
Imperial College London
Imperial College of Science, Technology and Medicine

Department of Computing

Interactive Database Integration Tool

by

Tudor-Alexandru Dobrila

Supervisor: Dr. Peter McBrien
Second marker: Prof. Sophia Drossopoulou

Submitted in part fulfilment of the requirements for the degree of
MSc. in Computing Science / Software Engineering of Imperial College London

September 2011

Abstract

This thesis presents the Interactive Database Integration Tool, a software applica-
tion developed for database integration, which, together with view integration, form
schema integration. The goal of the tool is to guide the user through the integration
process of several SQL schemas. In the end, only one virtual schema is produced
that can be queried. The tool is built on top of the AutoMed framework for data
integration.

Integration is performed by transforming the structure of the schemas, until they can
be merged into a single schema. In the research literature, transformation patterns
have been proposed, that are encountered frequently when integrating schemas.
The tool aims to implement some of the most common patterns and simplify the
integration process as much as possible.

This paper presents related work that has been done in this area, the features of the
application and a description of its architecture, something that is of interest when
extending the implementation.

Consideration has also been given to discovering new transformation patterns from
the actions that the user performs over schemas. A new method for pattern discovery
in the context of data integration is presented in this thesis.

Acknowledgements

I would like thank the following people:

My supervisor, Dr. Peter McBrien, for his guidance and patience, for the numerous
meetings and good ideas that have lead to the successful completion of the project.

Prof. Sophia Drossopoulou, for agreeing to be the second marker of my project and
for teaching me the Advanced Issues in Object Oriented Programming course.

My parents, for the tremendous moral and financial support they have given me
throughout the whole period of my studies.

My girlfriend, Cecilia, and my friends, for being by my side throughout this difficult
year and encouraging me, even when I was feeling down.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Contributions . 3
1.4 Report Structure . 4

2 Background 5
2.1 Model Management . 5
2.2 Data Integration . 9

2.2.1 Data Integration in Theory . 9
2.2.2 Data Integration in Practice . 13

2.3 The SQL Metamodel . 13
2.4 Intermediate Query Language (IQL) . 15
2.5 Data Integration Systems . 18

2.5.1 Clio . 18
2.5.2 Tukwila . 19
2.5.3 AutoMed . 20
2.5.4 DB-Main . 21

3 The Interactive Database Integration Tool 22
3.1 The Main Window . 23
3.2 SQL Schema Diagrams . 23
3.3 Integration Projects . 24

3.3.1 Pre-integration . 24
3.3.2 Schema Transformation . 25

3.4 Adding a Schema to the Repository . 26
3.5 Querying a Schema Using IQL . 27
3.6 Summary . 27

4 Architecture of the Application 28
4.1 Overview of the Architecture . 28
4.2 The Transformation Patterns Framework . 29
4.3 The Model of the Application . 30
4.4 The View of the Application . 34
4.5 Adding a New Transformation Pattern . 37
4.6 Unit Testing . 40
4.7 Implementation Statistics . 41
4.8 Summary . 41

5 Transformation Patterns 42
5.1 Schema Conforming . 42

5.1.1 Table Normalisation Equivalence . 44
5.1.2 Mandatory Column and Total Generalisation Equivalence 47
5.1.3 Optional Column/Child Table Equivalence . 49
5.1.4 Column Generalisation Equivalence . 50
5.1.5 Column/Table Equivalence . 51
5.1.6 Introduction of Total Generalisation Equivalence 52

5.2 Schema Merging . 54
5.2.1 Addition of Subset . 54
5.2.2 Addition of Union . 55
5.2.3 Addition of Intersection . 55
5.2.4 Addition of Foreign Key . 56
5.2.5 Addition of Many-To-Many Table . 58

5.3 Schema Improvement . 59

iii

5.3.1 Redundant Column Removal . 59
5.3.2 Optional Column To Child Table . 60
5.3.3 Column Generalisation . 60
5.3.4 Redundant Foreign Key Removal . 60

5.4 Summary . 62

6 Pattern Discovery in BAV Transactions 63
6.1 Overview of the Method . 64
6.2 Graph Isomorphism . 68

6.2.1 The Schmidt-Druffel Algorithm . 68
6.2.2 The Vento-Foggia Algorithm . 70
6.2.3 Towards a Hybrid Graph Isomorphism Component 71

6.3 Graph Hashing . 71
6.4 Performance Evaluation . 72
6.5 The Method in the Database Integration Tool . 73
6.6 Summary . 74

7 Conclusions and Future Work 76
7.1 Conclusions . 76
7.2 Future Work . 77

7.2.1 From Manual to Automatic Schema Matching 77
7.2.2 A Language for Specifying Transformation Patterns 78
7.2.3 From the SQL Metamodel to a Generic Tool . 78

Bibliography 80

iv

List of Figures

1.1 View and database integration, as described in [MIR93]. 2

2.1 Sample data for the relational schema S1 . 6

2.2 The Mp3 Shop schema, S2, expressed in the Entity Relationship metamodel 7

2.3 Mediated schema, Sg, expressed in the binary Entity-Relationship metamodel. 10

2.4 Architecture of the CLIO system . 18

2.5 Architecture of the Tukwila system . 19

2.6 Architecture of the AutoMed Software . 20

2.7 The DB-Main integration toolkit. Attributes belonging to two different entities, but

having the same semantics, can be merged. 21

3.1 The Interactive Database Integration Tool. 22

3.2 The SQL Schema Diagram viewer. 24

3.3 Different types of integration strategy trees . 25

4.1 Architecture of the Application. Diagram generated using Structure101 [Str]. 28

4.2 Steps in the execution of a transformation pattern. 30

4.3 The AbstractPattern class diagram. 31

4.4 Save diagram strategies. 35

5.1 Schema used throughout this chapter. Diagram generated using the tool. 42

5.2 User interface for the normalisation pattern. 46

5.3 Schema in 3NF after the application of the normalisation pattern. 46

5.4 Mandatory Column and Total Generalisation Equivalence. 47

5.5 User interface for the mandatory column and total generalisation pattern. 48

5.6 Optional Column/Child Table Equivalence. 49

5.7 User interface for the optional column/child table transformation pattern. 50

5.8 Column Generalisation Equivalence. 50

5.9 User interface for the column generalisation pattern. 51

5.10 Column/Table Equivalence. 52

v

5.11 User interface for the column/table equivalence . 53

5.12 Table Generalisation Equivalence. 53

5.13 User interface for the table generalisation equivalence 54

5.14 Addition of Subset Transformation Pattern . 54

5.15 User interface for the addition of subset transformation. 55

5.16 Addition of Intersection Transformation Pattern . 56

5.17 User interface for the addition of intersection transformation. 57

5.18 Addition of Foreign Key Pattern . 57

5.19 User interface for the addition of foreign key transformation. 58

5.20 Addition of Many-To-Many Table Pattern . 58

5.21 User interface for the addition of many-to-many table transformation. 59

5.22 Redundant column removal transformation . 59

5.23 User interface for the redundant column removal transformation 60

5.24 Redundant Foreign Key Removal (a) . 61

5.25 Redundant Foreign Key Removal (b) . 61

5.26 User interface for the redundant foreign key removal transformation. 62

6.1 Dependency graph of the transaction in Example 6.1. 65

6.2 Grouped dependency graph of the transaction in Example 6.1. 65

6.3 Collapsed dependency graph of the transaction in Example 6.1. 66

6.4 Evaluation of the SD algorithm. 69

6.5 Evaluation of the VF2 algorithm. 70

6.6 Evaluation of the graph hash algorithm. 72

6.7 Evaluation of the graph hash algorithm. 72

6.8 Performance evaluation without graph hashing. 73

6.9 Performance evaluation with graph hashing. 73

6.10 Identical transactions returned by the tool. 74

6.11 Transaction viewer window for the transaction in Example 6.2. 75

vi

Chapter 1

Introduction

1.1 Motivation

The volume of information that companies hold has increased significantly in the last decades.

According to [Haa07], about 79% of the companies have more than two data stores, while 25% have

more than fifteen, making the process of managing and accessing this information cumbersome.

Researchers have studied methods of handling such large amounts of data and several industrial

tools have been released, such as CLIO [HHH+05], Altova MissionKit [Alt] and Microsoft InfoPath

[Inf] (see Section 2.1). They assist database administrators and developers in various scenarios,

such as when moving data between different applications. The structure of the data stored in these

data stores can be described by schemas and views.

Definition 1.1 Schema

A schema defines the set of possible instances, i.e. database states [BM07]. It describes a set of

elements, also called schema objects (or simply objects), connected by some structure [RB01].

The actual values stored in a database that conform to a schema are called instances of the

schema.

Definition 1.2 View

A view is a subset of a database, from the application perspective.

Of particular interest in database theory is the task of combining several existing or proposed

schemas into a global, unified schema, a process called schema integration [BLN86], which can

be of two types, depending on the context in which it occurs:

� View integration (or logical database design) is a process that produces a global conceptual

schema from a set of user views. In the end, the users’ and the application’s requirements

are satisfied in the best possible manner.

� Database integration (or global schema design) is a process that produces a global virtual

view from several (possibly heterogeneous) schemas, as shown in Figure 1.1. An example of

data integration is shown in Example 1.1. The rest of this paper deals only with this type of

integration.

Example 1.1. Consider two web sites selling audio CDs, one called Music Store and the other

Mp3 Shop. The schema of Music Store includes the table audio, shown in Table 2.1, which has

attributes for the identifier of the CD, identifier of the author, title of the CD, identifier of the

1

2 Chapter 1. Introduction

Figure 1.1: View and database integration, as described in [MIR93].

format, release date and price. The schema for Mp3 Shop includes the table cds, shown in Table

2.1, and contains the identifier of the CD, the identifier of the artist, the name of the album, the

price, the average mark given by the persons that purchased the CD and the identifier of the label

that released the album.

If we wanted to allow the user browse CDs from both stores, we would have to provide him with

a virtual view over the two schemas, which can be done using data integration techniques presented

in this paper.

In this case we would have to rename table cds to audio and columns cdid and albumname

from the cds table to id and title, respectively. By merging the two schemas, a virtual view over

the two schemas is produced that can be queried to retrieve audio items from both stores.

audio

id

authorid

title

formatid

releasedate

price

Table 1.1: Table audio in the first schema

cds

cdid

albumname

price

avgmark

labelid

Table 1.2: Table cds in the second schema

While the goal of data integration seems simple, it hides many challenges. One of them is that

there are many different formats that the data can be expressed in, such as SQL, XML or object-

oriented, which leads to heterogeneity. Some models contain constructs that cannot be expressed

in other models. For instance, some variations of the Entity-Relationship (ER) metamodel model

generalisation of entities, a feature that is not present in the SQL metamodel. Other challenges

include choosing the best data sources to use, optimising queries or execution plans and dealing

1.2. Objectives 3

with uncertainty.

Although individual successes in building tools for data integration have been reported, some of

which are presented in Chapter 2, there is still no unified understanding of this process. There have

been attempts to formalise schema integration, some of which are explained in Sections 2.1 and 2.2.

This thesis aims to bridge the gap between theory and practice, by describing the implementation

of a database integration tool.

1.2 Objectives

The main objective of this project is the implementation of a tool used to interactively guide

the user through the integration process of several schemas expressed in the SQL metamodel.

Throughout this paper, we will call this tool the Interactive Database Integration Tool. The tool

should be built on top of the AutoMed [BKL+04, SRM], a framework for performing database

integration using Both As View (BAV) rules and the Hypergraph Data Model (HDM) as the

Common Data Model (CDM).

The integration of several schemas should respect the structure presented in [BLN86] and should

be done by applying well-known transformation patterns, such as the ones listed in [MP97, MP98].

In the end, a global virtual schema is obtained, which can be queried using the Intermediate Query

Language (IQL).

The architecture of the system should be flexible, allowing the introduction of new transforma-

tion patterns without having to modify the existing code, and modular, allowing the model (i.e.

data and behaviour) of the application to be reused independent of the user interface.

In addition, we aim to propose and implement a component to support the identification of

patterns in sequences of BAV transformations, which in this thesis we call BAV transactions. This

is done by analysing the history of the transactions and looking for identical transactions.

1.3 Contributions

The outcome of this project is a tool written in Java and used to interactively guide the user

through the integration of several schemas expressed in the SQL metamodel. The following list

describes the main contributions of this project:

� A formal definition of the SQL Metamodel, as an instance of the framework presented in

[MP98].

� A tool that interactively guides the user through the integration process described in [BLN86],

by the application of well-known transformation patterns. A total of 18 such patterns have

been implemented in the tool.

� A flexible, modular and extensible architecture, that promotes the reuse of individual com-

ponents.

� A powerful transformation patterns framework, such that the introduction of a new pattern

is done without modifying any of the existing code.

� A component for the dynamic extraction of patterns from BAV transactions using dependency

graphs, something that we are not aware to have been attempted before in the context of the

Both As View mapping approach.

4 Chapter 1. Introduction

1.4 Report Structure

This report is structured as follows:

� Chapter 2 briefly describes the work that has been done in the field of schema integration

and lists several industrial tools that have been developed for this purpose.

� Chapter 3 describes the main features of the Interactive Database Integration Tool.

� Chapter 4 outlines the architecture of the system and the transformation patterns framework.

� Chapter 5 presents the transformation patterns implemented in the application and demon-

strates their applicability and their integration in the tool.

� Chapter 6 introduces our method for the dynamic extraction transformation patterns from a

history of BAV transactions and the implementation of this component in the tool.

� Chapter 7 summarises the work discussed in this report and offers suggestions of how the

work can be continued in the future.

Chapter 2

Background

The notion of schema integration was first introduced in the mid 1980s in [BLN86] to describe

both view integration and database integration, which were considered disjoint concepts before.

Ever since, researchers have tried to formalise integration and describe generic solutions for it.

This chapter presents some of the research done in this area in the last decades.

The structure of this chapter is as follows. Section 2.1 describes model management, a generic

approach for the data programmability problem, Section 2.2 presents the data integration problem

from two perspectives, one theoretical and another one practical. Section 2.3 introduces a formal

description of the SQL metamodel. Section 2.4 focusses on the Intermediate Query Language.

Section 2.5 lists some of the tools available for schema integration.

2.1 Model Management

One of the oldest database research topics is how to allow users to access large databases, a

problem that is called the data programmability problem. Model management [BM07] is a generic

approach to solving this issue. It represents a set of abstract operations that are applied to Match

schemas, Merge schemas, Difference schemas, Compose schemas, Translate schemas into other

data models and Generate data transformations from mappings.

Definition 2.1 Model management system

A model management system is a component that supports the creation, compilation, reuse, evo-

lution and execution of mappings between schemas represented in a wide range of metamodels

[BM07].

Definition 2.2 Mapping

A mapping represents a relationship between the instances of two schemas [BM07]. Formally, if D1

and D2 are the sets of possible instances of schemas S1 and S2, a mapping between S1 and S2 is a

subset of D1 ×D2, with × representing the Cartesian product. A mapping is expressed in a mapping

language as a set of mapping constraints, which define the subset of D1 × D2. Intermediate Query

Language (IQL) [JPZ03], described in Section 2.4, is the choice of query language used throughout

this paper to specify mappings. Examples of mappings expressed in IQL can be found in Section

2.2.

Definition 2.3 Metamodel

A metamodel is a language for expressing schemas [BM07]. Examples of metamodels include

5

6 Chapter 2. Background

relational, SQL, XML Schema (XSD), Entity-Relationship, UML, object-oriented (OO), Service

Modelling Language (SML) and Web Ontology Language (OWL). Examples of schemas expressed

in two different metamodels are shown in Example 2.1 and Example 2.2.

Example 2.1. Consider schema S1 for the Music Store web site described in Example 1.1, ex-

pressed in the relational metamodel and containing the audio table. The relational metamodel

contains the following constructs: relations (i.e. sets of tuples), attributes, primary keys and

foreign keys. Figure 2.1 shows an instance of the schema.

� The audio relation contains the mandatory attributes id, authorid, formatid, the optional

attribute releasedate and a primary key constraint with only one attribute, id:

audio(id, authorid, title, formatid, releasedate?, price)

� The schema contains two foreign key constraints from audio to the author and format

relations:

audio.authorid → author.id

audio.formatid → format.id

� The author relation contains the mandatory attributes id, firstname, lastname and a pri-

mary key constraint with only one attribute, id:

author(id, firstname, lastname)

� The format relation contains the mandatory attributes id, name, the optional attribute

bitrate and a primary key constraint with only one attribute, id:

format(id, name, bitrate?)

audio

id authorid title formatid releasedate price

1 1 Beethoven: Complete Symphonies 1 5 Mar 2007 19.99

2 1 The Very Best of Beethoven 2 3 Oct 2005 7.50

3 2 Mozart: Great Piano Concertos 1 NULL 7.00

4 2 Mozart: Complete Violin Concertos 3 10 May 1993 8.00

5 2 Very Best of Mozart 2 6 Feb 2006 7.83

6 3 Bach - Clavierbung Books 1 1 NULL 15.00

7 3 Essential Bach 1 13 Mar 2000 6.97

author

id firstname lastname

1 Ludwig van Beethoven

2 Wolfgang Amadeus Mozart

3 Johann Sebastian Bach

format

id name bitrate

1 mp3-320 320kbps

2 wav NULL

3 flac NULL

Figure 2.1: Sample data for the relational schema S1

Example 2.2. Consider schema S2 in Figure 2.2, for the Mp3 Shop web site described in Example

1.1, expressed in the binary Entity-Relationship (ER) metamodel, as described in [MP97], and

containing the cds table.

The need for model management is motivated by the the fact that sources may be heterogeneous

or can have logical schemas that are different from the physical schemas. Both of these cases can

2.1. Model Management 7

Figure 2.2: The Mp3 Shop schema, S2, expressed in the Entity Relationship metamodel

be solved by using mappings between the different representations, e.g. map constructs from a

metamodel to constructs in another metamodel.

Two types of mappings have been defined in the literature: engineered mappings and approxi-

mate mappings [BM07]. Engineered mappings are precisely specified and tested, while in approxi-

mate mappings there is no notion of a correct answer and it is up to the user to analyse the data

and make a decision about it, usually on the fly.

Engineered mappings are used in a wide range of scenarios [BM07], which includes but is not

limited to:

� Message mappings, used to translate between different data formats. Industrial tools that

support this functionality are Altova [Alt], Stylus Studio [Sty], Microsoft BizTalk [Biz] and

Oracle WebCenter Interaction [Ora].

� Query mediators, used in data integration to access heterogeneous databases. Tools for this

have been developed in areas such as bioinformatics and medical informatics, an example

being the Kleisli system [DBH+99]. A more detailed presentation of this scenario is given in

Section 2.2.

� Wrapper generation, used for instance to produce an object-oriented wrapper for a relational

database. This issue has been addressed in tools such as Oracle Toplink [Top] and Hibernate

[Hib].

� Report writers, which are used to produce reports from structured data sources. Examples

of tools used to generate reports include Microsoft SQL Server Reporting Services [Sql] and

Crystal Reports [Cry].

� Data translation, used to move data between different applications. Microsoft InfoPath [Inf]

can be used for this.

Mappings are useful in two situations:

� Given two schemas, generate a mapping

8 Chapter 2. Background

The process of creating a mapping between a source schema and a target schema is done in

three steps. First the correspondences between the two schemas are identified. Next, they are

converted into mapping constraints, which can be optionally translated into transformations.

Definition 2.4 Correspondences

Correspondences are pairs of elements from two schemas that are related [BM07].

Example 2.3. The element author in Example 2.1 is related to the element artist in Example

2.2, so a correspondence exists between them.

Definition 2.5 Transformation

A transformation is a functional mapping constraint, such as a query or view definition

[BM07].

Finding the correspondences between the source and target schemas is also called schema

matching and in the model management system is described by the abstract operation Match.

Several solutions for automatic schema matching have been suggested in the literature [Riz04,

MRBM05], most of them making use of the schema definition (e.g. the data types and element

names). Researchers have tried to semi-automate or fully automate this process [RB01], by

relying for instance on ontologies and lexical databases.

Schema matching presents a great challenge, as there is no unique or universal solution to

finding the correspondences between two schemas [Gal07]. This is why most tools guide the

user through the matching process and allow him to choose from several different mappings

the correct one.

� Map a schema to another schema

P. Berstein defined in the model management an abstract operation, ModelGen, used to

translate a source schema from a metamodel into an equivalent target schema defined in

another metamodel, a process that is also called data exchange.

Definition 2.6 Data exchange

Data exchange is the task of restructuring data from a source schema to a target schema

[HHH+05]. It can be implemented as a set of rules that map every construct from one

metamodel to a universal metamodel or from the universal metamodel to the target meta-

model.

Example 2.4. Consider the relational schema defined in Example 2.1. If we wanted to

convert this to the XML metamodel, we could use Entity-Relationship (ER) as the universal

metamodel and first map from relational to ER and after that from ER to XML.

While the output of the mapping in data integration or wrapper generation is usually a query

or a view, there are other scenarios in which the mapping runtime must take into account several

issues, such as update propagation, error checking, debugging, access control, integrity constraints,

indexing or notification.

The model management system contains other abstract operations used for schema evolution:

� Diff for finding the information present in a schema that is absent in another schema.

2.2. Data Integration 9

� Merge for taking two schemas and a mapping between them and finding out where the two

schemas overlap.

� Invert for reversing a transformation.

The abstract operations listed above can theoretically be used to solve the data programmability

problem, although, in practice, we do not know if they are complete and we also lack precise

semantics for them [Haa07]. A possible solution to overcome this problem is to think about database

management in an even more abstract way and find a method to represent all information needed

for this task [Haa07].

2.2 Data Integration

As presented in Section 2.1, engineered mappings can be used to build query mediators to access

heterogeneous databases, a process that is called data integration. Heterogeneity is given by the

fact that data can be expressed in different metamodels and can be defined by different people.

Researchers have looked at data integration from two different perspectives, one theoretical and

one practical. Recent work in this area attempts to bridge the gap between the two.

2.2.1 Data Integration in Theory

M. Lenzerini analysed the theory behind data integration. He introduced in [Len02] data inte-

gration systems, which are systems that can be used to combine data from different sources. This

way, the user is presented a global view over the data and has to interact only with it, rather than

having to write queries for each of the sources.

Definition 2.7 Data integration system

Formally, a data integration system is defined as I = <G,S,M>, where G is a global schema (also

called a mediated schema) expressed in a language LG over an alphabet AG, S is the source schema

expressed in a language LS over an alphabet AS , M is the mapping between G and S.

Example 2.5. One possible global schema, Sg, obtained by integrating the source schemas from

Examples 2.1 and 2.2 is shown in Figure 2.3.

The source schema defines the real database states (i.e. where the actual data is stored), whereas

the global schema provides an integrated view over the source schema. The relationship between

them is given by mappings, as presented in Definition 2.2. Formally, a mapping is a set of assertions

of the form qs ↝ qG and qG ↝ qs, where qs and qG are queries over the source schema and over the

global schema, respectively.

If we consider a source database D that conforms to the schema S, we can say that a database

B for the integration system I is legal with respect to D if B conforms to schema G and B satisfies

the mapping M with respect to D.

Several approaches for defining mappings in data integration systems have been proposed: Local

as View (LAV), Global as View (GAV), Both as View (BAV) and Global-Local as View (GLAV).

The first three are briefly described in the next sections.

10 Chapter 2. Background

Figure 2.3: Mediated schema, Sg, expressed in the binary Entity-Relationship metamodel.

Local as View

In the Local as View (LAV) approach, the source database S is mapped as a view over the

global database G. Formally, the assertions in the mapping M are of the form s ↝ qG, where s is

an element of S.

Example 2.6. In LAV, the artist entity in schema S2 in Example 2.2 can be expressed by the

following mappings, as views over the global schema Sg.

S2:entity:⟪artist⟫ :- Sg:entity:⟪artist⟫
S2:attribute:⟪artist,id⟫ :- Sg:attribute:⟪artist,artistid⟫
S2:attribute:⟪artist,fname⟫ :- Sg:attribute:⟪artist,firstname⟫
S2:attribute:⟪artist,lname⟫ :- Sg:attribute:⟪artist,lastname⟫

In order to further characterise an element s of S, researchers have introduced in [Len02] a new

notation as(s), used to represent how accurate is the source with respect to the associated view. It

can take one of the following three values:

� Sound views. The source s is said to be sound if, given a source database D and a global

database B, any tuple in D that satisfies s also appears in qBG , the set of tuples in B that

satisfy q. If a tuple that satisfies s does not appear in D, we cannot decide that it does not

satisfy the global view. Informally, this implies that the mapping produces a subset of the

correct answers.

2.2. Data Integration 11

� Complete views. The source s is said to be complete if, given a source database D and a

global database B, any tuple in D that satisfies s might appear in the qBG , but this does not

necessarily have to happen. If a tuple that satisfies s does not appear in D, we know that

it cannot appear in the global view. Informally, this implies that the mapping produces all

correct answers and possibly some incorrect ones.

� Exact views. The source s is said to be exact if, given a source database D and a global

database B, all tuples in D that satisfies s and only those tuples appear in the qBG . Informally,

this implies that the mapping produces all correct answers and no incorrect ones.

The most important advantage of LAV is that adding a new source is done by simply inserting

an assertion into the mapping. The drawback is that it works on global schemas that are unlikely

to suffer any changes.

Global as View

In the Global as View (GAV) approach, the global schema G is modelled as a set of views over

the source schema S. Formally, the assertions in the mapping M are of the form g ↝ qS , where g

is an element of G. Intuitively, this means that there exists a mediator that defines exactly how

elements from the source database will be retrieved. Similarly to LAV, each element g of G can be

characterised by as(g), which can be sound, complete or exact.

Example 2.7. In GAV, the artist element in schema Sg in Example 2.5 can be expressed by the

following mappings, where S2 is defined in Example 2.2.

Sg:entity:⟪artist⟫ :- S2:entity:⟪artist⟫
Sg:attribute:⟪artist,id⟫ :- S2:attribute:⟪artist, artistid⟫
Sg:attribute:⟪artist,firstname⟫ :- S2:attribute:⟪artist, fname⟫
Sg:attribute:⟪artist,lastname⟫ :- S2:attribute:⟪artist, lname⟫

The advantage of GAV over LAV is that it favours sources that are stable and query processing

reduces to a simple unfolding process [Len02].

Both as View

The Both as View (BAV) mapping language was introduced in [MP03] and it subsumes both

GAV and LAV. In this approach, there is a bidirectional mapping between the source schema S

and global schema G. A mapping operates on a single object (e.g. XML element, SQL column,

etc.) and at any time a new schema is defined based on the previous schema by modifying only

one construct.

The following primitive transformations have been defined in [MP04] and can be applied to a

schema Sbefore, resulting in a different schema Safter:

� add(C:⟪s⟫, q) - Safter contains a new construct s of type C. q is a query over Sbefore,

specifying the extent of c in terms of the existing constructs of Sbefore.

� delete(C:⟪s⟫, q) - Safter does not contain the construct s of type C. The extent of s may be

recovered by executing q on schema Safter.

12 Chapter 2. Background

� rename(C:⟪s⟫, ⟪s′⟫) - the construct s of type C from Sbefore is renamed to s′ and has the

same type in Safter.

� extend(C:⟪s⟫, ql, qu) - Safter contains a new construct s of type C. ql specifies the minimum

extent of s and may take the special value V oid. qu specifies the maximum extent of s and

may take the special value Any.

� contract(C:⟪s⟫, ql, qu) - Safter does not contain the construct s of type C. ql and qu have

the same meaning as in extend.

The BAV transformations add and delete specify exact mappings, while their counterparts

extend and contract are used to define non-exact mappings. It can also be noticed that add and

delete are special cases of extend and contract, when ql = qu.

Example 2.8. Consider schema S1 defined in Example 2.1 and expressed in the relational meta-

model. If we want to add a new table audio released, containing only those audio items that are

known to have been released, i.e. have a non-null releasedate, the following BAV transformations

would have to be applied to S1, resulting in a new schema. The extents of the transformations are

specified in the Intermediate Query Language, presented in Section 2.4.

1 Add the new relation audio released:

add (relation:⟪audio released⟫, [{x} ∣ {x,y} ← ⟪audio,releasedate⟫; y <> Null])

2 Add the primary key attribute id to the new relation:

add (attribute:⟪audio released, id,notnull⟫, [{x, x} ∣ {x} ← ⟪audio released⟫])

3 Add the mandatory attribute releasedate to the new relation:

add (attribute:⟪audio released,releasedate,notnull⟫,

[{x, y} ∣ {x} ← ⟪audio released⟫; {x,y} ← ⟪audio,released⟫])

4 Create the primary key constraint for the audioreleased relationship:

add (primarykey:⟪audio released pk,audio released,⟪audio released,id⟫⟫)

5 Create a foreign key constraint from the id attribute of audioreleased to audio:

add (foreignkey:⟪audio released audio fk,

audio released,⟪audio released,id⟫,audio,⟪audio,id⟫⟫)

6 Delete the optional attribute releasedate from the original relation:

delete (attribute:⟪audio,releasedate,null⟫,

⟪audio released,releasedate⟫ ++ [{x,Null} ∣ {x} ← ⟪audio⟫ – ⟪audio released⟫])

Sequences of transformations, such as the one defined in Example 2.8, are called pathways and

are useful in schema evolution. For instance, if there exists a pathway T1 between a local schema

SL and a global schema SG1 and SG1 evolves to SG2 by some pathway T2, then a mapping between

SL and SG2 is obtained by concatenating the two individual pathways, i.e. T1;T2.

A popular data integration system that uses BAV transformations is AutoMed, presented in

Section 2.5.3. An example of data integration in AutoMed using the BAV primitive transformations

described above can be found in [BAV]. The rest of this paper deals only with BAV transformations.

2.3. The SQL Metamodel 13

2.2.2 Data Integration in Practice

L. Hass analysed in [Haa07] the challenges that businesses face when performing information

integration. She described this as a four step process: understanding the data, standardisation,

specification and execution.

Understanding is concerned with discovering the structure of the data, such as keys, constraints

or data types. Standardisation involves deciding a common representation for the data, for instance

choosing a common format for phone numbers. During the specification step, the actual mappings

used to translate the sources into the target are defined. Finally, in the execution phase the

integration is performed either by copying the integrated data or by providing a virtual view over

it.

The industry still lacks powerful tools for information integration and there is still much room

for research in this area.

2.3 The SQL Metamodel

In [MP98], a general formal framework for schema transformation is described, in which schemas

are represented as directed, labelled, nested hypergraphs in the Hypergraph Data Model

(HDM). In Definition 2.8, we remind the reader what a hypergraph is.

Definition 2.8 Hypergraph

A hypergraph is a generalisation of a graph, where an edge can connect any number of vertices.

A model M expressed in the HDM is a triple ⟨S, I,ExtS,I⟩, where S is a schema, I is an instance

of S and ExtS,I represents an extension mapping from S to I. Eight primitive transformations

operate over models and result either in a model, if the transformation is successful, or in the special

value ”undefined”, denoted φ, otherwise: renameNode, renameEdge, addConstraint, delConstraint,

addNode, delNode, addEdge and delEdge.

When performing database integration, schemas may be expressed in different metamodels and

have to be translated in a common language, called the Common Data Model (CDM). HDM is

the choice of CDM used throughout this paper and has been implemented in AutoMed (see Section

2.5.3).

The SQL metamodel can be represented as an instance of this framework and contains four

types of constructs: tables, column, primary keys and foreign keys.

Definition 2.9 Primary Keys

A primary key is a subset of the columns of a table that uniquely identifies every row. A primary

key constraint is the rule that no two different rows may have the same values stored in the primary

key column(s).

Definition 2.10 Foreign Keys

A foreign key is a set of columns in one table (the source table) whose values must match the values

of the primary key column(s) of one row in another table (the target table).

A foreign key constraint is a type of referential constraint and is the rule that the values of the

foreign key column(s) in the source table are valid if they appear in the primary key column(s) of

the target table (with the exception of NULL).

The following conventions are used to formally specify the metamodel as an instance of the

14 Chapter 2. Background

framework in [MP98]:

� Names represents the names of vertices and edges in the underlying hypergraph, as defined

in [MP98]

� Types represents the set of distinct data types that are supported

� Seq(X) is the set of finite sequences of elements in the set X

� Seqn(X) is the set of sequences of n elements in the set X

Definition 2.11 SQL Metamodel

A schema expressed in the SQL metamodel, S, is a quintuple ⟨Tables,Cols,Assoc,PK,FK⟩, where:

� Tables ⊆ Names is the set of tables.

� Cols ⊆ Names is the set of columns.

� Assoc ⊆ Tables ×Cols for the association of columns to tables.

� PK ⊆ Names × Tables × Seq(Cols) is the set of primary key constraints.

� FK ⊆ Names×Tables×Seqn(Cols)×Tables×Seqn(Cols) is the set of foreign key constraints.

In Definition 2.11, Tables∪Cols represents the vertices in the hypergraph, Assoc the edges and

PK ∪ FK the constraints.

In the SQL metamodel, both primary key and foreign key constraints have a name associated

with them. In order to be able to rename a constraint, the framework presented in [MP98] must

be augmented with the following primitive transformations:

� addConstraint⟨Names × Constraints⟩ extends the addConstraint⟨Constraints⟩ transfor-

mation to associate a name with a constraint.

� renameConstraint⟨Names × Names⟩ renames a constraint. It is successful provided that

the new name is not the name of an existing constraint.

The following primitive transformations of the SQL metamodel are defined in terms of the

primitive transformations of the extended framework:

� renameX⟨from, to⟩, where X ∈ {T,C}, representing tables and columns, respectively:

renameNode⟨from, to⟩

� renameX⟨from, to⟩, where X ∈ {PK,FK}, representing primary key and foreign key con-

straints, respectively:

renameConstraint⟨from, to⟩

� addT ⟨table, q⟩ adds a table table with the extent q:

addNode⟨table⟩

� delT ⟨table⟩ removes a table table:

delNode⟨table⟩

� addC⟨table, col, q⟩ adds a column col to the table table with the extent q:

addNode⟨col, q⟩
addEdge⟨table, col⟩

2.4. Intermediate Query Language (IQL) 15

� delC⟨table, col⟩ removes a column col from the table table:

delEdge⟨table, col⟩
delNode⟨col⟩

� addPK⟨name, table, col1, ..., coln⟩ adds a primary key constraint:

addConstraint⟨createPK⟨name, table, col1, ..., coln⟩⟩

� delPK⟨name, table, col1, ..., coln⟩ removes a primary key constraint:

delConstraint⟨createPK⟨name, table, col1, ..., coln⟩⟩

� addFK⟨name, t1, col1, ..., coln, t2, col1, ..., coln⟩ adds a foreign key constraint:

addConstraint⟨createFK⟨name, t1, col1, ..., coln, t2, col1, ..., coln⟩⟩

� delFK⟨name, t1, col1, ..., coln, t2, col1, ..., coln⟩ removes a foreign key constraint:

delConstraint⟨createFK⟨name, t1, col1, ..., coln, t2, col1, ..., coln⟩⟩

In the above transformations, two shorthand notations have been used:

� createPK⟨name, table, col1, ..., coln⟩ denotes a primary key constraint on table table contain-

ing the columns col1, ..., coln.

� createFK⟨name, t1, col1, ..., coln, t2, col1, ..., coln⟩ denotes a foreign key constraint sourced at

table t1, columns col1, ..., coln, and targeted at table t2, columns col1, ..., coln.

The primitive transformations of the SQL metamodel are semantically sound, i.e. they always

return another model. They are used to map SQL schemas to other SQL schemas and can be

generalised into composite transformations, i.e. sequences of primitive transformations.

Interactive Database Integration Tool uses schemas expressed in the SQL metamodel, as there are

many popular Database Management Systems (DBMS) that support SQL: PostgreSQL, MySQL,

Oracle, SQL Server, SQLite, etc.

2.4 Intermediate Query Language (IQL)

Intermediate Query Language (IQL) [JPZ03] is a functional language, which has been developed

for the AutoMed data integration system, described in Section 2.5.3. It is a common query language

used to express queries written in high-level query languages [JPZ03], such as SQL.

IQL includes constants (which can be strings, booleans, integers and real numbers), variables,

identifiers, tuples (e.g. {1,2,3}) and lists (e.g. {[1,2,3]}). They are used to define list comprehen-

sions, which take the form:

[vars ∣ gen1; gen2 ... ;pred1;pred2; ...]

where geni represent generators, predi represent predicates and vars contains variables that appear

in at least one of the generators.

Definition 2.12 Generators

Generators ”iterate a pattern over a list-valued expression, where a pattern is either a variable or

a tuple of patterns” [JPZ03].

16 Chapter 2. Background

Definition 2.13 Filters

Filters are boolean-valued expressions that filter the information generated by the generators of

the comprehension [JPZ03].

In IQL, schema objects are denoted by constructName ∶ ⟪definition⟫. For instance, the

IQL definition of the table construct from the SQL metamodel is table ∶ ⟪tableName⟫, where

tableName is the name of the table. The definition of the column construct takes the form

column ∶ ⟪tableName, columnName, optionality, type⟫, where tableName is the name of the par-

ent table holding the column, columnName is the name of the column, optionality specifies the

optionality of the column and can take one of the values {null, notnull} and type mentions the

type of the values stored in the column.

In IQL queries, schema objects can be referenced using their shorthand notation. For instance,

the short notation for tables is ⟪tableName⟫ and for columns is ⟪tableName, columnName⟫.

Example 2.9. A direct representation of the S1 schema in Example 2.1 expressed in IQL is:

relation:⟪audio⟫ = [⟨1,1, ‘Beethoven ∶ CompleteSymphonies‘,1, ‘5Mar 2007‘,19.99⟩,
⟨2,1, ‘TheV eryBest of Beethoven‘,2, ‘3Oct2005‘,7.50⟩,
⟨3,2, ‘Mozart ∶ GreatP ianoConcertos‘,1,NULL,7.00⟩,
⟨4,2, ‘Mozart ∶ CompleteV iolinConcertos‘,3, ‘10May 1993‘,8.00⟩,
⟨5,2, ‘V eryBest of Mozart‘,2, ‘6Feb2006‘,7.83⟩,
⟨6,3, ‘Bach −ClavierbungBooks1‘,1,NULL,15.00⟩,
⟨7,3, ‘EssentialBach‘,1, ‘13Mar 2000‘,6.97⟩]

relation:⟪author⟫ = [⟨1, ‘Ludwig‘, ‘van Beethoven‘⟩, ⟨2, ‘Wolfgang Amadeus‘, ‘Mozart‘⟩,
⟨3, ‘Johann Sebastian‘, ‘Bach‘⟩]
relation:⟪format⟫ = [⟨1, ‘mp3 − 320‘, ‘320kbps‘⟩, ⟨2, ‘wav‘,NULL⟩, ⟨3, ‘flac‘,NULL⟩]

Example 2.10. An alternative representation of the schema S1 in Example 2.1 is shown below.

This type of representation is used throughout the rest of this paper.

relation:⟪audio⟫ = [⟨1⟩, ⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨5⟩, ⟨6⟩, ⟨7⟩]
attribute:⟪audio, id⟫ = [⟨1,1⟩, ⟨2,2⟩, ⟨3,3⟩, ⟨4,4⟩, ⟨5,5⟩, ⟨6,6⟩, ⟨7,7⟩]
attribute:⟪audio, authorid⟫ = [⟨1,1⟩, ⟨2,1⟩, ⟨3,2⟩, ⟨4,2⟩, ⟨5,2⟩, ⟨6,3⟩, ⟨7,3⟩]
attribute:⟪audio, title⟫ = [⟨1, ‘Beethoven ∶ CompleteSymphonies‘⟩,

⟨2, ‘TheV eryBest of Beethoven‘⟩,
⟨3, ‘Mozart ∶ GreatP ianoConcertos‘⟩,
⟨4, ‘Mozart ∶ CompleteV iolinConcertos‘⟩,
⟨5, ‘V eryBest of Mozart‘⟩,
⟨6, ‘Bach −ClavierbungBooks1‘⟩,
⟨7, ‘EssentialBach‘⟩]

attribute:⟪audio, formatid⟫ = [⟨1,1⟩, ⟨2,2⟩, ⟨3,1⟩, ⟨4,3⟩, ⟨5,2⟩, ⟨6,1⟩, ⟨7,1⟩]
attribute:⟪audio, releasedate⟫ = [⟨1, ‘5Mar 2007‘⟩, ⟨2, ‘3Oct2005‘⟩, ⟨3,NULL⟩, ⟨4, ‘10May 1993‘⟩,

⟨5, ‘6Feb2006‘⟩, ⟨6,NULL⟩, ⟨7, ‘13Mar 2000‘⟩]
attribute:⟪audio, price⟫ = [⟨1,19.99⟩, ⟨2,7.50⟩, ⟨3,7.00⟩, ⟨4,8.00⟩, ⟨5,7.83⟩, ⟨6,15.00⟩, ⟨7,6.97⟩]
relation:⟪author⟫ = [⟨1⟩, ⟨2⟩, ⟨3⟩]
attribute:⟪author, id⟫ = [⟨1,1⟩, ⟨2,2⟩, ⟨3,3⟩]

2.4. Intermediate Query Language (IQL) 17

attribute:⟪author, firstname⟫ = [⟨1, ‘Ludwig‘⟩, ⟨2, ‘WolfgangAmadeus‘⟩, ⟨3, ‘JohannSebastian‘⟩]
attribute:⟪author, lastname⟫ = [⟨1, ‘vanBeethoven‘⟩, ⟨2, ‘Mozart‘⟩, ⟨3, ‘Bach‘⟩]
relation:⟪format⟫ = [⟨1⟩, ⟨2⟩, ⟨3⟩]
attribute:⟪format, id⟫ = [⟨1,1⟩, ⟨2,2⟩, ⟨3,3⟩]
attribute:⟪format, name⟫ = [⟨1, ‘mp3 − 320‘⟩, ⟨2, ‘wav‘⟩, ⟨3, ‘flac‘⟩]
attribute:⟪format, bitrate⟫ = [⟨1, ‘320kbps‘⟩, ⟨2,NULL⟩, ⟨3,NULL⟩]

A join can be defined in IQL by combining several generators with filters or by using the same

variable name in different generators, as shown in Example 2.11.

[{a,b,c} ∣ {a,b} ← ⟪table1, col1⟫; {a,c} ← ⟪table2, col2⟫]

Example 2.11. Consider the following SQL query used to select all CDs which have Mozart as

composer and cost more than 5$ from the database presented in Example 2.1:

SELECT author.firstname, author.lastname, audio.title

FROM audio

JOIN author ON audio.authorid = author.id

WHERE author.lastname = ’Mozart’ AND audio.price >5.00;

Using the alternative representation demonstrated in Example 2.10, this can be expressed in

IQL as:

[{fn,ln,t} ∣ {id,aid} ← ⟪audio,authorid⟫; {id,t} ← ⟪audio,title⟫; {id,p} ← ⟪audio,price⟫; {aid,fn} ←
⟪author,firstname⟫; {aid,ln} ← ⟪author,lastname⟫; name = ’Mozart’; price > 5.00]

List comprehensions can be prefixed with the distinct keyword in order to remove duplicates

from the resulting list, as shown in Example 2.12.

Example 2.12. An IQL query used to select the first names of all authors from schema S1 in

Example 2.1, with duplicates removed, can be written as:

distinct[{fname}∣{id, fname} ← ⟪audio,firstname⟫]

Union between two lists is achieved using the ++ operator, while difference is achieved using the

−− operator, as shown in Example 2.13.

Example 2.13. In order to express the union of the identifiers of authors with the identifiers of

CDs in schema S1 in Example 2.1, the following IQL query could be used:

[{id,id}∣{id, id} ← ⟪author,id⟫] ++ [{id,id}∣{id,id} ← ⟪audio,id⟫]

The difference operator is used in a similar manner.

IQL also contains anonymous functions, defined using lambda abstractions as in Example 2.14,

and let expressions, similar to those found in the Haskell programming language.

Example 2.14. A simple function used to multiply two numbers:

lambda {n, m} (* n m).

Intermediate Query Language is a rich language and contains other built-in functions for ag-

gregation, string and date processing, dealing with collections and type conversion and projection

over tuples. A full description of the language can be found in [JPZ03].

18 Chapter 2. Background

2.5 Data Integration Systems

At the present time, research is still being done to bridge the gap between the theoretical study

of schema integration and the tools used in industry. Several such tools have been developed, some

of which work in a wide range of scenarios, and this section presents some of them: Clio, Tukwila,

AutoMed and DB-Main.

2.5.1 Clio

Clio [HHH+05] is a tool developed by IBM to express schema mappings between two metamodels:

XML and relational schemas. It is the first system that attempted to semi-automate the generation

of schema mappings.

The general architecture of the system is shown in Figure 2.4. The most important components

are the mapping generation and the query generation. The mapping generation module is used

to analyse correspondences between a source and a target and produces a set of logical mappings,

which represent abstractions of the physical transformations (e.g. from SQL to XSLT). The query

generator is used to translate from logical mappings to executable queries.

Figure 2.4: Architecture of the CLIO system

Correspondences can either be generated by the schema matching module or can be manually

inserted by the user in the GUI. The user can also inspect generated transformations, an idea that

has also been discussed by Berstein in [BM07]. He suggested that a good tool should offer to the

user candidate solutions to consider.

When representing logical mappings, Clio uses an internal notation based on generators, which

bind variables to elements in sets, and conditions, which filter the information. This notation is

similar to the Intermediate Query Language, covered in Section 2.4.

Each logical mapping generated is converted into a query graph that encodes how the target

elements are populated from the data in the source. This graph is then used in the query generator

to group and join information, in order to produce a final query.

2.5. Data Integration Systems 19

Clio proved to be one of the most powerful tools for semi-automatic schema mapping. It has

also been incorporated into IBM Rational Data Architect (RAD), a system used to explore logical

schemas, discover relationships and produce physical schemas [Haa07].

2.5.2 Tukwila

Tukwila [IFF+99] is a popular data integration system that focused on optimising query pro-

cessing over several heterogeneous sources when the data transferred is of moderate or large size.

This is a major challenge, because in a distributed environment there are no statistics about

the data, which are vital to a good query execution planner, the data arrival rates cannot be

approximated and the information stored in different sources can overlap.

Tukwila introduced adaptivity in two places: between the optimiser and the execution engine

and inside the execution engine. This is done by evaluating queries only partially when there is not

enough metadata and by using adaptive operators. The adaptive operators defined are the double

pipelined hash join (”a join implementation which executes in a symmetric, data-driven manner”

[IFF+99]) and techniques for adapting execution when there is not enough memory.

Figure 2.5: Architecture of the Tukwila system

The architecture of Tukwila is shown in Figure 2.5. The user sends queries to the mediated

relational schema. The data source catalogue contains metadata about the different sources involved

in the transaction, such as the information stored by each source and how data overlaps between

sources. Based on the data source catalogue, the query is reformulated as a set of queries over the

sources. The query optimiser takes the result of the previous step and creates partial execution

plans, which are fed into the query execution engine. The execution engine analyses the query

plans and supports incremental re-optimisation. The communication between the engine and the

sources is done using wrappers, which are needed for instance when the sources are expressed in

different metamodels.

The most important components of this architecture are the query optimiser and the query

execution engine. Unlike the most database management systems (DBMS), the query optimiser

does not necessarily create complex execution plans, being able to produce partial execution plans

as well in an incremental fashion by constantly communicating with the execution engine. This is

the case when there are no statistics about the data.

The query execution engine is responsible with executing the query plans received from the

optimiser and of gathering statistics after each operation, which are used at later stages.

Tukwila represented a major success in query optimisation and execution for data integration.

20 Chapter 2. Background

More details about the current state of the development of Tukwila can be found in [Tuk].

2.5.3 AutoMed

AutoMed [BKL+04] is the first implementation of the Both As View (BAV) approach (described

in Section 2.2.1) for heterogeneous data integration.

Whenever a data source is imported, its schema is added to a repository, which is situated at

the center of AutoMed’s architecture, shown in Figure 2.6. The repository is split into the model

definitions repository (MDR) and the schema transformation repository (STR).

MDR stores information about various metamodels. Each metamodel is described as a combi-

nation of nodes, edges and constraints in the hypergraph data model (HDM) [BKL+04], which

is the Common Data Model (CDM) used by the tool. This module allows users to define new data

modelling languages in the MDR and share them with other users. Translating between a source

and target schema expressed in different language models is done by first converting constructs to

HDM and after that analysing the constraint information.

STR stores schemas, in terms of the data modelling concepts in the MDR, and BAV trans-

formations between schemas [BKL+04]. In STR, all data modelling languages have a common

representation, described in more detail in [BKL+04].

Figure 2.6: Architecture of the AutoMed Software

AutoMed contains a schema matching module, used to automatically identify correspon-

dences (as defined in Definition 2.4) between elements in different sources. Unlike other approaches

which only identify the compatibility relationship between elements, in [Riz04] five types of rela-

tionships between two elements are identified:

� equivalence iff Domint(A) = Domint(B)

� subsumption iff Domint(B) ⊂ Domint(A)

� intersection iff Domint(A) ∩ Domint(B) /= ∅,∃C ∶Domint(A) ∩Domint(B) =Domint(C)

� disjointness iff Domint(A) ∩ Domint(B) = ∅,∃C ∶Domint(A) ∪Domint(B) ⊆Domint(C)

2.5. Data Integration Systems 21

� incompatibility iff Domint(A) ∩ Domint(B) = ∅,¬∃C ∶Domint(A)∪Domint(B) ⊆Domint(C)

The notation Domint(x) represents the intended domain of x, i.e. the real-world entities that

the object represents, while ∃C : condition ” represents that there is a real-world concept that can

be represented by a existing or non-existing schema element C that satisfies the condition” [Riz04].

The template transformation module is used to generate transformations (as defined in

Definition 2.5) between different sources. AutoMed supports composite transformations (also called

template transformations) constructed from primitive transformations.

It has been shown in [SRM] that AutoMed can be extended in practice to create a model

management system, as presented in Section 2.1, with all operators, including Match and ModelGen.

2.5.4 DB-Main

DB-Main [DBM] is a data-modelling and data-architecture tool. It includes functionality for

designing, maintaining, evolving, transforming and reverse engineering databases.

It also contains two toolboxes, one for schema integration and one for defining transformations,

which, together, form the integration toolkit [dDNmP+00]. It offers three forms of integration:

manual, semi-automatic and fully automatic. It presents several integration strategies to the analyst

and it is up to him to solve conflicts, as shown in Figure 2.7.

DB-Main can be extended with a mapping assistant, used to define and maintain a history

of all transformations between objects belonging to different schemas.

DB-Main was first released in 1991, and, due to its success, it is still being used in education,

research and industry.

Figure 2.7: The DB-Main integration toolkit. Attributes belonging to two different entities, but
having the same semantics, can be merged.

Chapter 3

The Interactive Database Integration

Tool

Interactive Database Integration Tool is a software application developed in Java on top of the

AutoMed public library. The goal of the application is to guide the user through the integration

process of several schemas expressed in the SQL metamodel (described in Section 2.3) using well-

known transformation patterns.

Figure 3.1: The Interactive Database Integration Tool.

Before proceeding to a detailed discussion about the architecture of the application, in Chapter

4, and a theoretical description of the transformation patterns implemented in the tool, in Chapter

5, the main features of the tool are presented in this chapter.

In this chapter, Section 3.1 describes the main window of the tool, Section 3.2 presents the SQL

schema diagrams generated in the application, Section 3.3 introduces the notion of integration

project and how it is implemented in the tool, Section 3.4 discusses about how to add a new

schema to the AutoMed repository and Section 3.5 explains how a schema can be queried in the

tool.

22

3.1. The Main Window 23

3.1 The Main Window

In order to run the tool, a working version of AutoMed and Java Runtime Environment (JRE)

must be installed on the computer. The main window is split into four parts: the main menu bar,

located at the top, the repository browser on the left, the tabbed area on the right and the status

bar at the bottom, as illustrated in Figure 3.1.

From the main menu bar, the user can create/save/load an integration project, hide the repos-

itory browser or perform operations on the AutoMed repository, such as adding a new schema to

the repository.

By right-clicking any schema in the repository browser, the user has the option to view the

diagram of the schema, rename the schema, remove it or retract it from the repository. The

difference between removal and retraction is that, in addition to removing the schema from the

AutoMed repository, retraction removes all the schemas derived from the schema being retracted.

The tabbed area on the right contains three types of tabs:

� Quick Options. Displayed when first running the application and contains buttons for some

of the most important features of the project.

� SQL Schema Diagram. Opened when choosing to view a diagram from the repository

browser. Explained in detail in Section 3.2.

� Integration Project. Opened when performing integration of several schemas.

3.2 SQL Schema Diagrams

Schemas expressed in the SQL metamodel are visually represented as diagrams. Table 3.2 con-

tains the four SQL constructs, together with their visual representation and the scheme definition

associated with the construct.

Name Visual representation Definition

table
table

table ∶ ⟪table⟫

column column

column ∶ ⟪table, col, opt, type⟫, where opt ∈
{null, notnull} and type represents the data

type of the column.

If the column is part of the primary key, its name

is underlined. If the column is optional, its name

is suffixed with a question mark.

primary key

table

pk_coln

...

pk_col1
primarykey ∶ ⟪name, t,⟪t, c1⟫, ...,⟪t, cn⟫⟫

24 Chapter 3. The Interactive Database Integration Tool

foreign key
fk_name

foreignkey ∶ ⟪name,
t1,⟪t1, c1⟫, ...,⟪t1, cn⟫, t2,⟪t2, c1⟫, ...,⟪t2, cn⟫⟫

Table 3.2: Visual representation and description of the SQL constructs

Figure 3.2 shows a SQL schema diagram generated using the tool. The tool bar displayed on

top allows the user to auto-arrange the diagram, zoom in/out, execute an IQL query and retrieve

the results and export the diagram to the PNG and Extended PostScript (EPS) formats.

Figure 3.2: The SQL Schema Diagram viewer.

3.3 Integration Projects

The goal of the application is to guide the user through the integration of several schemas

expressed in the SQL metamodel. In the tool, this process is captured as an integration project,

and is based on the steps of the integration process described in [BLN86]: pre-integration and

schema transformation. Different issues and approaches for this process have been identified, some

of which are presented in [PS98].

The main menu bar contains items that allow the user to start a new integration project, save

or open an existing integration project. Projects are stored on the disk as XML files.

3.3.1 Pre-integration

In general, pre-integration is done in order to establish a common understanding of the databases

being integrated. During this step, schemas are translated in a common data model (CDM), which

in AutoMed is the hypergraph data model (HDM).

In the tool, the user performs an analysis and chooses from the AutoMed repository the schemas

to be integrated and defines the integration strategy, which can be either binary or n-ary, as shown

in Figure 3.3. The integration strategy is a tree, which governs the order in which the schemas are

integrated. Integration proceeds by traversing the tree in reverse Breadth First Search order, i.e.

starting from the last level and going up to the root.

3.3. Integration Projects 25

` `

balancedladder one-shot iterative

n-arybinary

Strategy tree

Figure 3.3: Different types of integration strategy trees

In the tool, the strategy tree is constructed by adding schemas to the strategy diagram, selecting

the schemas to be integrated in the same step, right-clicking the diagram and combining the selected

schemas in an intermediate schema. Once the integration strategy is completed, the user can

proceed to the schema transformation phase.

3.3.2 Schema Transformation

The actual integration is performed by traversing the strategy tree and, for each step in the tree,

performing schema transformation, a process that is divided into three steps: schema conforming,

schema merging and schema improvement.

Schema Conforming

Before transforming the schemas, correspondences between them have to be identified. This is

done by searching for schema objects that model the same real-world facts. A correspondence is

usually expressed intensionally, as the relationship between the types of the schema objects and

not extensionally, between the instances of the databases. At the present time, it is up to the user

performing the integration to manually identify the correspondences, although in future this will

be done automatically, by employing techniques from schema matching.

Once the correspondences have been discovered, the user can proceed to the actual transforma-

tion of the schemas. Schema conforming is concerned with solving conflicts, i.e. cases when the

same real-world concept is represented in different ways. A detailed presentation of the different

types of conflicts is presented in [kSH99], although, in practice, the following types of conflicts are

encountered frequently:

� Naming conflicts may arise as a result of different people using their own terminology and

naming when designing a database schema. Two types of naming conflicts exist:

– Homonyms when the same name is used for two different concepts. This type of conflict

is solved by renaming one of the objects or by prefixing the names of both objects.

– Synonyms when different names are used for the same concept. This type of conflict is

solved by assigning the same name to the two objects.

� Structural conflicts arise when the same concept is modelled in different ways. They are

solved by transforming the schemas, such that the concept is expressed in the same manner.

For instance, this type of conflict occurs between a schema containing a table student with

an optional column username, while in another schema the username column appears as

mandatory in a table members, which is a child of student. In this case, the same real-world

26 Chapter 3. The Interactive Database Integration Tool

concept, that of students that have an username associated to their account, is represented

in two different ways.

� Data/metadata conflicts arise when values appearing in the instance of one database

correspond to metadata (type names) in the schema of another database. For instance, this

type of conflict occurs when one schema contains a table student with a column college

taking one of the values {ICL,Berkley}, i.e. students from either Imperial College London

or Berkeley University, and another schema that contains the table student and two child

tables called icl student and berkley student, that model the same information as in the first

schema.

� Data conflicts arise at instance level when corresponding schema objects store values in

different ways. For instance, consider one schema containing a table student with a birthday

column, stored in the DD-MM-YYYY format, while in another schema the birthday column

is expressed in the MM-DD-YYYY format. This type of conflict might occur as a result of

different persons defining the two schemas.

Schema Merging

During the schema merging phase, the component schemas being integrated in the current

step are superimposed, such that concepts appearing in all schemas are represented by the same

constructs. The final schema is improved by identifying related concepts and adding constructs to

represent these relationships.

Schema Improvement

During the schema improvement phase, transformations are applied over the merged schema in

order to improve it. This is done until the resulting schema satisfies the three qualities presented

in [BLN86]: completeness, minimality and understandability.

In all three steps described above, transformations are applied over schemas, some of which

are described in Chapter 5. In the tool, when the user selects several objects belonging to one

schema, by holding the Control key pressed and clicking objects in the diagram, and right-clicks

the diagram, a menu pops up showing the transformations that can be applied to the selected

objects. By selecting one of the transformations, a dialog box appears and the user is guided

through the application of the transformation.

Transformations can also be applied in textual mode, by clicking the ”Execute Transformations”

button displayed on top of SQL schema diagrams. In the integration view, the user can also execute

BAV transactions, which are sequences of primitive BAV transformations that are either executed

together or are not executed at all, by clicking the ”Execute Transaction” button. Transformations

can be reverted by clicking the Undo button displayed in the menu bar of the schema.

3.4 Adding a Schema to the Repository

The application currently supports SQL schemas of databases running on the PostgreSQL

database management system. Schemas can be added to the AutoMed repository by clicking the

Add New Source menu item in the Repository menu and by providing the details of the database.

After adding them to the repository, schemas appear in the repository browser on the left and can

be used in integration projects.

3.5. Querying a Schema Using IQL 27

3.5 Querying a Schema Using IQL

A schema can be queried using IQL at any time by clicking the ”Execute an IQL Query” button

situated in the tool bar of a SQL diagram. The contents of a table or a column can be quickly

viewed by simply double-clicking the element in the SQL diagram.

AutoMed supports the incremental processing of a query, so only a small number of results are

fetched and displayed at once. The user is allowed to move to the next page of results by clicking

the ”Next Page” button. Since the execution of certain queries takes a long time, retrieval of the

results is done in a separate thread, in order to avoid blocking the user interface of the application.

Unfortunately, at the present time IQL does not support the retrieval of just a portion of the

tuples in a list, which is the equivalent of the LIMIT < number > OFFSET < number > clause in

SQL. This makes it hard to move back and forth in the result set, so in our implementation the

user is only allowed to move forward.

3.6 Summary

Interactive Database Integration Tool is a software application built on top of the AutoMed

library that guides the user through the integration of several schemas. The user can start or

continue an integration project, which is divided into two phases: pre-integration and schema

transformation.

Schema transformation is a three step process: schema conforming, schema merging and schema

improvement. This phase is performed by applying well-known transformation patterns, until the

final virtual schema is obtained.

The tool also supports the addition of new schemas in the AutoMed repository, querying of the

schemas using IQL and several tools used to guide the user through the integration process.

Chapter 4

Architecture of the Application

The architecture of a software product is one of the most critical aspects. It dictates how extensible

and maintainable an application is and how well it will cope to changes in future.

This chapter presents the architecture of Interactive Database Integration Tool and is structured

as follows. Section 4.1 gives an overview of the architecture of the application, Section 4.2 outlines

the transformation patterns framework, Section 4.3 discusses about the model and Section 4.4

presents the view. In Section 4.5, a short tutorial is given about how a new transformation pattern

can be introduced in the application. This also serves as proof about the strength of the architecture

employed.

4.1 Overview of the Architecture

The goal of the architecture presented in this paper is to clearly separate the model (i.e. data

and behaviour) from the view (i.e. user interface), whilst creating a powerful and extensible

transformation patterns framework. In the end, adding a new transformation pattern into the

application should be as simple as extending one class, without the modification of the existing

code.

The diagram in Figure 4.1 contains the main packages of the application. The packages at

the top of the hierarchy depend on the packages below them. In other words, in order to reuse a

package in another product, all packages below it must be extracted as well.

Figure 4.1: Architecture of the Application. Diagram generated using Structure101 [Str].

The two interface packages at the bottom of the hierarchy contain interfaces used to break

cyclic dependencies, i.e. modules that depend on each other. In this way, for instance, the

ro.dta.idbi.patterns package can be reused in another product without having to reuse the user

28

4.2. The Transformation Patterns Framework 29

interface of the application, which is above it in this hierarchy.

The model of the application is contained in four packages situated at the bottom of the hierar-

chy: ro.dta.idbi.model, ro.dta.idbi.patterns and ro.dta.idbi.patterns.primitives and ro.dta.model.dy-

namicpattern. Package ro.dta.idbi.model contains classes used to define new transformation pat-

terns (i.e. AbstractPattern), new primitive BAV transformations (i.e. AbstractPrimitivePattern),

handle integration projects (i.e. IntegrationProject) and perform operations in the AutoMed repos-

itory (i.e. AutoMedUtils). This package is presented in more detail in Section 4.3.

Package ro.dta.idbi.patterns contains the implementation of the transformation patterns de-

scribed in Chapter 5, while package ro.dta.idbi.patterns.primitives contains the implementation

of the five primitive BAV transformations: add, delete, extend, contract and rename. Package

ro.dta.idbi.dynamicpattern contains the implementation of the pattern discovery method described

in Chapter 6.

The view of the application is contained in three packages: ro.dta.idbi.ui, ro.dta.idbi.ui.sql and

ro.dta.idbi.ui.patterns and is presented in detail in Section 4.4. ro.dta.idbi.ui contains the user

interface elements of the application, while ro.dta.idbi.ui.sql contains the visual elements for the

constructs in the SQL metamodel and for SQL diagrams. ro.dta.idbi.ui.patterns contains classes

for the user interface of the transformation patterns defined in ro.dta.idbi.patterns and a class used

to define the UI for new transformations (i.e. AbstractPatternDialog).

Since the model of the application is situated below the view in the diagram in Figure 4.1, it is

obvious that it can be independently reused in another application.

4.2 The Transformation Patterns Framework

The goal of the transformation patterns framework is to allow the introduction of new transfor-

mation patterns in the application without having to modify the existing code. This goal can be

satisfied by respecting the following conventions:

Convention 4.1. All transformation patterns must extend AbstractPattern (described in Section

4.3) and are stored and loaded from the ro.dta.idbi.patterns and ro.dta.idbi.patterns.primitives

packages.

Convention 4.2. All transformation pattern must contain the following static fields:

� String NAME: the short name of the pattern

� String DESCRIPTION: a description of what the pattern does

� String COMMAND: the command associated with the pattern

� EnumSet<IntegrationOperation> OPERATION: the schema transformation steps that the pat-

tern can be applied in. This can be CONFORMING, MERGING, IMPROVING or any combi-

nation of these.

Convention 4.3. The user interface associated with transformation patterns must extend Ab-

stractPatternDialog, be stored in the ro.dta.idbi.ui.patterns package and their name must be the

name of the transformation pattern class suffixed with the word Dialog.

Convention 4.4. If a transformation pattern has a user interface class associated with it, it must

contain a static method with the signature boolean isValid(Schema, Object[]), returning true if

the transformation can be applied to the selected objects in the context of the schema passed as

parameter.

30 Chapter 4. Architecture of the Application

In the user interface, described in Section 4.4, if the user selects several items and right-clicks

the SQL diagram, the packages listed in Convention 4.1 are scanned using the Java Reflection API

and only those patterns that can be applied in the current integration step are considered. This is

done by comparing the static field OPERATION with the current integration step.

Next, the isValid method of all patterns that have a user interface associated with them is called

and only those patterns that can be applied to the currently selected items are shown.

The execution of a command is done by comparing the COMMAND static field to the name

of the command being executed. If a pattern is found, it is instantiated and the execute method,

described in Section 4.3, is fired.

This strategy ensures that no code modification is necessary when creating a new transformation

pattern, if the conventions listed above are respected.

4.3 The Model of the Application

The model of the application holds the data and behaviour and is composed of four packages:

ro.dta.idbi.model, ro.dta.idbi.patterns, ro.dta.idbi.patterns.primitives and ro.dta.idbi.dynamic −
pattern. This section presents some of the most important features and classes in the model.

The AbstractPattern Class

The AbstractPattern abstract class, shown in Figure 4.3, lies at the foundation of the model of

the application. By subclassing this class new transformation patterns can easily be introduced in

the application. The execution of any pattern follows the same six steps, as illustrated in Figure

4.2:

If macro

is valid

1: Check macro

string

2: Parse macro

string

3: Verify pattern

parameters

4: Generate

primitive BAV

transformations

If pattern

can be applied

5: Execute

primitive BAV

transformations

6: Return resulting

schema

Figure 4.2: Steps in the execution of a transformation pattern.

1. Check macro string. Every transformation pattern has a macro command associated with

it, which is expanded into one or several primitive BAV transformations. The macro command

passed to the transformation is validated against a regular expression. The pattern field

must be initialised in the constructor of the subclass with the appropriate regular expression

associated with the command.

2. Parse macro string. The parameters of the pattern are extracted from the textual repre-

sentation of the macro command. This is done by implementing the abstract method void

parse (String trans).

3. Verify pattern parameters. Some transformation patterns, called knowledge-based

patterns [MP98], must satisfy certain conditions in order for them to be successful. The

4.3. The Model of the Application 31

boolean verify() method returns true if the parameters of the transformation pattern, extracted

from Step 2, satisfy these conditions.

4. Generate primitive BAV transformations. The macro command is expanded into prim-

itive BAV transformations, expressed in textual form. This is accomplished by implementing

the abstract method List<String> getPrimitiveCommands(), which returns a list of the primitive

BAV transformations.

5. Execute primitive BAV transformations. The primitive BAV transformations are exe-

cuted in sequence.

6. Return resulting schema. The final schema is returned as a result of the execution of the

transformation pattern.

#pattern : Pattern

#sourceSchema : Schema

+table : Construct

+column : Construct

+primaryKey : Construct

+foreignKey : Construct

+AbstractPattern(sourceSchema : Schema)

+AbstractPattern(sourceSchema : String)

+check(trans : String) : boolean

+execute(trans : String) : Schema

#parse(trans : String) : void

#getPrimitiveCommands() : List<String>

#verify() : boolean

+execute(schema : Schema, command : String) : Schema

+execute(schema : Schema, commands : String []) : Schema

AbstractPattern

Figure 4.3: The AbstractPattern class diagram.

These steps are implemented in the source code of the application in the execute method of the

AbstractPattern class, as shown in Listing 4.1.

Listing 4.1: Execution of a transformation pattern

public Schema execute (f ina l St r ing t rans) {
// Step 1

i f (! check (t rans)) {
throw new I l l ega lArgumentExcept ion ("Command is invalid.") ;

}

// Step 2

parse (t rans) ;

// Step 3

i f (! verify ()) {
throw new I l l ega lArgumentExcept ion ("Can’t apply this transformation.") ;

}

// Step 4

List<Str ing> commands = getPrimitiveCommands () ;

// Step 5

Schema crtSchema = sourceSchema ;

32 Chapter 4. Architecture of the Application

for (S t r ing cmd : commands) {
try {

crtSchema = AbstractPattern . execute (crtSchema , cmd) ;

} catch (Exception e) {
throw new TransformationException (e) ;

}
}

// Step 6

return crtSchema ;

}

The class contains two static methods named execute, illustrated in Figure 4.3. One of them is

for the execution of only one macro command using the strategy described in Section 4.2, while

the other method is for the execution of a sequence of macro commands.

The AbstractPattern class also contains static fields for the basic SQL constructs used by the

AutoMed library (i.e. table, column, primary key and foreign key), and several pre-defined regular

expressions, listed in Table 4.2, which are commonly used in practice.

Name of the static field Description

SPACE REGEX Any number of spaces

COMMA REGEX One comma surrounded by any number of spaces

NAME REGEX An alphanumerical sequence of characters

TABLE REGEX Name of a table, i.e. ⟪table⟫
COL REGEX Name of a column, i.e. ⟪table, col⟫
VAL SEQ REGEX Sequence of values, i.e. {v1, v2, ..., vn}
COL SEQ REGEX Sequence of COL REGEX, separated by commas

TABLE SEQ REGEX Sequence of TABLE REGEX, separated by commas

TABLE AND COLS REGEX One TABLE REGEX, followed by a sequence

COL REGEX

TABLE DEF REGEX Definition of a table, i.e. table ∶ ⟪table⟫
COL DEF REGEX Definition of a column,

i.e. column ∶ ⟪table, col, opt, type⟫
PK DEF REGEX Definition of a primary key, i.e. primarykey ∶

⟪name, table,⟪table, col1⟫, ...,⟪table, coln⟫⟫
FK DEF REGEX Definition of a foreign key i.e. foreignkey ∶

⟪name, table1,⟪table1, col1⟫, ...,⟪table1, coln⟫,
table2,⟪table2, col1⟫, ...,⟪table2, coln⟫⟫

Table 4.2: Regular expressions in the AbstractPattern class

By combining the constants shown in Table 4.2, regular expressions for new transformation

patterns can be computed.

Example 4.1. Consider the following macro command for a transformation pattern:

4.3. The Model of the Application 33

myCommand (≪table1,col1≫, ≪table1≫, ≪table2≫, {x,y,z})

A regular expression for this macro could be defined as:

”myCommand” + SPACE REGEX + ”\(” + COL REGEX + COMMA REGEX + TABLE SEQ REGEX

+ COMMA REGEX + VAL SEQ REGEX + ”\)”

When defining a new transformation pattern and subclassing AbstractPattern, the developer

is only concerned with initialising the pattern field, implementing the abstract methods and adding

the four static fields listed in Convention 4.2.

All 18 patterns presented in Chapter 5 extend AbstractPattern. An example of how to imple-

ment a transformation pattern is given in Section 4.5.

The AbstractPrimitivePattern Class

The primitive BAV transformations are implemented as transformation patterns in the tool and

extend AbstractPrimitivePattern, which in turn extends AbstractPattern. The reason for doing

this is to allow the user to execute both transformation patterns and primitive transformations

in textual form, whereas the primitive BAV transformations are executed in an object-oriented

manner in the AutoMed library, by calling methods.

Another advantage of this approach is that the reverse transformations associated with patterns

can be automatically derived, as shown in Section 5.1, something that is cumbersome using the

object-oriented manner.

AbstractPrimitivePattern is extended by five classes, representing the five primitive BAV trans-

formations: AddPrimitive, DeletePrimitive, ExtendPrimitive, ContractPrimitive and RenamePrimitive.

The Pattern Class

The Pattern class holds metadata about transformation patterns, such as the name, a descrip-

tion, the command associated with the pattern, the schema transformation steps (i.e. conforming,

merging or improvement) that the pattern can be applied in, the class associated with the model

of the pattern and the class associated with the UI of the pattern, if one exists.

The IntegrationProject Class

The IntegrationProject class is used to model a schema integration project. It holds informa-

tion about the integration strategy and the current progress. It offers the possibility to advance

through an integration project and save/load a project to/from an XML file. The parsing of XML

files is done using the Xerces [Xer] public library.

The class also holds a history of the transformations applied to the schemas. This is an imple-

mentation of the memento design pattern [GHJV95], which makes it possible to restore one of the

schemas being integrated at the current step to a previous state.

The AutoMedUtils Utility Class

The AutoMedUtils utility class holds static methods used to perform various tasks in the

AutoMed repository, such as:

� Wrap a schema

� Run an IQL query over a schema and get the results

34 Chapter 4. Architecture of the Application

� Run an IQL query incrementally over a schema and get the results

� Merge a list of schemas

� Get the primary key column(s) of a table

� Get the parent tables of a table

� Get the foreign key constraint between a parent and a child table

� Get the foreign key constraint between two tables, given the source and target columns

The Utils Utility Class

The Utils class contains static utility methods for retrieving a list of patterns which can be

applied to a given schema transformation step and for generating the scheme definition of the four

constructs in the SQL metamodel. The most significant methods in the class are:

� List<Pattern> getPatterns(IntegrationOperation operation).

Get the transformation patterns that can be applied in the schema transformation step passed

as a parameter.

� String genTableRepresentation(String tblName).

Generate the scheme definition of a table, given its name.

� String genColRepresentation(Object tblName, Object colName, Object nullable, Object type).

Generate the scheme definition of a column, given its description.

� String genFKRepresentation(String fkName, String sourceTable, String targetTable, List<String>
sourceCols, List<String> targetCols).

Generate the scheme definition of a foreign key, given its name, the source and target tables,

and the column associated to the source and target tables.

� String genPKRepresentation(Object[] pkArr).

Convert an object array describing a primary key to the scheme definition of the primary key.

4.4 The View of the Application

The view of the application contains the user interface (UI) elements and is built on top of the

model, by referencing it. This section presents some of the most important classes in the three

view packages: ro.dta.idbi.ui, ro.dta.idbi.ui.sql and ro.dta.idbi.ui.patterns.

The MainFrame Class

The MainFrame class represents the main frame of the application. It contains references to

the RepositoryBrowserPanel displayed on the left, where schemas from the AutoMed repository

are shown, and the tabbed pane on the right, which holds tabs for integration projects or schema

diagrams.

The AbstractPatternDialog Class

The AbstractPatternDialog abstract class is used to define the user interface associated with

a transformation pattern, in the spirit of the figures presented in Chapter 5.

When subclassing it, a static method boolean isValid(Schema schema, Object[] objects) must be

implemented, according to Convention 4.4. The method returns true if the transformation can be

applied in the context of the schema and selected objects passed as parameters. This method is

4.4. The View of the Application 35

used to filter and display to the user only the transformations that can be applied to the selected

constructs.

Two abstract methods must be implemented, mxGraphComponent createOriginalDiagram() and

mxGraphComponent createTransformedDiagram(), showing before and after snapshots. The trans-

formed diagram should also allow the user to customise the parameters of the pattern.

The field macroField is used to display the equivalent macro command and should be updated

whenever the transformed diagram is changed.

The user interface for all 18 transformation patterns presented in Chapter 5 are implemented

by extending this class.

The AbstractDiagram Class

The abstract class AbstractDiagram is used to define new types of diagrams. In the application

two types of diagrams exist: StrategyDiagram and SqlSchemaDiagram. This class could be

extended to introduce diagrams for other metamodels, such as Entity-Relationship or relational.

Every diagram contains an instance of a mxGraphComponent from the JGraph [JGr] public

library, holding the elements of the diagram, and the functionality to save the diagram to various

formats.

The save method is an implementation of the Strategy Design Pattern [FFBS04]. The family of

algorithms for saving a mxGraphComponent to disk is represented by the interface ISaveStrategy,

illustrated in the UML class diagram in Figure 4.4. The strategy used to save the diagram is chosen

at runtime and is passed as parameter to the save method of the AbstractDiagram class.

Three such strategies have been implemented in the application, used to save a diagram in XML,

PNG or EPS formats. Possible extensions include exporting to SVG, JPEG or PDF.

+getExtension() : String

+getFileFilter() : FileFilter

+save(mxGraphComponent, String) : boolean

SaveStrategyXml

+accept(File) : boolean

+getDescription() : String

XmlFilter

+getExtension() : String

+getFileFilter() : FileFilter

+save(mxGraphComponent, String) : boolean

SaveStrategyPng

+accept(File) : boolean

+getDescription() : String

ImageFilter

+getExtension() : String

+getFileFilter() : FileFilter

+save(mxGraphComponent, String) : boolean

SaveStrategyEps

+accept(File) : boolean

+getDescription() : String

EpsFilter

<<Property>> +extension : String

<<Property>> +fileFilter : FileFilter

+save(mxGraphComponent, String) : boolean

<<Interface>>

ISaveStrategy

#parentFrame : IMainFrame

#graphComponent : mxGraphComponent

+save(ISaveStrategy) : boolean

AbstractDiagram

<<use>>

Figure 4.4: Save diagram strategies.

The StrategyDiagram Class

The StrategyDiagram class extends AbstractDiagram and is used when defining the integra-

tion strategy tree. It exposes the functionality to save and load from the XML format and to check

if the strategy is valid. A strategy is said to be valid if it does not contain duplicate schemas and

all intermediate nodes (i.e. intermediate schemas) have unique names assigned to them.

StrategyDiagram contains an instance of the StrategyGraph class, which extends mxGraph

36 Chapter 4. Architecture of the Application

and is a type of graph that allows the user to edit the values of vertices marked as intermediate,

i.e. intermediate schemas in the integration strategy.

The SqlSchemaDiagram Class

Schemas expressed in the SQL metamodel are visually displayed as diagrams, which essentially

are graphs. The SqlSchemaDiagram class extends AbstractDiagram and decodes a schema from

the AutoMed repository and shows it to the user.

Instances of the SqlSchemaDiagram class are usually contained in instances of SqlSchemaPanel,

which displays a tool bar, allowing the user to perform various operations on the SQL schema.

The SqlGraph Class

The SqlGraph class holds information about a SQL schema. It extends the mxGraph class of

the JGraph [JGr] public library. In the graph G = (V,E) describing a SQL schema, V is the set of

tables and columns and E is the set of foreign key constraints. In JGraph, the elements in both V

and E are called cells.

The following classes extend AbstractSqlCell, model the user interface of constructs from the

SQL metamodel and can be added to a SqlGraph:

� SqlTableCell: visual representation a table. It contains functionality to add/remove/get

columns, get the foreign keys sourced at this table and get the primary key column(s) of

the table.

� SqlColumnCell: visual representation of a column. Columns can only be added to tables and

are described by their name, the parent table, optionality and type.

� SqlForeignKeyCell: visual representation of a foreign key. It holds information about the

source and target tables and the source and target columns that are part of the foreign key.

This class also contains style definitions, which are passed in the constructor of the above types

of cells:

Name of style Description

TABLE Default style of a table

SEL TABLE Table with an orange background

COLUMN Default style of a column

SEL COL Column with an orange background

PRIMARYKEY Primary key column

SEL PK Primary key column with an orange background

FK EDGE Default style of a foreign key

Table 4.3: Cell styles defined in the SqlGraph class.

This class can be extended to create new types of SQL diagrams with different behaviour,

such as the EditableGraph class, which allows the user to edit the contents of cells that have

the style property set to SEL TABLE or SEL COLUMN, or the NormaliseGraph class used in

the NormalisationPattern (described in Section 5.1.1), which allows the user to drag and drop

columns in the graph.

4.5. Adding a New Transformation Pattern 37

4.5 Adding a New Transformation Pattern

Consider the example of defining the forward transformation of the Child/Table Equivalence,

presented in Section 5.1.5, which can be applied during the schema conforming step. This is

done by creating a class named ColToTable in the package ro.dta.idbi.patterns (according to

Convention 4.1), which subclasses AbstractPattern, and performing the following steps six steps.

Other patterns may be implemented in the same manner.

Step 1: Defining the properties of the pattern

The four static fields describing the transformation pattern, listed in Convention 4.2, have to

be added, as shown in Listing 4.2.

Listing 4.2: Description of the Pattern

/**

* Name of the pa t t e rn

*/

public stat ic f ina l St r ing NAME = "Column to Table" ;

/**

* Descr ip t i on o f the pa t t e rn

*/

public stat ic f ina l St r ing DESCRIPTION = "Move column to a new table" ;

/**

* Name of the command a s s o c i a t e d wi th the pa t t e rn

*/

public stat ic f ina l St r ing COMMAND = "col_to_table" ;

/**

* I n t e g r a t i on phase during which the command i s app l i e d

*/

public stat ic f ina l EnumSet<Integrat ionOperat ion> OPERATION = EnumSet

. o f (In teg ra t i onOpera t i on .CONFORMING) ;

Step 2: Initialising the pattern field

The macro associated with this transformation pattern is:

col to table (⟪table, col⟫,⟪new table⟫)

The pattern field is initialised in the constructor of ColToTable with the regular expression

associated with the pattern, as shown in Listing 4.3.

Listing 4.3: Initialising the pattern field

/**

* Column to t a b l e pa t t e rn c l a s s cons t ruc t o r

*

* @param sourceSchema

* Source schema over which the t rans format ion i s app l i e d

*/

38 Chapter 4. Architecture of the Application

public ColToTable (f ina l Schema sourceSchema) throws NotFoundException ,

In t eg r i t yExcep t i on {
super (sourceSchema) ;

pattern = Pattern . compi le ("ˆ" + COMMAND + SPACE REGEX + "\\((" + COL REGEX + ")

" + COMMAREGEX + "(" + TABLE REGEX + ")\\)") ;

}

Step 3: Implement the parse method

The abstract method void parse(String trans) is implemented and the elements defining the

pattern are extracted from the textual representation of the command. In this case, the elements

are the column to be moved to a new table and the name of the new table.

Listing 4.4: The parse method

@Override

protected void parse (f ina l St r ing t rans) {
f ina l Matcher matcher = pattern . matcher (t rans) ;

matcher . f i nd () ;

o r i gCo lS t r = matcher . group (1) ;

o r i gCo l = parseColName (o r i gCo lS t r) ;

newTableStr = parseTableName (matcher . group (2)) ;

}

Step 4: Implement the verify method

The abstract method boolean verify() is used to verify if the command satisfies all constraints

and can be applied. In this case, there are no constraints to be satisfied, so the method simply

returns true.

Listing 4.5: The verify method

@Override

protected boolean verify () {
return true ;

}

Step 5: Implement the getPrimitiveCommands method

The abstract method List<String> getPrimitiveCommands() returns the extension of the macro

command as a sequence of primitive BAV transformations, expressed in textual form.

In Listing 4.6, the class ExtentGenerator is used to generate the extents of the BAV trans-

formations for this transformation pattern. The static methods belonging to the Utils class are

explained in Section 4.3.

Listing 4.6: The getPrimitiveCommands method

@Override

protected List<Str ing> getPrimitiveCommands () throws NotFoundException ,

In t eg r i t yExcep t i on {

4.5. Adding a New Transformation Pattern 39

f ina l List<Str ing> r e s u l t = new ArrayList<Str ing >() ;

f ina l SchemaObject colObj = sourceSchema . getSchemaObject (o r i gCo lS t r) ;

f ina l IExtentGenerator gen = new ExtentGenerator (or igCo lSt r , o r i gCo l) ;

S t r i ngBu i l d e r cmd = new St r i ngBu i l d e r () ;

// Step 1 : add new t a b l e

St r ing i q l = gen . getExtentsForStep (1) . get (0) ;

cmd . append ("add (") ;

cmd . append (U t i l s . genTableRepresentat ion (newTableStr)) ;

cmd . append (", ") . append (i q l) . append (")") ;

r e s u l t . add (cmd . t oS t r i ng ()) ;

// Step 2 : add column to the new t a b l e

i q l = gen . getExtentsForStep (2) . get (0) ;

cmd . setLength (0) ;

cmd . append ("add (") ;

Object [] colScheme = colObj . getSchemeDef in i t ion () ;

cmd . append (U t i l s . genColRepresentat ion (newTableStr , o r i gCo l . getValue () ,

colScheme [2] , colScheme [3])) ;

cmd . append (",") . append (i q l) . append (")") ;

r e s u l t . add (cmd . t oS t r i ng ()) ;

// Step 3 : make new column PK in new t a b l e

i f (sqlModel . i sFeature InUse (SQLModelDef .PRIMARYKEY)) {
Object [] pkArr = new Object [3] ;

pkArr [0] = newTableStr + "_pk" ;

pkArr [1] = newTableStr ;

pkArr [2] = "<<" + newTableStr + "," + or igCo l . getValue () + ">>" ;

cmd . setLength (0) ;

cmd . append ("add (") ;

cmd . append (U t i l s . genPKRepresentation (pkArr)) ;

cmd . append (")") ;

r e s u l t . add (cmd . t oS t r i ng ()) ;

}

// Step 4 : Create FK column in o r i g i n a l t a b l e

i f (sqlModel . i sFeature InUse (SQLModelDef .FOREIGN KEY)) {
List<Str ing> c o l = new ArrayList<Str ing >() ;

c o l . add (or i gCo l . getValue ()) ;

cmd . setLength (0) ;

cmd . append ("add (") ;

cmd . append (U t i l s . genFKRepresentation (or i gCo l . getKey () , newTableStr , c o l)) ;

cmd . append (")") ;

r e s u l t . add (cmd . t oS t r i ng ()) ;

}

return r e s u l t ;

}

Step 6 (Optional): Create the UI class

This step is only performed if the transformation pattern should have an user interface associated

with it. According to Convention 4.3, the AbstractPatternDialog class must be extended and the

40 Chapter 4. Architecture of the Application

new class must be named ColToTableDialog and stored in the package ro.dta.idbi.ui.patterns.

Convention 4.4 states that a static method named isValid must be created. The transformation

pattern can only be applied to mandatory columns, as shown in Listing 4.7.

Listing 4.7: The isValid method

public stat ic boolean i sVa l i d (f ina l Schema schema , f ina l Object [] o b j e c t s) {
i f (ob j e c t s . l ength != 1 | | ! (o b j e c t s [0] instanceof ISqlColumn)) {

return fa lse ;

}

f ina l ISqlColumn co l = (ISqlColumn) ob j e c t s [0] ;

return ! c o l . i sNu l l a b l e () ;

}

The two abstract methods presented in Section 4.4 must be implemented in order to display the

before and after views, and macroField must be updated to display the command used to perform

the transformation. The final user interface is illustrated in Figure 5.11.

Step 7 (Optional): Implement the reverse transformation

Since we are dealing with a bi-directional transformation, it makes sense to implement the reverse

transformation. This is done by creating a class ColToTableRev in the package ro.dta.idbi.patterns

by following the same steps as above.

As explained in Section 5.1, the primitive commands of the reverse transformation are derived

automatically by reversing the order of the reverse transformations. This can be easily done, as

shown in Listing 4.8, because the primitive commands are expressed in textual form.

Listing 4.8: The getPrimitiveCommands method in the reverse transformation

@Override

protected List<Str ing> getPrimitiveCommands () throws NotFoundException ,

In t eg r i t yExcep t i on {
ColToTable forward = new ColToTable (sourceSchema , or igCo lSt r , newTableStr) ;

L i s t<Str ing> commands = forward .getPrimitiveCommands () ;

L i s t<Str ing> r e s u l t = new ArrayList<Str ing >() ;

for (S t r ing cmd : commands) {
r e s u l t . add (0 , Abst ractPr imi t ivePatte rn . getReverseTrans (cmd)) ;

}

return r e s u l t ;

}

At this point, because of the way the transformation patterns framework, described in Section

4.2, is implemented, no other modifications are necessary and the pattern is available in the user

interface.

4.6 Unit Testing

Unit testing is concerned with testing individual components of the application. The tests serve

as proof that any modification of the code will not introduce bugs in the application and are also

a good example of how the code can be used.

4.7. Implementation Statistics 41

The transformation patterns module is the most critical module of the application. For each of

the 18 transformation patterns implemented in the tool, a test class has been implemented (using

the JUnit [JUn] public library), which contains four test methods: one to check that the check

method returns false for invalid macro commands, one to check that the check method returns true

for legal commands, one to check that no transformations are executed if an invalid macro command

is passed to the execute method and one to check that executing a valid command produces the

expected results.

This way, whenever the transformation patterns are modified, the whole test suite can be exe-

cuted to check that all patterns produce the expected result and that no bugs have been introduced

in the code.

4.7 Implementation Statistics

The following table shows some statistics about the implementation of the tool. In the table, the

McCabe cyclomatic complexity [McC76] is defined as a software metric that indicates the complex-

ity of a program. It is measured by analysing the control flow graph, i.e. a graph representation

of all paths that might be traversed in a program. In general, a low complexity is preferred, as it

limits the number of possible paths in the code. From the total lines of code that the source code

contains, approximately 99% have been implemented from scratch.

Number of packages 12

Number of classes 191

Number of interfaces 25

Total lines of code Approx. 16.500

McCabe cyclomatic complexity 2.1

Number of test methods 109

The project was initiated with the idea in mind that at some point it might be extended by other

persons, so producing a clean, fully-commented code was a considered important. The comments

associated to the code are publicly available at [IDB].

4.8 Summary

This chapter presented the architecture of the application, something that has received consid-

erable attention throughout the development of this project. By ensuring that the model and view

are efficiently divided and that no circular dependencies exist, individual modules can be reused in

other products.

Using the transformation patterns framework proposed, new patterns can easily be introduced

by performing as little as six steps, without having to modify any of the existing code. This makes

the architecture highly extensible and maintainable. A short demonstration of how a new pattern

can be added to the tool has been included in this chapter.

In order to ensure that by modifying the code no bugs are introduced in the application, unit

tests have been implemented.

Chapter 5

Transformation Patterns

Transformation patterns represent sequences of primitive BAV transformations, which are used to

map an input schema to an output schema and that occur often in practice. They are applied

during the schema transformation step of the database schema integration process.

The schema illustrated in Figure 5.1 is used to exemplify the transformation patterns presented

in this chapter. It holds information about artists, which can be male or female, and their work,

which can either be audio or video. It also contains

The structure of this chapter is as follows. Section 5.1 presents some of the most common pat-

terns applied during the schema conforming phase, Section 5.2 presents transformations for the

schema merging phase and Section 5.3 presents transformations for the schema improvement

phase. Every transformation pattern is given with a short description, the macro(s) used to apply

the pattern and an example of how the pattern is implemented in the tool.

Figure 5.1: Schema used throughout this chapter. Diagram generated using the tool.

5.1 Schema Conforming

Unlike the schema merging and schema improvement transformations, schema conforming trans-

formations are applied bi-directionally and are called equivalences. Given a sequence of primitive

42

5.1. Schema Conforming 43

BAV transformations, the reverse transformation sequence can be automatically derived by apply-

ing the reverse transformations in reverse order.

Consider the following primitive BAV transformations for the SQL metamodel, where iql rep-

resents the extent of the construct:

1 add (table:⟪t⟫, iql)

2 add (column:⟪t,c,m,d⟫, iql)

3 add (primarykey:⟪pk,t,⟪t,c1⟫, ..., ⟪t,cn⟫⟫)

4 add (foreignkey:⟪fk,t1,⟪t1,c1⟫, ..., ⟪t1,cn⟫,t2,⟪t2,c1⟫, ..., ⟪t2,cn⟫⟫)

5 rename (table:⟪t1⟫, table:⟪t2⟫)

6 rename (column:⟪t,c1,m,d⟫, column:⟪t,c2,m,d⟫)

7 rename (primarykey:⟪pk1,t,⟪t,c1⟫, ..., ⟪t,cn⟫⟫,

primarykey:⟪pk2,t,⟪t,c1⟫, ..., ⟪t,cn⟫⟫)

8 rename (foreignkey:⟪fk1,t1,⟪t1,c1⟫, ..., ⟪t1,cn⟫,t2,⟪t2,c1⟫, ..., ⟪t2,cn⟫⟫,

foreignkey:⟪fk2,t1,⟪t1,c1⟫, ..., ⟪t1,cn⟫,t2,⟪t2,c1⟫, ..., ⟪t2,cn⟫⟫)

The associated reverse BAV transformations are:

1 delete (table:⟪t⟫, iql)

2 delete (column:⟪t,c,m,d⟫, iql)

3 delete (primarykey:⟪pk,t,⟪t,c1⟫, ..., ⟪t,cn⟫⟫)

4 delete (foreignkey:⟪fk,t1,⟪t1,c1⟫, ..., ⟪t1,cn⟫,t2,⟪t2,c1⟫, ..., ⟪t2,cn⟫⟫)

5 rename (table:⟪t2⟫, table:⟪t1⟫)

6 rename (column:⟪t,c2,m,d⟫, column:⟪t,c1,m,d⟫)

7 rename (primarykey:⟪pk2,t,⟪t,c1⟫, ..., ⟪t,cn⟫⟫,

primarykey:⟪pk1,t,⟪t,c1⟫, ..., ⟪t,cn⟫⟫)

8 rename (foreignkey:⟪fk2,t1,⟪t1,c1⟫, ..., ⟪t1,cn⟫,t2,⟪t2,c1⟫, ..., ⟪t2,cn⟫⟫,

foreignkey:⟪fk1,t1,⟪t1,c1⟫, ..., ⟪t1,cn⟫,t2,⟪t2,c1⟫, ..., ⟪t2,cn⟫⟫)

Example 5.1. The following sequence of BAV transformations is used to move the age column

from the male and female tables from the schema in Figure 5.1 to their parent table, artists:

1 add (column:⟪artists,age,null,int4⟫, ⟪female,age⟫ ++ ⟪male,age⟫)

2 delete (column:⟪female,age,notnull,int4⟫,

[{x,age} ∣ {x} ← ⟪female⟫; {x,age} ← ⟪artists,age⟫])

3 delete (column:⟪male,age,notnull,int4⟫,

[{x,age} ∣ {x} ← ⟪male⟫; {x,age} ← ⟪artists,age⟫])

The reverse transformation sequence can be derived automatically:

1 add (column:⟪male,age,notnull,int4⟫,

[{x,age} ∣ {x} ← ⟪male⟫; {x,age} ← ⟪artists,age⟫])

2 add (column:⟪female,age,notnull,int4⟫,

[{x,age} ∣ {x} ← ⟪female⟫; {x,age} ← ⟪artists,age⟫])

3 delete (column:⟪artists,age,null,int4⟫,⟪female,age⟫ ++ ⟪male,age⟫)

In this section more emphasis is put on the forward transformations, as the reverse transforma-

tions are implemented in a similar way.

44 Chapter 5. Transformation Patterns

5.1.1 Table Normalisation Equivalence

Description of the Transformation Pattern

In database theory, normalisation is the process of restructuring a database schema in order to

minimise redundancy. Redundancy can be expressed formally in terms of the patterns of depen-

dencies in a table. Dependencies represent logical constraints on databases.

Definition 5.1 Functional dependency

Let A⃗ = {a1, a2...an} be a set of columns belonging to the same table. We say that A⃗ functionally

determines a column B, denoted A⃗ → B, if each A⃗ value is associated with exactly one B value.

This is also called a functional dependency (FD). Formally, the dependency holds if in a table T :

∀u, v ∈ T,u[ai] = v[ai],1 ≤ i ≤ n⇒ u[B] = v[B]
Other types of dependencies are multi-valued dependency (MVD), join dependency (JD) and tran-

sitive dependency (TD).

Definition 5.2 Extended functional dependency

Definition 5.1 can be extended, such that A⃗ functionally determines a set of columns B⃗ = {b1, b2...bm},

denoted A⃗→ B⃗, if A⃗ functionally determines each column in B⃗.

artists

artistid name username? country city phone prefix

1 Tudor Dobrila NULL Romania Iasi +40

2 John Doe JohnDoe Romania Iasi +40

3 Mary Jones MaryJones Romania Iasi +40

4 Andrew King NULL UK London +44

5 Sandy Queen Sandy UK London +44

6 Monica Green NULL US New York +35

Table 5.1: The artists table, containing redundancy.

Normal forms [Cod70] represent guidelines for database design. They enforce restrictions on the

schema and help minimise the redundancy. Several normal forms have been introduced in [Cod70]

and [Fag79], such as the first normal form (1NF), second normal form (2NF), third normal form

(3NF), Boyce-Codd Normal Form (BCNF), etc.

Example 5.2. We can notice that the example in Table 5.1 is in 2NF, but not in 3NF, because

{city} → {country, phone prefix}.

Macro Command of the Transformation Pattern

Most of the normal forms involve performing a lossless decomposition of a table orig table in

order to remove a dependency. This can be accomplished in the database integration tool using

the following macro:

normalise table (⟪orig table⟫, ⟪new table⟫, {a1, a2...an}, {b1, b2...bm}),

where {a1, a2...an} represents the determinant set, {b1, b2...bm} is the dependent set and new table

is the name of the table being introduced.

The macro is expanded into the following primitive BAV transformations:

5.1. Schema Conforming 45

1 Add the new table new table:

add (table:⟪new table⟫, distinct [{a1, a2...an} ∣ {x, a1} ← ⟪orig table, a1⟫; {x, a2} ← ⟪orig table, a2⟫;

... ; {x, an} ← ⟪orig table, an⟫])

2 Add the columns in the determinant set to the new table:

add (column:⟪new table, ci, o, t⟫,

distinct [{{a1, a2...an}, ai} ∣ {a1, a2...an} ← ⟪new table⟫]), 1≤i≤n

3 Add the Primary Key constraint with the determinant set columns:

add (primarykey:⟪new table pk,

new table,⟪new table, c1⟫,⟪new table, c1⟫, ..., ⟪new table, c1⟫⟫)

4 Add the Foreign Key constraint from the columns in the original table to the newly created

columns:

add (foreignkey:⟪orig table isa new table fk,

orig table, ⟪orig table, a1⟫,⟪orig table, a2⟫,..., ⟪orig table, an⟫,

new table, ⟪new table, c1⟫,⟪new table, c2⟫,...,⟪new table, cn⟫ ⟫)

5 Add the columns in the dependent set to the new table:

add (column:⟪new table, di, o, t⟫, distinct [{{a1, a2...an}, bi} ∣{x, a1} ← ⟪orig table, a1⟫; {x, a2}
← ⟪orig table, a2⟫; ... ; {x, an} ← ⟪orig table, an⟫; {x, bi} ← ⟪orig table, bi⟫]), 1≤i≤m

6 Delete the columns in the dependent set from the original table:

delete (column:⟪orig table, bi, o, t⟫, [{x, bi} ∣ {x, a1} ← ⟪orig table, a1⟫; {x, a2} ← ⟪orig table, a2⟫;

... ; {x, an} ← ⟪orig table, an⟫; {{a1, ..., an},bi} ← ⟪new table, di⟫]), 1≤i≤m

The associated reverse transformation pattern is derived automatically as shown at the beginning

of Section 5.1 and is given by the macro:

reverse normalise table (⟪orig table⟫, ⟪new table⟫, {a1, a2...an}, {b1, b2...bm})

Implementation of the Transformation Pattern

The forward transformation can only be applied to tables. The user is prompted with a window

allowing him to define the name of the new table and the determinant and dependent sets by

dragging and dropping columns from the original table to the newly created table, as illustrated in

Figure 5.2.

After calling normalise table (⟪artists⟫, ⟪cities⟫, city, {country, phone prefix}) on the schema in

Figure 5.1, a functional dependency {country} → {phone prefix} still exists, so the schema is

not in 3NF. By calling normalise table (⟪cities⟫, ⟪countries⟫, country, phone prefix), this functional

dependency is removed. The result of applying these two transformations is shown in Figure 5.3.

This is a lossless decomposition, because by joining the three tables using the following IQL query,

we get the original table shown in Table 5.1:

[{a,ni,u,ci,co,p} ∣ {a,n} ← ⟪artists,name⟫; {a,u} ← ⟪artists,username⟫; {a,ci} ← ⟪artists,city⟫; {ci,co}
← ⟪cities,country⟫; {co,p} ← ⟪countries,phone prefix⟫]

The reverse transformation can be applied to two tables, if there exists a foreign key constraint

from one the tables to the other’s primary key column(s), and has a similar user interface.

46 Chapter 5. Transformation Patterns

Figure 5.2: User interface for the normalisation pattern.

Figure 5.3: Schema in 3NF after the application of the normalisation pattern.

The Functional Dependency Discovery Tool

In order to assist the user with discovering functional dependencies, a functional dependency

discovery tool has be added to the application, which can be accessed from the main menu bar

of the application in the ”Tools” menu, or by right-clicking any table in SQL diagrams. It uses

the approach called TANE presented in [HKPT99] and the source code available at [TAN]. The

tool runs on computers that have Perl installed on them. In addition to the usual functional

dependencies (see Definition 5.1), TANE also discovers approximate functional dependencies.

Definition 5.3 Approximate functional dependency

An approximate functional dependency is a functional dependency that almost holds, i.e. by re-

moving some rows from the table the functional dependency holds. For instance, the position in a

company can be approximately determined by the salary that an employee earns. The number of

rows that must be removed from a relation r in order to obtain a functional dependency has been

formalised in [HKPT99] as:

error(X → A) =min{∣s∣ ∣ s ⊆ r and X → A holds in r ∖ s}/∣r∣
Given a threshold 0 ≤ ε ≤ 1, we say that X → A is an approximate functional dependency iff

error(X → A) is at most ε.

Example 5.3. Consider the table shown in Table 5.1, where another row has been inserted, in

which the phone prefix for Romania is set to +35, instead of +40, as illustrated in Table 5.2.

artists

artistid name username? country city phone prefix

7 Alexander James NULL Romania Bucharest +35

5.1. Schema Conforming 47

Table 5.2: The artists table, containing redundancy.

In this case the functional dependency {country} → {phone prefix} does not hold. But, if we

take ε = 0.2 and compute that error({country} → {phone prefix}) = 1/7 = 0.14 < ε, so we get

that {country} → {phone prefix} is an approximate functional dependency. This can be used to

determine that the phone prefix of Romania in the last row is incorrect and the situation can be

rectified.

The worst case time complexity of the algorithm is exponential in the number of the attributes,

something that cannot be avoided, as all combinations of attributes must be considered, and linear

in the number of tuples contained by the relation. This implies that the tool performs very well

for tables with a small number of attributes and a very large number of rows.

5.1.2 Mandatory Column and Total Generalisation Equivalence

Description of the Transformation Pattern

This equivalence exists between two schemas, where in one schema there exists a table t with a

mandatory column c, taking one of the values {v1, v2, ..., vn}, and in the other schema the column

c is replaced by n tables t1, t2, ..., tn , all of which are children of t, as shown in Figure 5.4.

Definition 5.4 Parent-child relationship

A table tp is called a parent of another table tc if they have the same primary key column(s) and, in

addition, there exists a foreign key constraint from the primary key column(s) of tc to the primary

key column(s) of tp. In this case tc is called a child of tp.

t

pkc_1

...

pkc_k

col

t

pkc_1

...

pkc_k tn

pkc_1

...

pkc_k

tn1

pkc_1

...

pkc_k

..
.

Figure 5.4: Mandatory Column and Total Generalisation Equivalence.

Macro Command of the Transformation Pattern

The forward transformation can be applied using the following macro, with the column col

in table table taking the distinct values {v1, v2, ..., vn}. This results in the tables new table1,

new table2, ..., new tablen being introduced as children of table.

col total generalisation(⟪table, col⟫, ⟪new table1⟫, ..., ⟪new tablen⟫, {val1, ..., valn})

The macro is expanded into the following BAV transformations:

1 Add the new child tables:

add (table:⟪new tablei⟫,

[{x} ∣ {x,’vi’} ← ⟪table, col⟫]), 1≤i≤n

48 Chapter 5. Transformation Patterns

2 Add the primary key column(s) to the child tables:

add (column:⟪new tablei, pkcj , o, t⟫,

[{{pkc1, pkc2, ..., pkck},pkcj} ∣ {pkc1, pkc2, ..., pkck} ← ⟪new tablei⟫]), 1≤i≤n, 1≤j≤k

3 Add the primary key constraints to the child tables:

add (primarykey:⟪new tablei pk,new tablei,⟪new tablei, pkc1⟫,⟪new tablei, pkc2⟫,

...,⟪new tablei, pkck⟫⟫), 1≤i≤n

4 Add the foreign key constraints from the child tables to the parent table:

add (foreignkey:⟪new tablei isa table fk,

new tablei,⟪new tablei, pkc1⟫,⟪new tablei, pkc2⟫, ...,⟪new tablei, pkck⟫,

table,⟪table, pkc1⟫,⟪table, pkc2⟫, ...,⟪table, pkck⟫⟫), 1≤i≤n

5 Remove the column col from the parent table:

delete (column:⟪table, col, o, t⟫,

[{pkc1, pkc2, ..., pkck}, ’v1’} ∣ {pkc1, pkc2, ..., pkck} ← ⟪new table1⟫] ++

... ++ [{pkc1, pkc2, ..., pkck}, ’vn’} ∣ {pkc1, pkc2, ..., pkck} ← ⟪new tablen⟫])

The associated reverse transformation pattern is derived automatically as shown at the beginning

of Section 5.1 and is given by the following macro:

remove col generalisation(⟪table, col⟫, ⟪new table1⟫, ..., ⟪new tablen⟫, {val1, ..., valn})

Implementation of the Transformation Pattern

The forward transformation can be applied to mandatory columns that take a small number of

distinct values. The user is shown a dialog box allowing him to customise the names of the newly

created tables.

If we consider the type column from the audio table shown in Figure 5.1 to take one of the

values {′mp3′,′wav′,′ flac′} and call col total generalisation (⟪audio,type⟫, ⟪flac⟫, ⟪mp3⟫, ⟪wav⟫,

{’flac’, ’mp3’, ’wav’}), three new tables are introduced (i.e. mp3, flac and wav), all being children

of audio, as illustrated in Figure 5.5.

Figure 5.5: User interface for the mandatory column and total generalisation pattern.

The reverse transformation can be applied by selecting n tables and a common parent of the n

tables.

5.1. Schema Conforming 49

5.1.3 Optional Column/Child Table Equivalence

Description of the Transformation Pattern

This equivalence exists between two schemas, where an optional column c belonging to a table

tp is moved to a child table tc and is marked as mandatory, as shown in Figure 5.6.

tp

pkc_1

...

pkc_k

col?

tc

pkc_1

...

pkc_k

tp

pkc_1

...

pkc_k

tc

pkc_1

...

pkc_k

col

Figure 5.6: Optional Column/Child Table Equivalence.

Macro Command of the Transformation Pattern

The forward transformation can be applied using the following macro, with the optional column

col in table table being moved to child table and marked as mandatory:

col to subtype (⟪table, col⟫, ⟪child table⟫)

The macro is expanded into the following BAV transformations. Steps 1-4 are only executed if

the child table does not exist.

1 Add the child table:

add (table:⟪child table⟫,

[{pkc1, pkc2, ..., pkck} ∣ {{pkc1, pkc2, ..., pkck},col} ← ⟪table, col⟫])

2 Add the primary key column(s) to the child table:

add (column:⟪child table, pkci, o, t⟫,⟪table, pkci⟫)

3 Add the primary key constraint to the child table:

add (primarykey:⟪child table pk,

child table,⟪child table, pkc1⟫,⟪child table, pkc2⟫, ...,⟪child table, pkck⟫⟫)

4 Add the foreign key constraint from the child table to the parent table:

add (foreignkey:⟪child table isa table fk,

child table,⟪child table, pkc1⟫,⟪child table, pkc2⟫, ...,⟪child table, pkck⟫,

table,⟪table, pkc1⟫,⟪table, pkc2⟫, ...,⟪table, pkck⟫⟫)

5 Add the column col to the child table and mark it as notnull:

add (column:⟪child table, col, notnull, t⟫,⟪table, col⟫)

6 Remove the optional column col from the parent table:

delete (column:⟪table, col, null, t⟫,⟪child table, col⟫)

The associated reverse transformation pattern is derived automatically as shown at the beginning

of Section 5.1 and is given by the macro:

subtype to col (⟪child table, col⟫, ⟪table⟫)

50 Chapter 5. Transformation Patterns

Implementation of the Transformation Pattern

The forward transformation can be applied to optional columns. Figure 5.7 shows an application

of the pattern for moving the username column from the artists table to a child table called

members.

Figure 5.7: User interface for the optional column/child table transformation pattern.

The reverse transformation can be applied to two tables, where one is the parent of the other and,

in addition, the child contains a mandatory column that is not part of the primary key constraint.

5.1.4 Column Generalisation Equivalence

Description of the Transformation Pattern

This equivalence exists between two schemas, where one of the schemas contains n tables, all

of which are children of another table t and, in addition, the n tables have a common column col.

The second schema contains the same tables with the col column existing only in the parent table

t. This is illustrated in Figure 5.8.

t

pkc_1

...

pkc_k

tn

pkc_1

...

pkc_k

col

t1

pkc_1

...

pkc_k

col

...

t

pkc_1

...

pkc_k

col

tn

pkc_1

...

pkc_k

t1

pkc_1

...

pkc_k

...
...

Figure 5.8: Column Generalisation Equivalence.

Macro Command of the Transformation Pattern

The forward transformation can be applied using the following macro, which causes column col

to be moved from the child tables table1, table2, ..., tablen to their common parent, parent table:

cols to supertype(⟪parent table⟫, ⟪table1, col⟫,⟪table2, col⟫, ..., ⟪tablen, col⟫)

The macro is expanded into the following primitive BAV transformations:

5.1. Schema Conforming 51

1 Add the column to the parent table:

add (column:⟪parent table, col, o, t⟫,⟪table1, col⟫ ++ ⟪table2, col⟫ ++ ... ++ ⟪tablen, col⟫)

2 Delete the column from the child tables:

delete (column:⟪tablei, col, o, t⟫,[{x,col} ∣ {x} ← ⟪tablei⟫; {x,col} ← ⟪parent table, col⟫]),

1≤i≤n

The associated reverse transformation pattern is derived automatically as shown at the beginning

of Section 5.1 and is given by the macro:

col to subtypes(⟪parent table, col⟫, ⟪table1⟫,⟪table2⟫, ..., ⟪tablen⟫)

Implementation of the Transformation Pattern

The forward transformation can be applied by selecting n columns with the same name, col,

from n different tables and a common parent of the n tables, where col will be moved.

For instance, in the example schema from Figure 5.1, the age column from the male and female

table might be moved to the artists table, which is a parent of both male and female. This is

achieved by calling cols to supertype (⟪person⟫, ⟪male,age⟫, ⟪female,age⟫) and the result is shown

in Figure 5.9.

Figure 5.9: User interface for the column generalisation pattern.

The reverse transformation can be applied by selecting n tables, out of which n − 1 tables have

the other table tp as their common parent, and a column belonging to tp to distribute to the n

children. This can only be done if the relationship between the n − 1 child tables and tp is of total

generalisation, otherwise information is lost as a result of applying the pattern.

5.1.5 Column/Table Equivalence

Description of the Transformation Pattern

This equivalence exists between two schemas, where one of the schemas contains a table t with

a column col, while in the other schema column col is represented as a table. In other words, the

second schema contains a table t1 with col as the primary key column and a foreign key constraint

from t to t1, as shown in Figure 5.10.

52 Chapter 5. Transformation Patterns

The reason for introducing such a pattern is that a column from one schema might have more

significance in another schema and be represented as a table.

t

pkc_1

...

pkc_k

col

t

pkc_1

...

pkc_k

col

t1

col

Figure 5.10: Column/Table Equivalence.

Macro Command of the Transformation Pattern

The forward transformation can be applied using the following macro, which causes a table

new table to be introduced, with the primary key column col, and a foreign key from table to

new table:

col to table (⟪table, col⟫,⟪new table⟫)

The macro is expanded into the following BAV transformations:

1 Create the new table:

add (table:⟪new table⟫, distinct [{col} ∣ {y, col} ← ⟪table, col⟫])

2 Add the primary key column to the new table:

add (column:⟪new table, col, o, t⟫,distinct [{col, col} ∣ {y, col} ← ⟪table, col⟫])

3 Add the primary key constraint to the new table: add (primarykey:⟪new table pk,new table,⟪new table, col⟫⟫)

4 Add the foreign key from the original table to the new table:

add (foreignkey:⟪table to new table fk,

table,⟪table, col⟫,new table,⟪new table, col⟫⟫)

The associated reverse transformation pattern is derived automatically as shown at the beginning

of Section 5.1 and is given by the macro:

table to col (⟪new table⟫,⟪table, col⟫)

Implementation of the Transformation Pattern

The forward transformation can be applied to any column. For instance, in the schema presented

in Figure 5.1, the country column from the artists table might have more significance in another

schema and be represented as a table.

By calling col to table (⟪artists,country⟫, ⟪countries⟫), a new table countries is introduced. The

result is shown in Figure 5.11.

The reverse transformation can be applied to two tables, where one of the tables contains a

foreign key to the primary key column of the other table.

5.1.6 Introduction of Total Generalisation Equivalence

Description of the Transformation Pattern

This equivalence exists between two schemas, where one of the schemas contains n tables t1, t2,

..., tn which have the same primary key column(s) and the other schema contains a table tp that

is a parent of the n tables, as illustrated in Figure 5.12.

5.1. Schema Conforming 53

Figure 5.11: User interface for the column/table equivalence

t

pkc_1

...

pkc_k

t2

pkc_1

...

pkc_k

tn

pkc_1

...

pkc_k

...

t1

pkc_1

...

pkc_k

t2

pkc_1

...

pkc_k

tn

pkc_1

...

pkc_k

...

tp

pkc_1

...

pkc_k

Figure 5.12: Table Generalisation Equivalence.

Macro Command of the Transformation Pattern

The forward transformation can be applied using the following macro, which causes parent to

be introduced as the parent of t1, t2, ..., tn.

table total generalisation (⟪parent⟫,⟪t1⟫, ⟪t2⟫,...,⟪tn⟫)

The macro is expanded into the following BAV transformations:

1 Create the parent table:

add (table:⟪parent⟫,⟪t1⟫ ++ ⟪t2⟫ ++ ... ++ ⟪tn⟫)

2 Add the primary key column(s) to the parent table:

add (column:⟪parent,pkci, o, t⟫,

[{x, pkci} ∣ {x, pkci} ← ⟪t1, pkc1⟫] ++

[{x, pkci} ∣ {x, pkci} ← ⟪t2, pkci⟫] ++

... ++ [{x, pkci} ∣ {x, pkci} ← ⟪tn, pkci⟫]), 1≤i≤k

3 Add the primary key constraint to the parent table:

add (primarykey:⟪parentpk,

parent,⟪parent, pkc1⟫,⟪parent, pkc2⟫,...,⟪parent, pkcn⟫⟫)

4 Add the foreign key constraints from the child tables to the parent table:

add (foreignkey:⟪ti isa parent fk,

54 Chapter 5. Transformation Patterns

ti,⟪ti, pkc1⟫,⟪ti, pkc2⟫,...,⟪ti, pkcn⟫,

parent,⟪parent, pkc1⟫,⟪parent, pkc2⟫,...,⟪parent, pkcn⟫⟫), 1≤i≤n

The associated reverse transformation pattern is derived automatically as shown at the beginning

of Section 5.1 and is given by the macro:

remove table generalisation (⟪parent⟫,⟪t1⟫,⟪t2⟫,...,⟪tn⟫)

Implementation of the Transformation Pattern

The forward transformation can be applied to any n tables that have the same primary key

column(s). For instance, if we rename both the maleid column of the male table and the femaleid

column of the female table to id and call table total generalisation (⟪human⟫, ⟪male⟫, ⟪female⟫),

the table human is introduced as a parent of male and female, as shown in Figure 5.13.

Figure 5.13: User interface for the table generalisation equivalence

The reverse transformation can be applied by selecting n tables and a common parent of the n

tables.

5.2 Schema Merging

5.2.1 Addition of Subset

Description of the Transformation Pattern

This transformation pattern maps an input schema containing two unrelated tables tp and tc

into another schema where tp is the parent of tc. This is done by creating a foreign key constraint

from the primary key column(s) of tc to the primary key column(s) of tp, as illustrated in Figure

5.14. This transformation can be applied only if tc ⊂ tp.

tp

pkc_1

...

pkc_k

tc

pkc_1

...

pkc_k

tp

pkc_1

...

pkc_k

tc

pkc_1

...

pkc_k

tc ⊂ tp

Figure 5.14: Addition of Subset Transformation Pattern

5.2. Schema Merging 55

Macro Command of the Transformation Pattern

The following macro can be used to apply this transformation:

add subset (⟪parent⟫, ⟪child⟫)

The expansion of the macro contains only one primitive BAV transformation:

1 add (foreignkey:⟪child isa parent fk,

child,⟪child, pkc1⟫,⟪child, pkc2⟫,...,⟪child, pkcn⟫,

parent,⟪parent, pkc1⟫,⟪parent, pkc 2⟫,...,⟪parent, pkcn⟫⟫)

Implementation of the Transformation Pattern

The transformation pattern can be applied to two tables that have the same primary key col-

umn(s). In order to define the parent-child relationship, the user has to drag an arrow from the

child table to the parent table.

In Figure 5.1, if we rename the column bandid from the table band to artistid by executing the

command rename (column:⟪band,bandid⟫, column:⟪band,artistid⟫), we can introduce a parent-child

relationship by dragging an arrow from band to artists, as shown in Figure 5.15. This can also be

achieved using the command add subset(⟪artists⟫, ⟪band⟫).

Figure 5.15: User interface for the addition of subset transformation.

5.2.2 Addition of Union

This transformation pattern maps a schema containing n unrelated tables that have the same

primary key column(s) to an output schema containing a new table that is a parent (also called

the union) of the original tables. This pattern is identical to the forward transformation of the

Introduction of total generalisation equivalence presented in Section 5.1.6.

5.2.3 Addition of Intersection

Description of the Transformation Pattern

This transformation pattern maps a schema containing n tables that have the same primary key

column(s) to an output schema containing a new table that is a child (also called an intersection)

of the original tables, as illustrated in Figure 5.16.

56 Chapter 5. Transformation Patterns

t

pkc_1

...

pkc_k

t2

pkc_1

...

pkc_k

tn

pkc_1

...

pkc_k

...

t1

pkc_1

...

pkc_k

t2

pkc_1

...

pkc_k

tn

pkc_1

...

pkc_k

...

tc

pkc_1

...

pkc_k

Figure 5.16: Addition of Intersection Transformation Pattern

Macro Command of the Transformation Pattern

The following macro can be used to apply this transformation, where new table is introduced

as a child of tables table1, table2, ..., tablen:

add intersection (⟪new table⟫, ⟪table1⟫, ⟪table2⟫, ..., ⟪tablen⟫)

The macro is expanded into the following BAV transformations:

1 Create the child table:

add (table:⟪new table⟫,

⟪table1⟫ intersect ⟪table2⟫ intersect ... intersect ⟪tablen⟫)

2 Add the primary key column(s) to the child table:

add (column:⟪new table, pkci, o, t⟫,

⟪table1, pkci⟫ intersect ⟪table2, pkci⟫ intersect ... ⟪tablen, pkci⟫), 1≤i≤k

3 Add the primary key constraint to the child table:

add (primarykey:⟪new table pk,

new table,⟪new table, pkc1⟫,⟪new table, pkc2⟫,...,⟪new table, pkck⟫⟫)

4 Add the foreign key constraint from the child table to each of the parent tables:

add (foreignkey:⟪new table isa tablei,

new table,⟪new table, pkc1⟫,⟪new table, pkc2⟫,...,⟪new table, pkck⟫,

tablei,⟪tablei, pkc1⟫,⟪tablei, pkc2⟫,...,⟪tablei, pkck⟫⟫), 1≤i≤n

Implementation of the Transformation Pattern

The transformation can be applied to n tables that have the same primary key column(s). For

instance, in the example schema from Figure 5.1, we could execute add intersection (⟪audio cds⟫,

⟪cds⟫, ⟪audio⟫) in order to create a new table audio cds, holding information about audio CDs, as

shown in Figure 5.17.

5.2.4 Addition of Foreign Key

Description of the Transformation Pattern

This transformation maps an input schema to an output schema that contains an additional

foreign key constraint between two tables, which in the ER metamodel is called a one-to-many

relationship.

5.2. Schema Merging 57

Figure 5.17: User interface for the addition of intersection transformation.

t1

pkc_1

...

pkc_k

c_1

...

c_n

t2

c_1

...

c_n

t1

pkc_1

...

pkc_k

c_1

...

c_n

t2

c_1

...

c_n

Figure 5.18: Addition of Foreign Key Pattern

Macro Command of the Transformation Pattern

The following macro can be used to apply this transformation, where fk name is the name

of the newly introduced foreign key constraint, t1 t2 fk. ⟪t1, col1⟫, ..., ⟪t1, coln⟫ represent the

columns in the source table t1 belonging to the foreign key and ⟪t2, col1⟫, ..., ⟪t2, coln⟫ represent

the columns in the target table belonging to the foreign key.

add otm rel (fk name,⟪t1, col1⟫, ..., ⟪t1, coln⟫,⟪t2, col1⟫, ..., ⟪t2, coln⟫)

The macro is expanded into the following BAV transformations:

1 Create the columns in the source table, only if they did not previously exist:

extend (column:⟪t1, coli, o, t⟫, Range V oid Any), 1≤i≤n

2 Add the foreign key constraint from t1 to t2:

add (foreignkey:⟪fk name,t1, ⟪t1, col1⟫, ..., ⟪t1, coln⟫, t2, ⟪t2, col1⟫, ..., ⟪t2, coln⟫⟫)

Implementation of the Transformation Pattern

The transformation can be applied to any two tables. The user defines the foreign key relation-

ship by dragging arrows from the columns in the source table to the primary key column(s) in the

target table.

For instance, consider the example from Figure 5.3, after the application of the normalisation

pattern. A foreign key from the city column of the band table to the city column from the cities

table can be introduced by executing the command add otm rel (⟪band,city⟫, ⟪cities,city⟫), as shown

in Figure 5.19.

58 Chapter 5. Transformation Patterns

Figure 5.19: User interface for the addition of foreign key transformation.

5.2.5 Addition of Many-To-Many Table

Description of the Transformation Pattern

This transformation maps an input schema to an output schema where a new table is introduced

to represent the many-to-many relationship between two tables. The new table contains the primary

key columns of both tables and two foreign key constraints from the new table to each of the two

tables are added, as shown in Figure 5.20.

t1

pkc1_1

...

pkc1_k

t2

pkc2_1

...

pkc_m

t1

pkc1_1

...

pkc1_k

t2

pkc2_1

...

pkc_m

t1_t2

pkc1_1

...

pkc1_k

pkc2_1

...

pkc2_m

Figure 5.20: Addition of Many-To-Many Table Pattern

Macro Command of the Transformation Pattern

The following macro can be used to apply this pattern, causing a new table new table to be

introduced:

add mtm rel (⟪t1⟫, ⟪t2⟫, ⟪new table⟫)

The macro is expanded into the following BAV transformations:

1 Create the new table:

extend (table:⟪new table⟫, Range V oid Any)

2 Add the primary key column(s) from t1 to the new table:

extend (column:⟪new table, pkc1i, o, t⟫, Range V oid Any), 1≤i≤k

3 Add the primary key column(s) from t2 to the new table:

extend (column:⟪new table, pkc2i, o, t⟫, Range V oid Any), 1≤i≤m

4 Add the primary key constraint to the new table:

add (primarykey:⟪new table pk, new table,⟪new table, pkc11⟫, ..., ⟪new table, pkc1k⟫, ⟪new table, pkc21⟫,

..., ⟪new table, pkc2m⟫⟫)

5.3. Schema Improvement 59

5 Add the foreign key constraint from the new table to the primary key column(s) of t1:

add (foreignkey:⟪new table t1 fk,new table,⟪new table, pkc11⟫, ..., ⟪new table, pkc1k⟫, t1, ⟪t1, pkc11⟫,

..., ⟪t1, pkc1k⟫⟫)

6 Add the foreign key constraint from the new table to the primary key column(s) of t2:

add (foreignkey:⟪new table t2 fk,new table,⟪new table, pkc21⟫, ..., ⟪new table, pkc2m⟫, t2,

⟪t2, pkc21⟫, ..., ⟪t2, pkc1m⟫⟫)

If there are two primary key columns with the same name, one belonging to t1 and one to t2,

their name must be changed to something unique before adding them to the new table. This can

be done by prefixing the name of the column with the name of the parent table.

Implementation of the Transformation Pattern

The transformation can be applied to any two tables. In order to introduce a many-to-many

table between the audio and band tables in Figure 5.1, such that every audio item belongs to one

or more bands and every band can publish one or more audio items, the command add mtm rel

(⟪band⟫, ⟪audio⟫, ⟪band audio⟫) has to be executed, as illustrated in Figure 5.21.

Figure 5.21: User interface for the addition of many-to-many table transformation.

5.3 Schema Improvement

5.3.1 Redundant Column Removal

Description of the Transformation Pattern

The transformation shown in Figure 5.22 maps an input schema containing two tables tp and

tc, with tp a parent of tc, where both tp and tc contain a column named col, to an output schema,

where the redundant column col is removed from tc.

tp

pkc_1

...

pkc_k

col

tc

pkc_1

...

pkc_k

tp

pkc_1

...

pkc_k

col

tc

pkc_1

...

pkc_k

col

Figure 5.22: Redundant column removal transformation

60 Chapter 5. Transformation Patterns

Macro Command of the Transformation Pattern

The macro associated with this transformations is:

redundant col removal (⟪tp, col⟫, ⟪tc, col⟫)

The expansion of the macro contains only one primitive BAV transformation:

1 Remove the column col from the child table:

delete(column:⟪tc, col, o, t⟫, [{x, y} ∣ {x} ← ⟪tc⟫; {x, y} ← ⟪tp, col⟫])

Implementation of the Transformation Pattern

The transformation can be applied by selecting the columns with the same name from the parent

and child tables.

If we consider the result of the transformation presented in Figure 5.15, we can notice that the

city column from the band table is redundant, as it exists in one of its parents, the artists table.

It can be removed by calling redundant col removal (⟪artists,city⟫, ⟪band,city⟫). The result of this

transformation is shown in Figure 5.23.

Figure 5.23: User interface for the redundant column removal transformation

5.3.2 Optional Column To Child Table

This transformation is identical to the forward transformation of the Optional Column/Child

Table Equivalence, presented in Section 5.1.3.

5.3.3 Column Generalisation

This transformation is identical to the forward transformation of the Column Generalisation

Equivalence, presented in Section 5.1.4.

5.3.4 Redundant Foreign Key Removal

Description of the Transformation Pattern

This transformation maps an input schema containing a foreign key from a child table tc, which

also appears in a parent of tc, to an output schema in which the redundant foreign key constraint

is removed. Two cases exist for this transformation, as shown in Figures 5.24 and 5.25.

Macro Command of the Transformation Pattern

The following macro can be used to apply this transformation, where p1 is the parent of t1 and

p2 the parent of t2 and a foreign key exists between p1 and p2. In case (a) t2 ≠ p2 and in case (b)

t2 = p2.

5.3. Schema Improvement 61

tc_1

c_1

...

c_n

tc_2

c_1

...

c_n

tp_1

c_1

...

c_n

tp_2

c_1

...

c_n

tc_1 tc_2

c_1

...

c_n

tp_1

c_1

...

c_n

tp_2

c_1

...

c_n

Figure 5.24: Redundant Foreign Key Removal (a)

tc_1

c_1

...

c_n

tp_1

c_1

...

c_n

tp_2

c_1

...

c_n

tc_1

tp_1

c_1

...

c_n

tp_2

c_1

...

c_n

Figure 5.25: Redundant Foreign Key Removal (b)

redundant fk removal (

⟪fk name1,t1,⟪t1, c1⟫, ..., ⟪t1, cn⟫,t2,⟪t2, c1⟫,..., ⟪t2, cn⟫⟫,

⟪fk name2,p1,⟪p1, c1⟫, ..., ⟪p1, cn⟫,p2,⟪p2, c1⟫,..., ⟪p2, cn⟫⟫)

The macro is expanded into the following BAV transformations:

1 Delete the redundant foreign key constraint:

delete (foreignkey:⟪fk name1, t1,⟪t1, c1⟫, ..., ⟪t1, cn⟫, t2,⟪t2, c1⟫,..., ⟪t2, cn⟫⟫)

2 Delete the redundant columns from t2, that were part of the redundant foreign key constraint:

delete (column:⟪t1, ci, o, t⟫,

[{x, y} ∣ {x} ← ⟪t1⟫; {x, y} ← ⟪p1, ci⟫; {z, y} ← ⟪t2, ci⟫]), 1≤i≤n

Implementation of the Transformation Pattern

The transformation can be applied by selecting a redundant foreign key constraint. If we apply

the transformations shown in Figures 5.15 and 5.19, we notice that the foreign key from band to

cities is redundant, as another foreign key exists from one of band’s parents, artists, to cities. This

transformation is shown in Figure 5.26 and is equivalent to calling the command:

redundant fk removal(⟪band cities fk, band,⟪band,city⟫,cities,⟪cities,city⟫⟫,

⟪artists isa cities fk,artists,⟪artists,city⟫,cities,⟪cities,city⟫⟫).

62 Chapter 5. Transformation Patterns

Figure 5.26: User interface for the redundant foreign key removal transformation.

5.4 Summary

A total of 18 transformation patterns have been implemented in the Interactive Database In-

tegration Tool : 12 for schema conforming (i.e. 6 equivalences), 4 for schema merging and 2 for

schema improvement. Some of these patterns can be used in more than one step, such as the

Addition of union forward transformation, presented in Section 5.1.6, which can be applied during

both the conforming and merging steps.

Each of these transformation has an equivalent macro associated with it, which can be called

from the tool, and a user interface which guides the user in the application of the pattern.

Chapter 6

Pattern Discovery in BAV

Transactions

Chapter 5 presented some of the most common transformation patterns used in database integra-

tion. While they are useful is a large number of situations, they do not represent by any means the

complete set of possible transformations.

To assist the user in the integration process, a method for the dynamic discovery of transfor-

mation patterns from BAV transactions is presented here, something that we are not aware to

have been attempted before. In this chapter, BAV transactions are denoted by T and represent

sequences of primitive BAV transformations that are either all executed together or they are not

executed at all, i.e. transactions are atomic.

Example 6.1. The following BAV transaction is obtained by expanding the macro normalise table

(≪artists≫, ≪cities≫, city, {country, phone prefix}) introduced in Section 5.1.1:

1 add (table:≪cities≫, distinct [{city} ∣ {x,city} ← ≪artists,city≫])

2 add (column:≪cities,city,notnull,text≫,distinct [{city, city} ∣ {city} ← ≪artists≫])

3 add (primarykey:≪cities pk,cities,≪cities,city≫≫)

4 add (foreignkey:≪artists isa cities fk,artists,≪artists,city≫,cities,≪cities,city≫≫)

5 add (column:≪cities,country,notnull,text≫,distinct [{city,country} ∣ {x,city} ← ≪artists,city≫;

{x,country} ← ≪artists,country≫])

6 add (column:≪cities,phone prefix,notnull,text≫,distinct [{city,phone prefix} ∣ {x,city} ←≪artists,city≫;

{x,phone prefix} ← ≪artists,phone prefix≫])

7 delete (column:≪artists,country,notnull,text≫,[{x,country} ∣ {x,city} ←≪artists,city≫; {city,country}
← ≪cities,country≫])

8 delete (column:≪artists,phone prefix,notnull,text≫,[{x,phone prefix} ∣ {x,city} ←≪artists,city≫;

{city,phone prefix} ← ≪cities,phone prefix≫])

The method that we propose here is independent on the metamodel used and is related to the

field of pattern discovery, something that has been studied intensively in the last decades with

significant results in the fields of bioinformatics [Rea98] and web mining [CMS97].

This chapter is structured as follows. Section 6.1 outlines the pattern discovery algorithm, Sec-

tion 6.2 presents two algorithms for graph isomorphism that have been implemented and evaluated

63

64 Chapter 6. Pattern Discovery in BAV Transactions

in the context of our method, Section 6.3 outlines a graph hashing algorithm, Section 6.4 focusses

on the performance evaluation of the method and Section 6.5 specifies how the method has been

implemented and integrated in the Interactive Database Integration Tool.

6.1 Overview of the Method

The goal of the method that we propose is to extract patterns from a history of BAV transactions,

which we will denote as H, using techniques employed in parallel task scheduling. For simplicity,

we are dealing with transactions that only contain primitive BAV transformations. Extending the

method to handle transformation macros as well is trivial, by replacing each macro in a transaction

with its expansion.

In order to be able to extract new patterns, a unique representation of a BAV transaction needs

to be introduced. From Example 6.1, it is obvious that certain operations could be executed in

parallel, i.e. the order of their execution does not affect the final result. For instance, operations 5

could be executed before operation 4. This is because the execution of operation 5 does not depend

on the execution of operation 4.

In Chapter 3 of [MSM04], a generic process for designing a concurrent system is introduced.

Each step of the process is represented by a pattern, but only the following two patterns present

interest in our method:

� The task decomposition pattern describes how the problem is decomposed into tasks that can

run in parallel.

� The group tasks pattern is used to group similar tasks.

The task decomposition pattern involves finding the proper representation for a BAV trans-

action. The ”depends on” relationship presented above can be best described using dependency

graphs, which can be used to identify all transformations can run in parallel.

Definition 6.1 Dependency relationship

A dependency relationship R = V × V is a transitive relationship, which specifies that if (a, b) ∈ R,

then a depends on b. In other words, a cannot be processed until b has been processed. The

transitivity property states that if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Definition 6.2 Dependency graph

A dependency graph is a directed graph used to model the dependencies between several objects.

Formally, it is denoted as G = (V,E), with V representing the set of objects analysed (i.e. the

vertices) and E ⊆ V × V the set of edges, with E ⊆ E+, where E+ denotes the transitive closure of

E.

The transitive closure E+ of a binary relationship E is the transitive relationship that contains

E and E+ is minimal.

Dependency graphs have been widely used in compiler technology, fault management and pro-

gram analysis. They map well to BAV transactions, where each individual instruction modifies only

one construct of a schema. They can be used as good descriptors of such a sequence of primitive

instructions.

Given a BAV transaction, the dependency graph is constructed by first parsing each primitive

BAV transformation. For each transformation, the type, the schema object that is modified and

6.1. Overview of the Method 65

the set of dependent schema objects are extracted. For instance, instruction 4 in Example 6.1 is

used to add a foreign key, it modifies the schema object named artists isa cities fk and depends on

the schema objects ⟪artists⟫, ⟪artists, city⟫, ⟪cities⟫ and ⟪cities, city⟫.

After the parsing phase, a vertex is added to the graph for each transformation. For each

dependent schema object of the current transformation, an edge is added from the current vertex

to the vertex associated with the last transformation that modified the dependent schema object, if

one exists. For instance, an edge will be added from the vertex that represents transformation 4 in

Example 6.1 to the node that represents transformation 2, where schema object ⟪cities, city⟫ has

last been modified. This is done to represent the fact that transformation 4 can only be executed

after transformation 2.

A primitive BAV transformation can only depend on one of the previous transformations, so

the final dependency graph will be acyclic, i.e. there will be no two transformations that depend

on each other.

At this stage, the dependency graph in Figure 6.1 is obtained for the transaction in Example

6.1, where each vertex is labelled with the index of the transaction and the action performed.

Figure 6.1: Dependency graph of the transaction in Example 6.1.

The next step is the application of the group tasks pattern. Generally speaking, this is done by

performing an analysis on the dependency graph and grouping tasks that share the same constraints.

In our method, only one type of constraint exists, viz the set of schema objects that a transformation

depends on. For instance, we can see in Figure 6.1 that transformations 3 and 4 share the same

dependency set {1,2}, so they can be grouped. Grouping is an iterative process, which stops when

there are no more vertices that can be grouped. After this step, the graph in Figure 6.2 is obtained.

Figure 6.2: Grouped dependency graph of the transaction in Example 6.1.

It can be noticed from Figure 6.2 that the dependency graphs can contain two types of nodes:

atomic, used to represent only one primitive BAV transformation, and group, used to represent

66 Chapter 6. Pattern Discovery in BAV Transactions

several independent transformations.

In general, we are not interested in the number of times a transformation (e.g. add column)

appears in a group vertex, as this may vary from one execution of the pattern to another. To

represent the situation when a group contains a transformation that is applied two or more times,

similar atomic vertices in groups are collapsed into a single vertex, denoted action∗, where action

is the name of the action performed. For instance, the three add column atomic vertices in Figure

6.2 will be combined in a single vertex labelled add column∗, as shown in Figure 6.3.

Figure 6.3: Collapsed dependency graph of the transaction in Example 6.1.

The collapsed dependency graph obtained is called the signature of the BAV transaction,

denoted Sign(T).
Example 6.2. Consider an account tab with the columns {no, type, cname, rate, sortcode,manager}
and the primary key columns {no, cname,manager}. If we knew that a functional dependency

{no} → {type, rate, sortcode} existed, we could execute the following transaction to remove it. This

is identical to executing normalise table (≪account≫, ≪account2≫, no, {type, rate, sorletcode}).

1 add (table:≪account2≫,distinct [{no} ∣ {x,no} ← ≪account,no≫])

2 add (column:≪account2,no,notnull,int4≫,distinct [{no,no} ∣ {no} ← ≪account≫])

3 add (primarykey:≪account2 pk,account2,≪account2,no≫≫)

4 add (foreignkey:≪account isa account2 fk,account,≪account,no≫,account2,≪account2,no≫≫)

5 add (column:≪account2,type,notnull,text≫,distinct [{no,type} ∣ {x,no} ←≪account,no≫; {x,type}
← ≪account,type≫])

6 add (column:≪account2,rate,null,float4≫,distinct [{no,rate} ∣ {x,no} ←≪account,no≫; {x,rate}
← ≪account,rate≫])

7 add (column:≪account2,sortcode,notnull,int4≫,distinct [{no,sortcode} ∣ {x,no} ←≪account,no≫;

{x,sortcode} ← ≪account,sortcode≫])

8 delete (column:≪account,type,notnull,text≫,[{x,type} ∣ {x,no} ← ≪account,no≫; {no,type} ←
≪account2,type≫])

9 delete (column:≪account,rate,null,float4≫,[{x,rate} ∣ {x,no} ← ≪account,no≫; {no,rate} ←
≪account2,rate≫])

10 delete (column:≪account,sortcode,notnull,int4≫,[{x,sortcode} ∣ {x,no} ←≪account,no≫; {no,sortcode}
← ≪account2,sortcode≫])

The signature of this transaction is identical to the one in Figure 6.3, which indicates that this

transaction and the transaction in Example 6.1 are instances of the same pattern, namely the table

normalisation pattern.

6.1. Overview of the Method 67

By identifying other transactions with the same signature, patterns can be extracted from a

history of transactions. This can be done by checking for isomorphism between two such signatures,

which is explained in more detail in Section 6.2, and verifying if the labelling of the two graphs is

consistent.

Definition 6.3 Graph isomorphism

An isomorphism of graphs G1 = (V1,E1) and G2 = (V2,E2) is a bijection between the vertex sets of

G1 and G2, denoted f ∶ V1 → V2 such that if two vertices x and y are adjacent in G1, i.e. (x, y) ∈ E1,

then f(x) and f(y) are adjacent in G2, i.e. (f(x), f(y)) ∈ E2.

In other words, two graphs are isomorphic if there exists a permutation of the rows and columns

in the adjacency matrix of one of the graphs that leads to the adjacency matrix of the other

graph.

Graph isomorphism is known to be expensive to compute, as no known polynomial algorithm

has been proposed yet. The worst case time complexity of the brute force method, i.e. computing

all possible mappings between the vertices of two graphs, is upper bounded by O(n!), where n is the

number of vertices in each of the graphs. Several optimisations exist, some of which are presented

in 6.2, but that only improve the execution time in practice and not the time complexity.

If we have a history H of BAV transactions and perform a new transaction T , then the time

complexity of checking if Sign(T) is in H by checking for isomorphism between Sign(T) and the

signature of all transactions in H is upper bounded by O(n!∗X), where X = ∣H ∣. Since the number

of elements in H could grow unbounded, this would lead to very poor results over time.

This method can be improved by computing the hash of a signature, as demonstrated in Section

6.3, and storing the history as a hash table. Hash tables present the advantage of constant amortised

time complexity for retrieval. Thus, if a new transaction T is performed, its signature Sign(T)
is computed, the hash of the signature Hash(Sign(T)) is calculated. We denote by Y the time

required to compute the hash. Next, only those transactions in H that have the same hash are

tested for isomorphism and label consistency. If the history contains N transactions whose hash

is equal to the hash of the new transaction, then the amortised time complexity is O(Y +N ∗ n!),
with N in practice significantly smaller than X, i.e. N <<X.

If the number of matches of a signature in the history C is greater than a given threshold M ,

then the user is prompted with a message, suggesting him to define a new transformation pattern.

In our implementation, M = 3. The outline of the algorithm is given in Listing 6.1.

Listing 6.1: Outline of the pattern discovery algorithm

PROCEDURE execute (S t r ing [] t r an s a c t i on)

// Compute the s i gna tu r e o f the t r an sac t i on

DepGraph dg = Sign (t r an sa c t i on) ;

// Hash the s i gna tu r e o f the t r an sac t i on

St r ing dgHash = Hash (DG) ;

// Search in the h i s t o r y f o r t r an sa c t i on s wi th the same hash

DepGraph [] matches = H(DGHash) ;

// Number o f matches

I n t eg e r C = 0 ;

// Go through s i gna t u r e s wi th the same hash

FOR DepGraph crtMatch : matches do

// Check f o r isomorphism and l a b e l cons i s t ency

68 Chapter 6. Pattern Discovery in BAV Transactions

IF areIsomorphic (dg , crtMatch) and areLabe lCons i s t ent (dg , crtMatch)

C = C + 1 ;

END IF

END FOR

IF C > M THEN

prompt user to d e f i n e new t rans fo rmat ion pattern

END IF

// Add the t r an sac t i on to the h i s t o r y

addToHistory (H, t ransac t i on , dg , dgHash) ;

END PROCEDURE

The method only uses the information about what constructs in a schema are modified and does

not handle the extents of the individual transformations. This is because there is no way to check

if two queries are equivalent. In the end, when defining a new transformation pattern, it is up to

the user to define the extents of the primitive BAV transformations.

6.2 Graph Isomorphism

The graph isomorphism problem presents a great challenge in the field of algorithms. This is

because it is known that the problem is in the class of NP, i.e. problems verifiable in polynomial

time by a deterministic Turing machine, but no relation has been discovered between the problem

and two well known subsets of NP [Kar72]: P, the class of problems solvable in polynomial time,

and NP-complete, the class of problems for which no polynomial time is known.

On the other hand, the generalisation of this problem, subgraph isomorphism, where given two

graphs G1 and G2 the question is whether a subgraph G1 is isomorphic to G2, is known to be

NP-complete [Coo71].

The brute force method can solve this problem in O(n!) time complexity, with n being the

number of vertices in each of the graphs, making the computation of a mapping between the

vertices of the two graphs very hard.

Several techniques have been proposed in the last decades and, despite the fact that some of

them increase the worst case time complexity, they work very well in practice. Two such algorithms

have been implemented in the tool and evaluated: the Schmidt-Druffel (SD) algorithm [SD76] and

the Vento-Foggia (VF2) [CFSV01] algorithm. A more complete comparison of different algorithms

for graph isomorphism is given in [FSV01].

In our implementation, the performance of these algorithms has been evaluated on an Intel i5

430M processor by randomly generating pairs of isomorphic graphs with an increasing number of

vertices and the probability of an edge existing between two vertices of p. For each case, a number

of 50 runs have been executed and the average execution time, expressed in milliseconds, has been

recorded.

6.2.1 The Schmidt-Druffel Algorithm

The Schmidt-Druffel (SD) algorithm [SD76] was published in 1976. Unlike their predecessors,

who relied mostly on degrees of the nodes to characterise a graph, the authors of this algorithm

used the distance matrix for this, denoted D, as it contains more information. In a distance matrix,

the element at (i, j) specifies the length of the shortest path between vertices i and j. It can be

6.2. Graph Isomorphism 69

computed using the Floyd-Warshall algorithm [Flo62]. The distance matrices of the two graphs

being checked for isomorphism are denoted D1 and D2.

The SD method is structured into two steps: the computation of an initial partitioning and the

backtracking step.

The computation of an initial partitioning of the vertices is done by computing the characteristic

matrix of the graphs, denoted X1 and X2. The characteristic matrix is obtained by composing two

matrices: the row characteristic matrix and column characteristic matrix. In the row characteristic

matrix, the element at (i,m) specifies the number of vertices at distance m from vertex i. In the

column characteristic matrix, the element at (i,m) specifies the number of vertices that vertex i is

at distance m from.

A node i from G1 can map to a node j from G2 only if X1
i,k =X2

j,k,∀k, so vertices with the same

rows in the characteristic matrices are placed in the same initial classes, thus obtaining an initial

partition.

The backtracking algorithm refines the initial partition until there is a 1:1 mapping between the

vertices of the two graphs, if such a mapping exists. This is done by choosing two vertices that

belong to the same class and analysing if the mapping between the two vertices is consistent. A

mapping between i and j is consistent if: (a) the elements in the i-th row and column of D1 have

correspondents in the j-th row and column of D2, for all previously mapped elements, and (b) the

remaining elements in those rows and columns do not rule out mappings between vertices that have

not been mapped.

The worst case time complexity of the first step is O(n3), which is the upper bound of the

Floyd-Warshall algorithm. In the original paper of the algorithm, the authors demonstrate that

the upper bound of the second step is O(n ∗n!), so the overall worst time complexity is O(n ∗n!),
which is worse than the brute force method.

This algorithm has been evaluated on pairs of isomorphic graphs with up to 200 vertices and

the results are shown in Figure 6.4. We can notice a rapid increase in the average execution time.

Since the time complexity of the algorithm is independent on the number of edges, only the case

when the edge probability is p = 20% has been considered.

1000

1500

2000

2500

3000

M
il

li
se

co
n

d
s

Schmidt-Druffel Evaluation (p = 20%)

0

500

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200

Number of vertices

Figure 6.4: Evaluation of the SD algorithm.

70 Chapter 6. Pattern Discovery in BAV Transactions

6.2.2 The Vento-Foggia Algorithm

The Vento-Foggia algorithm (VF2) [CFSV01] is a more recent algorithm, published in 2001. It

is an improved version of the VF algorithm presented in [CFSV99]. The strategy employed in VF2

is a depth-first search.

For each state s of the search tree, the authors define four sets: the out-terminal set T out
1 (s)

contains the nodes in G1 that have not been previously mapped, but are successors of a node that

has been mapped, T in
1 (s) contains the nodes in G1 that have not been previously mapped, but are

predecessors of a node that has been mapped. Similarly, T out
2 (s) and T in

2 (s) are defined for G2.

In the above definition, a node i is called a predecessor of a node j if there exists an edge from

i to j, and a node i is called a successor of a node j if there exists an edge from j to i.

The information contained in the four sets described above is used to prune the search tree at

every step. This is done by restricting the pair of candidates for inclusion in the mapping to be

from T out
1 (s) × {minT out

2 (s)} or from T in
1 (s) × {minT in

2 (s)}, where {minT} denotes the element

with the smallest label in the set T . In case all four sets are empty, the pairs of candidates are

simply chosen from the nodes that have not been previously mapped.

Once a pair of candidates (i, j) is generated, its feasibility is analysed. This is done by verifying

that if i has an edge to or from a previously mapped vertex, then there exists a correspondent edge

to or from j. Additionally, the following must hold after the introduction of the mapping (i, j):
∣T out

1 (s)∣ = ∣T out
2 (s)∣ and ∣T in

1 (s)∣ = ∣T in
2 (s)∣. If these conditions are satisfied, then the pair (i, j)

is added to the partial mapping and the search can proceed one level down, until there is a 1:1

mapping between the vertices of the two graphs, if such a mapping exists.

This algorithm brought a significant improvement of the memory used, which is bounded by

O(n). Previous graph isomorphism algorithms all had a memory requirement of O(n3).
In order to evaluate the implementation of this algorithm, pairs of isomorphic graphs have been

generated with up to 1500 vertices. It can be seen from Figure 6.5 that the performance of the

algorithm is significantly better than the performance of Schmidt-Druffel, so it will be the preferred

algorithm used in the tool to check for isomorphism.

200

300

400

500

600

700

M
il

li
se

co
n

d
s

VF Algorithm Evaluation (p = 50%)

0

100

1
0

7
0

1
3

0

1
9

0

2
5

0

3
1

0

3
7

0

4
3

0

4
9

0

5
5

0

6
1

0

6
7

0

7
3

0

7
9

0

8
5

0

9
1

0

9
7

0

1
0

3
0

1
0

9
0

1
1

5
0

1
2

1
0

1
2

7
0

1
3

3
0

1
3

9
0

1
4

5
0

Number of vertices

Figure 6.5: Evaluation of the VF2 algorithm.

6.3. Graph Hashing 71

6.2.3 Towards a Hybrid Graph Isomorphism Component

In certain circumstances, the complexity of checking for isomorphism can be reduced, when

certain things are known about the topology of the two graphs, such as when they are planar. In

the context of our method, this will often be the case in practice.

Definition 6.4 Planar graph

A planar graph is a type of graph that can be embedded in a plane, such that no two edges cross

each other.

The planarity testing problem is concerned with checking if a graph is planar or not. Numerous

methods have been proposed over the years that solve this problem in linear time, which is asymp-

totically optimal, i.e. the worst the performance of the algorithm differs by at most a constant

factor from the performance of the best possible algorithm. The first algorithm was published in

1974 in [HT74]. Since then, other methods [ET77, BL76, kSH99] have tried to improve the constant

factor of the algorithm and produce better results.

Testing for isomorphism between two planar graphs has been shown in [HW74] to be possible

in linear time, which is significantly faster than any of the algorithms presented in the previous

sections.

The pattern discovery method could be extended to include a hybrid graph isomorphism com-

ponent, that first checks if the two graphs being compared are planar and applies the algorithm in

[HW74] if this is the case. Otherwise, it applies the SD or VF2 algorithm.

Due to time constraints, the hybrid component has not been implemented and evaluated and is

left as future work.

6.3 Graph Hashing

A method for identifying a graph based on its hash is preferred when needing to extract from a

history those graphs that are isomorphic to a given graph. As the number of elements in the history

may grow unbounded, applying any of the algorithms presented in Section 6.2 becomes infeasible.

Instead, the hash of the graph to be matched is computed and it is used to retrieve graphs that

might be isomorphic, as collisions might occur in practice. To ensure that the graphs are in fact

isomorphic, one of the algorithms presented in Section 6.2 may be applied.

The technique presented in [Por] may be used to compute the hash of a graph. It does this

by iteratively expanding every vertex and computing the hash for the graph configuration in the

neighbourhood of the vertex. This process is completed when all vertices have distinct hashes, at

which point the hashes are sorted, concatenated and the result is hashed again, yielding the hash

of the graph.

The implementation of the algorithm was done according to the guidelines in [Por]. The algo-

rithm is highly dependent on the number of edges in the graph, as at each step the neighbourhood

of a vertex is hashed. Evaluation has been done by generating pairs of isomorphic graphs for two

edge probabilities: 20% and 50%. It can be noticed from Figures 6.6 and 6.7 that the average

execution time significantly increases when there are more edges in the graph.

Hashing only becomes useful when the number of transactions in a history exceeds a certain

value, something that is realistic in a real-world situation.

72 Chapter 6. Pattern Discovery in BAV Transactions

10000

15000

20000

25000

30000

M
il

li
se

co
n

d
s

Graph Hashing Evaluation (p = 20%)

0

5000

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200

Number of vertices

Figure 6.6: Evaluation of the graph hash algorithm.

20000

30000

40000

50000

M
il

li
se

co
n

d
s

Graph Hashing Evaluation (p = 50%)

0

10000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of vertices

Figure 6.7: Evaluation of the graph hash algorithm.

6.4 Performance Evaluation

The performance of the pattern discovery method has been evaluated on an Intel i5 430M

processor, by randomly generating an increasing number of transactions containing both atomic

and group nodes. Every transaction contains between 3 and 20 primitive instructions. The object

being modified in every individual instruction and the set of dependent objects are chosen from a

list of schema objects randomly generated. Every instruction contains between 1 and 5 dependent

schema objects.

The performance of the algorithm is expressed as the average execution time necessary when

processing a new transaction and checking if the history of transactions contains similar transac-

tions. In our implementation, the execution time is averaged over 50 run. Two cases have been

considered, one when the graph hashing is ignored and another case when hashing is used to prune

the search space.

Figure 6.8 presents the performance evaluation in the first case, with the two algorithms pre-

sented in Section 6.2 being used. It is clear from the chart that using any of the two graph

isomorphism algorithms produces similar results. This is because transaction signatures contain

small number of vertices. The only advantage over the Vento-Foglia algorithm over Schmidt-Druffel

is the memory complexity, which is upper bounded by O(n) in VF2, compared to O(n3) in SD. A

6.5. The Method in the Database Integration Tool 73

linear increase in the execution time can be noticed, which reaches approximately 12 seconds when

the history contains 2500 transactions, something that is not optimal in a real-world situation.

8000

10000

12000

14000
co

n
d

s

Performance Evaluation - No Hashing

0

2000

4000

6000

M
il

li
se

c

Number of transactions

SD

VF2

Figure 6.8: Performance evaluation without graph hashing.

Figure 6.9 presents the performance evaluation for the second case, when hashing is used to

prune the search space. The number of transactions in the history that have the same signature

hash is kept constant at about 2%, something that is realistic in a real-world situation. As before,

the two graph isomorphism algorithms produce similar results, but that are significantly better

than the ones in the first case. The method was able to extract similar transactions from a history

containing a total of 2500 transactions in roughly 0.1 seconds.

80

100

120

140

160

co
n

d
s

Performance Evaluation - Hashing

0

20

40

60

80

M
il

li
se

c

Number of transactions

SD Hashing

VF2 Hashing

Figure 6.9: Performance evaluation with graph hashing.

The performance evaluation of the pattern discovery method shows that the algorithm supports

a very large number of transactions, being capable to match similar transactions in a history of

transactions.

6.5 The Method in the Database Integration Tool

The pattern discovery method has been integrated in the Interactive Database Integration Tool.

When integrating several schemas, the user is allowed to execute BAV transactions over them.

The AutoMed repository has been extended to keep the history of all transactions. This was

done by creating a table named transaction in the schema transformation repository (STR)

74 Chapter 6. Pattern Discovery in BAV Transactions

(see Section 2.5.3) with the following columns:

� tid - the identifier of the transaction

� instructions - the primitive BAV transformations in the transaction

� signature - the serialisation of the signature

� hashcode - hash code of the signature

� originalschema - name of the original schema, over which the transaction has been executed

� finalschema - name of the final schema, after the execution of the transaction

Whenever a transaction T is executed, its signature and hash code are computed, an identifier

for the transaction is generated and a new row is inserted in the transaction table. The pattern

discovery method is applied and the history is scanned for similar transactions, i.e. whose hash

codes are equal to the hash of the T . Next, T and the signatures returned from the history are

checked for isomorphism and label consistency. If the number of matches is greater than a threshold

(in the implementation set to 3), the user is prompted with a dialog box, allowing him to view a

list of the matching transactions, such as the one shown in Figure 6.10. It can be noticed from the

figure that all returned transactions will have identical hash codes.

Figure 6.10: Identical transactions returned by the tool.

By right-clicking any of the matching transactions in the table, the user can open a detailed

view of the transaction, such as the one presented in Figure 6.11, displaying the instructions that

the transaction contains and a visual representation of its signature.

From the main menu bar of the application, the user can open the transaction history browser,

allowing him to view all transactions in the history and display only those transactions that have

the hash code equal to a value. As before, by right-clicking any of the transactions, the user can

open the transaction viewer window for a detailed description of the transaction.

6.6 Summary

In this chapter, a new method for extracting patterns from BAV transformations is presented,

which has successfully been integrated in the Interactive Database Integration Tool. The method

works by computing the signature of the transformation and searching the history for identical

signatures.

Similarity is assessed by computing the isomorphism between graphs. Two algorithms for graph

isomorphism have been implemented and evaluated: the Schmidt-Druffel (SD) algorithm and the

Vento-Foggia (VF2) algorithm. In our method, VF2 is preferred, because it reduces the memory

complexity to linear. If two signatures are isomorphic, they are checked for label consistency.

In order to improve the performance of the algorithm, the search space is pruned by computing

the hash of the signature and only checking for isomorphism between graphs whose signatures hash

to the same value.

A major drawback of the algorithm is that the extraction of new patterns is done in a semi-

automatic manner, where the user has to define the extents of the primitive BAV transformations.

6.6. Summary 75

Figure 6.11: Transaction viewer window for the transaction in Example 6.2.

Future work includes implementing the graph isomorphism algorithms and the graph hashing

algorithm to run in parallel on multi-core processors, in order to improve their timing, and extending

the implementation of the method to handle transformation macros in BAV transactions, not only

primitive BAV transformations.

The technique could also be used in view integration. Given a set of source schemas and an

integrated schema, the problem is to find the transformations that map the every source schema to

the integrated schema. This combinatorial problem could be a NP-complete problem, but further

research needs to be done to verify this. In case no polynomial time algorithm can be found to

solve it, heuristics can be applied to retrieve the top-K most probable mappings.

Chapter 7

Conclusions and Future Work

This chapter presents the concluding remarks, in Section 7.1, and possible directions for future

work, in Section 7.2.

7.1 Conclusions

This thesis presented Interactive Database Integration Tool, a software application built on top

of the AutoMed framework for guiding the user through the integration process of several schemas

expressed in the SQL metamodel. Integration is performed manually by interactively applying

well-known transformation patterns, which are expressed in the both as view (BAV) mapping

language.

The development of the tool has been both challenging and rewarding. It provided the op-

portunity to get a better understanding of database integration and why this field has received

considerable attention in the last three decades. It serves as proof that the gap between theory and

practice can be bridged, a problem that researchers have been facing with.

While developing the application, we gained knowledge about the internals of AutoMed. Au-

toMed uses the hypergraph data model (HDM) as the common data model that schemas are

expressed in and the both as view (BAV) mapping language. The advantage of using BAV is that

it subsumes two of the previous well-known mapping languages, i.e. local as view (LAV) and global

as view (GAV).

The implementation has the potential of evolving into a large project. It already measures

approximately 16.000 lines of code. This is why, from the engineering point of view, we focused on

creating a solid architecture, that can cope with evolution and maintainability. By avoiding cyclic

dependencies between modules, we promote the reuse of the model of the application independent

of the view.

One of the most important features of our architecture is the transformation patterns framework,

which allows developers to introduce new transformation patterns by following six steps and without

having to modify any of the existing code. Using this framework we were able to implement 18

transformation patterns, all of which have a user interface associated with them, that guide the

user in the application of the pattern.

The final product serves as a solid foundation but, due to time constraints, only a subset of

the possible features have been implemented. At the present time, the tool only supports schemas

expressed in the SQL metamodel, something that is not realistic in a real-world situation, where

schemas can be expressed in the Extensible Markup Language (XML), the Entity-Relationship

76

7.2. Future Work 77

(ER) or other metamodels.

Another drawback is that at the present time we assume that the person using the application

has a good Intermediate Query Language (IQL) knowledge, something that is not always the case.

Pattern discovery in BAV transactions was also considered in this thesis. A new method for

detecting identical transactions in a history of transactions was discussed, which uses techniques

from the parallel task scheduling field. It works by computing the signature of a transaction from

its dependency graph. This was motivated by the fact that the execution of any of the five primitive

BAV transformations results in another schema, where only one schema object is altered.

Similarity between two signatures is assessed by checking if there exists an isomorphism between

them, a problem that is known to be expensive to compute. Checking for isomorphism between

a large number of pairs of graphs proved to be infeasible in the evaluation of our method, so the

the technique was improved by computing the hash of a signature, after it is executed, and only

scanning the history for signatures with the same hash. This lead to a significant decrease in the

average execution time, which makes the system support a large number of transactions.

While the pattern discovery method is powerful, it can only be used to discover transactions

that are executed often by the user and does not actually introduce on the fly new transformation

patterns in the tool. At the present time, we assume that the user has a good understanding of the

transformation patterns framework and of the Java programming language and can introduce the

pattern himself. In the current version of the database integration tool, the method is only used

to present the user with patterns that have been applied many times.

7.2 Future Work

The project can be extended in many directions, by taking advantage of the solid foundation

that has been put into place. Most of the ideas listed below present great challenges, but were not

researched in great detail, because of the time constraints.

7.2.1 From Manual to Automatic Schema Matching

At the present time, the user is responsible with finding correspondences between objects in

different schemas. Research has been done in the field of automatic schema matching in the last

ten years, with significant results. In [RB01] and [SE05], two similar classifications of the schema

matching approaches are presented. Both papers classify the same types of matchers, such as:

� String-based matchers check for name similarity, description similarity between schema ob-

jects. Usually, this is measured as a distance function that maps a pair of strings to a real

number.

� Language-based matchers process the words in the names of schema objects, by applying

techniques from Natural Language Processing (NLP).

� Linguistic resources make use of thesauri, such as the lexical database WordNet [Mil95], to

check for the relationship between words, e.g. they are synonyms.

� Constraint-based matchers deal with the constraints that are applied to the definition of

schema objects, such as cardinality constraints in the Entity-Relationship metamodel or the

primary key and foreign key constraints in the SQL metamodel.

� Model-based matchers handle the semantic interpretation of the input of the schema match-

ing. They do this by applying well-known deductive methods, such as the prepositional

78 Chapter 7. Conclusions and Future Work

satisfiability (SAT) and description logics (DL).

AutoMed contains a schema matching component, outlined in [Riz04, MRBM05] and described

in detail in [Riz10]. It only takes into account semantic mappings, e.g. ”paper represents the

same concept as publication”. At the other end of the spectrum are data mappings, e.g. ”each

value of birthday is equal to the concatenation of day, month and year”.

The advantage of this method over previous approaches is that it incorporates uncertainty in

the mappings, i.e. how probable a mapping is. They extend previous work by not only considering

compatibility mappings, i.e. whether two objects are compatible or not, but by considering the

five relationships presented in Section 2.5.3.

An uncertain semantic mapping (USM) is obtained by aggregating several USMs from different

matchers, which in [Riz10] are also called experts. Using the architecture of the schema matching

component, new experts can be introduced at runtime. A possible extension of this component

would be to apply machine learning techniques to automatically discover the best experts to use

in different contexts.

The result of applying the schema matching components to two input schemas are the top-K

most probable schema mappings. This could be integrated in the tool, although it does not always

return the expected result.

In the context of the Interactive Database Integration Tool, the schema matching component

could be used to suggest transformation patterns to the user. For instance, if we had a country name

column in a table in one schema and a country table in another schema and the schema matching

tool computed that the two objects are equivalent with 80% certainty, the tool could suggest the

user to apply the column to table transformation pattern, described in Section 5.1.5.

7.2.2 A Language for Specifying Transformation Patterns

Chapter 4 presented the transformation patterns framework. It can be noticed that most trans-

formation patterns rely on the same constructs, e.g. sequences of schema objects, and simple

operations, e.g. iterating over sequences of schema objects. Developing a simple language to han-

dle the definition of transformation patterns could help users with no Java knowledge introduce

their own patterns. This could be done by formally specifying the syntax of the language, the

operational semantics and the type system. The implementation of this language could be done as

a compiler from this language to Java bytecode.

Such a language would be particularly useful in the context of the pattern discovery method

presented in this thesis. After the discovery of a frequently used BAV transaction, the tool could

ask the user to define the transformation pattern in this language.

7.2.3 From the SQL Metamodel to a Generic Tool

At the moment only schemas expressed in the SQL metamodel are supported by the tool. The

project could be extended, by taking a step back and thinking about the integration process in a

more generic way. This could be done by introducing other metamodels in the application, such as

XML or ER. AutoMed already supports this, by representing any model in the hypergraph data

model.

This functionality could also be used to convert between metamodels, although this could lead

to the loss of information, as some metamodels contain constructs that cannot be expressed in

7.2. Future Work 79

other metamodels. For instance, there is no equivalent for the total generalisation constraint from

the ER metamodel in the SQL metamodel.

Another issue that could be researched is that of automatically expressing well-known transfor-

mation patterns, such as the ones presented in Chapter 5, in different metamodels. The challenge

is to identify corresponding constructs in the metamodels and dealing with constructs that are

modelled in only one of the metamodels.

Bibliography

[Alt] Altova missionkit. http://www.altova.com/. [Online; accessed 22/3/2011].

[BAV] The university database integration: An automed example. http://www.doc.ic.
ac.uk/automed/techreports/univesity_automed_example.ps. [Online;
accessed 02/05/2011].

[Biz] Microsoft biztalk server. http://www.microsoft.com/biztalk/en/us/
default.aspx. [Online; accessed 22/3/2011].

[BKL+04] Michael Boyd, Sasivimol Kittivoravitkul, Charalambos Lazanitis, Peter M C Brien,
and Nikos Rizopoulos. Automed: A bav data integration system for heterogeneous
data sources. In In Proc. CAiSE’04, pages 82–97. Springer-Verlag, 2004.

[BL76] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and planarity using PQ-tree algorithms. Journal of Computational Systems
Science, 13:335–379, 1976.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies
for database schema integration. ACM COMPUTING SURVEYS, 18(4):323–364,
1986.

[BM07] Philip A. Bernstein and Sergey Melnik. Model management 2.0: manipulating richer
mappings. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, SIGMOD ’07, pages 1–12, New York, NY, USA, 2007. ACM.

[CFSV99] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation of the
vf graph matching algorithm. In Proceedings of the 10th International Conference
on Image Analysis and Processing, ICIAP ’99, pages 1172–, Washington, DC, USA,
1999. IEEE Computer Society.

[CFSV01] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for
matching large graphs. In In: 3rd IAPR-TC15 Workshop on Graph-based Represen-
tations in Pattern Recognition, Cuen, pages 149–159, 2001.

[CMS97] R. Cooley, B. Mobasher, and J. Srivastava. Web mining: Information and pattern
discovery on the world wide web. Tools with Artificial Intelligence, IEEE Interna-
tional Conference on, 0:0558, 1997.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13:377–387, June 1970.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, STOC ’71, pages 151–158,
New York, NY, USA, 1971. ACM.

[Cry] Crystal reports. http://www.crystalreports.com/. [Online; accessed
22/3/2011].

[DBH+99] S. B. Davidson, P. Buneman, S. Harker, C. Overton, and V. Tannen. Transforming
and integrating biomedical data using kleisli: a perspective. SIGBIO Newsl., 19:8–13,
August 1999.

[DBM] Db-main. http://www.db-main.eu/. [Online; accessed 26/4/2011].

[dDNmP+00] Notre dame De, La Paix Namur, Db main Programme, Philippe Thiran, AbdelMajid
Chougrani, J l. Hainaut, Jean-Marc Hick, Abdelmajid Chougrani, Jean luc Hainaut,
and Jean marc Hick. Case support for the development of federated information
systems, 2000.

80

BIBLIOGRAPHY 81

[ET77] Shimon Even and Robert Endre Tarjan. Corrigendum: Computing an t-numbering.
tcs 2(1976):339-344. Theor. Comput. Sci., 4(1):123, 1977.

[Fag79] Ronald Fagin. Normal forms and relational database operators. In Proceedings of
the 1979 ACM SIGMOD international conference on Management of data, SIGMOD
’79, pages 153–160, New York, NY, USA, 1979. ACM.

[FFBS04] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head First Design
Patterns. O’ Reilly & Associates, Inc., 2004.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5:345–, June 1962.

[FSV01] P. Foggia, C. Sansone, and M. Vento. A performance comparison of five algorithms
for graph isomorphism. In in Proceedings of the 3rd IAPR TC-15 Workshop on
Graph-based Representations in Pattern Recognition, pages 188–199, 2001.

[Gal07] Avigdor Gal. Why is schema matching tough and what can we do about it. SIGMOD
Record, pages 2–5, 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Elements of resusable object-oriented software. pages 283–293, 1995.

[Haa07] Laura M. Haas. Beauty and the beast: The theory and practice of information
integration. In ICDT, pages 28–43, 2007.

[HHH+05] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa, and Mary Roth.
Clio grows up: from research prototype to industrial tool. In Proceedings of the
2005 ACM SIGMOD international conference on Management of data, SIGMOD
’05, pages 805–810, New York, NY, USA, 2005. ACM.

[Hib] Hibernate. http://www.hibernate.org/. [Online; accessed 22/3/2011].

[HKPT99] Yk Huhtala, Juha Krkkinen, Pasi Porkka, and Hannu Toivonen. Tane: An efficient
algorithm for discovering functional and approximate dependencies, 1999.

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21:549–568,
October 1974.

[HW74] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs (preliminary report). In Proceedings of the sixth annual ACM symposium on
Theory of computing, STOC ’74, pages 172–184, New York, NY, USA, 1974. ACM.

[IDB] Interactive database integration tool javadoc. http://www.airtudor.com/
idbi/. [Online; accessed 2/9/2011].

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S. Weld.
An adaptive query execution system for data integration. In Proceedings of the
1999 ACM SIGMOD international conference on Management of data, SIGMOD
’99, pages 299–310, New York, NY, USA, 1999. ACM.

[Inf] Microsoft infopath. http://office.microsoft.com/en-us/infopath/.
[Online; accessed 22/3/2011].

[JGr] Junit library. http://www.jgraph.com/. [Online; accessed 7/8/2011].

[JPZ03] Edgar Jasper, Alex Poulovassilis, and Lucas Zamboulis. Processing iql queries and
migrating data in the automed toolkit. Technical report, 2003.

[JUn] Junit library. http://www.junit.org/. [Online; accessed 7/8/2011].

[Kar72] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[kSH99] Wei kuan Shih and Wen-Lian Hsu. A new planarity test, 1999.

[Len02] Maurizio Lenzerini. Data integration: a theoretical perspective. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, PODS ’02, pages 233–246, New York, NY, USA, 2002. ACM.

82 BIBLIOGRAPHY

[McC76] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2:308–320, 1976.

[Mil95] George A. Miller. Wordnet: A lexical database for english. Communications of the
ACM, 38:39–41, 1995.

[MIR93] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The use of information capacity
in schema integration and translation. In In VLDB, pages 120–133, 1993.

[MP97] Peter McBrien and Alexandra Poulovassilis. A formal framework for er schema trans-
formation, 1997.

[MP98] Peter McBrien and Alexandra Poulovassilis. A General Formal Framework for
Schema Transformation. Data and knowledge engineering, 28(1):47–71, October 1998.

[MP03] Peter McBrien and Alexandra Poulovassilis. Data integration by bi-directional
schema transformation rules. Data Engineering, International Conference on, 0:227,
2003.

[MP04] Peter McBrien and Alexandra Poulovassilis. Defining peer-to-peer data integration
using both as view rules, 2004.

[MRBM05] Matteo Magnani, Nikos Rizopoulos, Peter M C Brien, and Danilo Montesi. Schema
integration based on uncertain semantic mappings. In In International conference of
conceptual modeling, pages 31–46. Springer, 2005.

[MSM04] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel pro-
gramming. Addison-Wesley Professional, first edition, 2004.

[Ora] Oracle webcenter iteraction. http://www.oracle.com/technetwork/
middleware/webcenter-interaction/overview/index.html. [Online;
accessed 22/3/2011].

[Por] Thomas E. Portegys. General graph identification with hashing.

[PS98] Christine Parent and Stefano Spaccapietra. Issues and approaches of database inte-
gration. Commun. ACM, 41:166–178, May 1998.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal, 10:334–350, December 2001.

[Rea98] Isidore Rigoutsos and et al. Combinatorial pattern discovery in biological sequences:
the teiresias algorithm, 1998.

[Riz04] Nikos Rizopoulos. Automatic discovery of semantic relationships between schema
elements. In In Proc. of 6th ICEIS, pages 3–8, 2004.

[Riz10] N. Rizopoulos. Schema matching and schema merging based on uncertain semantic
mappings, 2010.

[SD76] Douglas C. Schmidt and Larry E. Druffel. A fast backtracking algorithm to test
directed graphs for isomorphism using distance matrices. J. ACM, 23:433–445, July
1976.

[SE05] Pavel Shvaiko and Jrme Euzenat. A survey of schema-based matching approaches.
Journal on Data Semantics, pages 146–171, 2005.

[Sql] Microsft sql server reporting services. http://www.microsoft.com/
sqlserver/2008/en/us/reporting.aspx. [Online; accessed 22/3/2011].

[SRM] Andrew Smith, Nikos Rizopoulos, and Peter Mcbrien. Automed model management.

[Str] Structure101. http://www.headwaysoftware.com/products/?code=
Structure101. [Online; accessed 23/8/2011].

[Sty] Stylus studio. http://www.stylusstudio.com/. [Online; accessed 22/3/2011].

[TAN] Tane: Functional dependency discovery. http://www.cs.helsinki.fi/
research/fdk/datamining/tane/. [Online; accessed 22/8/2011].

BIBLIOGRAPHY 83

[Top] Oracle toplink. http://www.oracle.com/technetwork/middleware/
toplink/overview/index.html. [Online; accessed 22/3/2011].

[Tuk] Tukwila. http://tukwila.sourceforge.net/. [Online; accessed 23/3/2011].

[Xer] Xerces library. http://xerces.apache.org/. [Online; accessed 7/8/2011].

