functionality by translating a

schema expressed in one DDL into a corresponding schema in another DDL and also

produces a mapping between the schemas. To date, no implementation of ModelGen

completely meets these criteria [BM07]. In the example in the introduction we saw

how we were able to use ModelGen to translate an ER schema into SQL, and then

translate part of that database into XML. We were then able to use the mappings

generated as parameters to other MM operators later on in the script. Doing both

translations within a single system means we can create a mapping all the way from

the ER schema to the XML document.

In this chapter we describe an implementation of ModelGen that creates:

1. data level translations between a source schema and a corresponding schema

in a target DDL, by the composition of the CTs described in Section 3.3.2,

and

2. a bidirectional mapping between the source and target schemas.

In common with other implementations of ModelGen [ACB05, KQLL07] we do not

attempt to show formally that our translations are correct, but rather adopt a

heuristic approach that includes rules for detecting when an attempted translation

has failed. The majority of this work appeared in [SM08b] and [SM08a].

Figure 5.1 gives an overview of our approach to implementing ModelGen. In Step 1

the source schema Ss is translated into an equivalent HDM schema, Shdm−s, using

136
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Figure 5.1: Overview of the approach taken

the production rules described in Chapter 3. In Step 2 we apply a series of the

composite transformations introduced in Chapter 3 to objects in Shdm−s to transform

the schema into Shdm−t, that is an HDM schema equivalent to some schema in the

target DDL. The system automatically chooses a suitable CT to apply to any objects

that cannot be directly translated into the target DDL. The choice of CTs that

can be applied is limited by preconditions relating to the structure of the schema

surrounding the object. In Step 3 the constructs in Shdm−t are translated into their

equivalent construct in the target DDL, to create St.

Note that Steps 1 and 3 are both essentially ModelGen since they translate schemas

from the source DDL to the HDM and from the HDM to the target DDL. In the

existing literature [ACB05, BM07], however, the translation from source DDL to

CDM and from CDM to target DDL has not been called ModelGen, only the overall

process. We will maintain that usage here.

We showed in Chapter 3 that we can represent schemas from a wide range of DDLs

in AutoMed using the HDM. We have also seen that CTs can be used to transform

those HDM schemas into equivalent schemas. Here we present an automatic way of

transforming the HDM representation of a source schema into an HDM representa-

tion that can be translated directly into a target DDL.

We saw in the previous chapter that we can write mappings directly from one high

level DDL to another. Adapting this approach to the implementation of ModelGen,

however, would mean writing forward and reverse translations between each pair of

DDLs in our MMS, resulting in many separate rules and limited scalability. Going

via the HDM allows us to take advantage of the common elements between many

of the high level DDLs, captured by the HDM thanks to its simple structure and

constructs.

The schemas and CTs used in the transformation in Step 2 in Figure 5.1 can be

represented as a search graph, as shown in Figure 5.2, whose nodes are the individual

HDM schemas and whose edges are the CTs used to transform the schemas. Two

algorithms are involved in traversing this graph. The first, described in Section 5.2,
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Figure 5.2: The process by which we transform a schema in Step 2 of Figure 5.1

identifies schema objects within the current HDM schema that do not match HDM

equivalents of constructs in the target DDL. In the figure these are shown as son

above the rectangles. The second algorithm, described in Section 5.3, chooses an

appropriate CT at each step in the process to transform these unmatched objects

into ones that do match HDM equivalents of constructs in the target DDL. The

possible CTs are shown as CTn in the figure. This algorithm performs a depth first

search of the possible solution space, starting from the initial state and executing

CTs until a solution state or dead end state is reached.

In the figure, the matching algorithm is unable to match one object, so1, in the

source schema to an HDM representation of constructs in the target DDL. Two

CTs match the preconditions on so1 in S. CT1 is executed first resulting in S1.

Two schema objects are now unmatched. One CT matches the preconditions. It

is executed first on so2. This results in a schema where so3 is still unmatched but

no CTs match the preconditions for so3 in this schema. We are therefore at a dead

end. The transform algorithm now backtracks to S1 to try CT3 to so3. This results

in schema S3 where so2 is unmatched but CT4 matches the preconditions. CT4 is

applied to so2 resulting in a schema where all the schema objects match the HDM

representation of constructs in the target DDL and thus a solution has been found.

The process is shown in more detail in Algorithm 5.1.

We first define the two global variables that we use in the Transform algorithm

described in Section 5.3. We then apply the HLtoHDM function we defined in Chap-

ter 3 to translate Ss into the HDM. The result of this translation is transformed into

an HDM schema that matches the structure of an HDM schema in TDDL using

Transform. HDMtoHL, described in Section 5.4, translates the schema that was the

result of Transform into TDDL. Finally the pathways returned by the three phases

of the algorithm are composed to give us a single pathway from Ss to St.
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Algorithm 5.1: ModelGen(Schema Ss, TargetDDL TDDL)

TC := The list of constructs in TDDL;1

CT := The list of general purpose CTs;2

pSs,Shdm−s
:= HLtoHDM(Ss);3

〈pShdm−s,Shdm−t
,MO,HIC〉 := Transform(Shdm−s,new List());4

pShdm−t,St := HDMtoHL(Shdm−t, TDDL);5

pSs,St := pSs,Shdm−s
◦ pShdm−s,Shdm−t

◦ pShdm−t,St ;6

return 〈St, pSs,St〉;7

AutoMed is particularly suited to the task of schema translation for the following

reasons:

1. The HDM is a simple and flexible CDM which, as we have shown, can be used

to model a wide range of DDLs.

2. The constraint language the HDM uses can be used to differentiate between

different variants of a high level construct and, as we will see later in this

chapter, provides important clues when it comes to matching HDM schema

objects to a target DDL configuration.

3. Our transformation language, BAV, allows us to transform individual schema

objects. This means that complex high level constructs are split up into com-

ponents that can be processed more easily. This allows us to use CTs to break

complex restructuring tasks into smaller tasks that can be applied to a num-

ber of different translation problems, as well as being composed to perform an

entire translation.

A distinguishing feature of our implementation of ModelGen is that the choice of

transformations does not rely on knowledge of the source DDL. In addition this

work has the advantage that the inverse mapping, i.e. from target to source, is

directly available because BAV pathways are bidirectional.

So far our experimental work has shown that given the current set of CTs and

the preconditions associated with them, our heuristic approach is sufficient to do

automatic translation between SQL, XML Schema, RDFS, ER and CSV files, If we

wish to add other DDLs to our system, however, it may be necessary to add extra

CTs and/or expand the preconditions we use. This is, in fact, likely to be the case

if we wish to process languages like OWL [Mik04] that allow the inference of new

facts. This is discussed in more detail in the future work section in the conclusion

of this thesis.
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Figure 5.3: An XML schema, Sxml and its HDM equivalent, Shdm−xml

5.1 Translating from a High Level DDL to the

HDM

In this section we introduce the example we use in the rest of this chapter. Figure 5.3

shows an XML schema and HDM schema created by applying the production rules

we defined for XML Schema in Section 3.2.3. We annotate the typed HDM nodes

with their type name as calculated using the CTH described in the previous chapter.

This completes Step 1 in Figure 5.1.

5.2 Match

This section describes how we identify whether the objects in a given HDM schema

match those that represent constructs in the target DDL. As we saw in Chapter 3,

a given high level construct may have a number of variants. For example an XML

attribute may have the use attribute set to required or not. These variants all

generate the same combination of extensional HDM objects but a different set of

constraint objects.

For each DDL in AutoMed we store a table similar to that in Table 5.1 that asso-

ciates a high level construct variant with its scheme and the constraints it generates

when translated into the HDM.
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Construct Variant Construct Scheme HDM Constraints
table table table:〈〈T 〉〉
column column-notnull column:〈〈T,C, D, notnull〉〉 〈〈T 〉〉 . 〈〈 ,T ,T :C 〉〉,

〈〈T 〉〉 / 〈〈 ,T ,T :C 〉〉,
〈〈T :C 〉〉 . 〈〈 ,T ,T :C 〉〉

column-null column:〈〈T,C, D, null〉〉 〈〈T 〉〉 . 〈〈 ,T ,T :C 〉〉,
〈〈T :C 〉〉 / 〈〈 ,T ,T :C 〉〉

primary key primary key primary key:〈〈K, T, C〉〉 〈〈T 〉〉 id→ 〈〈 ,T ,T :C 〉〉
foreign key foreign key foreign key:〈〈K, T, C, T ′, C ′〉〉 〈〈T :C 〉〉 ⊆ 〈〈T ′:C ′〉〉

Table 5.1: SQL constructs, variants and the associated constraints

The Match algorithm, shown Algorithm 5.2, takes two parameters: the HDM schema

and a list of the constructs in the target DDL. It uses the constraints associated

with the objects in the HDM schema to identify which, if any of a target schema’s

constructs match the objects. It first attempts to match the structure of the graph

surrounding the group of HDM schema objects with that of the target construct.

For example, an SQL column is represented by an edge attached to a leaf node1.

So if one of the nodes connected to the edge is not a leaf node the edge cannot

represent an SQL column. If the structure matches then the constraints attached

to the object are compared to those generated by high level constructs in the target

DDL. If we are able to find a match we see if we can infer matches for any of the

objects referenced by the current object.

Differences in the semantics of representations in different DDLs mean that it may

not be possible to find a target construct that is equivalent to the original in a formal

way. For example, if we translate a SQL notnull column into an ER model that

does not support notnull attributes. In this case we attempt to match to the target

construct that provides the ‘tightest fit’ to the constraints attached to the schema

object. If we have to do one of these ‘tightest fit’ matches we inform the user that

the information capacity of the target schema is greater than that of the source.

Variable Description
so An HDM schema object
tc The construct in the target DDL that so has been matched to,

null if no matching construct has been found
tcV ariant The variant of the construct so has been matched to
refObjects A hash map of HDM schema objects referenced by so and keyed on the

construct they will be translated into in the target DDL

Table 5.2: The MatchObject data structure

We now describe the data structures and functions used in the algorithm in detail.

Table 5.2 shows the data structure MatchObject that we use in the algorithm. The

1Here a leaf node takes its normal meaning as a node attached to only one edge
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Algorithm 5.2: Match(Schema S,List TC)

MO := new List();1

HIC := false; foreach so in S do2

mo := new MatchObject(so);3

MO.add(mo);4

foreach mo in MO do5

foreach tc in TC do6

if matchStructure(mo.so,tc) then7

cons := getConstraints(S,mo.so);8

targetConstraints := getTargetConstructConstraints(tc);9

tcV ariant := matchConstraints(cons, targetConstraints);10

if tcVariant != null then11

mo.tc := tc;12

mo.tcV ariant := tcV ariant;13

mo.refObjects := labelReferencedSchemaObjects(MO, S,mo);14

continue;15

foreach mo in MO do16

if mo.tc = null then17

foreach tc in TC do18

if matchStructure(so,tc) then19

cons := getConstraints(S, so);20

targetConstraints := getTargetConstructConstraints(tc);21

tcV ariant := matchTightestFit(cons, targetConstraints);22

if tcVariant != null then23

HIC := true;24

mo.tc := tc;25

mo.tcV ariant := tcV ariant;26

mo.refObjects :=27

labelReferencedSchemaObjects(MO, S,mo);
continue;28

return 〈MO,HIC〉;29
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constructor for a MatchObject takes a schema object as a parameter and sets tc to

null, tcV ariant to null and creates a new hash map called refObjects.

1. matchStructure returns true if the structure of the extensional objects attached

to so match those of tc, false otherwise.

2. getConstraints(S, so) returns the set of constraint schema objects in S that are

dependent on so. For example, the constraints dependent on

edge:〈〈 , staff, staff:dept〉〉 in Figure 5.3 are

node:〈〈staff〉〉 ¤ edge:〈〈 , staff, staff:dept〉〉,
node:〈〈staff:dept〉〉 ¤ edge:〈〈 , staff, staff:dept〉〉 and

node:〈〈staff:dept〉〉 ¢ edge:〈〈 , staff, staff:dept〉〉.

3. getTargetConstructConstraints(tc) returns a hash map of the set of constraints

associated with the high level construct tc keyed on the variants of tc. For

example, if tc were a SQL column, the function would return a hash map

made up of two sets of constraints, the first with key column-notnull would

contain the three constraints in the second, third and fourth rows of Table 5.1

and the second with the two constraints in the fifth and sixth rows of the table.

4. matchConstraints(cons, targetConstraints) returns the variant of the high level

construct whose set of constraints match cons. It returns null if no such match

is found. It may be the case that more than one construct in the target DDL

shares the same structure and set of constraints. This is the case with the

attribute and simpleElement constructs in XML Schema. In cases like this the

HDM object will be matched to whichever of the constructs is listed first in

TC.

5. matchTightestFit(cons, targetConstraints). If match is unable to find an exact

match we use the matchTightestFit function to see if cons forms a superset of

any of the elements in targetConstraints. If it does the function returns the

construct variant that provides the ‘tightest fit’ with cons. In this case we set

the HIC flag to true so we will be able to inform the user that the information

capacity of the target schema will be greater than the source.

Note that we cannot do this ‘tightest fit’ matching if the structure is different.

These objects will need to be transformed before they match the target DDL

as discussed in the next section.

6. labelReferencedSchemaObjects(MO, S,mo). Having successfully matched so to

tc we may be able to infer additional matches for objects referenced by so
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if the scheme of tc includes references to other constructs. For example, the

scheme of the SQL column construct in Table 5.1 includes a reference to a

table construct. By analysing the production rule for tc we can work out

which of the objects attached to so should be matched to the referenced high

level construct. In the case of the column construct analysis of its production

rules tells us that the node that is the first element of the edge created when

a column object is translated into HDM, represents the table construct.

The function performs the checks for these extra matches. It finds the MatchOb-

jects in MO that hold the appropriate HDM schema objects referenced by

mo.so and sets their tc and tcV ariant fields to the correct values. It returns

an array list containing these referenced HDM schema objects ordered by the

position of their corresponding high level construct in the scheme of mo.tc.

For example, if mo.tc is an ER relationship, the HDM node corresponding to

the first entity in the scheme will be first in the array list, the second will

be second and so on. The array list is stored in the refObjects field of the

current match object and is used when we translate the HDM schema into the

target DDL.

labelReferencedSchemaObjects also updates the MatchObjects of any HDM ob-

jects that are part of mo.so. In the example of the SQL column above all the

constraint objects on mo.so would be matched to mo.tc and mo.tcV ariant as

would the node created when a column object is translated into HDM, that

makes up the second element of the edge created.

We now describe a run through of Algorithm 5.2. We start with S = Shdm−xml,

TL = SQL and so = edge:〈〈 , staff:dept, staff:dept:dname〉〉. We will assume so is

stored in the match object, mo. The algorithm identifies the edge as part of a SQL

column. Its constraints match those of a null column. matchStructure returns true

since the element in the edge scheme not attached to the unique constraint is a

leaf node, as required for a SQL column. mo.tc is set to column-null. In addition

labelReferencedSchemaObjects identifies the fact that the scheme of a column includes

a reference to a table construct. It identifies node:〈〈staff:dept〉〉 as the node that

represents this table construct and sets the tc field of the MatchObject in MO that

holds it to table. tcV ariant is also set to table and the HDM object is added to the

array list to be returned. It also identifies node:〈〈staff:dept:dname〉〉 as the node in

the column definition and sets the tc field to column and tcV ariant to column-null

on its match object. It does the same to all the constraints that are part of the

column-null definition.
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5.3 Transform

In most cases the HDM schema created in Step 1 of Figure 5.1 will not translate

directly into constructs from the target DDL. In this section we describe an algorithm

that transforms an HDM schema that contains objects that were not identified as

matching a construct in the target DDL by the Match algorithm, into one where all

the objects match a construct in the target DDL.

It is based on a search of the possible schemas that can be created by applying

CTs to the unidentified schema objects. The process was shown in Figure 5.2 at

the beginning of this chapter. We assume here that applying a CT will return the

transformation pathway that executes it.

The CTs we use in this chapter, along with a brief explanation of what they do

are shown in Table 5.3. Details of the CTs other than expand multi value can be

found in [BM05]. New CTs can be created and added to the system. This may be

necessary if we add a new DDL to AutoMed that does not fall into any of the

classes we have defined.

Transformation Description
inclusion merge(node:〈〈B〉〉, Merges node:〈〈A〉〉 and node:〈〈B〉〉 if node:〈〈A〉〉 is a

edge:〈〈E, A, C〉〉) subset of node:〈〈B〉〉 and there is a mandatory
constraint from node:〈〈A〉〉 to edge:〈〈E, A, C〉〉

inclusion expand(node:〈〈B〉〉, Creates a new node node:〈〈A〉〉 that is a subset of
edge:〈〈E, B, C〉〉) node:〈〈B〉〉, moves edge:〈〈E,B,C〉〉 from node:〈〈B〉〉 to

node:〈〈A〉〉 and adds a mandatory constraint
from node:〈〈A〉〉 to the new edge

id node merge(edge:〈〈E,A, B〉〉) Merges node:〈〈A〉〉 and node:〈〈B〉〉 if they are identical
id node expand(node:〈〈A〉〉) Creates a new node identical to node:〈〈A〉〉 and an edge

linking it to node:〈〈A〉〉
um redirection( Moves edge:〈〈E1, A, C〉〉 from node:〈〈A〉〉 to node:〈〈B〉〉

edge:〈〈E1, A, C〉〉,edge:〈〈E2, A, B〉〉) if node:〈〈A〉〉 and node:〈〈B〉〉 have unique and
mandatory constraints on edge:〈〈E2, A, B〉〉

id edge merge(edge:〈〈E1, A, B1〉〉, Replaces node:〈〈A〉〉, edge:〈〈E1, A,B1〉〉 and
edge:〈〈E2, A, B2〉〉) edge:〈〈E2, A, B2〉〉 with edge:〈〈A, B1, B2〉〉 if for each

instance of node:〈〈A〉〉 there is one instance of the join
of edge:〈〈E1, A,B1〉〉 and edge:〈〈E2, A, B2〉〉

expand multi value(node:〈〈A〉〉, Replaces edge:〈〈E, A, B〉〉 with a collection
edge:〈〈E, A, B〉〉) of nodes and edges link to node:〈〈A〉〉 with an

inclusion constraint as long as there is a mandatory
constraint from node:〈〈A〉〉 to edge:〈〈E, A, B〉〉

Table 5.3: The general purpose CTs we use in ModelGen

To limit the number of CTs that need to be applied at each step of the algorithm and

to thereby limit the size of the search space a CT must satisfy certain preconditions

before being applied to an unmatched object. These preconditions rely on the
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constraints and structure of the graph surrounding the unmatched object. The

preconditions for the CTs in Table 5.3 are shown in Table 5.4. The DNC in the

table means we Do Not Care (DNC) whether the precondition is met or not.

Transformation edge node cons leaf reflexive unique
inclusion merge N DNC DNC DNC DNC DNC
inclusion expand Y N N N N Y
id node merge Y N N DNC Y Y
id node expand N Y N Y N DNC
um redirection Y N N N N DNC
id edge merge Y N N N Y DNC
expand multi value Y N N N N N

Table 5.4: The CTs and their preconditions

If we assume so is the unmatched schema object the preconditions we use are:

edge is so an edge construct?

node is so a node construct?

cons is so a constraint construct?

leaf is so a leaf node or connected to a leaf node?

reflexive is there a reflexive constraint attached to so?

unique is there a unique constraint attached to so?

As an example, consider the expand multi value CT that was introduced in Chapter 3.

It can only be applied to an edge, the edge must not be attached to a leaf node

and there must not be a reflexive or unique constraint on the edge. Some of the

preconditions are determined by the parameters that the CT takes. For example,

id node expand takes a single node as a parameter and so can only be applied to an

unmatched node object. Other preconditions are determined by the CT itself, for

example id node merge can only be applied to an edge that has a reflexive constraint

attached to it and id edge merge can only be applied to edges that have a join

constraint between them.

We have found that these preconditions and CTs are sufficient to translate the

schemas we have used in our experiments. However, the list can easily be extended

if necessary. Using a greater number of preconditions has an impact on performance

as we discuss later.

Transform is shown in Algorithm 5.3. It makes use of two global variables: TC,

the list of constructs in the target DDL and CT , the list of general purpose CTs in

Table 5.3.
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Algorithm 5.3: Transform(SchemaS, BAVPathway pathway)

〈MO, HIC〉 := Match(S, TC);1

foreach mo in MO do2

if mo.tc = null then3

num unmatched++;4

if num unmatched = 0 then5

return 〈pathway, MO, HIC〉;6

else7

foreach mo in MO do8

if mo.tc is null then9

mt := matching cts(S, mo.so);10

while mt is not empty do11

Let ct := mt.getNextElement();12

pS,S′ := the result of applying ct to mo.so;13

result := Transform(S ′, pathway + +pS,S′);14

if result 6= Fail then15

return result;16

return Fail ;17

The algorithm works as follows: First Match is run to try and match the schema

objects in S to constructs in TDDL. If Match is able to match all the objects,

num unmatched will be zero and the schema has been successfully matched to the

target DDL. The algorithm returns a tuple with three elements. Firstly, pathway, a

pathway from the HDM representation of the source schema to the current schema

where all the HDM objects have been matched with the HDM equivalents of con-

structs in the target DDL. Secondly, MO, a list of successfully matched MatchOb-

jects. Finally, HIC (Higher Information Capacity), a flag that is true if the trans-

formed schema has a higher information capacity than the source, and false if the

source and target have the same information capacity.

If there are unmatched objects in MO, the algorithm loops through MO looking

for match objects whose target constraint is null. When such a match object is

found the matching cts function is called to create a list of CTs whose preconditions

match the structure of the subschema made up of mo.so and any schema objects it

references. For a CT to match the preconditions the subgraph must match each of

the ‘Y’s in the precondition table and must not match the ‘N’s. The CTs with the

fewest DNCs are sorted to the top of the list. For example, if the preconditions of

two CTs matched but one had no DNCs and the other had one DNC, the one with
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no DNCs would be at the top of the list.

The first CT in the list is applied to mo.so to create a pathway between the current

schema and S ′, the final schema in the pathway. The algorithm is then called again

with the transformed schema and a new pathway created by concatenating the

pathway created on line 14 to the current pathway. If no suitable transformation

can be found for any of the unmatched schema objects then the translation has

failed. This happens if none of the CTs precondition’s match the structure of the

schema around the unmatched schema objects.

As we discussed in the previous section, the different semantics of DDLs may mean

we are unable to create an equivalent target schema. We have seen how we handle

this situation where the structure of a target construct matches the HDM schema

object, so, but its constraints only form a subset of those attached to so. We may

also have a situation where the structure does not match the target DDL and we

need to do a transformation.

For example, if we translate an ER 1:1,1:N relationship into SQL we need to

transform the edge that represents this relationship as no SQL construct matches

its structure. We will lose some of the constraints because SQL does not support the

range of cardinality constraints that the ER model does. These extra constraints

sometimes mean that a CT that meets all the preconditions and would perform the

required restructuring is prevented from executing. We overcome this by allowing

the removal of these constraints before executing the CT. This again creates a target

schema with greater information capacity than the source. As part of the execution

of the CT in such a case, we inform the user the information capacity has increased

as we did in the Match algorithm.

As we have stated previously this is a heuristic process and is not guaranteed to

complete successfully. We see the termination conditions for the algorithm illus-

trated in Figure 5.2. Either all the objects are matched to a target DDL construct

in which case a solution has been found or we end up in a state where there are

unidentified objects but no CTs meet the preconditions on the schema. In this case

the translation has failed. There are two possible reasons for this: firstly it may

simply not be possible to translate a given schema expressed in the source DDL

into one expressed in the target DDL. So far this has not been the case with the

DDLs we have used in our experiments but our method does not guarantee that

this will always be the case. The second reason that the translation may fail is that

the algorithm has not chosen suitable CTs. If this is the case we need to adjust the
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preconditions on the CTs. Indeed, this was necessary throughout our experimental

work.

The output of this phase of the translation is a BAV pathway from the HDM repre-

sentation of the source schema, Shdm−s in Figure 5.1, to an HDM representation of

the schema in the target DDL, Shdm−t, as well as a list of match objects that allow

us to translate this schema into the target DDL.

5.3.1 Complexity

We analyse the complexity of executing Transform by counting the number of CTs

executed. In the worst case, no objects in the source graph are identified as matching

a target construct by Match, and we need to iterate numo times, where numo is the

number of objects in the HDM schema. Let numct be the number of CTs we have

to choose from, and let the search graph we showed in Figure 5.2 have a depth x.

In the worst case we will need to execute (numo × numt)
x CTs.

In the worst case x is infinite so it is clearly vital to try to limit it. The more CTs we

have the more likely we are to reach a solution quickly because we have more ways of

restructuring the HDM schema. There is a trade off here though. Each extra CT will

increase the number of choices we have at each stage of the transformation process.

To overcome this we use the preconditions on the CTs to limit the number that

can be chosen in each recursion of the algorithm. We have used the preconditions

to ‘direct’ the search and to limit the chances of costly backtracking by carefully

tuning them based on our experiments.

We cannot place a limit on the depth of the search graph since the number of

unidentified objects is not monotonically decreasing. It is possible that applying a

CT may increase the number of unidentified objects. For example in Figure 5.2,

initially there is only one unidentified object, but after applying CT1(so1) there are

two unidentified objects. In other words we cannot guarantee that the number of

unidentified objects will always reach zero. To prevent the system looping forever in

a situation like this, we exit with a failure message if the number of unidentified ob-

jects increases for five recursions of Transform in a row. To simplify the presentation

of the Transform algorithm, this detail is omitted.
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DDL Class Class specific CT
XML Schema Hierarchical create root node
SQL Natural keys check keys
ER Natural keys check keys
RDFS Semantic Web create semweb nodes

Table 5.5: DDL Classes

5.4 Translating from the HDM to the Target DDL

If Transform completes successfully all the HDM schema objects will be matched to

a specific variant of a high level construct in the target DDL. The different semantics

and structure of high level DDLs means that we still not be able to create a valid

schema in the target DDL. For example, if the target DDL is XML Schema we may

need to create a root node. To solve these types of problems we may need to execute

specific CTs chosen based on the class of the target DDL which forms part of the

information contained in a DDL’s AutoMed wrapper. The classes for the DDLs

used in this thesis are shown in Table 5.5 along with the class specific DDLs we have

found necessary.

The check keys CT, shown in Algorithm 5.4, is run on schemas that use natural

keys, such as SQL. It makes sure each node matched to a nodal construct in the

target DDL, has an associated object(s) that can be used as a key, i.e. is connected

to a reflexive constraint. If this is not the case, we add HDM constraints that match

a compound key construct to the node and any of its edges that has a mandatory

constraint between the edge the node. The extent of the node is updated using

the node reidentify(node:〈〈A〉〉,map) CT presented in [BM05]. This creates a new

node:〈〈A〉〉 with the extent defined by map, a set of tuples whose first value comes

from node:〈〈A〉〉, and whose second value is the new value which we wish to assign

to node:〈〈A〉〉.

A hierarchical DDL needs to have a single node that will act as the root. We also

need to create an edge from this node to any complex elements that are not children

of any other complex elements. If there is more than one such element, i.e. the HDM

schema is a forest, which could happen if we translated two SQL tables that were

not connected by a key, we need to create an edge to all of them. The edge will be

matched to a complex element with minOccurs = 0 and maxOccurs = unbounded.

We create these objects using the CT create root node, shown in Algorithm 5.5, that

is only applied to hierarchical DDLs. DDLs in the semantic web class like RDFS

and the various flavours of OWL have a similar requirement that extra nodes be
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Algorithm 5.4: create keys(Schema S, ListMO)

foreach mo in MO do1

if mo.tc is a nodal construct then2

node:〈〈A〉〉 := mo.so;3

if node:〈〈A〉〉 is not attached to a reflexive constraint then4

Let mandatoryEdges := new List();5

foreach edge:〈〈Ei, A,Bi〉〉 do6

if node:〈〈A〉〉 ¤ edge:〈〈Ei, A,Bi〉〉 ∈ Cons then7

mandatoryEdges.add(edge:〈〈Ei, A,Bi〉〉);8

Let edge:〈〈E1, A, B1〉〉 . . . edge:〈〈En,A, Bn〉〉 be the edges in mandatoryEdges;9

S′ := S.add(unique:(node:〈〈A〉〉, edge:〈〈E1, A, B1〉〉 1 . . . 1 edge:〈〈En, A, Bn〉〉));10

S′ :=11

S′.add(mandatory:(node:〈〈A〉〉, edge:〈〈E1, A, B1〉〉 1 . . . 1 edge:〈〈En, A, Bn〉〉));
S := S′.add(reflexive:(node:〈〈A〉〉, edge:〈〈E1, A,B1〉〉 1 . . . 1 edge:〈〈En, A, Bn〉〉));12

S := S′.delete(unique:(node:〈〈A〉〉, edge:〈〈Ei, A, Bi〉〉));13

S := S′.delete(mandatory:(node:〈〈A〉〉, edge:〈〈Ei, A, Bi〉〉));14

map = distinct15

[{y , x1 , . . . , xn} | {y , x1} ← edge:〈〈E1,A, B1〉〉; . . . ; {y , xn} ← edge:〈〈En, A, Bn〉〉];
pS′,S′′ := node reidentify(node:〈〈A〉〉,map);16

return pS,S′′ ;17

added to the HDM schema before it can be translated. These are node:〈〈Literal〉〉
and node:〈〈Resource〉〉 and are created by the create semweb nodes CT.

Algorithm 5.5: create root node(Schema S, ListMO)

S′ := S.add(node:〈〈R〉〉,[&0]);1

foreach mo in MO do2

if mo.tc = complexElement then3

node:〈〈A〉〉 := mo.so;4

if node:〈〈A〉〉 is the root node of a tree in S then5

S′ := S′add(edge:〈〈R,A〉〉,distinct [{r , x} | {r} ← node:〈〈R〉〉; {x} ← node:〈〈A〉〉]);6

S := S′add(mandatory:(node:〈〈R〉〉, edge:〈〈 , R, A〉〉));7

S := S′add(unique:(node:〈〈R〉〉, edge:〈〈 , R, A〉〉))8

return pS,S′ ;9

After we have applied any necessary class specific CTs we are ready to use the

information stored in the list of MatchObjects, MO, returned by Transform to create

the target schema. We loop through all the objects in MO first creating the nodal

objects, then the link-nodal constructs, then the link constructs and finally the

constraints. For each object in MO we create a BAV transformation that adds the

target DDL construct identified in mo.tc. The scheme of the newly created object

is determined by using the value stored in mo.tcV ariant and the table that stores

the scheme and HDM constraints of each variant of a high level construct such as

that in Table 5.1.
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Construct Variant Construct Scheme HDM Constraints
entity entity entity:〈〈E〉〉
relationship rel-0:1-0:N relationship:〈〈R, E1, 0:1, E2, 0:N〉〉 node:〈〈E1〉〉 ¢ edge:〈〈R, E1, E2〉〉
relationship rel-1:1-0:N relationship:〈〈R, E1, 1:1, E2, 0:N〉〉 node:〈〈E1〉〉 ¤ edge:〈〈R, E1, E2〉〉

node:〈〈E1〉〉 ¢ edge:〈〈R, E1, E2〉〉
relationship rel-1:N-1:N relationship:〈〈R, E1, 1:N, E2, 1:N〉〉 node:〈〈E1〉〉 ¤ edge:〈〈R, E1, E2〉〉

node:〈〈E2〉〉 ¤ edge:〈〈R, E1, E2〉〉
relationship rel-1:1-1:N relationship:〈〈R, E1, 1:1, E2, 1:N〉〉 node:〈〈E1〉〉 ¤ edge:〈〈R, E1, E2〉〉

node:〈〈E1〉〉 ¢ edge:〈〈R, E1, E2〉〉
node:〈〈E2〉〉 ¤ edge:〈〈R, E1, E2〉〉

Table 5.6: Selected variants of the ER relationship construct, their schemes and the
associated HDM constraints

For example, assume we have the match objects mo1, mo2 and mo3 shown below

and we use Table 5.6 to associate a construct variant to each scheme.

mo1.so = node:〈〈R〉〉, mo1.tc = entity, mo1.tcV ariant = entity, mo1.refObjects = {},
mo2.so = node:〈〈S〉〉, mo2.tc = entity, mo2.tcV ariant = entity, mo2.refObjects = {},
mo3.so = edge:〈〈relname,R, S〉〉, mo3.tc = relationship, mo3.tcV ariant = rel-1:1-1:N,

mo3.refObjects = {node:〈〈R〉〉,node:〈〈S〉〉}

The target constructs for mo1 and mo2 are entities. The production rule for an

entity tells us that the extent of the entity is that of the node, and the name of the

entity and the node are the same. There are no objects referenced in this scheme

so mo1.refObjects and mo2.refObjects are empty. The BAV transformations to

translate mo1 and mo2 into ER are thus:

add(entity:〈〈R〉〉, node:〈〈R〉〉)
add(entity:〈〈S〉〉, node:〈〈S〉〉)

As part of this process we add the newly created entities to a map, addedObjects,

that maps HDM objects to ER entities.

addedObjects := addedObjects∪ {〈node:〈〈R〉〉,entity:〈〈R〉〉〉, 〈node:〈〈S〉〉,entity:〈〈S〉〉〉}

The target construct for mo3 is relationship. The production rule for a relationship

tells us the extent of the relationship object is that of the edge and the name of

the relationship and the edge are the same. The variant is rel-1:1-1:N. From

Table 5.6 the scheme for the object we create is relationship:〈〈R,E1, 1:1, E2, 1:N〉〉.
The referenced entities that form the second and fourth elements of the scheme

are found by looking at mo3.refObjects and then finding the equivalent high level

object in addedObjects. The E1 in the scheme is thus replaced with entity:〈〈R〉〉 and

E2 with entity:〈〈S〉〉. The resulting transformation is:

add(relationship:〈〈relname, R, 1:1,S, 1:N〉〉, edge:〈〈rel, R,S〉〉)
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The output of this phase is the BAV pathway that maps all the HDM objects to

their high level DDL equivalents.

5.5 Adding a New DDL

If a new DDL that includes constructs that are not found in the existing DDLs in

our system, is added to the AutoMed MMS, it may be necessary to add new CTs

and/or preconditions to translate to and from this new DDL. The amount of work

required depends on how closely related the new DDL is to an existing DDL in the

system.

The set of CTs which we used initially were those described in [BM05]. These were

sufficient to translate between the first two DDLs we added to our prototype MMS,

namely SQL and the ER model described in Section 3.2.2. Adding XML Schema

to the system required us to write a new HDM to high level CT, create root node.

We also needed to add the expand multi value CT described in Algorithm 3.15 to

allow us translate multi-valued XML Schema elements into constructs supported

by SQL and our ER model. Finally, we needed to add the unique precondition to

make sure we did not apply the expand multi value CT to an element that was not

multi-valued.

On the other hand, subsequently adding a variant of the ER model that supports

multi-valued attributes, did not require any changes to be made to our MMS because

both the extensional and constraint constructs were sufficiently similar to those

found in the existing ER model and XML Schema (which supports multi-valued

elements). It also falls into the same DDL class as the existing ER model, i.e. Natural

Keys, so no new HDM to high level CTs were required.

5.6 Correctness

AutoMed ModelGen returns a single BAV transformation pathway. It was shown

in [MP02] that, when considering a pathway, we need only consider one transforma-

tion at a time since each pathway T can be written as t; T ′ where t is the primitive

transformation that transforms T ′ to T . We apply this argument to the three phases

of the translation described in this chapter. We can show the translation as a whole
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is correct by showing each of the three phases is correct because each phase is simply

a part of the pathway.

Firstly we assume that the production rules for translating high level DDL constructs

in the HDM are correct and we can therefore assume the translations based on them

are correct.

In step two of the translation, as shown in Figure 5.1, the HDM schema is trans-

formed by means of a number of CTs that are composed together. We will take

as axiomatically true that all the general purpose CTs we use produce equivalent

schemas. By the argument above, applying them in a sequence must also result in

an equivalent schema. If we need to apply a class specific CT we may increase the

information capacity of the target schema as we do when we apply create root node

but never decrease it.

The translation from the transformed HDM schema to a schema in the target DDL

is based on the inverse of the production rules. If the Match algorithm has completed

successfully each HDM object is matched to some construct in the target DDL. This

matching is based on the production rules for the target DDL. As in the case of the

high level to HDM step, we assume these production rules produce a high level

schema with equivalent information capacity to the HDM schema it is based on.

These three steps are simply parts of a transformation pathway and so, as each one

produces a schema that has at worst higher information capacity than the source

schema we know that the target schema must also have an information capacity

that is equal to or higher than that of the source schema.

5.7 Example translation from XML to SQL

In this section, we describe how we use AutoMed ModelGen to translate Sxml in

Figure 5.3, into an SQL schema. We have already described, in Section 5.1, how

Sxml is translated into Shdm−xml. If we look at this schema we see that it cannot be

translated directly into SQL. Firstly, it is hierarchical and secondly a department

can have more than one name and so node:〈〈staff:dept:dname〉〉 cannot be translated

directly into a SQL column. Some transformations are required.

In the first iteration of the Transform algorithm, Match returns

edge:〈〈 , staff:dept, staff:dept:emp〉〉 and edge:〈〈 , staff:dept, staff:dept:dname〉〉 with the



5.7. Example translation from XML to SQL 155

Figure 5.4: Shdm−xml

matched label set to false. If we consider edge:〈〈 , staff:dept, staff:dept:emp〉〉 first,

and compare the structure of the surrounding schema with the preconditions in

Table 5.4, we see that two CTs match. inclusion expand matches with no DNCs,

whereas um redirection has one DNC, so inclusion expand is executed.

This allows us to use the CT below to create a node whose extent is those depart-

ments that do have employees and then split the rest of the schema off.

inclusion expand(Shdm−xml,node:〈〈staff:dept:emp〉〉,edge:〈〈 , staff:dept, staff:dept:emp〉〉)

We show the BAV transformation pathway for this CT as an example:

1 add(node:〈〈staff:dept:emp:dept〉〉,
[{d} | {d , e} ← edge:〈〈 , staff:dept, staff:dept:emp〉〉])

2 add(edge:〈〈 , staff:dept:emp, staff:dept:emp:dept〉〉, [{e, d} |
{d , e} ← edge:〈〈 , staff:dept, staff:dept:emp〉〉])

3 add(node:〈〈staff:dept:emp:dept〉〉 ⊆ node:〈〈staff:dept〉〉)
4 add(node:〈〈staff:dept:emp:dept〉〉¤ edge:〈〈 , staff:dept:emp, staff:dept:emp:dept〉〉)
5 add(node:〈〈staff:dept:emp〉〉¤ edge:〈〈 , staff:dept:emp, staff:dept:emp:dept〉〉)
6 add(node:〈〈staff:dept:emp〉〉¢ edge:〈〈 , staff:dept:emp, staff:dept:emp:dept〉〉)
7 delete(node:〈〈staff:dept:emp〉〉¤ edge:〈〈 , staff:dept:emp, staff:dept〉〉)
8 delete(node:〈〈staff:dept:emp〉〉¢ edge:〈〈 , staff:dept:emp, staff:dept〉〉)
9 delete(edge:〈〈 , staff:dept, staff:dept:emp〉〉, [{d , e} |

{e, d} ← edge:〈〈 , staff:dept, staff:dept:emp〉〉])

This shows one of the strengths of the BAV approach. We can evolve the schema

by only changing some of the objects rather than having to create a completely
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Figure 5.5: After applying inclusion expand

new schema each time we execute a CT. The result of applying this CT is shown

in Figure 5.5. The grey objects are those added or changed by the execution of the

CT.

In the second iteration just edge:〈〈 , staff:dept, staff:dept:dname〉〉 will be returned by

Match with its matched label set to false. The only CT whose preconditions are met

by this edge is expand multi value. We thus execute the following CT:

expand multi value(S′hdm−xml, edge:〈〈 , staff:dept, staff:dept:dname〉〉,dname)

This creates the schema shown in Figure 5.6. The match algorithm has identified

three nodes which can be translated into tables, node:〈〈staff:dept:emp〉〉,
node:〈〈staff:dept〉〉 and node:〈〈dname〉〉. The nodes and edges linked to them have

been identified as columns. There are also two inclusion constraints that have been

identified as foreign keys.

In Figure 5.6 the inclusion constraints are attached to the node that has been iden-
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Figure 5.6: After applying expand multi value
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tified as a table. As part of the translation to SQL these inclusion constraints are

moved to the nodes that will be translated into the primary key columns as identi-

fied by the mandatory, unique and reflexive constraints from the table node to

the edge linking it to the primary key node.

The final SQL schema is shown below. We again use the CTH to calculate the

correct data types for the columns. node:〈〈staff〉〉 is untyped so we leave the type for

the SQL column we create to represent it as unknown.

Ssql = {table:〈〈staff:dept〉〉, column:〈〈staff:dept, staff, unknown, notnull〉〉,
column:〈〈staff:dept, staff:dept:did, smallint, notnull〉〉,
column:〈〈staff:dept, staff:dept:numEmps, integer, null〉〉,
primary key:〈〈staff:dept key,table:〈〈staff:dept〉〉, column:〈〈staff:dept, staff:dept:did〉〉〉〉,
table:〈〈dname〉〉, column:〈〈dname, dname:dept, short, notnull〉〉,
column:〈〈dname, staff:dept:dname, string, notnull〉〉,
primary key:〈〈dname key,table:〈〈dname〉〉, column:〈〈dname, dname:dept〉〉,

column:〈〈dname, staff:dept:dname〉〉〉〉,
table:〈〈staff:dept:emp〉〉,column:〈〈staff:dept:emp, staff:dept:emp:dept, smallint, notnull〉〉,
column:〈〈staff:dept:emp, staff:dept:emp:eid, smallint, notnull〉〉,
column:〈〈staff:dept:emp, staff:dept:emp:name, varchar, notnull〉〉,
primary key:〈〈staff:dept:emp key,table:〈〈staff:dept:emp〉〉,

column:〈〈staff:dept:emp, staff:dept:emp:eid〉〉〉〉
foreign key:〈〈staff:dept:emp fk,table:〈〈staff:dept:emp〉〉,

column:〈〈staff:dept:emp, staff:dept:emp:dept〉〉,
table:〈〈staff:dept〉〉, column:〈〈staff:dept, staff:dept:did〉〉〉〉

foreign key:〈〈dname fk,table:〈〈dname〉〉,
column:〈〈dname, dname:dept〉〉,
table:〈〈staff:dept〉〉, column:〈〈staff:dept, staff:dept:did〉〉〉〉}

The names of the tables and columns could be improved with some post processing.

It would also be possible for a human expert to remove

column:〈〈staff:dept, staff, unknown, notnull〉〉
since it does not add any useful data to the schema.

5.8 Experimental Results

Figure 5.7 shows the number of match operations versus the number of schema

objects required to translate various subsets of an XML Schema representation of

DBLP into SQL. The gradient is steepest when schema objects from the source DDL

that have no direct equivalent in the target DDL are added to the source schema, in

this case nested XML Schema complex types. Where the graph is flatter constructs
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that could be matched directly with the target model, like XML Schema attributes,

were added. Figure 5.8 shows matches vs schema objects for the translation of a

SQL database to ER. Again the graph is steeper when tables with foreign keys are

added.

5.9 Related Work

The implementation of ModelGen in Rondo uses a specific converter for each pair

of DDLs the systems supports. In the most recent papers about Rondo [MRB03,

MBHR05] this was limited to just SQL and XML. In addition these converters focus

solely on the structural semantics of the input and output schema [MRB03, Mel04]

and do not translate the data instances. Another schema only implementation of

ModelGen is AutoGen [SKZ06].

The work most closely related to ours is that done by Atzeni et al in their MIDST

system [ACB05, ACB06]. They also generate data-level translations by composition

of elementary transformations to translate schemas and data between a number

of different DDLs using a three stage approach. Their method differs from ours,

however, in that the data is copied from source to CDM to target. This is inefficient

if the data sets are large. Given the source and target DDLs, predefined algorithms

choose the most appropriate transformation at each step in the process. In the final
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step, the transformed data is copied into the target system. This differs from our

approach in that our composite transformations are chosen at run-time.

A significant disadvantage of the MIDST implementation of ModelGen is that it does

not return a set of mappings between the source and target schemas [BM07]. This

means it cannot be used in a MM script where the mappings between source and

target are needed as parameters to other operators.

Kensche et al use GeRoMe [KQLJ07], in their MMS GeRoMeSuite, to describe map-

pings directly from the source to the target schema using SO s-t tgds. There is a

specific materialisation algorithm for each target DDL. The mappings are not gen-

erated automatically but are specified by an operator, using a GUI, and translated

into the GeRoMe CDM by the system.

Numerous examples of systems for translating between specific models exist in the

literature: XML and relational schemas [SSB+01, SSK+01] as well as ER and re-

lational [PB94] and ER and XML schemas [SMD03]. More recent work on object

relational to SQL translation has been done by Mork and Bernstein [MBM07].

Our method has the following advantageous characteristics:

1. We can do the translation between the DDLs currently supported by our

prototype automatically.

2. Our simple CDM means high level structures can be dealt with in a uniform

manner.

3. We use a common query language for all our data translation rather than DDL

specific query languages.

4. We create a bidirectional mapping between the source and target schemas as

part of our target schema creation process. This mapping allows us to translate

the instances of the source schema into the target schema.

The fact that we do our translation via a CDM means that we need to do a greater

number of transformations when compared to a system that translates the source

schema directly into the target DDL. To quantify this difference let us assume that

there are n schema objects in the source schema and m in the target. A direct

bidirectional translation from source to target will require approximately n + m

transformations, one to create each of the target schema objects and one to create

each of the source schema objects for the reverse translation.
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Now assume that in our system, the source schema is represented by o HDM schema

objects. Note that o ≥ n because the fine grained nature of the HDM means that

each high level object is represented by at least one HDM object. We require n + o

transformations to translate the source schema into the HDM, one to create each

HDM schema object and one to create each source schema object in the reverse

translation. We now require p transformations to restructure the HDM schema. If

we assume the target schema is represented by q HDM schema objects we require

at least m + q transformations to translate from the HDM to the target DDL. As

above q ≥ m. The total number of transformations required by our system is thus

at least 2(m + n). There will therefore be at least twice as many transformations

required using our system when compared to one that translates the source schema

directly into the target DDL.

This disadvantage is mitigated by the fact that our transformations are simple and

can be automatically generated. As far as we know there are no systems that can

automatically generate transformations from a source schema directly to a different

target DDL, for anything other than a specific pair of DDLs [BM07, STZ+99].

Another disadvantage is that our translations are heuristic in nature, and the process

is not always guaranteed to succeed even if a suitable translation is possible in theory.

Once again, this is in common with other MMSs [ACB05, KQLL07].

5.10 Chapter Summary

This chapter has presented a data level implementation of the MM operator Mod-

elGen that returns the translated schema along with its data instances as well as a

bidirectional mapping between the source and target schemas. We have shown how a

schema and its associated data instances can be translated from one DDL to another

by first translating it into the HDM and then applying composite transformations

to restructure the HDM schema. This restructured schema is then translated into

the target DDL. We have described an algorithm for choosing the most suitable CT

at each stage of the transformation process in the HDM and a mechanism for de-

termining when a given schema matches the constructs of the target DDL. Finally,

we presented a detailed example and some experimental results.



Chapter 6

MM Operator Implementation in

AutoMed

In this chapter we present our implementations of the MM operators, Compose,

Confluence, Merge, Extract and Diff, proposed by Bernstein et al [Ber03, BM07]. We

take advantage of both the schema transformation technique of our mapping and

transformation language, BAV, and the fine grained nature of the HDM, to help us

create implementations for each operator. We do not present an implementation of

Match in this thesis but work on Match and Merge within the AutoMed framework

can be found in [RM05, MRMM05] and is the subject of ongoing work.

The implementation of each MM operator is a difficult task even in isolation. The

requirement, in a MMS, that the implementations should all exist within a com-

mon framework makes it even harder. The problems the operators aim to solve,

i.e. schema translation - ModelGen, mapping composition - Compose, schema merg-

ing - Merge, view materialisation - Extract and view complement - Diff have been

studied in great detail and many different approaches to their implementation have

been proposed. They all, however, look at the problems in isolation and are gen-

erally only applicable to a single DDL. Our aim in this chapter is to show how we

use our MM framework to implement all these operators in a DDL independent

manner. We do not claim that any of the implementations are necessarily the best

way to solve the individual problems associated with each operator, but rather that

our technique is flexible enough to cover the wide range of problems necessary to

implement a generic MMS. As far as we are aware this has not been done before in

a DDL independent way in a system supporting instance based semantics.

162
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The schema transformation approach we use in our mapping and transformation

language, BAV, and our CDM provide particular advantages when it comes to im-

plementing these operators:

1. The underlying representation of schema objects in the HDM means that we

can process schema objects in all high level DDLs in a uniform way.

2. The primitive transformations that make up a BAV pathway provide specific

information about the semantics of each schema object. This allows us to

process objects one at a time thereby breaking the problems down into simpler

steps.

3. We create the mapping and result schema at the same time. This is partic-

ularly helpful in the implementation of Merge, Extract and Diff. Other tech-

niques in the literature require a step to create the result schema and then

another to create the mapping.

4. Our framework can support both LAV and GAV query processing but LAV

has not been implemented at present.

It is not always necessary for the implementations of the operators to produce results

that are minimal in the information theoretic sense. Indeed, it may be the case

that non-minimal solutions are of more practical benefit that a strictly minimal

one, some minimal solutions do not always justify the added complexity of creating

them [LBU01, LV03]. With this in mind, the definitions of Diff, Extract and Merge

do not require minimal solutions [MBHR05, MRB03].

Our system also takes this approach. The implementation of the Merge operator we

present in Section 6.4 will sometimes produce a result schema that contains repeated

data and the implementation of Diff also does not always produce a minimal result.

We discuss this in more detail in the sections on Merge and Diff respectively.

6.1 Auxiliary Operators

The implementation of Invert is straightforward in AutoMed as all the pathways

are bidirectional. To create the inverse of a pathway we simply make each add

transformation a delete and vice versa and each contract an extend and vice versa

and then execute the pathway in reverse.
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Id(S) is a pathway that first adds and then removes all the objects in S. It can also

be interpreted as a pathway of length zero.

We now show how we implement Domain and Range as defined in Definition 2.7 in

Chapter 2. To recap, the Domain of mapping mapS1,S2 is the set of values that make

up the first element in the tuples of AllMapInst(mapS1,S2) and the Range the set of

values that make up the second element.

Recall that the growth phase of a BAV pathway defines the extents of objects in the

target schema in terms of source objects. If pS1,S2 is the BAV pathway equivalent

to mapS1,S2 then the result of executing Range is the union of the extents of the S2

objects added in the growth phase of pS1,S2 . The extents of objects in the source

schema that are unchanged are also in the range of the mapping since all their

instances are mapped, unchanged, to S2. Calculating Range is equivalent to GAV

query processing as S2 behaves like the global schema. This is directly supported

by our system at present.

For example, consider the following mapping

{〈〈R〉〉(a, b, c) ∧ c = ‘Finance’→ 〈〈V〉〉(a, c), 〈〈T〉〉(d, e) → 〈〈W〉〉(d, e),

〈〈V〉〉(a, c) → ∃b(〈〈R〉〉(a, b, c) ∧ c = ‘Finance’), 〈〈W〉〉(d, e) → 〈〈T〉〉(d, e)}

between S1 and S2 which are defined as follows:

S1={table:〈〈R〉〉,column:〈〈R,A〉〉, column:〈〈R, B〉〉, column:〈〈R,C〉〉, primary key:〈〈R pk, R, A〉〉,
table:〈〈T〉〉, column:〈〈T,D〉〉, column:〈〈T, E〉〉,primary key:〈〈T pk, T, D〉〉}

S2={table:〈〈V〉〉,column:〈〈V,A〉〉, column:〈〈V, C〉〉, primary key:〈〈V pk, V, A〉〉,
table:〈〈W〉〉, column:〈〈W, D〉〉, column:〈〈W, E〉〉,primary key:〈〈W pk, W, D〉〉}

The BAV pathway equivalent to this mapping is
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1 add(table:〈〈V〉〉, [{a} | {a, c} ← column:〈〈R, C〉〉; c = ‘Finance’])
2 add(column:〈〈V,A〉〉, [{a, a} | {a, c} ← column:〈〈R, C〉〉; c = ‘Finance’])
3 add(column:〈〈V,C〉〉, [{a, c} | {a, c} ← column:〈〈R,C〉〉; c = ‘Finance’])
4 add(table:〈〈W〉〉, [{d} | {d , e} ← column:〈〈T, E〉〉])
5 add(column:〈〈W, D〉〉, [{d , d} | {d , e} ← column:〈〈T, E〉〉])
6 add(column:〈〈W, E〉〉, [{d , e} | {d , e} ← column:〈〈T,E〉〉])
7 add(primary key:〈〈V pk, V,A〉〉)
8 add(primary key:〈〈W pk, W, D〉〉)
9 delete(primary key:〈〈R pk, R, A〉〉)
10 delete(primary key:〈〈T pk,T, D〉〉)
11 contract(column:〈〈T, E〉〉, Range [{d , e} | {d , e} ← column:〈〈W, E〉〉] Any)
12 contract(column:〈〈T, D〉〉,Range [{d , d} | {d , e} ← column:〈〈W,E〉〉] Any)
13 contract(table:〈〈T〉〉, Range [{d} | {d , e} ← column:〈〈W, E〉〉] Any)
14 contract(column:〈〈R,C〉〉, Range [{a, c} | {a, c} ← column:〈〈V, C〉〉; c = ‘Finance’] Any)
15 contract(column:〈〈R,B〉〉, Range [{a, b} | {a, c} ← column:〈〈V, C〉〉; c = ‘Finance’;

b ← generateGID(S1 , a, [a], ‘B’)] Any)
16 contract(column:〈〈R,A〉〉, Range [{a, a} | {a, c} ← column:〈〈V, C〉〉; c = ‘Finance’] Any)
17 contract(table:〈〈R〉〉, [{a} | {a, c} ← column:〈〈V, D〉〉; c = ‘Finance’])

The range is the union of the extents of the queries in Transformations 1 to 6 . If

AllInst(S1)⊇{〈〈R〉〉(1,‘Susan’,‘HR’), 〈〈R〉〉(10,‘John’,‘Finance’), 〈〈R〉〉(20,‘Anne’,‘HR’),
〈〈T〉〉(100,‘Finance’),〈〈T〉〉(101,‘HR’)}

then

Range(mapS1,S2)⊇{〈〈V〉〉(10,‘Finance’)} ∪ {〈〈W〉〉(100,‘Finance’),〈〈W〉〉(101,‘HR’)}

The domain is the union of the extents of all the S1 objects that take part in the

mapping. If we have a materialised target schema we could use the queries in the

shrinking phase of the pathway to calculate the domain, since these queries return

the extent of the S1 objects that take part in the mapping in terms of S2 objects.

If, however, the target schema has not been materialised we cannot use the extents

of the S2 objects to work out the domain. Instead, we create a query using S1

objects. We start with the query from the shrinking phase of the pathway used to

remove the S1 object, and replace the S2 objects in its body with the queries used

in the growth phase to add those S2 objects. These growth phase queries are made

up of S1 objects. Any S1 objects that have no shrinking phase transformation must

have been mapped unchanged to the target schema and so appear in their entirety

in S2. In this case all their instances appear in the domain.

To calculate the values of column:〈〈T, D〉〉 that appear in Domain(pS1,S2) we create

a query where column:〈〈W, E〉〉 used in the query in Transformation 12 that re-
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moves column:〈〈T, D〉〉, is replaced with the query in Transformation 6 which adds

column:〈〈W, E〉〉.

[{d , d} | {d, e} ← [{d, e} ← column:〈〈T,E〉〉]]

this simplifies to

[{d , d} | {d, e} ← column:〈〈T, E〉〉]

Similarly to calculate the values of column:〈〈R, C〉〉 that appear in the domain we use

the following query:

[{a, a} | {a, c} ← [{a, c} ← column:〈〈R, C〉〉; c = ‘Finance’]; c = ‘Finance’]

which simplifies to

[{a, a} | {a, c} ← column:〈〈R, C〉〉; c = ‘Finance’]

As we can see we are left with a query which only contains S1 objects. To calculate

the values of column:〈〈R, B〉〉 that appear in the domain we use the following query.

Note that we ignore any generateGID functions in the query to remove column:〈〈R, B〉〉
as these do not represent data values:

[{a, b} | {a, c} ← [{a, c} ← column:〈〈R,C〉〉; c = ‘Finance’]; c = ‘Finance’]

In the query above the b in the head of the query cannot be bound to anything in

the body so the result of the query is empty. This means there are no values of

column:〈〈R, B〉〉 in the domain.

We use similar queries to calculate the instances of the other S1 objects that appear

in the domain.

Domain(pS1,S2) ⊇ {table:〈〈R〉〉(10)} ∪ {column:〈〈R, A〉〉(10,10)} ∪ {column:〈〈R,C〉〉(10,‘Finance’)} ∪
{table:〈〈T〉〉(100), table:〈〈T〉〉(101)} ∪ {column:〈〈T, D〉〉(100,100), column:〈〈T, D〉〉(101,101)} ∪
{column:〈〈T,E〉〉(100,‘Finance’), column:〈〈T, E〉〉(101,‘HR’)}

6.2 Compose

We show in this section how we implement Compose as defined in Definition 2.8

in Chapter 2. Our implementation follows a procedure similar to that outlined

in [BGMN06], in which a new mapping whose set of constraints is equivalent to

ΣS1,S2 ∪ ΣS2,S3 but which contains no objects from S2, is created.
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Equivalence between sets of constraints is defined in [BGMN06] as follows: if S and

S ′ are two schemas such that AllInst(S ′) ⊆ AllInst(S) then the sets of constraints, Σ

over S and Σ’ over S ′ are equivalent, denoted Σ ≡ Σ’, if:

Soundness Every Insti(S) satisfying Σ, when restricted to the objects in S ′, yields

Instj(S
′) that satisfies Σ’.

Completeness Every Instj(S
′) that satisfies Σ’ can be extended to Insti(S) satis-

fying Σ by adding new objects in S − S ′.

The goal of an implementation of Compose can now be restated as follows: Given

a set of constraints ΣS1,S2 over S1 ∪ S2 and a set of constraints ΣS2,S3 over S2 ∪ S3,

return mapS1,S3 that includes a set of constraints ΣS1,S3 over S1 ∪ S3 such that

ΣS1,S3 ≡ ΣS1,S2 ∪ ΣS2,S3 [BGMN06].

As we have seen, in AutoMed we execute the constraints in a mapping as transfor-

mation pathways where the constraints on the individual schema objects are defined

as IQL queries. We thus define the concept of equivalence for pathways. Given a

pathway p that adds and removes objects in S and a pathway p′ that adds and

removes objects in S ′ and S ′ ⊆ S, we say p ≡ p′ if:

Soundness Every Insti(S) created by p can also be created by p′ which only adds

or removes objects in S ′ and whose primitive transformation queries only use

objects in S ′.

Completeness Every Instj(S
′) created by p′ can be extended to Insti(S) created

by p by adding new transformations that add or remove objects in S − S ′, to

p′, and whose transformation queries use objects in S − S ′.

In AutoMed pS2,S3 can be appended to pS1,S2 to give us pS1,S3 [MP02]. We can

thus state the goal of Compose in AutoMed as: Given a transformation pathway

pS1,S3 that adds and removes objects in S1 ∪ S2 ∪ S3, create a new pathway p′S1,S3

that adds and removes objects in S1∪S3 such that p′S1,S3
≡ pS1,S3 . Our new pathway

p′S1,S3
is thus pS1,S3 without the transformations that add and remove objects in S2

and with any queries that involve S2 objects rewritten over objects in S1 or S3. The

rewriting uses a process based on view unfolding [Sto75].

We first split pS1,S3 into the two input pathways for the Compose operator, i.e. pS1,S2

and pS2,S3 . For each object, 〈〈so2
i 〉〉, in S2 there is either a transformation of the form
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add/extend(〈〈so2
i 〉〉,E1

w)

in pS1,S2 , or the object in S2 is the same as that in S1. E1
w is an IQL expression

made up of S1 objects and/or constants and Skolem functions, We can be sure that

we have such an expression because by the rules of a BAV pathway each object in

S2 must have been added to S1 by a single transformation in pS1,S2 or be unchanged

between S1 and S2.

S2 objects are used in the growth phase transformation queries of pS2,S3 to define

the extents of the S3 objects we wish to create in p′S1,S3
. The transformations are of

the form:

add/extend(〈〈so3
j 〉〉,E2

x)

We now replace every occurrence of 〈〈so2
i 〉〉 in E2

x with E1
w, thereby eliminating 〈〈so2

i 〉〉
and giving us transformations that add S3 objects using transformation queries

containing only objects from S1. If there is no transformation that adds 〈〈so2
i 〉〉 then

〈〈so2
i 〉〉 is an S1 object. It can thus remain unchanged in E2

x.

If there is no such transformation for a given S3 object, this means the S3 object is

the same as some object in S2. We can therefore use the transformation that added

the object in pS1,S2 as the transformation in p′S1,S3
. If there is no transformation

that adds the S3 object in pS1,S2 either then it is unchanged from S1 to S3 and so

no transformation is necessary.

In the shrinking phase of our new pathway we need to remove the S1 objects left

in our new schema, using queries containing only S3 objects. In pS1,S2 there are

transformations of the form

delete/contract(〈〈so1
k〉〉,E2

y)

which remove S1 objects using queries containing S2 objects. pS2,S3 contains trans-

formations of the form

delete/contract(〈〈so2
i 〉〉,E3

z )

By the same argument as we made above we create the transformation in p′S1,S3
to

remove 〈〈so1
k〉〉 by replacing any 〈〈so2

i 〉〉 in E2
y with E3

z .

If pS1,S2 or pS2,S3 are not needed in other steps of the MM script this Compose

operation is part of, they can be removed.
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Figure 6.1: Composing two transformation pathways

We see this process illustrated graphically in Figure 6.1. Objects 〈〈A〉〉 and 〈〈B〉〉 are

used in pS1,S2 to define the extents of the S2 objects 〈〈P〉〉 and 〈〈Q〉〉 respectively.

〈〈P〉〉 and 〈〈Q〉〉 are used in turn to define the extents of the S3 objects 〈〈U〉〉 and

〈〈V〉〉 in pS2,S3 . We use the add transformations in pS2,S3 to create the S3 objects in

the compose pathway but rewrite the queries over 〈〈A〉〉 and 〈〈B〉〉 as shown. 〈〈C〉〉 is

unchanged from S1 to S3 so no transformation needs to be added for it to p′S1,S3
.

These new transformations give us a complete pathway because for each transfor-

mation that added an object to S3 in pS2,S3 we have one in p′S1,S3
that adds the same

object but does not use objects from S2 in its transformation query. To show the

new pathway is sound we need to make sure that the transformations to add and

remove 〈〈so2
i 〉〉 can be recreated. We know that 〈〈so2

i 〉〉 has an extent of E1
j and we

know we have the objects in E1
j in our new pathway because we used them to create

the S3 objects. We can thus use E1
j as the transformation query to recreate 〈〈so2

i 〉〉
as required. Similarly for the transformation to remove 〈〈so2

i 〉〉.

The schema transformation technique helps us implement Compose because the

primitive transformations tell us exactly how each S2 object was added, giving us all

the information we need to do the rewriting. The algorithm in [BGMN06] sometimes

needs to manipulate the mappings first to get the S2 object on its own on the left or

right hand side of the mapping expression. This is a common feature of other recent

algorithms to compose mappings [FKPT05, BGMN08, KQLJ07] which all have a

step to ‘pull apart’ the mappings before further processing is possible. Our second

order query language also means that Compose is closed in our system [FKPT05].
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6.2.1 Example of Compose

Assume we have following SQL schemas:

S1 = {table:〈〈Takes〉〉, column:〈〈Takes, name〉〉, column:〈〈Takes, course〉〉}
S2 = {table:〈〈Takes1〉〉, column:〈〈Takes1, name〉〉, column:〈〈Takes1, course〉〉,

table:〈〈Student〉〉, column:〈〈Student, name〉〉, column:〈〈Student, studentId〉〉}
S3 = {table:〈〈Enrollment〉〉, column:〈〈Enrollment, studentId〉〉, column:〈〈Enrollment, course〉〉}

We define the following mappings: mapS1,S2 = (S1, S2, ΣS1,S2) where

ΣS1,S2 = {〈〈Takes〉〉(n, c) → 〈〈Takes1〉〉(n, c),∃f〈〈Takes〉〉(n, c) → 〈〈Student〉〉(n, f(n))}

and mapS2,S3 = (S2, S3, ΣS2,S3) where

ΣS2,S3 = {〈〈Student〉〉(n, s) ∧ 〈〈Takes1〉〉(n, c) → 〈〈Enrollment〉〉(s, c)}

which become the following BAV pathways (We will use the first letter of the at-

tribute names for brevity):

18 add(table:〈〈Takes1〉〉, table:〈〈Takes〉〉)
19 add(column:〈〈Takes1, N〉〉, column:〈〈Takes, N〉〉)
20 add(column:〈〈Takes1, C〉〉, column:〈〈Takes, C〉〉)
21 add(table:〈〈Student〉〉, distinct[{n, s} | {n, c} ← table:〈〈Takes〉〉;

s ← generateGID(S1 ,n, [n], ‘S’)])
22 add(column:〈〈Student, N〉〉, distinct[{{n, s},n} | {n, c} ← table:〈〈Takes〉〉;

s ← generateGID(S1 ,n, [n], ‘S’)])
23 add(column:〈〈Student, S〉〉, distinct[{{n, s}, s} | {n, c} ← table:〈〈Takes〉〉;

s ← generateGID(S1 ,n, [n], ‘S’)])
24 delete(column:〈〈Takes,C〉〉, column:〈〈Takes1, C〉〉)
25 delete(column:〈〈Takes,N〉〉, column:〈〈Takes1,N〉〉)
26 delete(table:〈〈Takes〉〉, table:〈〈Takes1〉〉)

and

27 add(table:〈〈Enrollment〉〉, distinct[{s, c} | {n, s} ← table:〈〈Student〉〉; {n, c} ← table:〈〈Takes1〉〉])
28 add(column:〈〈Enrollment,S〉〉, distinct[{{s, c}, s} | {n, s} ← table:〈〈Student〉〉;

{n, c} ← table:〈〈Takes1〉〉])
29 add(column:〈〈Enrollment,C〉〉, distinct[{{s, c}, c} | {n, s} ← table:〈〈Student〉〉;

{n, c} ← table:〈〈Takes1〉〉])
30 delete(column:〈〈Student, S〉〉, distinct[{{n, s}, s} | {s, c} ← table:〈〈Enrollment〉〉;

n ← generateGID(S3 , s, [s], ‘N’)])
31 delete(column:〈〈Student, N〉〉, distinct[{{n, s},n} | {s, c} ← table:〈〈Enrollment〉〉;

n ← generateGID(S3 , s, [s], ‘N’)])
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32 delete(table:〈〈Student〉〉, distinct[{n, s} | {s, c} ← table:〈〈Enrollment〉〉;
n ← generateGID(S3 , s, [s], ‘N’)])

33 delete(column:〈〈Takes1,C〉〉, distinct[{{n, c}, s} | {s, c} ← table:〈〈Enrollment〉〉;
n ← generateGID(S3 , s, [s], ‘N’)])

34 delete(column:〈〈Takes1,N〉〉, distinct[{{n, c},n} | {s, c} ← table:〈〈Enrollment〉〉;
n ← generateGID(S3 , s, [s], ‘N’)])

35 delete(table:〈〈Takes1〉〉, distinct[{n, c} | {s, c} ← table:〈〈Enrollment〉〉;
n ← generateGID(S3 , s, [s], ‘N’)])

Assume we have the following schema instances:

Inst1(S1) = {〈〈Takes〉〉(‘Alice’,‘Math’),〈〈Takes〉〉(‘Alice’,‘Art’)}
Inst1(S2) = {〈〈Takes1〉〉(‘Alice’,‘Math’),〈〈Takes1〉〉(‘Alice’,‘Art’),

〈〈Student〉〉(‘Alice’,1234)}
Inst1(S3) = {〈〈Enrollment〉〉(1234,‘Math’),〈〈Enrollment〉〉(1234,‘Art’)}

This gives us the following mapping instances:

AllMapInst(mapS1,S2) ⊇ 〈Inst1(S1), Inst1(S2)〉
AllMapInst(mapS2,S3) ⊇ 〈Inst1(S2), Inst1(S3)〉

Using the definition above we can see that 〈Inst1(S1), Inst1(S3)〉 is a valid instance

of the composition of AllMapInst(mapS1,S2) ⊇ 〈Inst1(S1), Inst1(S2)〉 and

AllMapInst(mapS2,S3) ⊇ 〈Inst1(S2), Inst1(S3)〉.

We wish to create a new pathway that does not have the transformations 18 to 23

and 30 to 35 in it. Removing these also means we need to replace these objects in

the other transformations.

The generators used in Transformation 27 are {n, s} ← table:〈〈Student〉〉 and

{n, c} ← table:〈〈Takes1〉〉. These objects are added to S2 using Transformations 18

and 21 respectively. All these transformations are add transformations so we use an

add in the transformation we generate. The resultant transformations for transfor-

mations 27 to 29 are shown below:

36 add(table:〈〈Enrollment〉〉, distinct[{s, c} | {n, c} ← table:〈〈Takes〉〉;
s ← generateGID(S1 ,n, [n], ‘S’)])

37 add(column:〈〈Enrollment,S〉〉, distinct[{{s, c}, s} | {n, c} ← table:〈〈Takes〉〉;
s ← generateGID(S1 ,n, [n], ‘S’)])

38 add(column:〈〈Enrollment,C〉〉, distinct[{{s, c}, c} | {n, c} ← table:〈〈Takes〉〉;
s ← generateGID(S1 ,n, [n], ‘S’)])

This pathway creates S3 as required with a student number created by a Skolem

function based on the student name.
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The qualifiers we use for the shrinking phase are those from the shrinking phase of

pS2,S3 . The transformations we base the shrinking phase of p′S1,S3
on are those that

remove objects in pS1,S2 , i.e. Transformations 24 to 26 . In the same way as we did

above, we rewrite the queries using Transformations 33 to 35 to give us:

39 delete(column:〈〈Takes,C〉〉, distinct[{{n, c}, c} | {s, c} ← table:〈〈Enrollment〉〉;
n ← generateGID(S3 , s, [s], ‘N’)])

40 delete(column:〈〈Takes,N〉〉, distinct[{{n, c},n} | {s, c} ← table:〈〈Enrollment〉〉;
n ← generateGID(S3 , s, [s], ‘N’)])

41 delete(table:〈〈Takes〉〉, distinct[{n, c} | {s, c} ← table:〈〈Enrollment〉〉;
n ← generateGID(S3 , s, [s], ‘N’)])

6.3 Confluence

We show in this section how we implement Confluence, as defined in Definition 2.9

in Chapter 2. The only instance based implementation for Confluence that we are

aware of is for Moda [MBHR05], which only works for the relational model. The

implementation described here is thus the first DDL independent solution.

The definition of Confluence calls for us to return a mapping that combines the

instances of the two input mappings, excluding any instances that conflict. In Au-

toMed this means we need to return a pathway which adds and removes the same

objects as the input pathways and whose queries combine their instances according

to the rules in Definition 2.9.

Assume that our input pathways are pS1,S2 and p′S1,S2
. For each transformation

t = op(c:〈〈so〉〉, q)

in pS1,S2 there is a transformation

t′ = op′(c:〈〈so〉〉, q′)

in p′S1,S2
. We know this must be the case because the source and target schemas

of both pS1,S2 and p′S1,S2
are the same. The combination of transformation prim-

itives used in the growth phase of the two pathways to add c:〈〈so〉〉 to S2 and the

transformation primitive, opc, we will use in the confluence pathway are as follows:
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1 2 3 4

op add add extend extend

op’ add extend add extend

opc add add add extend

There is an equivalent table for the shrinking phase where add is replaced by delete

and extend by contract.

The combination of transformation primitives determines how we compute the query,

qc, that we use for the confluence transformation for c:〈〈so〉〉. As we explain below, it

is not always possible at present for our system to compute the correct query. This is

in common with the implementation of Confluence for Moda described in [MBHR05].

First we determine if one or both of q and q′ contains the function generateGID. If

so, we aim to replace the function with appropriate generators from the other query,

if they are available. This allows us to map data values in our confluence mapping

rather that Skolem values. We are unable to work out whether there are appropriate

generators in the other query in general but can in some simple cases as we show in

the second example below. Once any appropriate substitutions have been made we

work out what qc should be as follows:

• In case 1 in the table we know that q and q′ completely define the extent of

c:〈〈so〉〉 because both transformations use add primitives. To compute qc we

first need to determine whether q ≡ q′. If it is we can pick either q or q′ to

be qc. If not then c:〈〈so〉〉 does not appear in the confluence mapping because

the instances of c:〈〈so〉〉 conflict. At present there is no general method for

determining IQL query equivalence. However, some cases of equivalence are

easy to identify. For example if q can be made syntactically equal to q′ by

variable renaming and the reordering of the generators and filters we know q

and q′ are equivalent.

• Cases 2 and 3 are equivalent. In case 2 we know that q completely defines the

extent of c:〈〈so〉〉 while q′ only defines it partially. If q ⊇ q′ then we set qc equal

to q, otherwise c:〈〈so〉〉 does not appear in the confluence mapping. There is no

method for determining query subsumption in IQL in general, but we can deal

with the following special case: If q and q′ can be made syntactically equal, as

described above, apart from extra filters in q′, we know that q ⊇ q′.

• In case 4, we know that neither q nor q′ completely defines the extent of c:〈〈so〉〉
because both transformation primitives are extend. If there are no conflicts
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in the results generated by q and q′ then qc = q union q′. At the moment

there is no general method for determining when two IQL queries produce

conflicting results. As above, however, there are special cases that we can deal

with. For example, consider a source schema that contains an object that has

a key constraint associated with it. If q and q′ contain filters that use different

values of the key object to generate different results then we know that there

is no conflict. Conversely, if the queries generate different results for the same

key then we know there is a conflict.

6.3.1 Examples of Confluence

Consider the following schemas

S={table:〈〈P〉〉, column:〈〈P, A〉〉, column:〈〈P, B〉〉, primary key:〈〈P pk, P, A〉〉}
S′={table:〈〈Q〉〉, column:〈〈Q, A〉〉, column:〈〈Q, B〉〉, column:〈〈Q, C〉〉, primary key:〈〈Q pk,Q,A〉〉}

AllInst(S)⊇{{〈〈P〉〉(10,‘John’),〈〈P〉〉(20,‘Anne’)}, {〈〈P〉〉(5,‘Peter’)}, {〈〈P〉〉(15,‘Andrew’)}}

and the mapping from S to S ′, defined by this set of tgds:

{〈〈P〉〉(a, b) ∧ a = 10→ 〈〈Q〉〉(a, b, c) ∧ c = ‘temp’, 〈〈Q〉〉(a, b, c) → 〈〈P〉〉(a, b)}

The equivalent BAV pathway is shown below:

42 extend(table:〈〈Q〉〉, Range [{a} | {a, b} ← column:〈〈P, B〉〉; a = 10] Any)
43 extend(column:〈〈Q,A〉〉, Range [{a, a} | {a, b} ← column:〈〈P, B〉〉; a = 10] Any)
44 extend(column:〈〈Q,B〉〉, Range [{a, b} | {a, b} ← column:〈〈P,B〉〉; a = 10] Any)
45 extend(column:〈〈Q,C〉〉, Range [{a, c} | {a, b} ← column:〈〈P,B〉〉; a = 10; c ← ‘temp’] Any)
46 contract(column:〈〈P,B〉〉, Range column:〈〈Q, B〉〉 Any)
47 contract(column:〈〈P,A〉〉, Range column:〈〈Q, A〉〉 Any)
48 contract(table:〈〈P〉〉,Range table:〈〈Q〉〉 Any)

This gives us the following mapping instances:

AllMapInst(mapS,S′)⊇ {〈{〈〈P〉〉(10,‘John’)},{〈〈Q〉〉(10,‘John’, ‘temp’)}〉}
A second mapping between S and S ′ is defined by this set of tgds:

{〈〈P〉〉(a, b) ∧ a = 15→ 〈〈Q〉〉(a, b, c) ∧ c = ‘fulltime’, 〈〈Q〉〉(a, b, c) → 〈〈P〉〉(a, b)}

The equivalent BAV pathway, p′S,S′ , is shown below:



6.3. Confluence 175

49 extend(table:〈〈Q〉〉, Range [{a} | {a, b} ← column:〈〈P, B〉〉; a = 15] Any)
50 extend(column:〈〈Q,A〉〉, Range [{a, a} | {a, b} ← column:〈〈P, B〉〉; a = 15] Any)
51 extend(column:〈〈Q,B〉〉, Range [{a, b} | {a, b} ← column:〈〈P,B〉〉; a = 15] Any)
52 extend(column:〈〈Q,C〉〉, Range [{a, c} | {a, b} ← column:〈〈P,B〉〉; a = 15;

c ← ‘fulltime’] Any)
53 contract(column:〈〈P,B〉〉, Range column:〈〈Q, B〉〉 Any)
54 contract(column:〈〈P,A〉〉, Range column:〈〈Q, A〉〉 Any)
55 contract(table:〈〈P〉〉,Range table:〈〈Q〉〉 Any)

which gives us the following mapping instances:

AllMapInst(map′S,S′) ⊇{〈{〈〈P〉〉(15,‘Andrew’)}, {〈〈Q〉〉(15,‘Andrew’,‘fulltime’)}〉}

As we can see from the queries in the growth phase of the two pathways use different

filters. The constant values that appear in the heads of the queries in Transforma-

tions 45 and 52 are different so we know we do not have any conflicts. The queries

for growth phase in the confluence pathway are thus a union of the queries from the

two pathways.

56 extend(table:〈〈Q〉〉, Range [{a} | {a, b} ← column:〈〈P, B〉〉; a = 15] union

[{a} | {a, b} ← column:〈〈P,B〉〉; a = 10] Any)
57 extend(column:〈〈Q,A〉〉, Range [{a, a} | {a, b} ← column:〈〈P, B〉〉; a = 15] union

[{a, a} | {a, b} ← column:〈〈P,B〉〉; a = 10] Any)
58 extend(column:〈〈Q,B〉〉, Range [{a, b} | {a, b} ← column:〈〈P,B〉〉; a = 15] union

[{a, b} | {a, b} ← column:〈〈P, B〉〉; a = 10] Any)
59 extend(column:〈〈Q,C〉〉, Range [{a, c} | {a, b} ← column:〈〈P,B〉〉; a = 15; c ← ‘fulltime’] union

[{a, c} | {a, b} ← column:〈〈P,B〉〉; a = 10; c ← ‘temp’] Any)

In the shrinking phase the queries from pS,S′ and p′S,S′ defining the extents of the

objects in S share the same generators and there are no filters so we simply use the

transformations from pS,S′ . The final confluence pathway is:

60 contract(column:〈〈P,B〉〉, Range column:〈〈Q, B〉〉 Any)
61 contract(column:〈〈P,A〉〉, Range column:〈〈Q, A〉〉 Any)
62 contract(table:〈〈P〉〉,Range table:〈〈Q〉〉 Any)

The instances of the confluence mapping are:

AllMapInst(mapconf1S,S′) ⊇{〈{〈〈P〉〉(10,‘John’)}, {〈〈Q〉〉(10,‘John’,‘temp’)}〉,
{〈{〈〈P〉〉(15,‘Andrew’)}, {〈〈Q〉〉(15,‘Andrew’,‘fulltime’)}〉}

The following is an example where one input mapping contains a generateGID func-
tion and the other does not. We use the same schemas and instances as above but
change map′S,S′ to be defined by this set of tgds:

{〈〈P〉〉(a, b) ∧ a = 10→ 〈〈Q〉〉(a, b, Sk1(a)), 〈〈Q〉〉(a, b, c) → 〈〈P〉〉(a, b)}
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The equivalent BAV pathway, p′S,S′ , is shown below:

63 extend(table:〈〈Q〉〉, Range [{a} | {a, b} ← column:〈〈P, B〉〉; a = 10] Any)
64 extend(column:〈〈Q,A〉〉, Range [{a, a} | {a, b} ← column:〈〈P, B〉〉; a = 10] Any)
65 extend(column:〈〈Q,B〉〉, Range [{a, b} | {a, b} ← column:〈〈P,B〉〉; a = 10; ] Any)
66 extend(column:〈〈Q,C〉〉, Range [{a, c} | {a, a} ← column:〈〈P, B〉〉; a = 10;

c ← generateGID(S , a, [a], ‘Sk1’)] Any)
67 contract(column:〈〈P,B〉〉, Range column:〈〈Q, B〉〉 Any)
68 contract(column:〈〈P,A〉〉, Range column:〈〈Q, A〉〉 Any)
69 contract(table:〈〈P〉〉,Range table:〈〈Q〉〉 Any)

which gives us the following mapping instances:

AllMapInst(map′S,S′) ⊇{〈{〈〈P〉〉(10,‘John’)}, {〈〈Q〉〉(10,‘John’,#1000)}〉}

where #1000 is the Skolem value generated by generateGID in Transformation 66 .

As we can see, map′S,S′ now generates a Skolem value for column:〈〈Q, C〉〉. However,

Transformation 45 that adds column:〈〈Q, C〉〉 in mapS,S′ does not use any Skolem

values so we use Transformation 45 in our confluence pathway. The full pathway is

as follows:

70 extend(table:〈〈Q〉〉, Range [{a} | {a, a} ← column:〈〈P, A〉〉; a = 10] Any)
71 extend(column:〈〈Q,A〉〉, Range [{a, a} | {a, a} ← column:〈〈P,A〉〉; a = 10] Any)
72 extend(column:〈〈Q,B〉〉, Range [{a, b} | {a, b} ← column:〈〈P,B〉〉; a = 10] Any)
73 extend(column:〈〈Q,C〉〉, Range [{a, c} | {a, a} ← column:〈〈P, A〉〉; a = 10; c ← ‘temp’] Any)
74 contract(column:〈〈P,B〉〉, Range column:〈〈Q, B〉〉 Any)
75 contract(column:〈〈P,A〉〉, Range column:〈〈Q, A〉〉 Any)
76 contract(table:〈〈P〉〉,Range table:〈〈Q〉〉 Any)

The instances of the confluence mapping are:

AllMapInst(mapconf2S,S′) ⊇{〈{〈〈P〉〉(10,‘John’)}, {〈〈Q〉〉(10,‘John’,‘temp’)}〉}

6.4 Merge

We show in this section how we implement Merge as defined in Definition 2.10 in

Chapter 2. Our aim is to create a schema that contains all the information in the

input schemas while aiming to reduce the amount of redundant information in it.

AutoMed provides us with two separate implementations of Merge whose usage

depends on the type of input available to the operator. If the input is a set of
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correspondences describing things like subset and disjoint relationships the imple-

mentation described in [MRMM05] can be used. If, on the other hand the input is

a BAV pathway, then the implementation we describe here can be used.

A feature of both implementations that is not a general feature of merge algo-

rithms is that a mapping between the merged schema and the input schemas is pro-

vided as part of the output. As far as we are aware only the algorithms described

in [PB08, MBHR05] provide this functionality. In addition our schema transforma-

tion technique makes our implementations unique in that we create the mappings

between the input schemas and the merged schema as we go rather than having to

create the mapping after the merged schema has been created as needs to be done

in [PB08, MRB03, MBHR05].

Our implementation takes advantage of the way BAV pathways are created in our

MM system. The schema created at the end of the growth phase of the input

pathway contains all the objects of S1 and S2. We call this schema Scombined. The

pathways also provide mappings between the two input schemas and Scombined. This

schema thus satisfies the conditions for Merge given in Chapter 2 in that it contains

all the objects from S1 and S2 and we have mappings from this schema back to

S1 and S2. However, Scombined will contain redundant information if AllInst(S1) ∩
AllInst(S2) 6= ∅. At present we are unable to calculate AllInst(S1) ∩ AllInst(S2) in

general, and so cannot know when we have a minimal solution. A particular problem

is if there are objects in S1 and/or S2 that do not take part in the input mapping.

For example S1 and S2 could both contain objects that hold the same information,

but if these objects do not take part in the mapping we have no way of knowing

they are related and so we cannot remove either of them from our result schema.

Our implementation can, however, improve on Scombined in some cases.

Transformations in the input pathway that are of the form

add(〈〈so2
i 〉〉, q) (6.1)

where the only generators in q are schema objects in S1, imply the extent of 〈〈so2
i 〉〉

is some subset of AllInst(S1). If no objects in Scombined, including constraint objects,

reference 〈〈so2
i 〉〉 it does not need to be in the merge schema. We can get the schema

that does not contain 〈〈so2
i 〉〉 by rearranging the transformations in pS1,S2 so that

〈〈so2
i 〉〉 is added last. Our merge schema is then the last schema in the pathway

before 〈〈so2
i 〉〉 is added. An example is shown in Figure 6.2. The instances of 〈〈P〉〉

form a subset of those of 〈〈A〉〉 and 〈〈P〉〉 is not referenced by any other objects.
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We rearrange our pathway so that 〈〈P〉〉 is added last and our merge schema, Sm,

becomes the schema in the pathway just before 〈〈P〉〉 is added.

We can also create a more minimal solution if we have transformations of the form

extend(〈〈so2
i 〉〉, Range 〈〈so1

j 〉〉 Any) (6.2)

in our input pathway. These imply that the extent of 〈〈so1
j 〉〉 forms the lower bound

of the extent of 〈〈so2
i 〉〉. 〈〈so1

j 〉〉 can thus also be left out of the merge schema in the

same way as we described above.

Figure 6.2: Finding a smaller merge schema

Sm, pSm,S1 and pSm,S2 meet the conditions of Merge as follows: pSm,S1 is surjective

onto S1 since executing the pathway leaves us with exactly the S1 objects as can be

seen by the following the pathway in the figure from Sm down to S1. Similarly the

pathway fragment from Sm to S2 that makes up the rest of the pathway is surjective

onto S2. This meets condition 1 of the definition.

We have a pathway from S1 to S2 via Sm as required by condition 2 in the definition.

Recall that we showed in Section 6.2 that if we have a pathway pS1,S3 via S2 this is

equivalent to pS1,S2 ◦ pS2,S3 .

The third condition in the definition requires that any instance in the merged schema

must be in one of the two mappings we have created, i.e. there can be no instances

of Sm not added by one of the pathways. This follows from the way we create Sm.

There are no S1 instances of Sm that are not added by pS1,Sm and there are no S2

objects that are not added by pS2,Sm .
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The complexity of the algorithm we have described here is linear in the number

of schema object in S1 plus the number of schema objects in S2. As we have

seen though, it cannot always create a minimal result schema. As we discussed

at the beginning of this chapter, this is a tradeoff that is made in other MMS

prototypes [MBHR05].

6.4.1 Example of Merge

Consider the schemas S and S ′ defined below.

S={table:〈〈R〉〉,column:〈〈R, A〉〉, column:〈〈R,B〉〉, column:〈〈R, C〉〉, primary key:〈〈R pk,R,A〉〉,
table:〈〈T〉〉, column:〈〈T,C〉〉},

S′={table:〈〈U〉〉, column:〈〈U,A〉〉, column:〈〈U,B〉〉, column:〈〈U,C〉〉, primary key:〈〈U pk,U, A〉〉}

AllInst(S)⊇{{〈〈R〉〉(10,‘John’,100),〈〈R〉〉(20,’Anne’,101), 〈〈T〉〉(100)},
{〈〈R〉〉(20,‘Peter’,101),〈〈T〉〉(101)}, {〈〈R〉〉(15,‘Andrew’,100),〈〈T〉〉(100)}}

AllInst(S′)⊇{{〈〈U〉〉(10,‘John’,‘temp’)}, {〈〈U〉〉(15,‘Andrew’,‘temp’)}}

and the mapping defined by this set of tgds:

{〈〈R〉〉(a, b, c) ∧ 〈〈T〉〉(c) ∧ c = 100→ 〈〈U〉〉(a, b, d) ∧ d = ‘temp’,

〈〈U〉〉(a, b, d) → 〈〈R〉〉(a, b, c) ∧ 〈〈T〉〉(c) ∧ c = 100

The equivalent BAV pathway is shown below:

77 add(table:〈〈U〉〉, [{a} | {a, c} ← column:〈〈R, C〉〉; {c, c} ← column:〈〈T, C〉〉; c = 100])
78 add(column:〈〈U,A〉〉, [{a, a} | {a, c} ← column:〈〈R, C〉〉; {c, c} ← column:〈〈T,C〉〉; c = 100])
79 add(column:〈〈U,B〉〉, [{a, b} | {a, b} ← column:〈〈R,B〉〉; {a, c} ← column:〈〈R, C〉〉;

{c, c} ← column:〈〈T, C〉〉; c = 100])
80 add(column:〈〈U,C〉〉, [{a, d} | {a, c} ← column:〈〈R, C〉〉; {c, c} ← column:〈〈T,C〉〉;

c = 100; d ← ‘temp’])
81 add(primary key:〈〈U pk, U,A〉〉)
82 delete(primary key:〈〈R pk, R, A〉〉)
83 contract(column:〈〈T, C〉〉,Range [{c, c} | c ← 100] Any)
84 contract(table:〈〈T〉〉, Range [{c} | c ← 100] Any)
85 contract(column:〈〈R,C〉〉, Range [{a, c} | {a, a} ← column:〈〈U, A〉〉; c ← 100] Any)
86 contract(column:〈〈R,B〉〉, Range column:〈〈U,B〉〉 Any)
87 contract(column:〈〈R,A〉〉, Range column:〈〈U,A〉〉 Any)
88 contract(table:〈〈R〉〉,Range table:〈〈U〉〉 Any)

Transformations 77 to 79 are of the form shown in Equation (6.1) so we may be able

to leave one of these objects out of our result schema. The transformations imply

that the data in table:〈〈U〉〉, column:〈〈U, A〉〉 and column:〈〈U, B〉〉 is a subset of that in
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AllInst(S) so we could potentially leave them out of our merge schema. table:〈〈U〉〉
and column:〈〈U, A〉〉 are referenced by primary key:〈〈U pk, U, A〉〉 though, so we need to

leave them in. We can, however, leave column:〈〈U, B〉〉 out of the merge schema. We

rearrange the transformations so that Transformation 79 is the last transformation

in the growth phase.

The merged schema is thus:

Sm = {table:〈〈R〉〉,column:〈〈R, A〉〉,column:〈〈R, B〉〉,column:〈〈R,C〉〉, primary key:〈〈R pk, R,A〉〉,
table:〈〈T〉〉,column:〈〈T,A〉〉,table:〈〈U〉〉,column:〈〈U,A〉〉, column:〈〈U,C〉〉, primary key:〈〈U pk, U, A〉〉}.

The instances are:

AllInst(Sm)⊇{{〈〈R〉〉(10,‘John’,100),〈〈R〉〉(20,‘Anne’,101), 〈〈T〉〉(100),〈〈U〉〉(10,‘temp’)},
{〈〈R〉〉(20,‘Peter’,101),〈〈T〉〉(101)}, {〈〈R〉〉(15,‘Andrew’,100),〈〈T〉〉(100),〈〈U〉〉(15,‘temp’)}}

To work out pSm,S1 we invert the other transformations in the growth phase to give

us:

89 delete(primary key:〈〈U pk, U, A〉〉)
90 delete(column:〈〈U, C〉〉, distinct[{a, d} | {a, c} ← column:〈〈R, C〉〉; {c, c} ← column:〈〈T,C〉〉; c = 100;

d ← ‘temp’])
91 delete(column:〈〈U, A〉〉, distinct[{a, a} | {a, c} ← column:〈〈R,C〉〉; {c, c} ← column:〈〈T, C〉〉; c = 100])
92 delete(table:〈〈U〉〉, distinct[{a} | {a, c} ← column:〈〈R, C〉〉; {c, c} ← column:〈〈T,C〉〉; c = 100])

pSm,S is surjective onto S i.e. all the RHS elements in the mapping tuples make

up AllInst(S) we can see this by inverting the pathway we have just created which

removes exactly the 〈〈U〉〉 objects we added. Its instances are:

AllMapInst(mapSm,S) ⊇
{〈{〈〈R〉〉(10,‘John’,100),〈〈R〉〉(20,‘Anne’,101),〈〈T〉〉(100), 〈〈U〉〉(10,‘temp’)},
{〈〈R〉〉(10,‘John’,100),〈〈R〉〉(20,‘Anne’,101),〈〈T〉〉(100)}〉,
〈{〈〈R〉〉(20,‘Peter’,101),〈〈T〉〉(101)}, {〈〈R〉〉(20,‘Peter’,101),〈〈T〉〉(101)}〉
〈{〈〈R〉〉(15,‘Andrew’,100),〈〈T〉〉(100), 〈〈U〉〉(10,‘temp’)}, {〈〈R〉〉(15,‘Andrew’,100),〈〈T〉〉(100)}〉}

pSm,S2 is made up of the remaining transformations in pS1,S2 as follows:

93 add(column:〈〈U,B〉〉, [{a, b} | {a, b} ← column:〈〈R,B〉〉; {a, c} ← column:〈〈R, C〉〉;
{c, c} ← column:〈〈T, C〉〉; c = 100])

94 delete(primary key:〈〈R pk, R, A〉〉)
95 contract(column:〈〈T, C〉〉,Range [{c, c} | c ← 100] Any)
96 contract(table:〈〈T〉〉, Range [{c} | c ← 100] Any)
97 contract(column:〈〈R,C〉〉, Range [{a, c} | {a, a} ← column:〈〈U, A〉〉; c ← 100] Any)
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98 contract(column:〈〈R,B〉〉, Range column:〈〈U,B〉〉 Any)
99 contract(column:〈〈R,A〉〉, Range column:〈〈U,A〉〉 Any)
100 contract(table:〈〈R〉〉,Range table:〈〈U〉〉 Any)

The instances of this pathway are:

AllMapInst(mapSm,S′) ⊇
{〈{〈〈R〉〉(10,‘John’,100),〈〈R〉〉(20,‘Anne’,101), 〈〈T〉〉(100), 〈〈U〉〉(10,‘temp’)},
{〈〈U〉〉(10,‘John’,‘temp’)}〉,
〈{〈〈R〉〉(20,‘Peter’,101),〈〈T〉〉(101)}, ∅〉
〈{〈〈R〉〉(15,‘Andrew’,100),〈〈T〉〉(100), 〈〈U〉〉(10,‘temp’)}, {〈〈U〉〉(15,‘Andrew’,‘temp’)}〉}

We can see again that this is surjective onto S2 and since our pathway gets us back

to S2 condition 2 is satisfied too. The union of the domains of both mappings is

AllInst(Sm) so condition 3 is met.

6.5 Extract

We show in this section how we implement Extract as defined in Definition 2.11 in

Chapter 2. Our approach is similar to those described in [MBHR05] and [MRB03].

We create add transformations for each object in S1 that occurs in any add queries

in pS1,S2 , as well as any objects transitively referenced by the objects we have added

to our extract schema, Sx. In other words we create a schema containing all those

objects whose extent is used to define the extent of a target schema object.

To determine which objects should be in Sx we look at the transformation queries

in pS1,S2 used to add S2 objects. Any S1 object that is used to define the instances

of an S2 object should appear in Sx. These transformations will be of the form:

add/extend(〈〈so2
i 〉〉,E1

i )

E1
i is an expression which contains generators for the S1 objects 〈〈so1

1〉〉,. . . ,〈〈so1
n〉〉.

All these objects must be added to Sx. We also need to add any objects transitively

referenced by any of the 〈〈so1
i 〉〉. Finally we any S1 objects that are unchanged by

pS1,S2 . This are those objects that are mapped in their entirety from S1 to S2 and so

must also appear unchanged in Sx. The extent of each object we add to the extract

schema is its domain in pS1,S2 . We calculate this as shown in Section 6.1.

To create the shrinking phase of the extract pathway, in which we remove all the

original S1 objects, we use the Sx objects we create in the growth phase to define
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the extents of the queries. To define the extents of the objects in S1 that do not

have counterparts in Sx, we use the generateGID function to create Skolem values

based on the values that do exist in Sx. These Skolem values can be unified with

the actual values that appear in S1 by the query processor.

The complexity of this algorithm is linear in the size of S1. Our algorithm maps

only those instances of S1 that appear in the domain of pS1,S2 to Sx. These are

precisely the instances that pS1,S2 maps to S2 so condition 1 of the definition holds.

The only instances of Sx are those added by the transformations in pS1,Sx . These

are the instances added in the growth phase and precisely define the Range of the

pathway as discussed in Section 6.1, which satisfies condition 2.

The way our mappings are defined in the AutoMed MMS allows us to create

minimal results for Extract. Each object in S1 either has a transformation in the

shrinking phase of the pathway containing a query that defines the lower bound of

its extent or appears unchanged in the target schema. In the latter case the whole

object takes part in the mapping and so needs to appear in Sx. In the former case

the query gives us a minimal set of values used from that source object. If this query

can be rewritten to a non-empty query over S1, then the rewritten query is used in

a new transformations defining the extent of the object in Sx.

6.5.1 Example of Extract

Consider the following mapping between S and S ′′

S={table:〈〈R〉〉, column:〈〈R, A〉〉, column:〈〈R,B〉〉, column:〈〈R, C〉〉, primary key:〈〈R pk,R,A〉〉,
table:〈〈T〉〉, column:〈〈T,C〉〉,column:〈〈T, D〉〉,primary key:〈〈T pk, T, C〉〉}

S′′={table:〈〈V〉〉, column:〈〈V, A〉〉, column:〈〈V,B〉〉, primary key:〈〈V pk, V,A〉〉}

AllInst(S)⊇{{〈〈R〉〉(10,‘John’,100),〈〈R〉〉(20,‘Anne’,101), 〈〈T〉〉(100,‘Finance’)},
{〈〈R〉〉(5,‘Peter’,101),〈〈T〉〉(101,‘HR’)}, {〈〈R〉〉(15,‘Andrew’,100),〈〈T〉〉(100,‘Finance’)}}

and the mapping between them defined by this set of tgds:

{〈〈R〉〉(a, b, c) ∧ 〈〈T〉〉(c, d) ∧ d = ‘Finance’→ 〈〈V〉〉(a, d),

〈〈V〉〉(a, d) → ∃Sk1, Sk2.〈〈R〉〉(a, b, c) ∧ 〈〈T〉〉(c, d) ∧ b = Sk1(a) ∧ c = Sk2(a)

The equivalent BAV pathway is shown below:
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101 add(table:〈〈V〉〉, [{a} | {a, c} ← column:〈〈R, C〉〉; {c, d} ← column:〈〈T, D〉〉; d = ‘Finance’])
102 add(column:〈〈V,A〉〉, [{a, a} | {a, c} ← column:〈〈R, C〉〉; {c, d} ← column:〈〈T, D〉〉;

d = ‘Finance’])
103 add(column:〈〈V,B〉〉, [{a, d} | {a, c} ← column:〈〈R, C〉〉; {c, d} ← column:〈〈T, D〉〉;

d = ‘Finance’])
104 add(primary key:〈〈V pk, V,A〉〉)
105 delete(primary key:〈〈R pk, R, A〉〉)
106 contract(column:〈〈T, D〉〉,Range [{c, d} | {a, d} ← column:〈〈V, A〉〉;

c ← generateID(S’, a, [a], ’Sk2’)] Any)
107 contract(column:〈〈T, C〉〉,Range [{c, c} | {a, d} ← column:〈〈V, A〉〉;

c ← generateID(S’, a, [a], ’Sk2’)] Any)
108 contract(table:〈〈T〉〉, Range [{c} | {a, d} ← column:〈〈V,A〉〉;

c ← generateID(S’, a, [a], ’Sk2’)] Any)
109 contract(column:〈〈R,C〉〉, Range [{a, c} | {a, d} ← column:〈〈V,A〉〉;

c ← generateID(S’, a, [a], ’Sk2’)] Any)
110 contract(column:〈〈R,B〉〉, Range [{a, b} | {a, d} ← column:〈〈V, A〉〉;

b ← generateID(S’, a, [a], ’Sk1’)] Any)
111 contract(column:〈〈R,A〉〉, Range [{a, a} | {a, d} ← column:〈〈V, A〉〉] Any)
112 contract(table:〈〈R〉〉,Range table:〈〈V〉〉 Any)

This pathway generates the following instances:

AllInst(S′′)⊇{{〈〈V〉〉(10,‘Finance’)}, {〈〈V〉〉(15,‘Finance’’)}}

If we look at the pathway above we see that column:〈〈R, C〉〉 and column:〈〈T, D〉〉 are

used in the queries of Transformations 101 to 103 . table:〈〈R〉〉 and table:〈〈T〉〉 are refer-

enced by column:〈〈R, C〉〉 and column:〈〈T, D〉〉. column:〈〈R, A〉〉 is transitively referenced

by column:〈〈R, C〉〉 via table:〈〈R〉〉 and primary key:〈〈R pk, R, A〉〉, and column:〈〈T, C〉〉 is

transitively referenced by column:〈〈T, D〉〉 via table:〈〈T〉〉 and primary key:〈〈T pk, T, C〉〉
so we need to add all these objects to the extract schema. column:〈〈R, B〉〉 is not used

in any of the queries or transitively referenced by any objects that need to be the

extract schema so we can leave it out.

The query for all the add transformations is the same and each of the generators in

the query affects all the objects. To calculate the extent of the objects missing from

the query we add a generator for them. In each case, however, we can simplify the

query (as we showed in Section 6.1) because the values generated by the generator

for the new object are already available. We can get the extent of table:〈〈R〉〉 and

column:〈〈R, A〉〉 from generator for column:〈〈R, C〉〉 and similarly we get the value

of table:〈〈T〉〉 from the generator for column:〈〈T, D〉〉. We are thus able to use the

same query as we used for the add transformations in pS1,S2 for each of the add

transformations in pS1,Sx .
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The queries for the transformations in the shrinking phase are all based in the

corresponding objects in the extract schema except for column:〈〈R, B〉〉 which does

not have a corresponding object in the extract schema. Its extent is the Skolem

function used to remove it in pS1,S2 . The pathway is thus:

113 add(table:〈〈extract R〉〉, [{a} | {a, c} ← column:〈〈R, C〉〉; {c, d} ← column:〈〈T,D〉〉;
d = ‘Finance’])

114 add(column:〈〈extract R,A〉〉, [{a, a} | {a, c} ← column:〈〈R, C〉〉; {c, d} ← column:〈〈T, D〉〉;
d = ‘Finance’])

115 add(column:〈〈extract R,C〉〉, [{a, c} | {a, c} ← column:〈〈R,C〉〉; {c, d} ← column:〈〈T, D〉〉;
d = ‘Finance’])

116 add(primary key:〈〈extract R pk, extract R, A〉〉)
117 add(table:〈〈extract T〉〉, [{c} | {c} ← {a, c} ← column:〈〈R, C〉〉; {c, d} ← column:〈〈T, D〉〉;

d = ‘Finance’])
118 add(column:〈〈extract T, C〉〉, [{c, c} | {a, c} ← column:〈〈R, C〉〉; {c, d} ← column:〈〈T, D〉〉;

d = ‘Finance’])
119 add(column:〈〈extract T, D〉〉, [{c, d} | {a, c} ← column:〈〈R,C〉〉; {c, d} ← column:〈〈T,D〉〉;

d = ‘Finance’])
120 add(primary key:〈〈extract T pk,T, C〉〉)
121 contract(primary key:〈〈T pk,T, C〉〉)
122 contract(column:〈〈T, D〉〉,Range column:〈〈extract T, D〉〉 Any)
123 contract(column:〈〈T, C〉〉,Range column:〈〈extract T, C〉〉 Any)
124 contract(table:〈〈T〉〉, Range table:〈〈extract T〉〉 Any)
125 contract(primary key:〈〈R pk, R, A〉〉)
126 contract(column:〈〈R,C〉〉, Range column:〈〈extract R, C〉〉 Any)
127 contract(column:〈〈R,B〉〉, Range [{a, b} | {a, a} ← column:〈〈extract R, A〉〉;

b ← generateGID(S”, a, [a], ‘Sk1’)] Any)
128 contract(column:〈〈R,A〉〉, Range column:〈〈extract R,A〉〉 Any)
129 contract(table:〈〈R〉〉,Range table:〈〈extract R〉〉 Any)
130 rename(table:〈〈extract R〉〉, table:〈〈R〉〉)
131 rename(table:〈〈extract T〉〉, table:〈〈T〉〉)

The instances of the extract schema created by this pathway are as follows:

AllInst(Sx) = {{〈〈R〉〉(10,100),〈〈T〉〉(100,‘Finance’)}, {〈〈R〉〉(15,100),〈〈T〉〉(100,‘Finance’)}}

pS,Sx thus generates the following mapping instances:

AllMapInst(mapS,Sx)=

{〈{〈〈R〉〉(10,‘John’,100), 〈〈T〉〉(100,‘Finance’)},
{〈〈R〉〉(10,100), 〈〈T〉〉(100,‘Finance’)}〉,

〈{〈〈R〉〉(15,‘Andrew’,100),〈〈T〉〉(100,‘Finance’)}, {〈〈R〉〉(15,100),〈〈T〉〉(100,‘Finance’)}〉}

Invert(pS,Sx) which we get by inverting the operators and executing the pathway

above in reverse order, generates the following mapping instances:
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AllMapInst(mapSx,S)=

{〈{〈〈R〉〉(10,100), 〈〈T〉〉(100,‘Finance’)},
{〈〈R〉〉(10,Sk1(10)=‘John’,100), 〈〈T〉〉(100,‘Finance’)}〉,

〈{〈〈R〉〉(15,100),〈〈T〉〉(100,‘Finance’)}, {〈〈R〉〉(15,Sk1(15)=‘Andrew’,100),〈〈T〉〉(100,‘Finance’)}〉}

We can see by examining the mapping instances above that composing these two

mappings and deskolemising Sk1 using the values in the source schema, gives us

Id(Domain(mapS1,S2)).

This is equivalent to a pathway of length 0 so Id(S) ◦ pS1,S2 = pS1,S2 as required by

the definition.

Condition 2:

Range(pS,Sx) = {{〈〈R〉〉(10,100),〈〈T〉〉(100,‘Finance’)}, {〈〈R〉〉(15,100),〈〈T〉〉(100,‘Finance’)}}
= AllInst(Sx)

6.6 Diff

We show in this section how we implement Diff as defined in Definition 2.12 in

Chapter 2. The definition requires us to be able to recreate S1 by merging the result

of Diff with the result of an Extract with the same input parameters. This means we

need to include any objects in S1 that are used to uniquely identify instances in S1

in our diff schema, Sd,. We can thus restate the requirements of Diff as follows: to

return a schema containing all instances of S1 that do not participate in the mapping

plus any objects and their instances, necessary to uniquely identify instances of S1.

As with Extract, S1 will meet these requirements.

The implementation we present here follows the same basic principles as we applied

in the implementation of Extract but here we select schema objects that are not used

in the queries of any growth phase transformations in pS1,S2 as well as those needed

to uniquely identify instances of S1, for example a primary key column.

To determine which objects should be in Sd we look at the queries used to add S2

objects. Any S1 object that is not used in any of the queries that define the instances

of S2 must appear in Sd. In addition, any object whose instances are filtered must

appear in Sd. This is to allow us to recreate the input schema. As in the case of

Extract we need to add any objects transitively referenced by these objects.
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If the instances of an object we add are filtered we may only need to add the instances

that make up the complement of the query to Sd. For example, if an add query in

pS1,S2 contained a filter, a = 10, the query in the transformation to create the Sd

object would be a 6= 10. The exception is if the object is transitively referenced

by an object whose instances all need to appear in Sd, since we need to be able

to uniquely identify each instance in Sd to allow us to merge it with the output of

Extract as required by the definition.

We create the shrinking phase by using the instances of the objects we have added

to Sd to define the extents of the transformation queries used to remove their corre-

sponding S1 objects. If there is no Sd object corresponding to an object we need to

remove from S1, we use generateGID to create a Skolem function to define the extent

of the object. As with the algorithm for Extract, the complexity of this algorithm is

linear in the size of S1.

As we said previously we cannot always guarantee a minimal result schema in an

information theoretic sense. In particular we do not analyse the consequences of the

input schema having a finite domain. Consider the mapping

〈〈R〉〉(a, b) → 〈〈T〉〉(a)

between S = {table:〈〈R〉〉, column:〈〈R, A〉〉, column:〈〈R, B〉〉, primary key:〈〈R pk, R, A〉〉}
and S ′ = {table:〈〈T〉〉, column:〈〈T, A〉〉, primary key:〈〈T pk, T, A〉〉} and suppose that

column:〈〈R, A〉〉 has a finite domain I. Our algorithm for Diff would return

table:〈〈diff R〉〉=table:〈〈R〉〉 as the result schema, with the mapping

〈〈R〉〉(a, b) → 〈〈diff R〉〉(a, b)

In our implementation of Diff we include the values from column:〈〈R, B〉〉 but we also

include all the values from column:〈〈R, A〉〉 in the result schema because it is the key

of table:〈〈R〉〉 and its values are used to uniquely identify the rows in the table. We

need to do this so we can uniquely recreate the original schema by merging this

diff schema with one generated by extract, as required by the definition. However,

the minimal result is a set of objects of the form table:〈〈Si〉〉(B) where i ∈ I. These

relations do not contain the data values from column:〈〈A〉〉 and so are minimal in an

information theoretic sense. The mapping from the source to the result schema is

〈〈R〉〉(a, b) → 〈〈Sa〉〉(b)
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This schema, however, is not always of practical use. If I is the domain of values

that can be stored in a normal signed 32-bit integer then the result schema will

contain 231 table definitions.

6.6.1 Example of Diff

We use the same schema and pathway as in the extract section. In pS,S′′ table:〈〈R〉〉,
column:〈〈R, A〉〉,column:〈〈R, B〉〉,table:〈〈T〉〉 and column:〈〈T, C〉〉 are not used in any of

the queries so must appear in the diff schema, Sd. The instances of column:〈〈R, C〉〉
and column:〈〈T, D〉〉 are filtered by the filter d=‘Finance’ and so also need to appear

in Sd. We thus need to add all of S1’s objects to Sd. We need to add all the instances

of column:〈〈R, B〉〉 so therefore we need to add all the instances of the objects tran-

sitively referenced by column:〈〈R, B〉〉, i.e. table:〈〈R〉〉, column:〈〈R, A〉〉,column:〈〈R, C〉〉.
The instances of table:〈〈T〉〉, column:〈〈T, C〉〉 and column:〈〈T, D〉〉 are those generated

by inverting the filter d=‘Finance’ so that it becomes d 6=‘Finance’. pS1,Sd
is thus:

132 add(table:〈〈diff R〉〉, table:〈〈R〉〉)
133 add(column:〈〈diff R, A〉〉, column:〈〈R, A〉〉)
134 add(column:〈〈diff R, B〉〉, column:〈〈R, B〉〉)
135 add(column:〈〈diff R, C〉〉, column:〈〈R, C〉〉)
136 add(table:〈〈diff T〉〉, [{c} | {a, c} ← column:〈〈R, C〉〉; {c, d} ← column:〈〈T, D〉〉;

d 6= ‘Finance’])
137 add(column:〈〈diff T, C〉〉, [{c, c} | {a, c} ← column:〈〈R, C〉〉; {c, d} ← column:〈〈T, D〉〉;

d 6= ‘Finance’])
138 add(column:〈〈diff T, D〉〉, [{c, d} | {a, c} ← column:〈〈R,C〉〉; {c, d} ← column:〈〈T, D〉〉;

d 6= ‘Finance’])
139 contract(column:〈〈T, D〉〉,Range column:〈〈diff T, D〉〉 Any)
140 contract(column:〈〈T, C〉〉,Range column:〈〈diff T, C〉〉 Any)
141 contract(table:〈〈T〉〉, Range table:〈〈diff T〉〉 Any)
142 contract(column:〈〈R,C〉〉, Range column:〈〈diff R, C〉〉 Any)
143 contract(column:〈〈R,B〉〉, Range column:〈〈diff R,B〉〉 Any)
144 contract(column:〈〈R,A〉〉, Range column:〈〈diff R,A〉〉 Any)
145 contract(table:〈〈R〉〉,Range table:〈〈diff R〉〉 Any)
146 rename(table:〈〈diff R〉〉, table:〈〈R〉〉)
147 rename(table:〈〈diff T〉〉, table:〈〈T〉〉)

which generates the following schema:

Sd = {table:〈〈R〉〉, column:〈〈R, A〉〉, column:〈〈R,B〉〉, column:〈〈R, C〉〉, primary key:〈〈R pk,R,A〉〉,
table:〈〈T〉〉, column:〈〈T,C〉〉,column:〈〈T, D〉〉,primary key:〈〈T pk, T, C〉〉}

The instances of Sd and Sx that we created above are:
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AllInst(Sd)⊇{{〈〈R〉〉(10,‘John’,100), 〈〈R〉〉(20,‘Anne’,101)},
{〈〈R〉〉(5,‘Peter’,101),〈〈T〉〉(101,‘HR’)}, {〈〈R〉〉(15,‘Andrew’,100)}}

AllInst(Sx) ⊇ {{〈〈R〉〉(10,100),〈〈T〉〉(100,‘Finance’)}, {〈〈R〉〉(15,100),〈〈T〉〉(100,‘Finance’)}}

We can see by inspection that merging these two schemas will give us back S as

required by the definition.

AllInst(S)⊇{{〈〈R〉〉(10,‘John’,100),〈〈R〉〉(20,‘Anne’,101), 〈〈T〉〉(100,‘Finance’)},
{〈〈R〉〉(5,‘Peter’,101),〈〈T〉〉(101,‘HR’)}, {〈〈R〉〉(15,‘Andrew’,100),〈〈T〉〉(100,‘Finance’)}}

6.7 TransGen

The AutoMed implementation of TransGen takes a string representation of the SO

s-t tgds in the input mapping and translates them into a BAV pathway. The string

representation of the mapping used in the previous two sections is given below:

Sd:sql:table:<<R>>(a) and S:sql:column:<<R,A>>(a,a) and

S:sql:column:<<R,B>>(a,b) and S:sql:column:<<R,C>>(a,c) and

S:sql:column:<<T,C>>(c,c) and

S:sql:column:<<T,D>>(c,d) and d=’Finance’ ->

Sd:sql:table:<<V>>(a) and Sd:sql:column<<V,A>>(a,a) and Sd:sql:column<<V,B>>(a,d)

Sd:sql:table:<<V>>(a) and Sd:sql:column<<V,A>>(a,a) and Sd:sql:column<<V,B>>(a,d)->

S:sql:table:<<R>>(a) and S:sql:column:<<R,A>>(a,a) and

S:sql:column:<<R,B>>(a,b) and S:sql:column:<<R,C>>(a,c) and

S:sql:table:<<T>>(c) and S:sql:column:<<T,C>>(c,c) and

S:sql:column:<<T,D>>(c,d) and b = Sk1(a) and c = Sk2(a)

This is translated into the BAV pathway shown in Section 6.5.1 by a simple text

parser using the process described in Section 3.4.

6.8 Model Management Scripts

The operators we have described here have been implemented as an addition to the

AutoMed Java API and can be used to create programs that directly execute MM

scripts. The AutoMed API contains a number of classes that provide the underly-

ing framework of schemas and mappings (in the form of BAV pathways) [BKL+04]
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that we need for our MMS. The three main classes that we use in the implemen-

tation of our MM API are Schema, Pathway and Transformation. These provide

methods to manipulate the schemas and mappings in our MMS. AutoMed also

provides a GUI that allows us to visualise the results produced by the operators and

manipulate them directly.

The MM API is made up of one class for each operator. Each of these classes

extends the basic Operator class which contains a number of methods that allow

us to manipulate the schemas and transformation pathways that make up the input

parameters of the operators. Each operator class contains a method that executes

the operator. The signatures of the methods are shown in Table 6.1.

MM Methods
Pathway p = transGen(String map)
Pathway pcomp = compose(Pathway p1, Pathway p2)
Pathway pcon = confluence(Pathway p1, Pathway p2)
Pathway p[ ] = merge(SchemaS1, SchemaS2, Pathway p)
Pathway pd = diff(SchemaS, Pathway p)
Pathway px = extract(SchemaS, Pathway p)
Pathway pmg = modelGen(SchemaS, Stringl)

Table 6.1: The MM Method Calls

The inputs for all the MM operators other than transGen are Schema and Pathway

objects. The Schema objects we use are generally created by wrapping an external

data source using the AutoMedWrapper class that exists as part of the AutoMed

API or by extracting the final schema the pathway returned by the MM operators. In

addition, AutoMed provides mechanisms for creating schemas that are not based

on a data source either by reading in a textual description of a schema from a file

or by directly creating the schema objects using the GUI.

The Pathway objects are made up of a sequence of transformations and the schemas

created by those transformations. The Transformation class has methods that give us

access to the transformation type, the schema object and the transformation query.

The user-generated pathways in a MM script are created by using transGen which

translates the String objects representing the mappings into BAV pathways. The

other pathways will be the output of other MM operators.

As we can see from the table all the MM operator methods return a Pathway ob-

ject except for merge which returns an array of two Pathway objects, one for each

mapping required by the definition. In the case of the Compose and Confluence

operators these are the only outputs we need. However, for Diff, Extract, Merge
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and ModelGen we also need a schema as part of the output. In the case of diff,

extract and modelGen this schema is the last one in the returned Pathway object.

We access it by using the getLastSchema(p) method that returns the final schema

in a Pathway object. We can obtain the result schema of merge by executing the

getFirstSchema(p) method, which returns the first schema in a Pathway object, on

either of the pathway objects in the array that the method returns, as the pathways

are from the merged schema to the input schemas.

We can use the operators directly through the AutoMed GUI or as part of a

program. The fragment below shows how we can combine these new classes with the

existing framework provided by AutoMed to execute a MM script. This executes

the script from Example 2.3 in Section 2.4.

AutoMedWrapper sw=AutoMedWrapper.selectNewAutoMedWrapper(

username,password,null,driver,urlbase+dbName,"SEmp",wf);

Schema SEmp=sw.getSchema();

TransGen transGenObject = new TransGen();

Pathway pSEmp_SPers = transGenObject.transGen(mapSEmp_SPers);

Schema SPers = pSEmp_SPers.getLastSchema();

Schema[] pathway = SPers.findShortestPath(SEmp);

Pathway mapSPers_SEmp = Pathway.createPathway(pathway);

Diff diffObject = new Diff();

Pathway pSPers_Sd = diffObject.diff(SPers, pSPers_SEmp);

Schema Sd = pSPers_Sd.getLastSchema();

Sd.setName("Sd");

Compose composeObject = new Compose();

Pathway mapSEmp_Sd = composeObject.compose(mapSEmp_SPers, mapSPers_Sd);

Merge mergeObject = new Merge();

Pathway res[] = mergeObject.merge(SEmp, Sd, mapSEmp_Sd);

Schema Sm = res[0].getFirstSchema();

Sm.setName("Sm");

We first wrap the SEmp schema from the example using selectNewAutoMedWrapper

in the AutoMedWrapper class and access the AutoMed schema created by the

wrapping process using the getSchema() method on the next line. We then use

transGen to create the BAV pathway that executes the mapping from SEmp to

SPers.
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We create the inverse of this pathway by simply reversing the order of the schemas

used to create the pathway. We use the existing AutoMed methods

findShortestPath and createPathway to work out which schemas should be in

the pathway and then link them in the correct order.

We next create an instance of the new Diff() class and execute its diff method

to create a BAV pathway from SPers to a schema that is the Diff of SPers and

SEmp. This schema is the last in the pathway and is accessed using the existing

getLastSchema method which is part of the Pathway class. We use the setName

method in Schema to set the name of this schema to Sd.

We next create an instance of the new Compose object to allow us to compose the

pathway we have just created with the original pathway we created to give us a

pathway directly from SEmp to Sd.

We then merge SEmp and Sd. The pathway we just created describes the relationship

between their objects. The result of merge is an array of two pathways. The merged

schema is the first schema in both the pathways. We extract the merged schema

from the first pathway in the array using the getFirstSchema method we described

earlier.

Adding the MM API to the existing AutoMed system provides us with a powerful

tool for data management.

6.9 Related Work

To our knowledge there is no MM framework that offers DDL-independent im-

plementations of the instance-based semantics of all the MM operators presented

in this chapter. Implementations exist for Moda but these are only for the rela-

tional model [MBHR05], and for Rondo but only for structural semantics [MRB03].

GeromeSuite implements Match, Merge and Compose for multiple DDLs but not

Diff, Extract or ModelGen. At present GeromeSuite also does not provide an API

that allows the operators to be used together as we do here [KQLL07].
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6.10 Chapter Summary

We have shown in this chapter how our framework offers a flexible environment in

which to implement MM operators. The operators discussed in this chapter as well

as ModelGen have all been implemented in Java and added to AutoMed. They

can be combined into programs to solve complex data management problems as we

will see in the next chapter.



Chapter 7

Case Studies

So far in this thesis the examples we have presented have all been schema based.

This is because, in common with all existing MMS prototypes, the AutoMed MMS

can only process schema based DDLs. In this chapter we present some examples

of scripts that can be used to solve problems in other application domains, before

describing in detail how we use the AutoMed MMS to execute a script to do

schema-based change propagation.

The high level of abstraction in MM allows the techniques to be applied to a wide

range of domains [BHP00]. We first discuss how these techniques can be applied to

a problem associated with middleware messaging. A common task in heterogeneous

messaging systems is that of merging messages that conform to different messaging

standards. The MM script below could be used to perform this task. Message

m1−ML1 is expressed in a message standard ML1 while m2−ML2 is expressed using a

standard ML2.

1. 〈m1−ML2,mapm1−ML1,m1−ML2〉 = ModelGen(m1−ML1, ML2)

2. mapm1−ML2,m2−ML2 = Match(m1−ML2,m2−ML2)

3. 〈m3−ML2,mapm3−ML2,1−ML2, mapm3−ML2,2−ML2 =

Merge(m1−ML2, m2−ML2,mapm1−ML2,m2−ML2)

The merged message, m3−ML2, is expressed using the ML2 standard.

Programming interfaces are another domain that we can apply MM techniques to.

We could, for example, create a script that extracts the common elements from

two programming interfaces, as well as those that only occur in one or other of the

193



194

interfaces. The script below takes two interfaces, p1 and p2 as input and returns

three new interfaces. The interface containing the common elements is pe, that

containing only those elements that only occur in p1 is pd1 and that containing only

those that only occur in p2 is pd2.

1. 〈mapp1,p2〉 = Match(p1, p2)

2. 〈pe,mapp1,pe〉 = Extract(p1, mapp1,p2)

3. 〈pd1,mapp1,d1〉 = Diff(p1,mapp1,p2)

4. 〈pd2,mapp,,d2〉 = Diff(p2, Invert(mapp1,p2))

Another type of model we may wish to add to a MMS is an ontology modelling

language. OWL-DL [Mik04] is a semantic web language used to define ontologies in

which rules can be written that allow a reasoner to infer new facts from those given.

If we assume the mapping between an ontology o1 and its inferred closure, o1−INF ,

is mapo1,o1−INF
, we could use the following MM script to work out what the inferred

facts in an ontology are:

1. 〈oinf ,mapo1,o1−INF = Diff(o1,mapo1,o1−INF )

We have gained an idea of the problems that we would face in adding OWL-DL to

our particular MMS prototype in recent work we have done in translating OWL-

DL ontologies into SQL [SRM09] where we used specially designed SQL triggers to

simulate OWL-DL’s inference ability.

Creating executable mappings between the different types of models described above

has proved to be extremely challenging [BM07, JJNQ09]. We can find no references

in any of the MM literature to the implementation of a MMS that processes anything

other than schema-based DDLs. Since the initial paper [BHP00], a MM 2.0 has

been proposed that focuses on creating extensional mappings between schema-based

DDLs [ACB06, BM07, JJNQ09, BH07] rather than how MM techniques can be

applied to other application domains. All of the existing MMS prototypes limit the

DDLs they support to those that are schema-based.

At the moment we also do not have a way of characterising non schema-oriented

models in the AutoMed MMS. We also have no way of dealing with things like

the timing of messages or events in the messaging domain. Therefore, our imple-

mentations of the operators are currently not able to process anything other that

schema-oriented models. We believe, however, that the fine-grained transforma-

tion based approach to representing schemas and mappings and implementing the
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operators described in this thesis, provides the best way of extending MM imple-

mentations to process other types of models, when compared with the approaches

adopted in the other existing MMS prototypes. The ability to ‘divide and conquer’

the problems by transforming a single, simple schema object at a time reduces the

complexity of the individual steps. Extending our MMS to do this forms part of the

future work we discuss in Chapter 8.

7.1 Schema-Based Change Propagation Example

We now present a MM script to solve the schema-based change propagation problem

introduced in Section 1.3. Aspects of this script perform the common data manage-

ment problems view integration, schema translation and data exchange. This exam-

ple is one we have created ourselves, based on the scenario presented in [MBHR05],

because as far as we are aware there are no existing benchmarks for MMSs [BM07].

Recall that the example concerned the maintenance of a company database linked to

an XML schema containing just the finance employees used by the HR department.

A figure illustrating the full example, annotated with the steps we will execute, is

in shown in Figure 7.1. The process can be split into four stages. The first stage

translates the ER design into SQL. The output of this stage is a mapping between

the ER and SQL schemas shown as the darker arrow on Step 1 in the figure. At the

end of each of the next three stages we have a mapping between the current SQL

database and the current, consistent XML schema used by HR. The darker arrows

on 6, 12 and 16 show these output mappings. Semp and SfinEmp are the schemas we

have been using throughout the thesis. The ER and XML schemas based on them

have an −er or −xml suffix in their names. The full script is shown in Figure 7.2.

The four stages of the process are:

A The first stage consists of Step 1 of the script and is an example of schema

translation. ModelGen is executed to translate the ER design into SQL.

B In this stage the XML schema required by HR is created and updated. A mapping

between the database and the new schema is also produced at the end of the

stage. Steps 2 to 5 create the mappings between Semp and the updated XML

schema created by HR, S ′finEmp−xml. The XML schema is linked directly to

Semp in Step 6 by composing the mappings created in the previous steps. This

is an example of data exchange.
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Figure 7.1: Detailed diagram of the Example

1. 〈Semp,mapSemp−er,Semp〉 = ModelGen(Semp−er, SQL)
2. mapSemp,SfinEmp

= User defined view creation
3. 〈SfinEmp−xml, SfinEmp SfinEmp−xml〉 = ModelGen(SfinEmp, XML)
4. mapSemp,SfinEmp−xml

= mapSemp,SfinEmp
◦mapSfinEmp,SfinEmp−xml

5. mapSfinEmp−xml,S′finEmp−xml
= User defined additions to XML Schema

6. mapSemp,S′finEmp−xml
= mapSemp,SfinEmp−xml

◦mapSfinEmp−xml,S′finEmp−xml

7. 〈Sd−xml,mapS′finEmp−xml,Sd−xml
〉 = Diff(S′finEmp−xml, Invert(mapSemp,S′finEmp−xml

))
8. 〈Sdiff ,mapSd−xml,Sdiff

〉 = ModelGen(Sd−xml, SQL)
9. mapS′finEmp−xml,Sdiff

= mapS′finEmp−xml,Sd−xml
◦mapSd−xml,Sdiff

10. mapSemp,Sdiff
= mapSemp,S′finEmp−xml

◦ mapS′finEmp−xml,Sdiff

11. 〈Sm, mapSmerge,Semp , mapSmerge,Sdiff
〉 = Merge(Semp, Sdiff ,mapSemp,Sdiff

)
12. mapSmerge,S′finEmp

= (mapSmerge,Semp ◦mapSemp,S′finEmp−xml
)⊕

(mapSmerge,Sdiff
◦ Invert(mapS′finEmp−xml,Sdiff

))
13. mapSmerge,SnewEmp = User defined improved SQL design
14. mapS′finEmp−xml,SnewEmp

= Invert(mapSmerge,S′finEmp−xml
) ◦ mapSmerge,SnewEmp

15. 〈S′newFinEmp−xml, mapS′finEmp−xml,S
′
newF inEmp−xml

〉 =
Extract(S′finEmp−xml,mapS′finEmp−xml,SnewEmp

)
16. mapSnewEmp,S′newF inEmp−xml

=
Invert(mapS′finEmp−xml,SnewEmp

) ◦ mapS′finEmp−xml,S
′
newF inEmp−xml

Figure 7.2: MM Script
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C During this stage the database is updated with the new objects added by HR,

to their schema. Again a mapping is created between this new database and

the existing HR schema is created as the final step in this stage. In Steps 7

to 11 the differences between SfinEmp−xml are identified and merged into Semp

to give us Smerge. This is an example of view integration. This leaves us with

two different pathways between S ′finEmp−xml and Smerge, one via Semp and the

other via Sdiff . Step 12 combines these pathways to link S ′finEmp−xml directly

to the new SQL database.

D In the final stage a new database is created, the HR schema is updated to reflect

these changes and a mapping between the new database and the updated HR

schema is created. This is another example of data exchange.

7.2 Script Execution in AutoMed

In this section we use the implementations of the operators described in the previous

two chapters to execute the script. We also provide some screen shots from the

system itself and for completeness we include all the transformations and schemas.

7.2.1 Stage A

The first step in the script

〈Semp,mapSemp−er,Semp〉 = ModelGen(Semp−er, SQL)

translates the ER design into an SQL schema that can be materialised. Only one

CT is required to transform the HDM representation of Semp−er, into a schema that

can be translated in SQL:

inclusion expand(Semp−er,node:〈〈Dept〉〉,edge:〈〈works in, Emp, Dept〉〉)

This splits the schema into two parts linked by an inclusion constraint(⊆). A screen-

shot of the initial ER schema and its translation into SQL via the HDM is shown

in Figure 7.3. The SQL schema is Semp, which we used throughout Chapter 2. We

repeat Inst5(Semp) in Figure 7.4 here for convenience.
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Figure 7.3: A screenshot from AutoMed of the translations of the ER schema,
Semp−er into SQL as well as part of the pathway (on the left hand side)

7.2.2 Stage B

In Step 2 of the script the DBA creates the view requested by the HR department
using the following mapping:
mapSemp,SfinEmp

= (Semp, SfinEmp, ΣSemp,SfinEmp
) where ΣSemp,SfinEmp

=

{〈〈Emp〉〉(e, n, d) ∧ 〈〈Dept〉〉(d, dn, ne) ∧ dn = ‘Finance’→ 〈〈FinEmp〉〉(e, n) ∧ 〈〈FinDept〉〉(d, dn),

∃dname.〈〈FinEmp〉〉(e, n) ∧ 〈〈FinDept〉〉(d, ne) → 〈〈Emp〉〉(e, n, d) ∧ 〈〈Dept〉〉(d, dname(d), ne)}

We read this into AutoMed as a string and our implementation of the Trans-

Gen operator then translates it into a BAV pathway as described in Section 6.7.

The pathway is shown below and the instance of the resulting view derived from

Inst5(Semp) is shown in Figure 7.5.
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Emp

eid name dept

1 Peter Smith 100
3 Paul Jones 100
5 Joe Brown 100
21 Susan Brown 101

Dept

did dname numEmps?

100 Finance 23
101 HR 15
102 IT

Emp.dept → Dept.did

Figure 7.4: Inst5(Semp)

The growth phase of the pathway is:

1 add(table:〈〈FinEmp〉〉, [{e} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

2 add(column:〈〈FinEmp, eid, int, notnull〉〉, [{e, e} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

3 add(column:〈〈FinEmp, name, varchar, notnull〉〉,
[{e,n} | {e,n} ← column:〈〈Emp, name〉〉; {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

4 add(table:〈〈FinDept〉〉, [{d} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

5 add(column:〈〈FinDept, did, int, notnull〉〉, [{d , d} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

6 add(column:〈〈FinDept, numEmps, int, null〉〉, [{d ,ne} | {e, d} ← column:〈〈Emp, dept〉〉;
{d ,ne} ← column:〈〈Dept, numEmps〉〉; {d , dn} ← column:〈〈Dept, dname〉〉;
dn ← ‘Finance’])

7 add(primary key:〈〈FinEmpkey, 〈〈FinEmp〉〉, 〈〈FinEmp, eid〉〉〉〉)
8 add(primary key:〈〈FinDeptkey, 〈〈FinDept〉〉, 〈〈FinDept, did〉〉〉〉)

The shrinking phase of this pathway is shown below. The primitive transformations

are all contract because we only have the employees from the finance department in

SfinEmp so we cannot fully recreate Semp with these transformations.

9 delete(primary key:〈〈Empeid pk, Emp, 〈〈Emp, eid〉〉〉〉)
10 delete(primary key:〈〈Deptdid pk, Dept, 〈〈Dept, did〉〉〉〉)
11 delete(foreign key:〈〈Dept fk, Emp, 〈〈Emp, dept〉〉, Dept, 〈〈Dept, did〉〉〉〉)
12 contract(column:〈〈Dept, numEmps〉〉,Range column:〈〈FinDept, numEmps〉〉 Any)
13 contract(column:〈〈Dept, dname〉〉,Range [{d , dn} | {d , d} ← column:〈〈FinDept, did〉〉;

dn ← generateGID(SfinEmp , d, [d], ‘dname’)] Any)
14 contract(column:〈〈Dept, did〉〉, Range column:〈〈FinDept, did〉〉 Any)
15 contract(table:〈〈Dept〉〉,Range table:〈〈FinDept〉〉 Any)
16 contract(column:〈〈Emp, dept〉〉,

Range [{e, d} | {e, e} ← column:〈〈FinEmp, eid〉〉; {d , d} ← column:〈〈FinDept, did〉〉] Any)
17 contract(column:〈〈Emp, name〉〉, Range column:〈〈FinEmp, name〉〉 Any)
18 contract(column:〈〈Emp, eid〉〉,Range column:〈〈FinEmp, eid〉〉 Any)
19 contract(table:〈〈Emp〉〉, Range table:〈〈FinEmp〉〉 Any)
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FinEmp

eid name

1 Peter Smith
3 Paul Jones
5 Joe Brown

FinDept

did numEmps?

100 23

Figure 7.5: Inst5(SfinEmp)

The generateGID function in Transformation 13 creates Skolem values based on the

department id to create unique values for the department name.

In Step 3

〈SfinEmp−xml,mapSfinEmp,SfinEmp−xml
〉 = ModelGen(SfinEmp, XML)

we translate SfinEmp into XML, the DDL of choice for the HR department. The

HDM schema objects created by translating Semp into the HDM all match the HDM

representation of XML schema constructs so all we need to do is execute the cre-

ate root node CT to create a root node for the XML schema. A screenshot of the

XML and SQL schemas as well as their HDM equivalents is shown in Figure 7.6.

The growth phase of resultant BAV pathway is shown below:

20 add(complexElement:〈〈null, root, 1, 1〉〉, [{r} | r ← &0])
21 add(complexElement:〈〈root,FinEmp, 0, unbounded〉〉, [{r , e} | {e, e} ← column:〈〈FinEmp, eid〉〉;

r ← &0])
22 add(simpleElement:〈〈root/FinEmp, eid, 1, 1, int〉〉, column:〈〈FinEmp, eid〉〉)
23 add(simpleElement:〈〈root/FinEmp, name, 1, 1, int〉〉, column:〈〈FinEmp, name〉〉)
24 add(complexElement:〈〈root,FinDept, 0, unbounded〉〉, [{r , d} | {d , d} ← column:〈〈FinDept, did〉〉;

r ← &0])
25 add(simpleElement:〈〈root/FinDept, did, 1, 1, int〉〉, column:〈〈FinDept, did〉〉)
26 add(simpleElement:〈〈root/FinDept, numEmps, 0, 1, int〉〉, column:〈〈Dept, numEmps〉〉)
27 add(key:〈〈FinEmpkey, 〈〈root, FinEmp〉〉, 〈〈root/FinEmp, eid〉〉〉〉)
28 add(key:〈〈FinDeptkey, 〈〈root, FinDept〉〉, 〈〈root/FinDept, did〉〉〉〉)

complexElement:〈〈root, FinEmp〉〉 and complexElement:〈〈FinDept〉〉 both have key con-

structs associated with them so we do not need to create unique OIDs: we use the

values from the keys as the unique identifying value in their extents. The shrinking

phase of this pathway is:
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Figure 7.6: A screenshot of the translation from SfinEmp to SfinEmp−xml

29 delete(primary key:〈〈FinEmpkey, Emp, 〈〈FinEmp, eid〉〉〉〉)
30 delete(primary key:〈〈FinDeptkey,Dept, 〈〈FinDept, did〉〉〉〉)
31 delete(column:〈〈FinDept, numEmps〉〉, simpleElement:〈〈root/FinDept, numEmps〉〉)
32 delete(column:〈〈FinDept, did〉〉, simpleElement:〈〈root/FinDept, did〉〉)
33 delete(table:〈〈FinDept〉〉,

[{d} | {d , d} ← simpleElement:〈〈root/FinDept, did〉〉])
34 delete(column:〈〈FinEmp, name〉〉, simpleElement:〈〈root/FinEmp, name〉〉)
35 delete(column:〈〈FinEmp, eid〉〉, simpleElement:〈〈root/FinEmp, eid〉〉)
36 delete(table:〈〈FinEmp〉〉, [{e} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉])

Transformations 1 to 36 give us a pathway from Semp to SfinEmp−xml.

In Step 4

mapSemp,SfinEmp−xml
= mapSemp,SfinEmp

◦mapSfinEmp,SfinEmp−xml

we compose the mappings created in Steps 2 and 3 above to create a pathway

from Semp directly to SfinEmp−xml without any SfinEmp objects in it. We use the
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transformations from the growth phase of pSfinEmp,SfinEmp−xml
rewritten over objects

in Semp to get this result. For example Transformation 23 creates

simpleElement:〈〈root/FinEmp, name〉〉 with an extent of column:〈〈FinEmp, name〉〉. In

pSemp,SfinEmp
, column:〈〈FinEmp, name〉〉 is created by Transformation 3 .

In pSemp,SfinEmp−xml
, created in this step, we thus add

simpleElement:〈〈root/FinEmp, name〉〉 with the extent query from Transformation 3

to give us Transformation 40 below. The other objects are created in the same way.

37 add(complexElement:〈〈null, root, 1, 1〉〉, [{r} | r ← &0])
38 add(complexElement:〈〈root,FinEmp, 0, unbounded〉〉, [{r , e} | {e, d} ← column:〈〈Emp, dept〉〉;

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’; r ← &0])
39 add(simpleElement:〈〈root/FinEmp, eid, 1, 1, int〉〉, [{e, e} | {e, d} ← column:〈〈Emp, dept〉〉;

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
40 add(simpleElement:〈〈root/FinEmp, name, 1, 1, string〉〉,

[{e,n} | {e,n} ← column:〈〈Emp, name〉〉; {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

41 add(complexElement:〈〈root,FinDept, 0, unbounded〉〉, [{r , d} | {d , dn} ← column:〈〈Dept, dn〉〉;
dn ← ‘Finance’; r ← &0])

42 add(simpleElement:〈〈root/FinDept, did, 1, 1, int〉〉, [{d , d} | {d , dn} ← column:〈〈Dept, dn〉〉;
dn ← ‘Finance’])

43 add(simpleElement:〈〈root/FinDept, numEmps, 1, 1, int〉〉, [{d ,ne} | {d , dn} ← column:〈〈Dept, dn〉〉;
{d ,ne} ← column:〈〈Dept, numEmps〉〉; dn ← ‘Finance’])

44 add(key:〈〈FinEmpkey, 〈〈root, FinEmp〉〉, 〈〈root/FinEmp, eid〉〉〉〉)
45 add(key:〈〈FinDeptkey, 〈〈root, FinDept〉〉, 〈〈root/FinDept, did〉〉〉〉)

We create the transformations in the shrinking phase in a similar way to that de-

scribed above for the growth phase. We use the queries in the shrinking phase

of pSemp,SfinEmp
, i.e. Transformations 9 to 19 but with the queries rewritten over

objects in SfinEmp−xml to produce:

46 delete(primary key:〈〈Empeid pk, Emp, 〈〈Emp, eid〉〉〉〉)
47 delete(primary key:〈〈Deptdid pk, Emp, 〈〈Dept, did〉〉〉〉)
48 delete(foreign key:〈〈Dept fk, Emp, 〈〈Emp, dept〉〉, Dept, 〈〈Dept, did〉〉〉〉)
49 contract(column:〈〈Dept, numEmps〉〉,Range simpleElement:〈〈root/FinDept, numEmps〉〉 Any)
50 contract(column:〈〈Dept, dname〉〉,Range [{d , dn} | {d , d} ← simpleElement:〈〈root/FinDept, did〉〉;

dn ← generateGID(SfinEmp , d, [d], ‘dname’)] Any)
51 contract(column:〈〈Dept, did〉〉, Range simpleElement:〈〈root/FinDept, did〉〉 Any)
52 contract(table:〈〈Dept〉〉,Range complexElement:〈〈root, FinDept〉〉 Any)
53 contract(column:〈〈Emp, dept〉〉,

Range [{e, d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
{d , d} ← simpleElement:〈〈root/FinDept, did〉〉] Any)

54 contract(column:〈〈Emp, name〉〉, Range simpleElement:〈〈root/FinEmp, name〉〉 Any)
55 contract(column:〈〈Emp, eid〉〉,Range simpleElement:〈〈root/FinEmp, eid〉〉 Any)
56 contract(table:〈〈Emp〉〉, Range complexElement:〈〈root,FinEmp〉〉 Any)
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pSemp,SfinEmp
and pSfinEmp,SfinEmp−xml

are no longer used in the script and can thus

be removed.

In Step 5 the HR DBA realises that the FinDept branch of SfinEmp−xml is redundant
and so removes it from the schema. He also adds extra elements for date of birth
and marital status to the emp type complex type. The SO s-t tgds that describe this
mapping are shown below and the resultant XML Schema is shown in Figure 7.7.

{∃dob, isMarried.〈〈root/FinEmp〉〉(e, n) ∧ 〈〈root/FinDept〉〉(d, ne) →
〈〈root/FinEmp〉〉(e, n, dob(e), isMarried(e)),

∃did, dname.〈〈root/FinEmp〉〉(e, n, dob, im) →
〈〈root/FinEmp〉〉(e, n) ∧ 〈〈root/FinDept〉〉(did(e), dname(did(e)))}

The transformations in the growth phase are shown below:

57 add(simpleElement:〈〈root/FinEmp, dob, 0, 1, string〉〉,
[{e, dob} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
dob ← generateGID(SfinEmp−xml , e, [e], ‘dob’)])

58 add(simpleElement:〈〈root/FinEmp, isMarried, 0, 1, boolean〉〉,
[{e, im} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
im ← generateGID(SfinEmp−xml, e, [e], ‘isMarried’)])

The extents of simpleElement:〈〈root/FinEmp, dob〉〉 and

simpleElement:〈〈root/FinEmp, isMarried〉〉 are generated by the function calls

generateGID(SfinEmp−xml, e, [e], ‘dob’) and generateGID(SfinEmp−xml, e, [e], ‘isMarried’)

which create a unique identifying value based on the employee id for each date of

birth and marital status. These can be replaced with the actual data values when

the schema is materialised.

The shrinking phase is:

59 delete(key:〈〈FinDeptkey, 〈〈root, FinDept〉〉, 〈〈root/FinDept, did〉〉〉〉)
60 delete(simpleElement:〈〈root/FinDept, did〉〉,

[{d , d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’)])

61 delete(simpleElement:〈〈root/FinDept, numEmps〉〉,
[{d ,ne} | {e, d} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’);
ne ← generateGID(S ′finEmp−xml , d, [d], ‘numEmps’)])

62 delete(complexElement:〈〈root, FinDept〉〉,
[{r , d} | {e, d} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’); r ← &0])

In Step 6

mapSemp,S′finEmp−xml
= mapSemp,SfinEmp−xml

◦mapSfinEmp−xml,S
′
finEmp−xml
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<xsd:complexType name = "emp_type">
<xsd:all>
<xsd:element name = "eid" type = "xsd:int"/>
<xsd:element name = "name" type = "xsd:string" />
<xsd:element name = "dob" type = "xsd:string" minOccurs = "0"/>
<xsd:element name = "isMarried" type = "xsd:boolean" minOccurs = "0"/>

</xsd:all>
</xsd:complexType>
<xsd:element name = "root">
<xsd:complexType>
<xsd:all>

<xsd:element name = "FinEmp" type = "emp_type"
minOccurs = "0" maxOccurs = "unbounded" />

</xsd:all>
</xsd:complexType>
<xsd:key name = "FinEmpkey">
<xsd:selector xpath = "root/FinEmp" />
<xsd:field xpath = "eid" />

</xsd:key>
</xsd:element>

Figure 7.7: S ′finEmp−xml

<root>
<FinEmp eid = "1">
<name>Peter Smith</name>
<dob>20/05/1980</dob>
<isMarried>true</isMarried>

</FinEmp>
<FinEmp eid = "3">
<name>Paul Jones</name>
<dob>12/02/1972</dob>
<isMarried>true</isMarried>

</FinEmp>
<FinEmp eid = "5">
<name>Joe Brown</name>
<dob>03/06/1975</dob>
<isMarried>false</isMarried>

</FinEmp>
</root>

Figure 7.8: Inst5(S
′
finEmp−xml)
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we create a pathway directly from the original database to the updated HR schema

by composing the pathways created in Steps 4 and 5. We create the transformations

in the same way as we did in Step 4 by rewriting the queries in the growth phase

transformations in pSfinEmp−xml,S
′
finEmp−xml

over objects in Semp. For those objects in

S ′finEmp−xml that do not have a transformation in pSfinEmp−xml,S
′
finEmp−xml

we use the

transformation that added them in pSemp,SfinEmp−xml
. Consider

simpleElement:〈〈root/FinEmp, dob〉〉 added by Transformation 57 in

pSfinEmp−xml,S
′
finEmp−xml

. The SfinEmp−xml object in the transformation query,

simpleElement:〈〈root/FinEmp, eid〉〉, is added to SfinEmp−xml by Transformation 39

whose query is:

[{e, e} | {e, d} ← column:〈〈Emp, dept〉〉; {d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’]

We replace simpleElement:〈〈root/FinEmp, eid〉〉 in Transformation 57 with this query

to give us Transformation 67 below. We create a new Skolem function for the values

of the object based on the rewritten query.

63 add(complexElement:〈〈null, root, 1, 1〉〉, [{r} | r ← &0])
64 add(complexElement:〈〈root,FinEmp, 0, unbounded〉〉, [{r , e} | {e, d} ← column:〈〈Emp, dept〉〉;

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’; r ← &0])
65 add(simpleElement:〈〈root/FinEmp, eid, 1, 1, int〉〉, [{e, e} | {e, d} ← column:〈〈Emp, dept〉〉;

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
66 add(simpleElement:〈〈root/FinEmp, name, 1, 1, string〉〉, [{e,n} | {e,n} ← column:〈〈Emp, name〉〉;

{e, d} ← column:〈〈Emp, dept〉〉; {d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
67 add(simpleElement:〈〈root/FinEmp, dob, 0, 1, string〉〉, [{e, dob} | {e, d} ← column:〈〈Emp, dept〉〉;

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’;
dob ← generateGID(Semp , e, [e], ‘dob’)])

68 add(simpleElement:〈〈root/FinEmp, isMarried, 0, 1, boolean〉〉,
[{e, im} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’;
im ← generateGID(Semp, e, [e], ‘isMarried’)])

69 add(key:〈〈FinEmpkey, 〈〈root, FinEmp〉〉, 〈〈root/FinEmp, eid〉〉〉〉)

The shrinking phase is as follows:
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70 delete(primary key:〈〈Empeid pk, Emp, 〈〈Emp, eid〉〉〉〉)
71 delete(primary key:〈〈Deptdid pk, Dept, 〈〈Dept, did〉〉〉〉)
72 delete(foreign key:〈〈Dept fk, Emp, 〈〈Emp, dept〉〉, Dept, 〈〈Dept, did〉〉〉〉)
73 contract(column:〈〈Dept, numEmps〉〉,

Range [{d ,ne} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’);
ne ← generateGID(S ′finEmp−xml , d, [d], ‘numEmps’)] Any)

74 contract(column:〈〈Dept, dname〉〉,
Range [{d , dn} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’);
dn ← generateGID(S ′finEmp−xml , d, [d], ‘dname’)] Any)

75 contract(column:〈〈Dept, did〉〉,
Range [{d , d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’)] Any)

76 contract(table:〈〈Dept〉〉,
Range [{d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’)] Any)

77 contract(column:〈〈Emp, dept〉〉,
Range [{e, d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’)] Any)

78 contract(column:〈〈Emp, name〉〉,
Range simpleElement:〈〈root/FinEmp, name〉〉 Any)

79 contract(column:〈〈Emp, eid〉〉,Range simpleElement:〈〈root/FinEmp, eid〉〉 Any)
80 contract(table:〈〈Emp〉〉, Range [{e} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉] Any)

Transformations 63 to 80 constitute the output pathway of Stage B. Transforma-

tions 37 to 62 can now be removed.

7.2.3 Stage C

We now merge the additional objects added to the original HR schema, SfinEmp−xml,

by the HR department into the database, Semp.

In Step 7

〈Sd−xml,mapS′finEmp−xml,Sd−xml
〉 = Diff(S ′finEmp−xml, Invert(mapSemp,S′finEmp−xml

))

we use our implementation of the Diff operator to get the new information added to

S ′finEmp−xml, i.e. the portion of S ′finEmp−xml that is not fully derived from Semp. We

use the inverse of the pathway created above as the input pathway.

To decide which objects should appear in Sd−xml we look at the add phase of the
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input pathway, i.e. Transformations 70 to 80 . We see that the S ′finEmp−xml elements

not used in the queries in these transformations are

simpleElement:〈〈root/FinEmp, dob〉〉, simpleElement:〈〈root/FinEmp, isMarried〉〉 and

complexElement:〈〈root, FinEmp〉〉 so we need to add these to Sd−xml.

simpleElement:〈〈FinEmp, eid〉〉 is transitively referenced by

simpleElement:〈〈root/FinEmp, dob〉〉 via complexElement:〈〈root, FinEmp〉〉 and

key:〈〈FinEmpkey, 〈〈root, FinEmp〉〉, 〈〈root/FinEmp, eid〉〉〉〉 so we need to add it too. We

also see that there are no filters or joins on any of the queries involving objects

we need to add so all the instances of objects will be in Sd−xml. Here we can

take advantage of the schema transformation technique that means we do not need

a transformation for the objects in our target schema that are not changed. We

therefore only need a single transformation in mapS′finEmp−xml,Sd−xml
that removes

simpleElement:〈〈root/FinEmp, name〉〉.
81 delete(simpleElement:〈〈root/FinEmp, name〉〉,

[{e,n} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
n ← generateGID(Sd−xml , e, [e], ‘name’)])

In Step 8

〈Sdiff ,mapSd−xml,Sdiff
〉 = ModelGen(Sd−xml, SQL)

we translate Sd−xml into SQL using ModelGen, to create Sdiff . We need to use a

single CT, inclusion expand to split the root node from the complex element. A

screenshot of the translation is shown Figure 7.9 and the resultant schema is shown

in Figure 7.10.

The pathway is as follows:

82 add(table:〈〈root FinEmp〉〉, [{e} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉])
83 add(column:〈〈root FinEmp, eid, int, notnull〉〉, simpleElement:〈〈root/FinEmp, eid〉〉)
84 add(column:〈〈root FinEmp, dob, varchar, null〉〉, simpleElement:〈〈root/FinEmp, dob〉〉)
85 add(column:〈〈root FinEmp, isMarried, bool, null〉〉, simpleElement:〈〈root/FinEmp, isMarried〉〉)
86 add(column:〈〈root FinEmp, root〉〉, [{e, r} | {r , e} ← complexElement:〈〈root,FinEmp〉〉])
87 add(primary key:〈〈root FinEmpeid pk, root FinEmp, 〈〈root FinEmp, eid〉〉〉〉)
88 add(table:〈〈root〉〉, complexElement:〈〈null, root, 1, 1〉〉)
89 add(column:〈〈root, root, varchar, notnull〉〉, [{r , r} | {r} ← complexElement:〈〈null, root, 1, 1〉〉])
90 add(primary key:〈〈rootroot pk, root, 〈〈root, root〉〉〉〉)
91 add(foreign key:〈〈root fk, root FinEmp, 〈〈root FinEmp, root〉〉, root, 〈〈root, root〉〉〉〉)

The shrinking phase is:
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Figure 7.9: A screenshot of the translation from Sd−xml to Sdiff

92 delete(key:〈〈FinEmpkey, 〈〈root,FinEmp〉〉, 〈〈root/FinEmp, eid〉〉〉〉)
93 delete(simpleElement:〈〈root/FinEmp, isMarried〉〉, column:〈〈root FinEmp, isMarried〉〉)
94 delete(simpleElement:〈〈root/FinEmp, dob〉〉, column:〈〈root FinEmp, dob〉〉)
95 delete(simpleElement:〈〈root/FinEmp, eid〉〉, column:〈〈root Emp, eid〉〉)
96 delete(complexElement:〈〈root, FinEmp〉〉, [{r , e} | {e, r} ← column:〈〈root Emp, root〉〉])
97 add(complexElement:〈〈null, root, 1, 1〉〉, table:〈〈root〉〉)

In Step 9

mapS′finEmp−xml,Sdiff
= mapS′finEmp−xml,Sd−xml

◦ mapSd−xml,Sdiff

we compose the pathways created in Steps 7 and 8 to create a pathway directly from

S ′finEmp−xml to Sdiff . In the same way as we have done before we rewrite the queries

from the growth phase of pSd−xml,Sdiff
over objects in S ′finEmp−xml to give us:
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root FinEmp

eid dob? isMarried? root

1 20/05/1980 true &0
3 12/02/1972 true &0
5 03/06/1975 false &0

root

root

&0

root FinEmp.root → root.root

Figure 7.10: Inst5(Sdiff )

98 add(table:〈〈root FinEmp〉〉, [{e} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉])
99 add(column:〈〈root FinEmp, eid〉〉,

simpleElement:〈〈root/FinEmp, eid〉〉)
100 add(column:〈〈root FinEmp, dob〉〉,

simpleElement:〈〈root/FinEmp, dob〉〉)
101 add(column:〈〈root FinEmp, isMarried〉〉,

simpleElement:〈〈root/FinEmp, isMarried〉〉)
102 add(column:〈〈root FinEmp, root〉〉, [{e, r} | {r , e} ← complexElement:〈〈root,FinEmp〉〉])
103 add(primary key:〈〈root FinEmpeid pk, root FinEmp, 〈〈root FinEmp, eid〉〉〉〉)
104 add(table:〈〈root〉〉, [{r} | {r} ← complexElement:〈〈null, root, 1, 1〉〉])
105 add(column:〈〈root, root〉〉, [{r , r} | {r} ← complexElement:〈〈null, root, 1, 1〉〉])
106 add(primary key:〈〈rootroot pk, root, 〈〈root, root〉〉〉〉)

The shrinking phase is:

107 delete(key:〈〈FinEmpkey, 〈〈root,FinEmp〉〉, 〈〈root/FinEmp, eid〉〉〉〉)
108 delete(simpleElement:〈〈root/FinEmp, isMarried, 0, 1, boolean〉〉,

column:〈〈root FinEmp, isMarried〉〉)
109 delete(simpleElement:〈〈root/FinEmp, dob, 0, 1, string〉〉,

column:〈〈root FinEmp, dob〉〉)
110 delete(simpleElement:〈〈root/FinEmp, name, 1, 1, string〉〉, [{e,n} | {e, e} ← column:〈〈root Emp, eid〉〉;

n ← generateGID(Sdiff , e, [e], ‘name’)])
111 delete(simpleElement:〈〈root/FinEmp, eid, 1, 1, int〉〉, column:〈〈root Emp, eid〉〉)
112 delete(complexElement:〈〈root, FinEmp, 0, unbounded〉〉, [{r , e} | {e, e} ← column:〈〈root Emp, eid〉〉;

r ← &0])
113 delete(complexElement:〈〈null, root, 1, 1〉〉, [{r} | r ← &0])

pS′finEmp−xml,Sd−xml
and pSd−xml,Sdiff

are not used again in the script and so can be

removed.

In Step 10

mapSemp,Sdiff
= mapSemp,S′finEmp−xml

◦ mapS′finEmp−xml,Sdiff

we compose the results of Steps 6 and 9. The resultant pathway includes the trans-

formations in the growth phase of mapS′finEmp−xml,Sdiff
with the queries rewritten

over Semp objects to give us the following transformations:
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114 add(table:〈〈root FinEmp〉〉, [{e} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

115 add(column:〈〈root FinEmp, eid, int, notnull〉〉, [{e, e} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

116 add(column:〈〈root FinEmp, dob, varchar, null〉〉, [{e, dob} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’;
dob ← generateGID(Semp , e, [e], ‘dob’)])

117 add(column:〈〈root FinEmp, isMarried, bool, null〉〉, [{e, im} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’;
im ← generateGID(Semp , e, [e], ‘isMarried’)])

118 add(column:〈〈root FinEmp, root, varchar, notnull〉〉, [{e, r} | {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’; r ← &0])

119 add(primary key:〈〈root FinEmpeid pk, root FinEmp, 〈〈root FinEmp, eid〉〉〉〉)
120 add(table:〈〈root〉〉, distinct[{r} | r ← &0])
121 add(column:〈〈root, root, varchar, notnull〉〉, distinct[{r , r} | r ← &0])
122 add(primary key:〈〈rootroot pk, root, 〈〈root, root〉〉〉〉)
123 add(foreign key:〈〈root fk, root FinEmp, 〈〈root FinEmp, root〉〉, root, 〈〈root, root〉〉〉〉)

The transformations in the shrinking phase are those used to remove the Semp rewrit-

ten over Sdiff objects.

The transformations for non-constraint objects in the shrinking phase are all con-

tracts because the transformations in pSemp,S′finEmp−xml
are all contracts.

124 delete(primary key:〈〈Empeid pk, Emp, 〈〈Emp, eid〉〉〉〉)
125 delete(primary key:〈〈Deptdid pk, Dept, 〈〈Dept, did〉〉〉〉)
126 delete(foreign key:〈〈Dept fk, Emp, 〈〈Emp, dept〉〉, Dept, 〈〈Dept, did〉〉〉〉)
127 contract(column:〈〈Dept, numEmps〉〉,

Range [{d ,ne} | {e, e} ← column:〈〈root FinEmp, eid〉〉;
d ← generateGID(Sdiff , e, [e], ‘did’);ne ← generateGID(Sdiff , d, [d], ‘numEmps’)] Any)

128 contract(column:〈〈Dept, dname〉〉,
Range [{d , dn} | {e, e} ← column:〈〈root FinEmp, eid〉〉;
d ← generateGID(Sdiff , e, [e], ‘did’); dn ← generateGID(Sdiff , d, [d], ‘dname’)] Any)

129 contract(column:〈〈Dept, did〉〉,
Range [{d , d} | {e, e} ← column:〈〈root FinEmp, eid〉〉;
d ← generateGID(Sdiff , e, [e], ‘did’)] Any)

130 contract(table:〈〈Dept〉〉,
Range [{d} | {e, e} ← column:〈〈root FinEmp, eid〉〉;
d ← generateGID(Sdiff , e, [e], ‘did’)] Any)

131 contract(column:〈〈Emp, dept〉〉,
Range [{e, d} | {e, e} ← column:〈〈root FinEmp, eid〉〉;
d ← generateGID(Sdiff , e, [e], ‘did’)] Any)

132 contract(column:〈〈Emp, name〉〉, Range column:〈〈root FinEmp, name〉〉 Any)
133 contract(column:〈〈Emp, eid〉〉,Range column:〈〈root FinEmp, eid〉〉 Any)
134 contract(table:〈〈Emp〉〉, Range table:〈〈root FinEmp〉〉 Any)
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Emp

eid name dept

1 Peter Smith 100
3 Paul Jones 100
5 Joe Brown 100
21 Susan Brown 101

Dept

did dname numEmps?

100 Finance 23
101 HR 15
102 IT

root FinEmp

eid dob? isMarried? root

1 20/05/1980 true &0
3 12/02/1972 true &0
5 03/06/1975 false &0

root

root

&0

Emp.dept → Dept.did root FinEmp.root → root.root

Figure 7.11: Inst5(Smerge)

We cannot remove either of the input pathways after this step because they are both

used in Step 12 later on in the script.

In Step 11

〈Sm,mapSmerge,Semp ,mapSmerge,Sdiff
〉 = Merge(Semp, Sdiff ,mapSemp,Sdiff

)

we merge Semp with Sdiff to create a schema that includes all the objects from Semp

and those added by the HR department in Step 5.

We are unable to optimise the schema obtained at the top of the above pathway

because there are no objects in Sdiff whose instances are subsets of something in

Semp and that are not referenced by some other object in Sdiff . Our merged schema

is thus the one shown in Figure 7.11 and includes all the objects and instances from

both Semp and Sdiff . As we can see, the only repeated values are the employee ids

which are referenced by the key constraint on table:〈〈Emp〉〉 and table:〈〈FinEmp〉〉 and

so cannot be removed.

We do not create any new transformations in this step. pSmerge,Sdiff
is made up

of Transformations 124 to 134 and pSmerge,Semp is the inverse of Transformations 114

to 123 .

Step 12

mapSmerge,S′finEmp
= (mapSmerge,Semp ◦mapSemp,S′finEmp−xml

)⊕
(mapSmerge,Sdiff

◦ Invert(mapS′finEmp−xml,Sdiff
))

uses the Confluence operator to combine the two pathways that exist between Smerge

and S ′finEmp−xml, one via the result of Steps 11 and 6 and the other via the results
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of Steps 11 and 9.

We need to perform two Compose operations before we can do the Confluence. In

mapSmerge,Semp ◦mapSemp,S′finEmp−xml
there is no growth phase in pSmerge,Semp so the

resultant transformations are simply copies of those used to add S ′finEmp−xml objects

in pSemp,S′finEmp−xml
, i.e. Transformations 63 to 69 . The shrinking phase is made

up of the shrinking phase transformations of pSmerge,Semp rewritten over objects in

S ′finEmp−xml.

The resultant pathway uses a generateGID function in the transformations to add

simpleElement:〈〈root/FinEmp, dob〉〉 and simpleElement:〈〈root/FinEmp, isMarried〉〉.

In mapSmerge,Sdiff
◦mapSdiff ,S′finEmp−xml

, again there is no growth phase in pSmerge,Sdiff
.

We thus take the transformations for the composition from the growth phase of

pSdiff ,S′finEmp−xml
.

In this case the transformation queries for the transformations that add

simpleElement:〈〈root/FinEmp, dob〉〉 and simpleElement:〈〈root/FinEmp, isMarried〉〉 do

not have generateGID functions but there is one in the query for the transforma-

tion that adds simpleElement:〈〈root/FinEmp, name〉〉.

When we execute Confluence we replace the generateGIDs with the generators of

the equivalent transformation in the other pathway. This gives a pathway between

Smerge to S ′finEmp−xml where none of the generators are generateGID functions, i.e. the

whole of S ′finEmp−xml can be derived from Smerge using mapSmerge,S′finEmp−xml

Due to its length the result pathway has been put into the appendix in Section A.1.

This forms the output pathway for Stage C. We can now remove the pathways

created in Steps 6,9 and 11 as these are no longer required.

7.2.4 Stage D

To comply with a new company policy of not storing the dates of birth of employees,
a new version of the schema, SnewEmp, with the date of birth removed is created.
The DBA takes this opportunity to add the isMarried column to the Emp table and
remove the redundant table:〈〈root〉〉. The redesign is Step 13 in the script. The SO
s-t tgds used in the mapping are shown below and the new schema is shown in
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Emp

eid name dept isMarried?

1 Peter Smith 100 true
3 Paul Jones 100 true
5 Joe Brown 100 false
21 Susan Brown 101

Dept

did dname numEmps?

100 Finance 23
101 HR 15
102 IT

Emp.dept → Dept.did

Figure 7.12: Inst5(SnewEmp)

Figure 7.12.

〈〈Emp〉〉(e, n, d) ∧ 〈〈Dept〉〉(d, dn, ne) ∧ 〈〈root FinEmp〉〉(e, dob, im, r) ∧ 〈〈root〉〉(r) →
〈〈Emp〉〉(e, n, d, im) ∧ 〈〈Dept〉〉(d, dn, ne),

∃dob.〈〈Emp〉〉(e, n, d, im) ∧ 〈〈Dept〉〉(d, dn, ne) →
〈〈Emp〉〉(e, n, d) ∧ 〈〈Dept〉〉(d, dn, ne) ∧ 〈〈root FinEmp〉〉(e, dob(e), im, r) ∧ 〈〈root〉〉(r) ∧ r = &0

The only transformation we need in the growth phase of this pathway is the one to

add column:〈〈Emp, isMarried〉〉.

135 add(column:〈〈Emp, isMarried, bool, null〉〉, column:〈〈root FinEmp, isMarried〉〉)

The shrinking phase removes table:〈〈root FinEmp〉〉 and table:〈〈root〉〉.
136 delete(foreign key:〈〈root fk, root FinEmp, 〈〈root FinEmp, root〉〉, root, 〈〈root, root〉〉〉〉)
137 delete(primary key:〈〈root FinEmpeid pk, root FinEmp, 〈〈root FinEmp, eid〉〉〉〉)
138 delete(column:〈〈root FinEmp, root〉〉, [{e, r} | {e, e} ← column:〈〈Emp, eid〉〉; r ← &0])
139 delete(column:〈〈root FinEmp, isMarried〉〉, column:〈〈Emp, isMarried〉〉)
140 delete(column:〈〈root FinEmp, dob〉〉, [{e, dob} | {e, e} ← column:〈〈Emp, eid〉〉;

dob ← generateGID(S ′newFinEmp−xml , e, [e], ‘dob’)])
141 delete(column:〈〈root FinEmp, eid〉〉, column:〈〈Emp, eid〉〉)
142 delete(table:〈〈root FinEmp〉〉, table:〈〈Emp〉〉)
143 delete(primary key:〈〈rootroot pk, root, 〈〈root, eid〉〉〉〉)
144 delete(column:〈〈root, root〉〉, [{r , r} | r ← &0])
145 delete(table:〈〈root〉〉, [{r} | r ← &0])

In Step 14

mapS′finEmp−xml,SnewEmp
= Invert(mapSmerge,S′finEmp−xml

) ◦ mapSmerge,SnewEmp

we compose the results of Steps 12 and 13. The only transformation in the growth

phase of pSmerge,SnewEmp
is Transformation 135 . We rewrite the query over S ′finEmp−xml

objects. The other transformations are from Invert(pSmerge,S′finEmp−xml
), i.e. the shrink

phase of the confluence mapping.

The transformation primitives for all the non-constraint objects in
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Invert(pSmerge,S′finEmp−xml
) are all extends so we use this primitive in our compose

pathway. The growth phase of pS′finEmp−xml,SnewEmp
is thus:

146 extend(table:〈〈Emp〉〉, Range [{e} | {e, e} ← simpleElement:〈〈FinEmp, eid〉〉] Any)
147 extend(column:〈〈Emp, eid, int, notnull〉〉,

Range simpleElement:〈〈FinEmp, eid〉〉 Any)
148 extend(column:〈〈Emp, name, varchar, notnull〉〉,

Range simpleElement:〈〈FinEmp, name〉〉 Any)
149 extend(column:〈〈Emp, isMarried, bool, null〉〉,

Range simpleElement:〈〈FinEmp, isMarried〉〉 Any)
150 extend(column:〈〈Emp, dept, int, notnull〉〉,

Range [{e, d} | {e, e} ← simpleElement:〈〈FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’)] Any)

151 extend(table:〈〈Dept〉〉, Range [{d} | {e, e} ← simpleElement:〈〈FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’)] Any)

152 extend(column:〈〈Dept, did, int, notnull〉〉,
Range [{d , d} | {e, e} ← simpleElement:〈〈FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’)] Any)

153 extend(column:〈〈Dept, dname, varchar, notnull〉〉,
Range [{d , dn} | {e, e} ← simpleElement:〈〈FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘d’);
dn ← generateGID(S ′finEmp−xml , d, [d], ‘dname’)] Any)

154 extend(column:〈〈Dept, numEmps, int, null〉〉,
Range [{d ,ne} | {e, e} ← simpleElement:〈〈FinEmp, eid〉〉;
d ← generateGID(S ′finEmp−xml , e, [e], ‘did’);
ne ← generateGID(S ′finEmp−xml , d, [d], ‘numEmps’)] Any)

155 add(primary key:〈〈Emp pk, Emp, 〈〈Emp, eid〉〉〉〉)
156 add(primary key:〈〈Dept pk,Dept, 〈〈Dept, did〉〉〉〉)
157 add(foreign key:〈〈Dept fk,Emp, 〈〈Emp, dept〉〉, Dept, 〈〈Dept, did〉〉〉〉)

The shrinking phase is made up of copies of the transformations in the shrinking

phase of Invert(pSmerge,S′finEmp−xml
) rewritten over objects in SnewEmp. There are a

number of objects in Smerge that are not in SnewEmp so we do not need all the

transformations from the shrinking phase of Invert(pSmerge,S′finEmp−xml
). The trans-

formations we need are:



7.2. Script Execution in AutoMed 215

158 delete(key:〈〈FinEmpkey, 〈〈root,FinEmp〉〉, 〈〈root/FinEmp, eid〉〉〉〉)
159 delete(simpleElement:〈〈root/FinEmp, isMarried〉〉,

[{e, im} | {e, d} ← column:〈〈Emp, dept〉〉; {e, im} ← column:〈〈root FinEmp, isMarried〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

160 delete(simpleElement:〈〈root/FinEmp, dob〉〉, [{e, dob} | {e, d} ← column:〈〈Emp, dept〉〉;
{e, dob} ← column:〈〈root FinEmp, dob〉〉; {d , dn} ← column:〈〈Dept, dname〉〉;
dn ← ‘Finance’])

161 delete(simpleElement:〈〈root/FinEmp, name〉〉, [{e,n} | {e,n} ← column:〈〈Emp, name〉〉;
{e, d} ← column:〈〈Emp, dept〉〉; {d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

162 delete(complexElement:〈〈root, FinEmp〉〉, [{r , e} | {e, d} ← column:〈〈Emp, dept〉〉; r ← &0

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
163 delete(simpleElement:〈〈root/FinEmp, eid〉〉, [{e, e} | {e, d} ← column:〈〈Emp, dept〉〉;

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
164 delete(complexElement:〈〈null, root, 1, 1〉〉, [{r} | r ← &0])

In Step 15

〈S ′newFinEmp−xml,mapS′finEmp−xml,S
′
newFinEmp−xml

〉 =

Extract(S ′finEmp−xml,mapS′finEmp−xml,SnewEmp
)

we use Extract to create a new version of S ′finEmp−xml that only has those objects

that are in SnewEmp and thus correctly reflects the structure of the new database.

Looking at the growth phase of pS′finEmp−xml,SnewEmp
we see that the only object in

S ′finEmp−xml not used in a query is simpleElement:〈〈root/FinEmp, dob〉〉. It is also not

referenced by any objects we do need to include in the extract schema so we can

leave it out of S ′newFinEmp−xml. None of the queries in the pathway above that involve

the objects we are to add to the result schema have filters in them so we use all the

instances of the objects we need. This means we do not need an add phase in the

result pathway. We create the extract schema by simply removing the object we do

not want, in this case simpleElement:〈〈root/FinEmp, dob〉〉. The resultant schema is

shown in Figure 7.13 and the pathway is:

165 delete(simpleElement:〈〈root/FinEmp, dob〉〉, [{e, dob} | {e, e} ← simpleElement:〈〈FinEmp, eid〉〉;
dob ← generateGID(S ′newfinEmp−xml , e, [e], ‘dob’)])

Finally, in Step 16

mapSnewEmp,S′newFinEmp−xml
=

Invert(mapS′finEmp−xml,SnewEmp
) ◦ mapS′finEmp−xml,S

′
newFinEmp−xml

we create a pathway between the new SQL database and the updated XML schema

by composing the pathways created in steps 14 and 15. The final pathway in the

script is:
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<xsd:complexType name = "emp_type">
<xsd:all>
<xsd:element name = "name" type = "xsd:string" />
<xsd:element name = "isMarried" type = "xsd:boolean" />

</xsd:all>
<xsd:attribute name = "eid" type = "xsd:int" use = "required"/>

</xsd:complexType>
<xsd:element name = "root">
<xsd:complexType>
<xsd:all>

<xsd:element name = "FinEmp" type = "emp_type"
minOccurs = "0" maxOccurs = "unbounded" />

</xsd:all>
</xsd:complexType>
<xsd:key name = "FinEmpKey">
<xsd:selector xpath = "root/FinEmp" />
<xsd:field xpath = "@eid" />

</xsd:key>
</xsd:element>

Figure 7.13: S ′newFinEmp−xml

166 add(complexElement:〈〈null, root, 1, 1〉〉, [{r} | r ← &0])
167 add(complexElement:〈〈root,FinEmp, 0, unbounded〉〉, [{r , e} | {e, d} ← column:〈〈Emp, dept〉〉;

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’; r ← &0])
168 add(simpleElement:〈〈root/FinEmp, eid, 1, 1, int〉〉, [{e, e} | {e, d} ← column:〈〈Emp, dept〉〉;

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
169 add(simpleElement:〈〈root/FinEmp, name, 1, 1, string〉〉, [{e,n} | {e,n} ← column:〈〈Emp, name〉〉;

{e, d} ← column:〈〈Emp, dept〉〉; {d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
170 add(simpleElement:〈〈root/FinEmp, isMarried, 0, 1, boolean〉〉,

[{e, im} | {e, im} ← column:〈〈Emp, isMarried〉〉; {e, d} ← column:〈〈Emp, dept〉〉;
{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])

171 add(key:〈〈FinEmpkey, 〈〈root, FinEmp〉〉, 〈〈root/FinEmp, eid〉〉〉〉)

The shrinking phase is as follows:

172 delete(primary key:〈〈Empeid pk, Emp, 〈〈Emp, eid〉〉〉〉)
173 delete(primary key:〈〈Deptdid pk, Dept, 〈〈Dept, did〉〉〉〉)
174 delete(foreign key:〈〈Dept fk, Emp, 〈〈Emp, dept〉〉, Dept, 〈〈Dept, did〉〉〉〉)
175 contract(column:〈〈Dept, numEmps〉〉,

Range [{d ,ne} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′newFinEmp−xml , e, [e], ‘did’);
ne ← generateGID(S ′newFinEmp−xml , d, [d], ‘numEmps’)] Any)

176 contract(column:〈〈Dept, dname〉〉,
Range [{d , dn} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′newFinEmp−xml , e, [e], ‘did’);
dn ← generateGID(S ′newFinEmp−xml , d, [d], ‘dname’)] Any)
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177 contract(column:〈〈Dept, did〉〉,
Range [{d , d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′newFinEmp−xml , e, [e], ‘did’)] Any)

178 contract(table:〈〈Dept〉〉,
Range [{d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′newFinEmp−xml , e, [e], ‘did’)] Any)

179 contract(column:〈〈Emp, dept〉〉,
Range [{e, d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′newFinEmp−xml , e, [e], ‘did’)] Any)

180 contract(column:〈〈Emp, isMarried〉〉,
Range simpleElement:〈〈root/FinEmp, isMarried〉〉 Any)

181 contract(column:〈〈Emp, name〉〉,
Range simpleElement:〈〈root/FinEmp, name〉〉 Any)

182 contract(column:〈〈Emp, eid〉〉,Range simpleElement:〈〈root/FinEmp, eid〉〉 Any)
183 contract(table:〈〈Emp〉〉, Range [{e} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉] Any)

We can now remove the transformations created in Steps 14 and 15 to leave us

with a final pathway made up simply of Transformations 166 to 183 describing the

mapping we need between the new SQL database and the new XML schema.



Chapter 8

Conclusion

MM is a way of raising the level of abstraction in data management applications.

The key idea behind MM is the development a set of operators that perform common

data management tasks in a DDL independent way which can then be used together

in a script to solve a wide range of data management problems in the field. In this

thesis we have presented what we believe to be the most complete implementation

of a MMS that supports instance-based mappings and operators.

The corner stone of any MMS is the framework in which the operators are imple-

mented. It must be flexible enough to process schemas and mappings from a wide

range of DDLs and yet enable efficient implementations of a diverse set of opera-

tors. In particular it must provide a uniform way of processing the constructs of

all the DDLs supported by the system, using a mapping language that is closed

under the operations we wish to implement. There must also be a way of generating

transformations from the mappings and extracting the instances of the resultant

schemas. Finally the framework must allow the operators to be combined together

into a script.

The CDM, mapping language and query language of the AutoMed system on

which we have based our framework, all have features that are advantageous in a

MMS.

• Our CDM is flexible enough to express schemas from a wide range of DDLs. In

particular it has a DDL independent way of expressing constraints, something

that other MMS prototypes lack and has been identified as a failing in current

systems [BM07].

218
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• Our mapping language allows us to write executable, bidirectional mappings

between schemas expressed in any of the DDLs supported by AutoMed. The

schema transformation technique underlying our mapping language allows us

to specify the extents of our target objects unambiguously and makes analysing

the mappings during the operator implementation relatively simple. Another

advantage of the schema transformation technique is that in the operator im-

plementations we create the mapping from source to target as we create the

target schema. Other mapping approaches require two separate steps, one to

create the target schema and a second to create the mapping. This is of benefit

in implementing the Merge, Diff and Extract operators which require mappings

and a schema as output.

• We use a DDL-independent functional query language that supports second

order functions which is necessary for our mapping language to be closed under

composition [FKPT05].

8.1 Summary of Thesis Achievements

In this thesis we have described what we believe to be the first full implementation

of a MMS for schema based DDLs that supports the instance-based semantics for all

the MM operators [BHP00, BM07], excluding Match. Match has been independently

implemented in the AutoMed framework [RM05, MRMM05].

We have shown how we can use the HDM to express schemas from a wide range

of DDLs. In particular we have described how two new DDLs, XML Schema and

RDFS, can be expressed in terms of the HDM. We have also implemented a function

that translates a schema expressed in a high-level DDL into the HDM, returning a

BAV transformation pathway that describes how we translate the high-level schema

objects into the HDM, as output.

We have described how BAV pathways equivalent to SO tgds can be created that

allow us to execute these declarative mappings and thereby transform schemas based

on these mappings. We have made use of the generateGID function in AutoMed

and the higher-order capability of IQL to create a flexible and powerful mapping

language.

We have presented a data level implementation of ModelGen based on the composi-

tion of CTs, that can be applied to any DDL supported by AutoMed. These CTs
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are chosen automatically using a novel approach based on matching the structure

of the HDM schema to the objects created by translating objects from the target

schema into the HDM. The choice of CT at each step in the process is limited by

placing preconditions on the execution of each CT. As part of this work we intro-

duced an extension to the HDM that allows us to translate primitive data type

information between different DDLs using a common type hierarchy, an approach

that has not been used before. The type hierarchy allows us to perform some type

checking and identify where inter-DDL mappings may cause type casting errors.

We have described implementations of the instance-based semantics of all the MM

operators, excluding Match, within our framework. These implementations are

DDL-independent and make use of the detailed information contained in the trans-

formation pathways we use as our mappings. There is an implementation of Match

[RM05, MRMM05] in AutoMed that has been done independently of the work in

this thesis as part of another PhD. At the moment the technique only works for

the relational model and the output of Match is used to create a merged schema

rather than providing a pathway between the input schemas as required by Match in

MM. When the current work on Match is complete we aim to expand the matching

technique developed to work on HDM schemas. This should allow us to apply it

to any DDL supported by AutoMed we also aim to extend Match to output a

pathway between the input schemas as well as between the input schemas and the

merged schema and thereby integrate it with the system described here.

To demonstrate our system we have extended AutoMed by adding a MM API that

allows us to write MM programs that can be used to execute MM scripts.

In summary, we have described what we believe to be the first implementation of a

MMS that supports:

• a wide range of DDLs,

• instance based mappings,

• all the operators proposed by Bernstein excluding Match,

• a programming interface that allows the writing of MM programs.
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8.2 Future Work

The vision for MM described in [BHP00] is that it should be applicable across a

number of application domains. As well as the data management domain that we

have discussed in this thesis, other areas that could benefit from the MM approach

include workflow systems, message translation in middleware, interface specifica-

tion systems and knowledge bases, among others. In common with the prototype

described here, other existing prototypes also focus on the data management do-

main [BM07].

The fine-grained transformation based approach to implementing the operators de-

scribed in this thesis could usefully be applied in new research investigating MMS

that work across all these domains. The ability to ‘divide and conquer’ the problems

by transforming a single, simple schema object at a time reduces the complexity of

the individual steps making an overall solution easier to find. The major challenges

are representing the various models in our CDM and ‘querying’ their extents with

IQL. We have recently started to investigate how we can extend our MMS to process

knowledge models, i.e. schema based DDLs from whose schemas new facts can be

inferred using a reasoner. Specifically we have been looking at the ontology language

OWL-DL [Mik04]. The focus of our work in this area has been how to simulate the

reasoning ability of OWL-DL in SQL using triggers. We were successful in this, but

how the work could be extended to allow us to translate an OWL-DL into the other

DDLs in the AutoMed MMS and then infer new facts from the translated schema

is the subject of ongoing work.

Looking further into the future, if we wish to add support for non schema based

models like workflow systems we need to add constructs to the HDM to represent

control flow and other concepts not found in a data model. Even more challenging

is how to query the extent of a workflow and also to decide exactly what this

extent should be. This would in turn impact the implementation of ModelGen.

New CTs would need to be defined to transform the new constructs as well as new

preconditions.

Another potential area for future research is on incremental updates to the data in

the schemas taking part in a MM script. Our system generates executable mappings

that are used for query processing. Any updates to the data sources will be auto-

matically reflected in any virtual schemas generated by the script, however, schemas

that have been materialised will need to be updated by hand or recreated. For ex-

ample, in the case study in Chapter 7 we materialise an XML view of the original
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SQL database. Any changes to the database will necessitate updates being made

on the materialised XML view. At the moment the only way we can do this in our

system is to re-execute the script to recreate the view if data is added to the source

database. This is not a very efficient approach. This particular problem is one of

those addressed in ADO.NET from Microsoft [MAB08]. Queries and updates are

translated between an entity data model [BCMN06] and a relational database. The

relationship between the application data and the persistent storage is specified us-

ing a declarative mapping, which is compiled into bidirectional views that drive the

data transformation engine. View maintenance algorithms that incrementally up-

date the entity data model are used for update translation. This does not represent

a full solution to the problem in a MMS as only two DDLs are involved, however,

the approach of generating executable updates based on the existing mappings in the

script is one we could adopt in our system. Specifically we would need to develop

algorithms that are executed when data updates are made to the source schemas in

a MM script. These algorithms would identify what the updates are and execute

methods in the wrapper of the DDL of any materialised target schemas to generate

the required code to materialise the updates.

In a current project we are investigating how best to add provenance meta data

to data sources and transformations in AutoMed. This information may make

a useful addition to a MMS script. In our initial work we have added meta data

describing the owner of the data source and the user responsible for creating a

transformation, as well as functions that allow us to retrieve this information from a

given transformation pathway. Adding this functionality to our MMS would involve

adding the meta data to any source schemas in a script and possibly also providing

some way of recording who created the script.

On an implementation level we could make it easier to specify our mappings. As we

described in Section 6.7, we create the initial mappings in our system by translating

a string describing a set of SO tgds into a BAV pathway. This provides an accurate

way of specifying the mapping but the string can be very long if the target schema

is big. In some cases it would be much more convenient to be able to specify the

mappings graphically. This is the approach adopted in GeromeSUITE and the IBM

data exchange system Clio [MHH00]. This would be particularly useful if objects in

the source schema are mapped directly to objects in the target schema. We hope to

extend the AutoMed GUI to allow a user to graphically specify mappings between

a source and target schema in the future.



Appendix A

Pathways

A.1 Confluence Pathway from Chapter 7

The pathway generated by step 12

mapSmerge,S′finEmp
= (mapSmerge,Semp ◦mapSemp,S′finEmp−xml

)⊕
(mapSmerge,Sdiff

◦mapSdiff ,S′finEmp−xml
)

in the script in Chapter 7 is

1 add(complexElement:〈〈null, root, 1, 1〉〉, [{r} | r ← &0])
2 add(complexElement:〈〈root,FinEmp, 0, unbounded〉〉, [{r , e} | {e, d} ← column:〈〈Emp, dept〉〉;

r ← &0; {d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
3 add(simpleElement:〈〈root/FinEmp, eid, 1, 1, int〉〉, [{e, e} | {e, d} ← column:〈〈Emp, dept〉〉;

{d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
4 add(simpleElement:〈〈root/FinEmp, name, 1, 1, string〉〉, [{e,n} | {e,n} ← column:〈〈Emp, name〉〉;

{e, d} ← column:〈〈Emp, dept〉〉; {d , dn} ← column:〈〈Dept, dname〉〉; dn ← ‘Finance’])
5 add(simpleElement:〈〈root/FinEmp, dob, 0, 1, string〉〉, [{e, dob} | {e, d} ← column:〈〈Emp, dept〉〉;

{e, dob} ← column:〈〈root FinEmp, dob〉〉; {d , dn} ← column:〈〈Dept, dname〉〉;
dn ← ‘Finance’])

6 add(simpleElement:〈〈root/FinEmp, isMarried, 0, 1, string〉〉,
[{e, im} | {e, d} ← column:〈〈Emp, dept〉〉;
{e, im} ← column:〈〈root FinEmp, isMarried〉〉; {d , dn} ← column:〈〈Dept, dname〉〉;
dn ← ‘Finance’])

7 add(key:〈〈FinEmpkey, 〈〈root, FinEmp〉〉, 〈〈root/FinEmp, eid〉〉〉〉)

The shrinking phase is:

223
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8 delete(foreign key:〈〈root fk, root FinEmp, 〈〈root FinEmp, root〉〉, root, 〈〈root, root〉〉〉〉)
9 delete(foreign key:〈〈Dept fk, Emp, 〈〈Emp, dept〉〉, Dept, 〈〈Dept, did〉〉〉〉)
10 delete(primary key:〈〈Empeid pk, Emp, 〈〈Emp, eid〉〉〉〉)
11 delete(primary key:〈〈Deptdid pk, Dept, 〈〈Dept, did〉〉〉〉)
12 contract(column:〈〈Dept, numEmps〉〉,

Range [{d ,ne} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp , e, [e], ‘did’);
ne ← generateGID(S ′finEmp , d, [d], ‘numEmps’)] Any)

13 contract(column:〈〈Dept, dname〉〉,
Range [{d , dn} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp , e, [e], ‘did’); dn ← generateGID(S ′finEmp , d, [d], ‘dname’)] Any)

14 contract(column:〈〈Dept, did〉〉,
Range [{d , d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp , e, [e], ‘did’)] Any)

15 contract(table:〈〈Dept〉〉,
Range [{d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp , e, [e], ‘did’)] Any)

16 delete(primary key:〈〈rootroot pk, root, 〈〈root, root〉〉〉〉)
17 contract(column:〈〈root, root〉〉, [{r , r} | {r} ← complexElement:〈〈null, root, 1, 1〉〉])
18 contract(table:〈〈root〉〉, complexElement:〈〈null, root, 1, 1〉〉)
19 delete(primary key:〈〈root FinEmpeid pk, root, 〈〈root FinEmp, eid〉〉〉〉)
20 contract(column:〈〈root FinEmp, root〉〉,

Range [{e, r} | {r , e} ← complexElement:〈〈root, FinEmp〉〉] Any)
21 contract(column:〈〈root FinEmp, isMarried〉〉,

Range simpleElement:〈〈root/FinEmp, isMarried〉〉 Any)
22 contract(column:〈〈root FinEmp, dob〉〉,

Range simpleElement:〈〈root/FinEmp, dob〉〉 Any)
23 contract(column:〈〈root FinEmp, eid〉〉,

Range simpleElement:〈〈root/FinEmp, eid〉〉 Any)
24 contract(table:〈〈root FinEmp〉〉,

Range [{e} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉] Any)
25 contract(column:〈〈Emp, dept〉〉,

Range [{e, d} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉;
d ← generateGID(S ′finEmp , e, [e], ‘did’)] Any)

26 contract(column:〈〈Emp, name〉〉, Range simpleElement:〈〈root/FinEmp, name〉〉 Any)
27 contract(column:〈〈Emp, eid〉〉,Range simpleElement:〈〈root/FinEmp, eid〉〉 Any)
28 contract(table:〈〈Emp〉〉, Range [{e} | {e, e} ← simpleElement:〈〈root/FinEmp, eid〉〉] Any)
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