
 

OpArtGen 

An Op-Art Generator and Animator 
 

Michael Stuart-Matthews (mas04) 

18/6/2008 

 

 

 

  

Project directory:   /homes/mas04/IndividualProject/ 



P a g e  | 2 

 

Abstract 
Op-Art is an algorithmic style of art that should lend itself to being created with ease by 

computer programs. Current digital art programs do not simplify the process of creating Op-Art 

by much, and many do not exploit the algorithmic nature behind the artwork at all. This report 

documents the creation of a program that allows users to easily create and animate Op-Art, 

using a visual user interface layered over a modular, extensible rendering engine. A scripting 

interface to the rendering API is provided to allow users to script the creation of images from 

text files. The rendering engine uses vector image data so that images may be exported to the 

vector SVG file format for printing onto large format canvases. 

Acknowledgements 
I would like to thank my supervisor Peter McBrien, and my second marker Simon Colton, for 

their useful assistance and advice that they provided during this project. I would like to 

acknowledge Bridget Riley and the other artists whose work I have used throughout this project 

for their work which provided the inspiration for this project. 

Table of Contents 
Abstract ............................................................................................................................................ 2 

Acknowledgements .......................................................................................................................... 2 

Introduction ..................................................................................................................................... 7 

Project Contributions ............................................................................................................... 8 

Background .................................................................................................................................... 10 

The Op-Art Movement........................................................................................................... 10 

User Requirements ................................................................................................................ 12 

Current State of the Art and Similar Existing Products .......................................................... 12 

Graphics Libraries .................................................................................................................. 16 

Generative Art and Sound Synthesis ..................................................................................... 16 

Analysis of Existing Op-Art to Determine API Modules ......................................................... 18 

Software Design ............................................................................................................................. 27 

Creating Art Using OpArtGen ......................................................................................................... 27 



P a g e  | 3 

 

Creating Rendering Pipelines ................................................................................................. 30 

Launching OpArtGen .............................................................................................................. 33 

Required Libraries .......................................................................................................... 33 

Using the Visual Structure Diagram Editor to Create Images ................................................ 34 

Using Scripts to Create Images ............................................................................................... 37 

Using Java to write scripts.............................................................................................. 37 

Using built-in components in scripts.............................................................................. 37 

Using external components in scripts ............................................................................ 38 

Using JavaScript and Rhino to write scripts ................................................................... 38 

Software Architecture .................................................................................................................... 41 

API Package ............................................................................................................................ 41 

The Rendering Engine ............................................................................................................ 42 

The Refresh Cycle ........................................................................................................... 42 

Optimizing the Refresh Cycle ......................................................................................... 43 

Rendering Grid Data ....................................................................................................... 46 

Visualisation of GridData ............................................................................................... 49 

OpArtGen Modules ................................................................................................................ 49 

Module Data Types ........................................................................................................ 50 

Module Ports.................................................................................................................. 51 

Connecting Modules Using Ports ................................................................................... 54 

Checking New Connections for Cycles ........................................................................... 54 

Animation of Images .............................................................................................................. 57 



P a g e  | 4 

 

Animation Using Oscillator Modules ............................................................................. 57 

Animation Using Scripts................................................................................................. 58 

API Component Loading ........................................................................................................ 58 

Loading Shapes .............................................................................................................. 59 

GUI Package ........................................................................................................................... 60 

Structure Diagrams ........................................................................................................ 60 

Canvas Windows............................................................................................................ 62 

Painter ........................................................................................................................... 62 

Executing Scripts .................................................................................................................... 62 

Implementation of Core Modules.................................................................................................. 64 

Canvas Module ...................................................................................................................... 64 

Export to SVG ................................................................................................................. 64 

Grid Module ........................................................................................................................... 65 

Colour Module ....................................................................................................................... 65 

Oscillator Module .................................................................................................................. 66 

Shape Repeater Module ........................................................................................................ 66 

Tiling Options ................................................................................................................. 67 

Grid Repeater Module ........................................................................................................... 68 

Colour Series Module ............................................................................................................ 69 

Surface Warp Module ............................................................................................................ 70 

Two Quarter Circ le Arcs Warp ...................................................................................... 71 

Cubic Function Warp ..................................................................................................... 73 



P a g e  | 5 

 

Merge Module ........................................................................................................................ 73 

Split Modules .......................................................................................................................... 75 

Creating external components for OpArtGen ................................................................................ 76 

Custom Component Loading .................................................................................................. 76 

Creating New External Modules ............................................................................................ 77 

Creating a Custom Module Properties Window ............................................................ 79 

Creating External Port Types .......................................................................................... 80 

Creating External Renderers .................................................................................................. 81 

Adding Extra Shapes ............................................................................................................... 82 

Creating new Surface Warps .................................................................................................. 82 

Evaluation of OpArtGen ................................................................................................................. 83 

Existing Works of Op-Art Recreated Using OpArtGen ........................................................... 83 

Conclusions and Future Work ........................................................................................................ 88 

Real-Time Audio Input and Analysis ....................................................................................... 88 

OpArtGen as a Media Player Plugin ....................................................................................... 89 

Combining Sound Synthesis with Op-Art ............................................................................... 89 

Real-Time Video Input and Analysis ....................................................................................... 90 

Generative Art: Using Artificial Intelligence Algorithms in Scripts ......................................... 90 

Community Site for Users ...................................................................................................... 91 

Bibliography .................................................................................................................................... 92 

Appendix 1: Module Template Code .............................................................................................. 93 

Appendix 2: Properties Window Template Code ........................................................................... 97 



P a g e  | 6 

 

Appendix 3: Scripts for Recreations of Existing Op-Art ................................................................. 99 

Movement In Squares ............................................................................................................ 99 

Cantus Firmus ...................................................................................................................... 100 

Appendix 4: Manual Animation Example..................................................................................... 104 

Appendix 5: API Reference for Scripting ...................................................................................... 106 

ModuleData Classes............................................................................................................. 106 

Module Classes .................................................................................................................... 107 

Port Classes .......................................................................................................................... 110 

Rendering Classes ................................................................................................................ 111 

Surface Warp Classes ........................................................................................................... 112 

Component Loading Classes ................................................................................................ 113 

 

 

  



P a g e  | 7 

 

Introduction 

Op-Art is an artistic movement that began to gain popularity in the USA in the early 1960s. 

Artists throughout history have experimented with various different ways to represent the 

depth and motion of our three dimensional environment in the constrained format of a two 

dimensional painting. Op-Art attempts to recreate this depth and movement through bold 

abstract forms that instil in the viewer’s mind a sense of movement or vibration in their 

perception of the painting.  

This artistic style originated before computers became a commonplace tool for artists to use and 

little Op-Art was created using digital means during the time of the movement itself, with each 

painting taking great forethought and care in execution. Even so, much of the existing work done 

in this style appears algorithmic or mathematical in nature, and therefore should lend itself to 

being easily created with the aid of computer programs.  

Most computer programs that are designed to produce art tend to prove inadequate when used 

to create Op-Art. They usually rely on the user directly editing either the pixels, or the vector 

shapes that make up each layer of the image. As Op-Art comprises simple elements that are 

repeated and altered algorithmically over an image, the workflow of traditional art programs 

doesn’t suit producing Op-Art. 

How do we create a program that makes it easy to produce this algorithmic art? The best 

solution from existing programs is to create a programming language that allows users to 

describe the algorithms behind the images. This does however prevent users that unfamiliar 

with programming from using the software. As the target users for this software are artists, it is 

important that the program provides a visual mode of working along with a language based 

approach.  

Other tools that do provide a visual interface for creating Op-Art are limited by their fixed 

rendering pipeline and lack of support for scripting: any design that cannot be produced using 

the provided rendering pipeline and interface may not be created by that program unless it is 

modified by its author.  A modular approach is needed that gives the user a flexible rendering 

pipeline and the ability to program and load new custom modules to cope with the demands of 

any artistic brief. One area of software that has adopted a similar approach to solve a similar 

problem is that of modular sound synthesis. 

The software requirements for the sound design workflow map to our requirements for an Op-

Art design workflow. The basic concept behind sound synthesis is to generate a repeating 

waveform using oscillator modules that is then shaped and modified by subsequent filter 

modules. The resulting sound produced depends on the parameters supplied to the various 

modules and the topology of the network that connects them together. When creating Op-Art 

we need to create repeating shapes that are then modified algorithmically to create geometric 

effects.  

Computer based sound synthesis tools have grown from an purely language based solution (1) 

originally developed at the Music and Cognition Group at M.I.T.’s Media Laboratory  to modular 

visual graph based scriptable synthesisers (2). The intuition behind Reaktor allows users to 



P a g e  | 8 

 

visually connect various modules together in a graph and edit their properties rather than having 

to write code to describe how an instrument should create its sound wave. This intuition should 

prove helpful when applied to the problem domain of generating Op-Art. 

Another shortcoming of many digital art programs is their lack of support for exporting images 

produced directly into a vector format. This is crucial for artists, as it enables them to print their 

work directly onto large format canvases without any perceived loss of quality. 

In this project we present a solution derived from modular sound synthesis programs that 

enables artists to rapidly create unique, high quality, dynamic, digital artwork in an Op-Art style 

that can be printed onto large-format canvas. The program itself may easily be extended to 

support any artistic brief by loading new components at runtime. It allows you to easily and 

quickly create artwork using a visual interface, and also provides additional flexibility through 

scripting functionality for advanced users. 

Project Contributions 

 

• We look at the approach taken by existing Op-Art software and also state-of-the-art 

modular sound synthesis programs to help develop an intuition for our modular solution 

to generating Op-Art. (See: Background, Page 10) 

• We analyze a number of works of Op-Art in order to determine a set of useful core 

modules and the core data types that these modules should process. (See: Analysis of 

Existing Op-Art to Determine API Modules, Page 18) 

• We construct an extensible API for an engine that renders Op-Art using a number of 

components that are dynamically loaded at runtime to create and process the image 

data algorithmically. (See: The Rendering Engine, Page 42) 

• API Components may be built-in or external to allow for user generated components. 

We detail how you may extend the API with your own external components that are 

loaded at run-time. (See: Creating external components for OpArtGen, Page 76) 

• Each API module encapsulates a different part of the image generation process; and by 

specifying different connection topologies between modules and altering the properties 

of each module the resulting graph acts as a high-level macro language that describes 

the algorithm the rendering engine should use to create the resulting image. (See: 

Creating Art Using OpArtGen, Page 27) 

• We implement a program which provides a graphical user interface and a scripting 

interface to the API. The Op-Art rendering process may then be driven visually using the 

GUI, or programmatically using scripts. (See: Using the Visual Structure Diagram Editor 

to Create Images, Page 34; and: Using Scripts to Create Images, Page 37) 

• We implement a number of the core API modules (See: Implementation of Core 

Modules, Page 62) 



P a g e  | 9 

 

• We use the rendering engine and our core modules to generate and evaluate 

reconstructions of actual works of Op-Art, and other original art. (See: Existing Works of 

Op-Art Recreated Using OpArtGen, Page 83) 

 

  



P a g e  | 10 

 

Background 

The Op-Art Movement 

The phrase Op-Art itself stems from an article in Time Magazine from 1964 that described a new 

geometric art form that was emerging at the time as ‘Optical Art’ (3).  The movement first 

gained popularity amongst the public in 1965 with the exhibition called “The Responsive Eye” at 

the New York Museum of Modern Art. 

Artists working in an Op-Art style use abstract geometric shapes or tessellations in their 

paintings combined with an illusory use of perspective and highly contrasting colours, often 

limited only to black and white. Where colour is used it tends to reinforce the illusion of depth in 

a painting, with warmer colours appearing to advance towards the viewer and cooler ones 

recede. Perspective is used to create dynamic energy and movement, by inducing visual tension 

as the viewer tries to reconcile the multiple contradictory geometric interpretations of the 

painting that exist. 

Victor Vasarely, an artist considered to be one of the original proponents of the movement due 

to his 1938 work “Zebra”(4), has painted many works that make very effective use of such 

perspective. This is one style of Op-Art that I do not intend to cover: its construction is not so 

algorithmic in nature and reproducing such works would require the project to have too great a 

scope. 

 

Figure 1: Victor Vasarely, "Hexa 5", 1998. 

Another important artist from the Op-Art movement is Bridget Riley. Arguably one of England’s 

most influential artists; Bridget Riley began creating her instantly recognisable black and white 

works in 1961, after repeated failed attempts to create an entirely black painting. (5) The 

resulting tension created by the minimal, contrasting parts of the work interested her enough 



P a g e  | 11 

 

that she continued creating works in a similar style for several more years. Her use of a precise 

composition of contrasting, modulating geometric shapes leads to a number of visual 

phenomena that occur when viewing her work.  

The viewer of a Bridget Riley painting usually perceives a flicker or movement in their visual 

image created by the static picture. Research suggests that this may be due to a combination of 

perceptual judgements by the viewer and involuntary eye movements generating an ‘incoherent 

distribution of motion signals’ to the brain. (6) In a similar way that much of Vasarely’s work uses 

perspective to create contradictory interpretations, perceptual tension in Riley’s work is often 

due to contradictory interpretations of the figure-ground relationship. This is the relationship 

that governs our ability to distinguish elements based on contrast – allowing us to separate out 

foreground from background. (7) 

Bridget Riley’s early works (1961-1967) are mostly achromatic, and their style lends itself well to 

an algorithmic reproduction. The main principle behind Riley’s early works was summed up by 

her as follows: “The basis of my paintings is this: that in each of them a particular situation is 

stated. Certain elements within that situation remain constant, others precipitate the 

destruction of themselves by themselves. Recurrently, as a result of the cyclic movement of 

repose, disturbance and repose, the original situation is restated.”(8) Works such as her 

“Movement in Squares” (1961) exemplify this, and form the basis for the style of Op-Art that I 

would like the finished program to be able to generate. 

After 1967 Bridget Riley began to explore the use of colour in her works through two styles. The 

first used contrasting colour series arranged in a sequence of stripes repeated throughout a 

painting, resulting in works such as “Cantus Firmus” (1972-3). Again, this is a style that lends 

itself to algorithmic generation and is one I would like my program to produce.  Other Op-Art 

artists that have made great use of colour in their works include Julian Stanczak and Richard 

Anuszkiewicz, (9) who tended to explore the visual relationships that exist between colours in 

their art. Combining her contrasting alternating colours with the mathematically based 

composition that featured in her earlier works resulted in Riley’s second style, exemplified by 

“Cataract 3” (1967).  

 

Figure 2: Bridget Riley, "Cataract 3", 1967. 



P a g e  | 12 

 

In this work the colour sequence alters gradually throughout the image, and a set of repeated 

lines appears to be folded in a regular pattern. Producing such images in a vector format 

requires complex algorithms and is beyond the scope of this project. Eventually, Riley’s 

experimentation with curved grids and colour resulted in her later ‘Curvilinear’ style. These 

works feature a far more complex layering of colour than her earlier curved grids. One can see 

the transition from her earlier colour sequence works to the ‘Curvilinear’ style of colour layering 

through works such as “New Day” (1988). 

User Requirements 

In order to get a feel for what requirements an artist would have as a user of an Op-Art program, 

I discussed the concept with a number of artists and designers that I know. A number of 

important points were raised during these discussions. The first issue to come up was the need 

for the program to provide the user with sufficient creative scope. If the finished program is to 

be more than an Op-Art toy, there needs to be enough scope in the design to allow for the 

creation of unique and varying images. Simply having a number of parameters that can be 

altered to generate multiple versions of what is essentially the same image would not be 

sufficient.  

Secondly, an element of visual algorithmic control was suggested. Since the generation of the 

images will to some extent be reliant on a set of equations, providing the artist with the ability 

to alter the equations themselves would allow for creative scope. Unfortunately this would 

require the artist to be comfortable with the mathematics behind the geometry. Instead, if some 

GUI based control were designed that allowed for visual editing, then the artist would still have 

the creative scope that they desired yet would have the ability to easily control the algorithms. 

Furthermore, if the artist could gradually alter parameters and see the effect it had on the 

generated output it would allow for greater creative output. 

The last point that was raised was that of the program’s output file format. Art of this kind is still 

often sketched out on graph paper and then realised directly onto canvas with paintbrush and 

paint. However, when it is created using digital means, if it is to be printed onto canvas rather 

than being painted then the artist’s file is exported in a vector format. This means that once it 

has been sent to the printers, the file may be resized to the correct resolution for the size of the 

canvas without any aliasing occurring. If the finished program is to be used by artists then its 

output would need to be vector based so that the works produced can be printed out in varying 

resolutions at a high quality. 

 

Current State of the Art and Similar Existing Products 

OPAGA (Jorden Lacey) 

I downloaded and compiled the source code for Jorden Lacey’s program OPAGA, written as a 

previous solution to the Op-Art Generator and Animator problem. The approach taken by this 

software is to provide the user with a selection of images that have been derived from analysis 

of corresponding Bridget Riley works. The user can then alter the parameters used by the 

algorithms in reproducing the works using the controls situated to the side of the image. This 



P a g e  | 13 

 

provides a very quick and easy method of creating works of art in a similar style to some of 

Bridget Riley’s art, however I feel that this method does somewhat limit the user’s creativity. 

The requirement of sufficient “creative scope” that was outlined earlier wouldn’t be satisfied if I 

used a similar method as the basis for this project. To create an image that looks stylistically 

different to the ones that are provided would require the user to develop a new Java class file. 

Having said that I do feel that the output from this program is aesthetically pleasing as a result, 

and therefore some degree of empirical analysis of existing Op-Art works should be performed 

to derive default parameter values for the program.  

The parameter control names are not very helpful, for example “Change one”, “change two”, 

etc. Trying to alter the image produced in a specific way is difficult as a result. It is important that 

the parameter names used in the program correspond to the aspects of the image that they 

change so that the program has a professional feel to it and is easy to use. 

Op-Art Generator and Animator (Oliver Payne) 

Oliver Payne’s Op-Art generator program effectively produces Op-Art in a similar style to much 

of Bridget Riley’s early work. It is based around the concept of distorting a grid of repeated 

shapes and bending the surface on which the grid lies. It provides tools to progressively alter the 

size, colour and opacity of the shapes and reproduces works such as “Movement In Squares” 

well, however there is no scope to produce works like Riley’s “Shift” (1963), which are created 

by progressively altering the geometry of the repeated shape over the course of the painting.  

The rendering pipeline in Oliver Payne’s program is fixed, so if it is unable to create artwork in a 

specific style then it is not possible to add any extra components to it that would enable that 

style to be rendered. 

Photoshop and Illustrator (Adobe Systems) 

Adobe Photoshop and Illustrator are the industry standard digital graphics tools used by artists. 

They are not specific to Op-Art, and they are not generative art tools, however they contain a 

number of features that could be useful in an Op-Art generator program. The floating properties 

palette window gives immediate feedback on whatever elements the user has currently 

selected, and the layers feature means that complex compositions can be created out of 

multiple simple layered elements. 

Opartica (Dan Zen) 

http://www.opartica.com/opartica/ 

Opartica is an online tool that has been designed specifically to create animations in an Op-Art 

style. It allows you to select from a small set of pre-drawn patterns that can be set to rotate 

clockwise or anticlockwise, or move up or down the screen. The speed of the movement can be 

altered, and the moving patterns can be layered over each other. All the patterns contain 

repeating areas of one identical colour and transparency, so the combined layered effect can 

create interesting visuals.  



P a g e  | 14 

 

 

Figure 3: Opartica Tool. 

Opartica makes much use of patterns that are based on a grid using polar coordinates. This 

allows scope for creating works that radiate out from the centre of the image, and such a 

feature could allow an Op-Art program to recreate works in a similar style to that of Riley’s 

“Blaze” series.  

Artlandia (Mathematica Plugin)  

http://www.artlandia.com/products/artlandia 

Artlandia is a piece of commercial software that provides a Mathematica user with an extra set 

of functions related to graphics output and array processing. They enable simple generation of 

various curves, creation of distributions, wallpaper tiling, layer operations, and a variety of 

graphics transformations. These can then be coded up and run to produce visual output, with an 

emphasis on creating repeating patterns or visualisation of data and algorithms. 



P a g e  | 15 

 

 

Figure 4: Sample output generated by Artlandia. 

As the price of Artlandia is over £200, not including a Mathematica license, I was unable to try 

out the software to get a feel for any features that could be useful in an Op-Art generator. From 

the descriptions provided on the site however it seems that the creative scope provided is very 

broad due to the scripting language used to create an image. Eventually one can combine 

various complex rendered elements in different layers with ease; but the learning curve for the 

tool is steep as there is no visual editor. It would be good to recreate the flexibility of combining 

different layers and transformations that exists in Artlandia in a more visual user interface 

format. 

The language based nature of the program does afford advanced users a great degree of 

flexibility in defining how their images are generated. Allowing OpArtGen to be scripted using a 

similar language would mean that the program would appeal both to new and advanced users. It 

would still enable artists that don’t understand the intuition behind programming to use the 

visual editor to build the image’s structure. 

Advanced Visualization Studio (Winamp Plugin) 

The Winamp AVS plugin allows the user to create images that react to changes in the spectral 

content of a multimedia file that is being played at the same time in the Winamp media player. A 

number of rendering modules are provided that can freely be combined with transformation 

modules in effect lists. A user creates the animations by defining equations that modify variables 

on a per-frame, or per-beat basis. The objects rendered to screen are drawn according to 

equations containing those variables. A similar system could be used in the Op-Art program that 

would allow an artist to modify image parameters on a per frame basis. 

The most impressive feature of the Advanced Visualisation Studio is the wealth of user 

generated content available at the community website. (10) This enables users to download a 

variety of presets to aid learning and satisfy casual users.  

Flash (Adobe Systems) 

Adobe Flash is a vector based animation tool designed for authoring content for the web. The 

main animation techniques employed are “Keyframes” and “Motion Tweening”. This allows a 



P a g e  | 16 

 

user to create a number of vector drawings at certain points in time, and then have the program 

automatically “tween”, or create intermediate frames of vector content that smoothly blend 

between the Keyframes. This technique could be used to progressively alter shapes that are 

repeated throughout an image, without the artist having to write equations to do so as was 

found in the Winamp AVS plugin. 

Graphics Libraries 

As the completed image files must be exported by the program in a vector format it is necessary 

to maintain the in memory image as a vector format. This means any transformations must be 

done to the constituent elements in an image in such a way that they remain stored in memory 

as vectors. This prevents the use of most 3D graphics libraries for Java such as JOGL or Java3D, as 

there is no capability to export the rendered 3D scenes out to file in a vector format. This is a 

shame as the 3D libraries would otherwise make creating the complex surface distortions that 

are found in Op-Art easier. 

The Java 2D library contains helper classes for efficiently processing 2D graphics calculations for 

operations such as affine transformations. This would mean a engine could easily be written in 

Java to skew and rotate the image, and perform simple orthographic projection of a basic 

surface warped in 3D space onto a ‘canvas’ plane. The Java 2D library has a large community 

associated with it and is very well documented. Furthermore, a Java library called Apache Batik 

exists that allows programs that use the Java 2D library to easily render in memory images out to 

file in the SVG vector image format.  

Generative Art and Sound Synthesis 

As we have seen, there are not many commercially available Op-Art software packages that 

exist. This is due to the limited market for Op-Art generating software. To build an Op-Art 

program that approaches the situation in a novel way it is necessary to find new ideas and 

methods of working, so it might therefore be useful to consider software packages that have a 

similar creative functionality, but are used to produce a different type of art. 

The connection between visual and sonic generative art is strong - they are linked by the 

common need for an algorithmic construction. Much of Bridget Riley’s work has an inherent 

rhythm and flow, and observing one of her works can be likened to listening to the interaction 

between various sounds in a piece of music. Riley herself has noted this, here describing her 

later curvilinear painting style: “When played through a series of arabesques the curve is 

wonderfully fluid, supple and strong. It can twist and bend, flow and sway, sometimes with the 

diagonal, sometimes against, so that the tempo is either accelerated or held back, delayed” (11) 

Russell Richards argues that an interactive computer system designed for creating art may exist 

in one of three modes of interactivity: consumer interactivity, processor interactivity or 

generator interactivity. The latter mode is one in which “the user is positioned as the creator of 

content within a system”. (12) This corresponds to the mode in which we can achieve our goal of 

“sufficient creative scope”, and the equivalent system that is easily available to analyse in sonic 

generative art world is that of sound synthesizers and sequencers.  Op-Art tends to have a 

central repeating element that is altered over the course of the canvas, and then often the 

entire canvas is shaped or distorted. A sound produced by computers tends to have gone 



P a g e  | 17 

 

through a similar construction process. If we consider an Op-Art animation to be equivalent to a 

musical passage of synthesized notes, then looking at how a software synthesizer enables a 

musician to produce, shape, and alter the timbre of the passage over time will give us ideas for 

how a novel type of Op-Art generator program could enable an artist to create an Op-Art 

animation. 

There are a variety of common sound synthesis techniques that exist in software. One 

technique, known as modular synthesis, gives the musician an incredibly flexible and powerful 

tool to craft their sound. Most software synthesizers have a common fixed routing path for the 

sound signal from initial creation to output. The signal is usually created from a fixed number of 

oscillators, each possibly having a customizable waveform, the output of which is combined and 

passed through a number of filters and sound shapers. Modular synthesizers do away with the 

fixed number of oscillators and fixed signal path through a fixed set of sound processing units. 

Instead, the musician is presented with a framework in which they can build up their own set of 

oscillators, filters, and shapers, and a tool with which to route the audio signal and parameter 

control values between the various modules as they see fit. (13) 

One of the most mature modular synthesis software packages available is Native Instruments’ 

“Reaktor”. (2)

 

Figure 5: Reaktor Module Structure Window showing interconnectivity. 

 Reaktor’s interface allows a user to easily see and alter the structure of an instrument via the 

connectivity of its various modules. Each module has its own internal structure window allowing 

the user to further customize how parameters are altered – either via a GUI window or via 

parameter output from another module. Altering the sound produced can be done by modifying 

a module’s parameters via its GUI, or by reconfiguring the instruments’ module structure. 

A similar modular interface could be used for the Op-Art generator program, allowing the artist 

full control over how shapes and colours are generated, positioned and combined in each layer, 

and then how the layers themselves are transformed or interact with each other. In order to 



P a g e  | 18 

 

decide what individual modules should be, I will later look at a number of works of Op-Art to 

deduce the common elements.  

The sound waves from real instruments are very complex, and musicians tend to vary the timbre 

of the sound as they play a passage of notes. To ensure that synthesised notes remain 

interesting and don’t simply sound like a “tone organ”, after the basic sound wave has been 

produced the sound is usually modulated. This involves changing a module parameter over time, 

for example a filter frequency might be modulated via a sine wave to produce a vibrato style 

effect. In Reaktor this can be achieved by connecting a LFO (Low Frequency Oscillator) module’s 

output to the filter frequency parameter input on the target oscillator module.  

 

Figure 6: LFO control from the Malstrom Synthesizer 

A LFO module on a synthesizer produces various customizable waveforms as its output. Such a 

module could be used in the Op-Art program to create simple animation, for example the sine 

wave output of a LFO module could be connected to the width and height inputs of the shape 

module in a reproduction of “Movement In Squares”. This would result in an animation that 

appeared to pulse. Obviously, with a variety of LFO waveforms and more complex signal routings 

more interesting animations could be achieved. 

In Granular synthesis oscillators as the sound source are removed and replaced by small chunks 

of sampled audio called grains. These grains are assembled in an array, and then when a note is 

played the audio grains are then played back in order. To add colour to the sound, a musician 

has the ability to control parameters such playback start point. (14) A similar technique could be 

used for varying series used by processing modules. This would allow an LFO module to be 

connected up to the colour index parameter and allow the colour used in an image element 

series to change over time. 

Analysis of Existing Op-Art to Determine API Modules 

I will now look at a number of works to try and ascertain what common elements exist and 

develop methods for their reconstruction. This will lead us to a set of features that will be 

implemented as modules in the finished program so that it may reproduce similar works. Let us 

first look at Bridget Riley’s “Movement In Squares”. 



P a g e  | 19 

 

 

Figure 7: Bridget Riley, "Movement In Squares", 1961. 

It seems that repeated shapes whose properties are varied across the canvas are a fundamental 

concept in most Op-Art. One required module (or group of modules) in the finished program 

should therefore be capable of generating a series of vector shapes, allowing the shape 

parameters such as position, size, colour, and opacity to vary over the image. There are a 

number of ways we could programmatically construct the above work. One way would be to 

draw a series of rectangles across the page, with fill colour alternating between white and black, 

and the starting colour of the series set to white. Each successive rectangle in the series is drawn 

with its leading edge touching the trailing edge of its predecessor. The width of a rectangle in 

the series is defined formulaically, with respect to its position in the sequence. The formula used 

would contain a number of parameters that could be altered, for example: the turnaround point, 

and the rate of change of width: 

 

Once one series of rectangles has been drawn, another similar series should be constructed 

directly below the first, with the starting colour of the new series set to the opposite of the one 

used in the previous series. If a program continued outputting series of rectangles in this way 

until canvas of the desired size had been filled, then the image produced would be similar to 

that of “Movement In Squares”. 

 

The problem with this approach is that it would be time consuming to set up the parameters so 

that the entire image fits into the canvas. This can be solved by constructing the image using an 

alternative approach. Instead of a series of shapes with changing width we use a grid of squares 

alternately filled with black and white lying on a flat surface. The white squares could even be 



P a g e  | 20 

 

empty, allowing the white canvas background to show through. Now, instead of specifying row 

height and column width for the grid we specify the number of rows and columns we want in 

the grid and have the program calculate the correct grid dimensions. The grid dimensions could 

then be stored proportionally, allowing us to combine multiple grids to form a composite image, 

ensuring that each grid filled up the space available to it. 

The grid is then distorted by stretching the flat surface over two joined quarter circles, with the 

resulting surface looking like a piece of paper that has been folded and opened back out. The 

distorted 3D surface is then orthographically projected back onto a flat surface to give the 

finished image. 

 

To achieve this in a general form we would need a module that could accept a set of vector 

shapes as its input, generate a set of points in 3D space corresponding to the shapes on the 

warped surface, and then calculate the x and y coordinates of the projected points as the dot 

product of the point in 3D space with each of the two orthonormal basis vectors of the final 2D 

surface. The 3D surface could be defined parametrically, and then the module could allow the 

surface to be changed dynamically. Unfortunately, arbitrarily warping a 3D surface requires 

vector based texture mapping, a technique that is beyond the scope of this project. (15) 

Instead, it is still possible to warp a grid over simple curves and then calculate the projected 

points using some trigonometry, as long as it is possible to calculate the distance between two 

points on the curve. This means we could have a grid warping module that takes a grid as input 

and outputs a grid whose column sizes have been altered to represent a projection of the grid 

warped over a curved surfaced, however calculating the distance between two points on a curve 

is not always simple. One compromise that will still allow us to distort the surface without 

requiring the implementation of complex graphics algorithms is to base the distorted surfaces on 

circular arcs. (16) 

From the parametric equation of a circle we 

can calculate the projected distance of a grid 

square, p: 

 

 

 

α`

x

x`



P a g e  | 21 

 

Now we have a distorted grid we need a way of alternately filling the grid cells with black 

squares prior to the distortion being applied. To do this we need a module in which we could 

define a shape that could be tiled over the grid. The module structure diagram required to 

reproduce “Movement In Squares” might look something like this: 

 

Looking at Riley’s “Shift” below, we see that the grid squares are not entirely filled by colour as 

we have had in previous works. Instead, there is a series of triangles, whose geometry changes 

over the course of the image. Looking at “Shift” is like viewing a stack of film strips, either laid on 

top of each other or side-by-side. We could then consider the grid to be similar to a series of still 

frames taken of an animation of the vector shape morphing. We have seen that the concept of 

Keyframes and Tweening are used in Adobe Flash to simplify the animation of vector shapes, so 

we could use a similar technique to create a series of vector shapes as an ‘animation’ along an 

image axis. This concept could then be extended to allow the shape series to be animated along 

time in conjunction with the LFO modules.  

So, if we consider the grid to be an array of empty vector shape containers allowing us to insert 

any desired vector shape, then we could reproduce works like this. We can use the concept of 

keyframes and tweening in a control in the shape series module’s properties window, allowing 

us to define the way in which a basic vector shape changes over the entire grid. The module 

would then insert the interpolated shapes in the grid that is passed to it. “Movement In Squares” 

could still be reproduced by defining a shape series consisting of a single square, alternatively we 

could define a simple vector shape module that will insert the same shape into each grid cell. 

 

Figure 8: Bridget Riley, "Shift", 1963. 

To reproduce a shape series like the one found in “Shift” a user would need to have the 

keyframes and tweening set up in the module’s control in a similar way to this: 



P a g e  | 22 

 

 

The grey areas represent the shapes that are calculated by linearly interpolating the vector 

points from the surrounding key cells. The order in which interpolation is performed is indicated 

by the numbered arrows. The shape series module would need a control allowing the user to 

create a basic shape as the first keyframe, and then allow the user to define the location of the 

subsequent keyframes in the first and last columns, or first and last rows of the grid. The shapes 

would consist of a number of vector points defined using coordinates relative to the points’ 

location in a cell. For example, the triangle in the top left corner of the diagram above could be 

defined as [(0%, 100%), (100%, 100%), (100%, 0%)]. The module structure diagram required to 

reproduce “Shift” might look something like this: 

 

We now look at another of Bridget Riley’s works, “Cantus Firmus”. This work consists of a series 

of coloured vertical bars, however this time the size and spacing of the bars is defined by a 

regular, repeating pattern rather than a gradual curve.  To produce this we would need to be 

able to define an array of column proportions, which could then be translated into a repeating 

set of column widths that are applied to the grid. This distortion is similar to the surface warp 

module that we needed to produce “Movement In Squares”; given a column cell index the 

module returns a column width, and given a row index a height.  



P a g e  | 23 

 

 

Figure 9: Bridget Riley, "Cantus Firmus", 1972-3. 

From “Movement In Squares” we know we need a shape module to place rectangles in our grid 

with an option to choose the colour of the shape. We can refine this notion somewhat with 

“Cantus Firmus”. Here we need a way of applying a series of colours to those rectangles. We 

need a colour series module that allows us to cycle through colours in a list, applying each colour 

to the contents of each grid cell. 

The core series in the work consists of three groups of 3 thin bars separated by two thick bars. 

The thick bars themselves change colours in a series: the rightmost bar changes from light grey, 

to dark grey, and back to light grey and the leftmost bar stays a constant dark grey. The two 

thick bars change their positions over 4 repetitions from the right edge of the painting. The thin 

bars also have their own series: GRB|BRG|GRB, BRG|GRB|BRG, GRB|BRG|GRB etc. We 

therefore need a module that will allow us to merge together individual grids containing shapes 

that have had a variety of colour series applied to them. 



P a g e  | 24 

 

 

Figure 10: Bridget Riley, "New Day", 1988. 

 

In “New Day” we can see there is still the concept of a square grid, though rather than the grid 

being distorted via a surface fold, it has been skewed to create parallelograms. This could be 

done in the program by a module that applied an affine transformation to the grid. Looking at 

the colouring of the image, instead of a regular sequence of colours as we have seen before, or 

shading over the image, there are multiple layers of shapes with each layer assigned a different 

colour. Not all the parallelograms in the grid in each layer are filled in however, so the multiple 

colours show through into the final image. 

This introduces the concept of layers – to recreate works such as “New Day” it would be useful 

to be able to combine multiple layers of generated output into the final image. The merge 

module should therefore have a variety of merge types allowing you to join the input grids 

together in a row, or join them by stacking them on top of each other in layers. 

 

Figure 11: Julian Stanczak, "CHARTRES", 1980. 



P a g e  | 25 

 

Looking at “CHARTRES” we see that the colour series module is insufficient for reproducing the 

shading of the rectangles in the picture. Also, the canvas background in this image is not a single 

colour but a gradient. To achieve this we need another colour module that allows us to create 

colour gradients. If the module is connected in line with the output of a grid module or a shape 

series module then a series of colours should be applied to the shape in each grid cell to create 

the impression of a gradient. 

If instead the gradient module is connected to a shape module, then the gradient should be 

applied as shading to that object. This functionality would allow us to create the black to red 

gradient in the background of “CHARTRES” and at the same time create the red to orange colour 

change that exists in the small squares of “CHARTRES”. The module structure diagram to 

reproduce this work might look something like this: 

 

To complete the set of colour modules we look at Julian Stanczak’s “Low Asteroid”. 

 

Figure 12: Julian Stanczak, "Low Asteroid", 1983. 

Even with a colour series module and a colour gradient module it would still be very difficult to 

reproduce colouring similar to that found in “Low Asteroid”. To ensure the user has full artistic 

control over the finished piece a module is needed that allows the user to apply a colour map 

over the image. The user could then create the desired colouring in an external graphics 



P a g e  | 26 

 

program such as Adobe Photoshop, and then load the bitmap into the colour map module. This 

would then take the relative location of each grid cell in the final image, extract the colour from 

the same location in the colour map bitmap, and apply the colour found to the contents of the 

grid cell.  

This means “Low Asteroid” could be reproduced by combining 3 grids together onto a black 

canvas: one grid containing a large, colour mapped square; another containing a smaller, black 

square; and the last containing a smaller, colour mapped circle. The module structure diagram to 

reproduce “Low Asteroid” might look something like this: 

 

 

  



P a g e  | 27 

 

Software Design 
The key priorities whilst developing this program were twofold:  

• Develop a solution that allows rendering of artwork in an OpArt style both using a visual 

editor and GUI, or from a scripting interface and some domain based language. 

 

• Employ a modular design so that user created components may be plugged-in at 

runtime without requiring the entire program to be rebuilt. 

The design of the software was developed incrementally during the implementation phase of my 

project, as I did not have much previous experience in developing user interfaces or graphics 

based applications. I used semi-agile methods with incremental builds and sprint periods of 

roughly 1-2 weeks depending on what my current objectives were. 

Java SE 6 was used to build the software as it has a mature 2D graphics library which is well 

documented and has a good community built up around it, making it easier to find solutions to 

common problems. This meant that even though my experience with graphics programming was 

limited I could quickly begin coding working programs that attempted to create simple graphics 

in an Op-Art style.  

So that the image creation process could be scripted it was necessary to develop some kind of 

domain language to describe the process. The options available for this were to create either an 

internal or external Domain Specific Language (DSL), or an Application Programming Interface 

(API). Given the project scope and timeframe I decided against creating an external DSL due to 

the associated requirement of developing a compiler or interpreter for the language. Instead I 

have chosen to develop a hybrid of an internal DSL with an API.  

The API provides an interface to a rendering engine and domain objects, and the internal DSL is 

achieved using interpreted or compiled scripts written in JavaScript or Java respectively that 

make calls to the API. The GUI has a layered design uses API calls to manage domain objects and 

render the images. 

Creating Art Using OpArtGen 
Art is created with OpArtGen using a different workflow to most conventional 2D digital artwork 

programs. In most digital art programs, one or more vector or raster layers are stacked on top of 

each other to create the final canvas for output. The user then edits the data in the layers 

directly using manual tools. Some programs also allow you to modify the data algorithmically 

using effects and macros. The rendering pipeline for the image is fixed by the developer, and 

then can only be altered by changing the order of the layers that make up the image. 

OpArtGen removes the need to directly edit the artwork data and instead allows the user to 

build an abstraction of the desired image, and then directly or algorithmically modify the 

parameters of that abstraction. In OpArtGen the rendering pipeline is not fixed; it is the custom 

rendering pipeline created by the user that defines the abstraction of the final image. Instead of 

editing the rendered image data in the GUI you edit the rendering pipeline that creates the final 

image. 



P a g e  | 28 

 

This means that for the same abstraction there could be many variations of the final image 

produced. Each variation is linked to one combination of module property settings, with as many 

variations as there are combinations of property settings for the modules in the pipeline. 

Animation of the image is achieved by moving between these variations by progressively altering 

the property values and rendering the image each time a value changes. 

Creating an image in OpArtGen involves creating a rendering pipeline that does the following: 

 

Let’s consider an example: imagine trying to create an image consisting of a grid of chequered 

squares. If you were using an ordinary art program then your workflow would be similar to the 

following: 

1. Create a new image canvas, size 400 pixels x 400 pixels. 

2. Choose the desired foreground colour using the colour picker tool. 

3. Select the square shape tool. 

4. Use the mouse to draw a chequered grid of squares with chosen foreground colour in 

the canvas. Hopefully the program you are using has a feature such as snap to grid 

otherwise the grid may not look very accurate! 

Now if you decide that you want to change the size or the colour of the squares, the last three 

steps need to be repeated in their entirety! If the program uses vector rather than raster data 

then you might be able to select the squares and update their size and colour without having to 

individually redraw each square in the entire grid. Now suppose that you want the squares to 

gradually expand and shrink between two sizes, or fade in-between two colours: how could you 

do this? With most conventional 2D art programs this is not normally possible. 

We now look at an outline of the equivalent workflow you would use if you were instead using 

OpArtGen to create the image. Detailed instructions on how to create the image using the visual 

editor or using a script may be found in the sections: Using the Visual Structure Diagram Editor 

to Create Images (Page 34) and Using Scripts to Create Images (Page 37). The workflow is as 

follows: 

1. Create a new Grid Module and choose the grid size in its properties window (e.g. 5 x 5). 

This creates an empty grid into which other image elements may be placed. 

 



P a g e  | 29 

 

2. Create a new Shape Repeater Module and connect the output of the Grid Module to the 

input of the Shape Repeater Module. This means that when the image is rendered, the 

Grid Module can send the grid to the Shape Repeater Module which then places shapes 

in each grid cell. 

3. Open the properties window for the Shape Repeater Module and select Rectangle as the 

desired shape, choose its desired colour, and choose the desired size of the rectangle 

relative to the grid cell it sits in. Select to place the shape in alternate cells in the 

placement options tab. 

 

4. Create a new Canvas Module and set its size to 400 pixels x 200 pixels using its 

properties window. 

5. Connect the output of the Shape Repeater Module into the input of the Grid Module. 

The Shape Repeater Module now sends the grid containing the rectangles to the Canvas 

Module when the image is rendered. The Canvas Module then takes the grid of shapes 

and stretches it over the canvas size that you have specified with all shapes resized 

correctly and drawn accurately. If we now choose to display the canvas window for the 

Canvas Module then OpArtGen will render out our image to screen for us. 

 

Figure 13: Final Rendered Image 

Observe that we performed no direct editing of any of the image’s data in this workflow. All we 

did was define a rendering pipeline for our canvas that instructed the program to place a 

rectangle into alternate cells of a 5x5 grid, and draw that grid stretched to fit our 400x200 

canvas. 



P a g e  | 30 

 

 

Figure 14: Rendering Pipeline created by Workflow 

Our rendering pipeline can be thought of as a high level macro detailing how we wish the 

program to construct our image for us. Because we chose a grid with equal dimensions but a 

canvas with a width double its height our squares are rendered stretched as rectangles. The final 

size of the grid is determined by the Canvas Module, and all grid cells are resized so the grid fits 

the canvas. 

We can now alter the parameters of the rendering pipeline we just defined to give one of many 

variations of our square image. For example, we may wish to have a red square that fills the 

image or a blue square that only occupies half of our image. We may even wish to have an image 

that oscillates between a larger and a smaller square. Altering module parameters to achieve 

this may be done in two ways: we can either manually edit them using the same properties 

windows that we just used in our workflow, or we can define how we wish the parameter values 

to vary over time using oscillator modules. This would allow us to define a type of high level 

macro that lets the shape’s size parameter in our rendering pipeline vary algorithmically from 

say 50% to 100%. 

 

Creating Rendering Pipelines 

OpArtGen produces images using the rendering pipelines that you define. 

Each rendering pipeline is a branching tree of connected modules stored by a graph. Each tree is 

rooted at a Canvas Module. Multiple rendering pipelines may be created in the same document, 

and each Canvas Module renders its own separate image using the modules at the nodes in that 

canvas’ pipeline. Leaf node modules create data objects that are sent up the tree by the 

rendering engine. Modules at each intermediate node then process the data objects received 

from their child nodes until the final data object is received by the Canvas Module at the root 

node. 

The Canvas Module then produces a Java Canvas object with an overridden paint method that 

can draw the grid data to any Java Graphics object. This allows the GUI to draw the image to 

screen or the Batik library to convert the calls to the Graphics object to an SVG file. 

Modules are connected to each other using ports. A port provides an interface for a module 

allowing it to be connected to other modules present. When two modules are connected 

together by their ports the module objects are joined together in the graph of the rendering 

pipeline. Ports are of a specific type, and each type allows the sending and receiving of data 

objects of a given type. A port may either be a output (send) port or an input (receive) port with 

the obvious consequences for its ability to either send or receive data objects. Send and receive 

ports of the same type on different modules may be connected to each other allowing directed 

transmission of data objects through the modules in a rendering pipeline. 



P a g e  | 31 

 

 

In the above screenshot of a rendering pipeline in a structure diagram we can see there are two 

connected modules.  One module has an output port for sending grid data that is connected to 

an input port of another module for receiving grid data. 

Rendering pipelines in OpArtGen may be constructed visually using the Structure Diagram editor 

window in the GUI, or created manually in a script file using calls to the OpArtGen API and then 

evaluated programmatically by the start.RunScript class. 

There are two types of components present in OpArtGen: built-in and external. Built-in 

components are those that are compiled into the program and are always present when the 

program is run. These provide a set of core functionality for creating images. 

External components are those that are written separately by users, and are then compiled and 

imported at run time to provide any extra functionality not provided by the built-in modules that 

is needed to create an image of a different style. This extra extensibility ensures that the art the 

program is able to create is not limited by the set of available modules. The program may be 

adapted to any given artistic brief.  

When you are using the GUI to create images, external components are indistinguishable from 

built-in components. When using precompiled scripts to create images there are some 

differences in the way external components are accessed to those that are built-in. These 

differences are detailed in the section: Using external components in scripts (Page 38). 

Creating a Rendering Pipeline That Works 

When creating a rendering pipeline for OpArtGen to create an image you should create and 

connect a set of modules using the following four steps as a guide: 

1. At least one grid must be created to control the placement of elements in an image 

using a Grid Module 

2. Subsequent modules in the pipeline add desired elements to the grid 

3. Extra leaf node modules modify the properties of grid elements or combine grids 

4. A final Canvas Module renders the completed grid 

1. Creating grid data objects 

The first step is achieved by creating a number of Grid Modules. Each Grid Module creates an m 

x n grid data object that it sends to any module connected to its Grid Out port. A grid data object 

encapsulates a two dimensional array of cells. The grid dimensions m and n may be changed in 

the GUI via the Grid Module’s properties window or using the setNumCols and setNumRows 

methods in a script. 



P a g e  | 32 

 

Multiple grid data objects may be combined using Merge modules allowing complex grid layouts 

to be created. Each Merge module allows two grid data objects received from two other 

modules to be encapsulated in a single grid data object that is then sent along the rendering 

pipeline. There are several built-in Merge modules allowing the two input grids to be joined in 

the following configurations: Left-Right, Top-Bottom and Above-Below.   

2. Adding elements to the grid 

Elements are added to the cells in a grid by the Shape Repeater Module or the Grid Repeater 

Module. Once you have created the correct module for the element you wish to add to the grid, 

then the Grid Out port of the Grid Module must be connected to the Grid In port of the repeater 

module. 

The Shape Repeater Module allows predefined shapes to be added to cells in a grid. Some 

shapes are included with the program, and new shapes may easily be added to the program as 

detailed in the section: Adding Extra Shapes (Page 82). Shapes are stored as SVG image files and 

are extracted and converted to Java Shape objects using the Batik library. Once a shape is 

selected its dimensions proportional to its parent cell’s dimensions may be set: e.g. 100% of the 

width and 50% of the height of the parent cell. A default colour may be chosen that is applied to 

all shapes added to the grid to save having to use a colour module further down the rendering 

pipeline.  

The Grid Repeater Module allows you to take a grid and repeat it inside the cells of another grid. 

This allows you to combine shapes together in one grid to make a composite shape, and then tile 

that new shape across another grid. 

Each cell in a grid may hold a renderer object. A renderer object provides a paint method that 

allows the rendering engine to draw the cell’s contents onto a given Java Graphics object in the 

correct location. A number of built in renderers are provided that allow either Java Shapes or 

grids to be stored and output by each cell. To add other elements to the grid, such as SVG 

images or text, which are not covered by the built-in modules would require the creation of a 

new external renderer and external repeater module for each new element type. More details 

on how to do this may be found in the section:  

  



P a g e  | 33 

 

Creating external components for OpArtGen (Page 76). 

Additional instructions on how to use the built-in modules may be found in the sections: 

Implementation of Core Modules (Page 64) and Appendix 5: API Reference for Scripting (Page 

106) 

3. Modifying the grid spacing or properties of grid elements 

The grid spacing may be algorithmically modified by the Surface Warp Module to achieve effects 

that give the appearance of a distortion of the canvas surface in 3D. This module allows the 

selection of a Surface Warp. A number of built-in surface warps are included, and external ones 

may be created as detailed in the section: Creating new Surface Warps.  

The colour of grid elements may be modified using the Colour Module or the Colour Series 

Module. Other properties of grid elements may be modified over time by connecting the Value 

Out ports of Oscillator Modules to the Value In ports of modules in the rendering pipeline. 

Further details on animating images are given in the section: Animation of Images (Page 57). 

4. Rendering the completed grid 

Finally a canvas module must be created and connected to the Grid Out port of the last module 

in the rendering pipeline. The Canvas Module allows a background colour to be chosen along 

with the final image dimensions, and optionally for an empty margin to be added around the 

image. The image may then be rendered to screen in a Canvas Window or output in SVG format 

to a file. The method to do so varies depending on whether the image has been created in the 

visual editor or using a script file. 

Launching OpArtGen 

Two main methods are provided to launch OpArtGen in its two modes. The first is found in the 

class opArtGen.start.RunGUI, takes no arguments, and launches the visual Structure Diagram 

editor. The second is found in the class opArtGen.start.RunScript and executes the script file 

located at the path supplied to the program as an argument. 

OpArtGen uses three third-party Java libraries and also requires that the Java runtime from the 

JDK is present, with a version no less than Java SE 6. This is so the Java Compiler API may access 

the Java compiler contained within tools.jar. The four required libraries are Batik, Relative 

Layout, JCommon and the JDK tools.jar. The appropriate library jar files are bundled with the 

distribution of OpArtGen, and the jar files for then these libraries must all be present on the 

classpath when OpArtGen is run.  

Required Libraries 

• Batik 1.7:  

 http://xmlgraphics.apache.org/batik/ 

 Handles SVG input and output 

• JCommon 1.0.12: 

 http://www.jfree.org/jcommon/ 

 Handles object cloning for Java2D API objects 

• RelativeLayout: 

 http://www.andrew.cmu.edu/user/firebird/relativelayout/ 



P a g e  | 34 

 

 Used to lay out module properties windows 

• JDK SE 6 (for tools.jar): 

 http://java.sun.com/javase/downloads/ 

 Required by Java Compiler API to compile code from on the fly 

Note that a Java runtime version 6 or greater is required to support the scripting language 

framework and the compiler API. 

Using the Visual Structure Diagram Editor to Create Images 

The first window that opens when running OpArtGen using the main method in RunGUI is the 

visual Structure Diagram editor window. This editor provides a blank diagram to add modules to. 

The status bar at the bottom of the window provides you with some helpful information on 

whatever element in the structure diagram the cursor is hovering over. The Java console is also 

used to give you additional information on any modules that are created and removed, and any 

problems caused when trying to connect modules together. 

The rendering pipeline is represented visually in the editor as a graph. Modules are arranged in 

the window with the leaf nodes towards the left side and the root canvas nodes on the right 

side. Data objects flow from left to right through the connected modules in the diagram, and 

connections are represented by lines drawn between modules. 

There are two ways you can add modules to the structure diagram: via the Structure → Create 

Module submenu on the main menu or via the context menu opened by right clicking in the 

editor window at the location you wish the new module to be placed. Each module is displayed 

in the editor window as a rectangle containing the module name and any ports. The ports are 

split into two lists: one list is displayed on the left containing that module’s input ports and one 

list on the right containing the output ports. As a visual aid, each port type has a corresponding 

port colour. An example module is shown below: 

 

Figure 15: Example module as displayed in a Structure Diagram 

Ports on different modules may be connected together by clicking on the coloured square found 

to the left or the right side of the port’s name, and then dragging the cursor until it is over the 

port you wish to connect to and releasing. While the cursor is being dragged a red line appears 

between the source module and the cursor showing that a connection is currently being made. If 

the connection is a valid connection then a solid line will be drawn between the two ports once 

the mouse button has been released. Valid connections are those that satisfy the following 

constraints: 

• The connection is between two ports of the same type. (i.e. same colour) 

• Each port is on a distinct module 

• The connection does not create cycles in the rendering pipeline’s graph 



P a g e  | 35 

 

Once a connection has been made it may be removed by right clicking on either constituent port 

and selecting Disconnect from the context menu that appears. The connection line will be 

removed and the rendering pipeline flushed. 

So that the structure diagram remains clear and legible, modules may be moved around the 

diagram by clicking and dragging on the area by the module name. The mouse cursor will change 

to a movement cursor to indicate when it is over a draggable area. 

Module parameters may be changed manually using the GUI in the properties window for each 

module. To display the properties window for a module: right-click on the desired module and 

select Properties from the context menu that appears. The properties window for that module 

will be displayed. Any changes made to parameters in this window will not be saved to the 

module until either the OK or Apply button is clicked. Clicking Cancel allows all changes made to 

be discarded. 

Example: Creating a chequered image 

We now apply the four steps previously outlined to create an image using the visual editor.  

First we must create a grid that we can put the squares in. Open the Structure Diagram editor 

and right click on the empty diagram towards the left hand side of the window. Because data 

flows from the left to the right it helps keep things neat if you place leaf nodes towards the left 

of the diagram. Choose “Create Grid Module” from the Create Module submenu. 

 

A new Grid Module named “Grid Module 1” will appear in the same location that you right 

clicked at. Right click on the background of the module panel next to its name label. Before you 

click the mouse cursor should be displaying a movement cursor with four arrows otherwise the 

cursor is not in the right location. Choose “Properties” from the context menu that appears.  

 

The properties window for the Grid Module will appear. In the General tab that is shown when 

the window opens you will see two text input fields where you can enter the number of rows 



P a g e  | 36 

 

and the number of columns that the grid produced by the module should have. Enter 5 in each 

field and press OK. 

Second, use the same method as before to create a Shape Repeater Module in the structure 

diagram to the right of the Canvas Module. You now need to connect the “Grid Out” port on the 

Canvas Module to the “Grid In” port on the Shape Repeater Module. To do this move your 

cursor over the “Grid Out” port until it changes to a crosshair; then click and drag it until it is 

over the “Grid In” port and release it. If you were successful the red line between the two ports 

will turn into a black line: 

 

Open the properties window for the Shape Repeater Module. Choose a rectangle from the 

Shape box in the General tab, select black as the fill colour in the Rendering Options tab, and 

chose alternate cell shape tiling from the Shape Placement tab. 

 

 

Finally we need to create a Canvas Module that we can pass our grid of shapes to so that it may 

be rendered to screen. Right click on the structure diagram to the right of the Shape Repeater 

Module, and create a Canvas Module. Connect the “Grid Out” port on the Shape Repeater 

Module to the “Grid In” port on the Canvas Module. The final structure diagram should now look 

like this: 

 

Use the Canvas Module’s properties window to change size of the final image. Click on the 

Dimensions tab, change the height to 200, and select OK. To display the final image on screen in 



P a g e  | 37 

 

a Canvas Window, right click on the background of the Canvas Module and select “Show Canvas 

Window”.  

  

The image that appears in the canvas window will look exactly like the final image we generated 

on page 29. 

Using Scripts to Create Images 

OpArtGen scripts may be written either in JavaScript using the open source Mozilla Rhino 

language extensions and run in an interpreted mode; written as Java source files which are 

automatically compiled, loaded and run; or compiled to Java class files which are loaded and 

run. 

In the above methods one makes calls from the script to the appropriate API methods in order 

to construct a rendering pipeline, and then render the image to screen or file. The benefit of 

using a script to create an image over using the visual Structure Diagram editor is that the 

rendering pipeline is exposed. This allows more complex animations to be created using Java 

timers where the pipeline itself is changed over time; or even the use of techniques such as 

Genetic Algorithms to produce generative art. 

Using Java to write scripts 

The OpArtGen API provides an interface for writing scripts called Script, located in the package 

opArtGen.API.scripts. This interface defines a method run that takes no parameters and has a 

void return value. To write a script using Java code it is necessary to place your code inside a run 

method in a class that implements the Script interface. The script class may then either be 

compiled, and the compiled class file passed to RunScript as an argument; or the Java source file 

itself passed as the argument. 

Precompiled class files provide the quickest execution speed as the only overhead is the initial 

class file loading and calling of the run method using Java reflection. Java source files incur an 

additional compilation overhead prior to the loading and calling of the run method. With Java 

source and compiled class files reflection must be used to access fields and methods of external 

components which results in increased code complexity. To get around this problem scripts may 

be written in JavaScript, however this will incur an extra execution overhead due to its 

interpreted nature. 

Using built-in components in scripts 

When programming scripts using built-in components, it is only necessary to ensure that the 

OpArtGen jar file and required libraries are on the Java classpath. All component classes may 

then be imported and used in the scripts as normal. For example, using Java: 



P a g e  | 38 

 

import opArtGen.API.modules.CanvasModule; 

... 

CanvasModule canvas = new CanvasModule(); 

Using external components in scripts 

External components that are loaded at runtime pose a problem. As it is not known prior to 

runtime which external components will be loaded and what their class information will be, it is 

not possible to compile a script written in Java that references an external component ahead of 

time directly, instead it is necessary to use the factory returned by the relevant component 

loader object’s getFactory method to create an object instance. For example: 

AbstractModule external = (AbstractModule) 

  ComponentLibrary.getModuleFactory() 

    .createComponentInstance("ExternalModule"); 

... 

grid.getOutputPort(0).connect(external.getInputPort(0)); 

... 

try { 

Class<?>[] types = {String.class}; 

Method method = external.getClass() 

     .getMethod("setPropertyValue", types); 

Object result = method.invoke(external, 

        new Object[] {"newValue"}); 

} catch (Exception ignore) {} 

Notice that you are able to easily access any methods defined by Module or AbstractModule; 

however you must use reflection to access property methods specified in the external module 

class unless you have the correct Java source or class file available to import when you compile 

your script. 

Using JavaScript and Rhino to write scripts 

OpArtGen is capable of running scripts written in JavaScript in an interpreted mode rather than a 

compiled mode. As this feature is built around the Mozilla Rhino script engine it is still possible 

to access all the Java objects and methods alongside the OpArtGen API. Because compilation is 

no longer required it is possible to directly access any module types that have been loaded at 

run-time and removes any need to use reflection. 

Example: Creating a chequered image 

We now apply the four steps previously outlined to create an image using the Rhino scripting 

engine.  

In order to import class definitions into the Rhino engine calls must be made to the method 

importPackage. A top level object Packages is provided to allow you to specify package names. 

(Note that packages are not imported recursively.) In our case we need access to the classes in 

the Java awt; and OpArtGen API, modules, and rendering packages: 

importPackage(Packages.java.awt); 

importPackage(Packages.opArtGen.API); 

importPackage(Packages.opArtGen.API.modules);  

importPackage(Packages.opArtGen.API.rendering); 



P a g e  | 39 

 

Now we have access to the classes that we need, we can create the three modules for our 

rendering pipeline: 

// Create modules 

grid = new GridModule(); 

shape = new ShapeRepeaterModule(); 

canvas = new CanvasModule(); 

Connecting the modules is done using the modules’ Port objects. To retrieve the ports use the 

method getInputPort(number) or getOutputPort(number). The numbers are 0 indexed and 

correspond to the order ports are displayed in the visual structure diagram editor. The port 

numbers and their functions are also listed for each module in Implementation of Core Modules 

(Page 64). 

// Connect modules 

grid.getOutputPort(0).connect(shape.getInputPort(0)); 

shape.getOutputPort(0).connect(canvas.getInputPort(0)); 

We also need to load the square Shape object ready to pass to our Shape Repeater Module. To 

do this, use the shape factory that you can retrieve from the ComponentLibrary. The name of the 

shape corresponds to the SVG file we have in the external/shapes directory, and the index 

number of the shape in the SVG file. 

// Load shape 

shapeFactory = ComponentLibrary.getShapeFactory(); 

rectangle = 

shapeFactory.createComponentInstance("rectangle.svg_1"); 

Now we can set property values for our modules. First we need to specify to our Grid Module 

that we want it to output a 5x5 grid object: 

grid.setNumRows(5); 

grid.setNumCols(5); 

Next we set the Shape object our Shape Repeater Module should use, and instruct it to only tile 

the shape on alternate cells ensuring that the top left cell in the grid is filled: we use the 

TilingOptions enum to specify this.  

shape.setShape(rectangle); 

shape.setTilingOptions(TilingOptions.ALTERNATE_CELLS_FIRST_FILLED

); 

We also wish to ensure that our squares are drawn with a black fill: to do this we use a 

ShapeRenderingOptions object with the fillPaint field set to a black colour: 

renderOpts = new ShapeRenderingOptions(); 

renderOpts.drawLine = false; 

renderOpts.drawFill = true; 

renderOpts.fillPaint = Color.BLACK; 

shape.setRenderingOptions(renderOpts); 

Finally we can set the desired size of our canvas to 400x200 and render it to screen: 



P a g e  | 40 

 

canvas.setSize(400, 200); 

 

// Display image 

canvas.setCanvasWindowVisible(true); 

Again, the image that appears in the canvas window will look exactly like the final image we 

generated on page 29. 

  



P a g e  | 41 

 

Software Architecture 
The software is built around two main components, the rendering API and the user interface. 

The design of these is such that the rendering API may be used without the whole user interface 

being present, and if desired, the user interface could be used to control a new rendering API 

with different internal implementation. 

All components are located in the root package opArtGen. The package opArtGen contains 4 

sub-packages, two of which correspond to the GUI and the API and two of which contain utility 

classes. The root package additionally contains a class called Config, which contains a large 

number of constant object instances and values. It is used to externalize configuration options 

for the entire project and simplify maintaining compile-time variables. 

 

Figure 16: OpArtGen Packages 

API Package 

The API is at the heart of OpArtGen, and contains the core code that the rest of the program is 

built around. The package contains: 

• Classes for all the core components that have been implemented 

• Any external component classes created by the user 

• Domain classes used to model the rendering pipelines 

• Classes that control the rendering engine 

• Loader and Factory classes to allow external API components to be loaded at run-time 

• Classes enabling scripts to be loaded and run 

These classes are divided between the API package itself and a further 8 sub-packages: 



P a g e  | 42 

 

 

Figure 17: API Packages 

The Rendering Engine 

As we have seen the rendering engine generates images using rendering pipelines. How does the 

engine actually use the pipelines to output images? We will now take a look at the various 

components that make up the engine and the pipelines in more depth to answer that question. 

Producing an image from a pipeline is a two stage process. The first stage, the Refresh Cycle,  is 

performed by the RenderingManager class and allows the modules in the pipeline to work 

together to produce a grid data object containing a specification of what should be drawn in the 

image. The second stage is then performed by the root Canvas Module in each rendering 

pipeline when it receives the grid data object produced by the Refresh Cycle.  A Java Canvas 

object with a series of nested paint calls is produced from the grid object that can draw the 

image represented by the grid to any Java Graphics object. This Canvas is passed to the GUI 

which is instructed to repaint itself. 

The Refresh Cycle 

The framework of the module and ports together contain a simple messaging protocol 

implemented using method calls. These method calls together allow the engine to perform the 

Refresh Cycle. Each Refresh Cycle causes fresh data to be pushed up from the leaf nodes in a 



P a g e  | 43 

 

pipeline’s tree, through the intermediate nodes where it gets processed, up to the Canvas 

Module at the root node.  

The RenderingManager class controls the rendering process and initiates the Refresh Cycle for 

each rendering pipeline. When the method updateCanvases is called, all CanvasModule 

instances get their asynchronous method updateRenderingPipeline called. This spawns a new 

worker thread that causes a refresh request to be sent down the pipeline. 

A refresh request is sent to a module by calling its refresh method. When a module receives a 

refresh request it executes the following algorithm: 

ON RECEIPT OF A REFRESH REQUEST BY A MODULE: 

 

 check whether the module’s data is dirty: 

 if dirty flag is set then do nothing 

 else 

  call refresh on any modules connected to input ports  

  wait until refresh calls terminate 

  process received data ready for output 

  send data to any modules connected on output ports 

  clear dirty flag 

 

END 

The refresh request is propagated backwards through the rendering pipeline causing each 

module to receive, process, and then output data. Because a module will propagate the request 

first, then wait until propagation is complete before processing the data stored in its data fields, 

the module is guaranteed to have received completely fresh data from all its child modules in 

the pipeline’s tree once processing begins. 

Optimizing the Refresh Cycle 

Notice that the refresh request will only cause a module to process its data if a dirty flag is set in 

the module. This allows the rendering engine to save processing any data unnecessarily. 

Consider the following rendering pipeline for large values of n:  

 

We have a rendering pipeline similar to what we have seen before but with the last-but-one 

module having its size property varied constantly by an Oscillator module. The first time the 

image is rendered the engine must call the processing method for each module in the pipeline 

so that the CanvasModule can get the completed grid data object. 



P a g e  | 44 

 

The second time the image is rendered the grid data sent out by Module n-2 will not have 

changed from the grid data it sent out the first time. This time then the engine does not need to 

call the processing method of any modules inside the square brackets as Module n-1 may reuse 

the data it previously received. The only new processing that must be done is for Module n-1 to 

reprocess that data based on the new value for its Size property and send it to the 

CanvasModule for output. 

We call data that will be changed during a Refresh Cycle dirty data. If a module contains data 

that will change during a refresh request then its dirty flag should be set. When a module’s data 

will change  it must notify the other modules further down the pipeline that they must set their 

dirty flag as they will be receiving fresh data. To achieve this, when a module’s dirty flag is set 

using the method setDirtyFlag, a message is sent to any modules connected to its output ports 

requesting them to set their own dirty flags. This message will be propagated right through to 

the final CanvasModule in a pipeline.  

Dirty flags may be set at any time independently of whether or not a Refresh Cycle is in progress 

at the time. If a refresh is in progress they will not be taken into account until the next refresh 

occurs as all methods involved with the Refresh Cycle are synchronized so must acquire locks on 

the module’s object instance.  

The method setDirtyFlag is called by setter methods for module properties and by the 

constructor method defined in the AbstractModule class. The convention is that property setter 

methods themselves do not call updateCanvases or updateRenderingPipeline, rather the client 

code that uses the setter method should call updateCanvases after all the desired changes to 

property values of modules in the pipeline have been made. 

The following diagrams illustrate the sequence of messages that are sent and received by 

modules when first a property value is updated and then updateRenderingPipeline is called: 



P a g e  | 45 

 

Figure 18: Updating a Property Value for a Module - Setting the Dirty Flag 



P a g e  | 46 

 

-dirtyFlag = true;

+setDirtyFlag()

+clearDirtyFlag()

+dirtyFlagIsSet()

+refresh()

+updateRenderingPipeline()

-dirtyFlag = false;

+setDirtyFlag()

+clearDirtyFlag()

+dirtyFlagIsSet()

+refresh()

... Other Modules

-dirtyFlag = true;

+setDirtyFlag()

+clearDirtyFlag()

+dirtyFlagIsSet()

+refresh()

Merge 2-In 1-Out Module

Canvas Module

-dirtyFlag = true;

+setDirtyFlag()

+clearDirtyFlag()

+dirtyFlagIsSet()

+setShape()

+refresh()

Shape Repeater Module

-dirtyFlag = false;

+setDirtyFlag()

+clearDirtyFlag()

+dirtyFlagIsSet()

+refresh()

Grid Module

2.1.1: refresh()

2:       updateRenderingPipeline()

2.1:    refresh()

2.1.2: clearDirtyFlag()

dirtyFlag = false;

2.1.1.2: refresh()2.1.1.1: refresh()

2.1.1.1.2.1: refresh()

2.1.1.2.3: send() module data

2.1.1.4: send() module data

2.1.1.2.2:    

clearDirtyFlag()

dirtyFlag = false;

2.1.1.3: clearDirtyFlag()

dirtyFlag = false;

Figure 19: The Refresh Cycle 

Rendering Grid Data 

The root data object for all image data in OpArtGen is the GridData object. Elements which may 

be placed in grids, such as shapes, are encapsulated in objects that implement the CellRenderer 

interface. These renderer objects store any size and position information for the elements and 

know how to draw the image data they contain onto a Java Graphics object. The GridData object 

itself contains an array of Cell objects, each of which may store a single CellRenderer object. The 

Cell objects act as placeholders for the elements stored in the CellRenderer objects. 

When a Cell receives a paint request, it delegates the task to whatever CellRenderer object is 

currently stored in that cell. Two classes have been defined that inherit the CellRenderer 

interface and are able to store image elements: GridCellRenderer and ShapeCellRenderer. These 

are able to handle grids and shapes respectively. Another class has been implemented to act as a 



P a g e  | 47 

 

null renderer: EmptyCellRenderer. When a Cell object is first created, it is assigned an 

EmptyCellRenderer. The relationships between grids, cells, and renderers and the classes that 

they may render are summarized in the class diagram below. 

Figure 20: Class Structure for Grids, Cells, and their Renderers 

Each GridData object is composed of a single layer of cells stored in a multi-dimensional array. 

Multiple image layers are supported by OpArtGen via the Merge Module. Rendering of multiple 

layers is handled by GridCellRenderer object, each of which may store a reference in the field 

nextLayer to another GridCellRenderer that stores the grid data for the layer above. The paint 

method for a GridCellRenderer once complete makes a call to nextLayer.paint. In this way, 

multiple layers can be chained together. 

Once a refresh cycle has completed the root Canvas Module receives a GridData object 

containing the complete image data for its rendering pipeline. The Canvas Module stores the 

grid data in its GridCellRenderer object, and creates a new Java Canvas object with an overridden 

paint method containing code to set the image’s background colour, margins, and a single call to 

its renderer’s paint method. This object is passed to the GUI, and when the GUI wishes to display 

the image it calls the Canvas object’s paint method. More information on the design of the GUI 

is provided in the section GUI Package (Page 60). 



P a g e  | 48 

 

An Example 

To illustrate the rendering process, consider the following pipeline that draws a single shape in a 

grid with one cell. The image that should be output is shown to the right with the dashed box 

indicating the grid lines.  

 

Once the refresh cycle has completed the simplified data structure of the CanvasModule object 

including the grid data received by the Canvas Module will be: 

 

The method calls that create this data structure and then draw the image that it represents are 

illustrated in the following Interaction Sequence diagram:  



P a g e  | 49 

 

Figure 21: Interaction Sequence for Image Rendering 

It is possible to save memory using this scheme with the flyweight design pattern. Instead of 

creating many shape objects with one per cell, a single shape object is created that gets shared 

between multiple cells. As the shape’s position information is stored by its parent grid cell and 

its size and colour in each cell is determined by that cell’s renderer object, only one instance of a 

Shape object is needed for each different shape used in the image. 

Visualisation of GridData 

Certain modules support visualisation of the grid data that they output. When using the GUI this 

enables a user to preview what effect each individual module in the rendering pipeline is having 

on the final image output. Visualisation is achieved by the class ModuleVisualiser. When a 

GridData object is passed to a ModuleVisualiser object’s visualise method, the Visualiser object 

creates a new Canvas Module, simulates a connection it and passes it the grid data to be 

rendered and displayed using the simulated connection.  

OpArtGen Modules 

Modules are used to encapsulate algorithms for creating and processing image data that may be 

used by the OpArtGen rendering engine. All modules must implement the interface Module. This 

interface defines all the key methods modules must support so that they are able to interact 

with each other and are usable by both the engine and the GUI. The methods themselves fall 

into several groups: 

• Rendering Engine Support 



P a g e  | 50 

 

These methods allow the rendering engine to use the modules to process data. The 

most important method here is the refresh method, which is called during a Refresh 

Cycle. The other methods are for setting, clearing and testing a module’s dirty flag. 

(setDirtyFlag, clearDirtyFlag, dirtyFlagIsSet). 

• Module Connectivity 

Module connectivity methods provide a framework for connecting together module 

objects using their Ports. Methods are defined for returning the input and output ports 

of a module and for broadcasting cycle test messages to connected modules. These are 

messages designed to help check whether new connections between modules in a 

rendering pipeline would create any cycles in the graph. 

• User Interface Support Methods 

Two methods are defined to enable the module to be used with a GUI: getModulePanel 

and getPropertiesPanel. The first is called by the GUI to retrieve a JPanel object that 

represents the module in the visual structure diagram editor; and the second to retrieve 

a JPanel that is able to change the property values of the module. 

• Other Methods 

There are additional methods defined for getting/setting the module’s name and a 

destructor method which is called when a module is deleted to aid clean-up. 

No module classes should implement the Module interface directly; instead they should extend 

the abstract class AbstractModule. This provides an implementation for all the rendering engine 

support methods and instead only requires you to override a protected abstract method 

processModuleData. This method is called by its implementation of the refresh algorithm and is 

where the routine for converting input data into output data should be written. Further details 

on implementing new modules are given later in this report, please see: Creating New External 

Modules (Page 77). 

Module Data Types 

Module data types encapsulate the data that modules send between each other in rendering 

pipelines to build the final image. They consist of classes that implement the ModuleData 

interface, encapsulating other data objects and providing getter and setter methods and a clone 

method. The data must be cloneable so that data that is sent out from each module is cloned. 

This prevents changes to data objects made by modules further up the rendering pipeline’s tree 

from affecting the data being held and processed by those modules further down the tree. 

Three core Module Data types have been defined for use by the core modules: 

• GridData objects are used to encapsulate and clone the grids that make up images. Each 

object stores an array of cells, each of which may contain shapes or other grids. 

• ValueData objects are used to encapsulate a single double value. Accessor methods are 

provided to return the value as a double or an int. 

• ColourData objects are used to encapsulate and clone a single Java Color value. 



P a g e  | 51 

 

Module Ports 

Module ports are objects that allow you to connect modules together. They are the 

intermediary by which connected modules may communicate and send data objects between 

each other. 

Why are ports necessary: why not directly connect together two modules using an object 

reference stored in a field in each module? Consider the following situation: 

 

The two connected modules each have a reference to the remote module of the connection, and 

each module may send data objects to each other, via a method such as store (dataObject). This 

scheme would work for simple modules that may be connected to one remote module. It could 

even deal with modules that may be connected to two remote modules, with each module 

sending a different type data and each data type being handled using method overloading: 

 

Each overloaded method would store its data type in the correct local data field in Module 1. 

This is not sufficiently robust when we wish modules to be able to connect to an arbitrary 

number of other modules, with each connection sending/receiving an arbitrary data type: 

 

Our scheme doesn’t work with just two remote modules each wishing to transmit the same type 

of data, as both will end up calling the same overloaded store method and overwrite each 

other’s data.  

Instead we need intermediary objects to handle the connections. This is where Ports come in. 

Each module may create an arbitrary number of ports, with each port able to handle a specific 

type of data. Each port may be connected to one remote port, and send/receive data to/from 

the remote port. So that the ports know where in the module to read data from and write data 

to the module must supply the ports with CallBack objects. This scheme decouples modules 

from the implementation of communication in rendering pipelines, and decouples the ports 

from module specific data storage implementation.  



P a g e  | 52 

 

Figure 22: Object Relationships Providing Module Connectivity 

Notice that ports may either send data, or receive data but not both. In a rendering pipeline, 

data always flows in one direction. Once created by a module’s initPorts method, ports are 

stored using two protected List fields. These separate the ports used for sending data receiving 

data, and are called outputPorts and inputPorts respectively. They are defined in the 

AbstractModule class. Any ports a module creates must be placed in the correct list for their 

type. 

Ports access the private module data fields using CallBack objects. CallBacks may either be read 

only or write only, this is determined by polymorphism: their objects are either an instance of 

ReadOnlyCallBack or WriteOnlyCallBack. CallBacks read and write data from a module using the 

methods loadData and storeData. ReadOnlyCallBack objects may only load data from their 

target module, and WriteOnlyCallBack objects may only store data in their target module. As you 

can see from the class diagram, the method loadData is only implemented in the 

ReadOnlyCallBack class, and storeData in the WriteOnlyCallBack class. 



P a g e  | 53 

 

Figure 23: Class Structure for Module Ports and their Internal States 

Port objects are designed using the State design pattern. Ports may be in one of two states: able 

to send, or able to receive. Their state is immutable and is determined when they are created by 

the CallBack object that is passed to the constructor. Notice that each class implementing the 

CallBack interface must define a method setTypeInPort. The constructor method calls the 

setTypeInPort method of the CallBack object it receives, which in turn either sets the port state 

to SendPortType or ReceivePortType depending on whether it is an instance of ReadOnlyCallBack 

or WriteOnlyCallBack. 

The following interaction sequence diagram illustrates the calls that are made when a module 

creates a new port using a read only call-back and attempts to connect the new port to an 

existing remote port. The read only call-back sets the internal state of the new port to a send 

port. Note that a similar interaction sequence occurs if you create a port using a write only call-

back, except you end up with a port that receives data only.  



P a g e  | 54 

 

Figure 24: Interaction Sequence for Creating Ports 

Connecting Modules Using Ports 

When an attempt is made to connect two ports together, the local port to the module that 

initiates the connection attempt must first check that the new connection would be legal. The 

steps that are taken before the connection is accepted are: 

1. Check whether both ports are connectable: i.e. not already connected 

2. Check that the remote port is on a different module (the target objects of each port’s 

call-back objects are not equal)  

3. Check that the remote port is of the same type: i.e. sends/receives same type of data 

4. Check that the connection will not introduce a cycle in the pipeline’s graph. 

5. Check that the remote port’s internal state is not the same as the local port’s internal 

state (we must connect a send port to a receive port and vice versa) 

When all tests have been satisfied then the local port then contacts the remote port to inform it 

a connection must be made. The local port stores a reference to the remote port, and the 

remote port stores a reference to the local port. 

Checking New Connections for Cycles 

It is important to ensure that new connections between ports do not create cycles in the graph 

of the rendering pipeline. If a cycle is introduced then the refresh cycle will not terminate and 

calls to refresh will loop until a stack overflow error occurs. 



P a g e  | 55 

 

The Port class defines a method testForCycle that takes a Port as an argument and checks 

whether connecting to it would create a cycle in the graph. The algorithm it uses to achieve this 

is outlined in pseudocode: 

TO TEST WHETHER CONNECTING TO REMOTE_PORT INTRODUCES A CYCLE: 

 testingForCycle := true 

 

 send REMOTE_PORT: CycleTestMessage(history := new List)  

 

 if CycleException is thrown then connection creates a cycle 

 else a connection to REMOTE_PORT would not create a cycle 

 

 testingForCycle := false 

END 

 

ON RECEIPT OF CycleTestMessage(history) BY A MODULE: 

if history does not contain MODULE then 

 add MODULE to history 

 broadcast CycleTestMessage(history) to all ports in MODULE: 

  if port.testingForCycle found during a broadcast 

  then throw CycleException 

END 

The algorithm is a broadcast algorithm that may terminate in two ways. The first way is if a 

CycleException gets thrown. This only occurs if a module tries to get one of its ports to send a 

cycle test message, and that port was the port that originally initiated the cycle test. In this case 

we know that making a connection to the remote port would create a cycle in the pipeline’s 

graph. The second way is if a cycle test message is sent to all ports successfully without any 

CycleException being thrown. In this case a connection could safely be made without creating a 

cycle. 

To show what messages get sent during a call to testForCycle consider the following rendering 

pipeline consisting of two modules, each with one send port and one receive port. The send port 

of module 1 has already been successfully connected to the receive port of module 2. This is 

illustrated by the pair of modules on the left in the diagram below.  

 

We now wish to connect the send port of module 2 to the receive port of module 1. A call is 

made to receivePort1.connect(sendPort2). The connect method runs through the first three 

checks: the ports are both connectable, the ports belong to different modules, and both ports 

send and receive the same type of data.  



P a g e  | 56 

 

For the fourth check the following sequence of messages is sent between the objects: 

 

Figure 25: Collaboration Whilst Detecting Cycles 

As shown, the instance object for receivePort1 initiates the test from within its connect method 

by calling testForCycle. This sets a flag testingForCycle, and then receivePort1 sends a cycle test 

message directly to sendPort2 by calling sendPort2.receiveCycleTestMessage. At this point 

receivePort1 and sendPort2 are not yet connected, so if a cycle test message makes its way back 

from sendPort2 to receivePort1 then there must already be an indirect connection between 

receivePort1 and sendPort2. If this is the case, directly connecting receivePort1 and sendPort2 

will create a cycle in the graph. 

As you can see, the message is relayed by module2 through all connected ports, ending up at 

module1’s sendPort1. This port requests module1 to relay the message again which it does. In 



P a g e  | 57 

 

doing this it tries to get receivePort1 to send a cycle test message, causing an exception to be 

thrown because the flag testingForCycle is set. The method testForCycle catches the exception 

and causes the connect method to return false. 

Animation of Images 

Animation is achieved in OpArtGen in two ways: via Oscillator modules in a rendering pipeline, 

or by directly manipulating module property values in a script.  

Animation Using Oscillator Modules 

Oscillator modules output a value that constantly changes in accordance with whatever 

waveform is defined by its property values. If their output port is connected to a value input port 

on a module in a rendering pipeline then this will cause the value of that module’s property to 

oscillate. So that images are updated constantly to reflect any change in the values output by 

Oscillator modules in a pipeline, the Refresh Cycle must be performed repeatedly. The 

RenderingManager class contains code to start and stop animation of all rendering pipelines via 

calls to the methods startAnimation and stopAnimation. 

To try and maintain a constant frame rate, the animation loop keeps track of the estimated 

delay required between each frame based on the actual time that each loop iteration occurs. 

(17)  

 

Figure 26: Tracking Delay Required Between Frames 

Each time an animation loop iteration occurs the RenderingManager must first ensure that all 

Oscillator modules have updated their output value, and then initiate a Refresh Cycle for each 

rendering pipeline it is managing.  

The first stage in a loop iteration is achieved using AnimationEffector objects. The 

AnimationEffector interface defines one method nextFrame which is called when an effector 

object should perform any frame dependent updating. Any object that implements the 

AnimationEffector interface may be registered with the RenderingManager, and each time a 

loop iteration occurs the nextFrame method of every AnimationEffector object registered with 

the manager is called. Oscillator Modules implement the AnimationEffector interface and 

automatically register themselves with the Rendering Manager. 

All Canvas Modules also automatically register themselves with the Rendering Manager. For the 

second stage in a loop iteration the manager calls each Canvas Module’s 

updateRenderingPipeline method to initiate a Refresh Cycle. Once this completes then the image 

for the iteration’s frame gets displayed. As Refresh Cycles are asynchronous (the 



P a g e  | 58 

 

updateRenderingPIpeline method spawns a worker thread) then the animation loop is not held 

up. This means that during each iteration nextFrame gets called on time and the output of 

Oscillator modules remains current. Every time a refresh cycle commences it will be using up-to-

date property values. 

Further details on Oscillator modules and the waveforms that they output are given in the 

section: Implementation of Core Modules: Oscillator Module (Page 66). 

Animation Using Scripts 

Animation may be performed manually in script files. This allows you to sequence timing of 

animation events and gives greater control over what image elements are changed: you are not 

limited to altering properties exposed by module ports. An example loop that causes a shape to 

expand and contract at different speeds is shown. The full script for this may be found in 

Appendix 4: Manual Animation Example (Page 104). 

while (true) { 

 for (int i = 1; i < 100; i++) { 

  double size = 0.8 - 0.6 * i / 100; 

  shape.setSize(size, size); 

  try { 

   Thread.sleep(100); 

  } catch (Exception e) {} 

  canvas.updateRenderingPipeline(); 

 } 

 for (int i = 100; i > 0; i--) { 

  double size = 0.8 - 0.6 * i / 100; 

  shape.setSize(size, size); 

  try { 

   Thread.sleep(10); 

  } catch (Exception e) {} 

  canvas.updateRenderingPipeline(); 

 } 

} 

After the required modifications to property values are made for the next frame, a call is made 

to updateRenderingPipeline to render and display that frame’s image. Here, the intra-frame 

delay is achieved using Thread.sleep, however it would be possible to create a sophisticated 

event model to trigger certain animation sequences at specific frame numbers. 

API Component Loading 

External components are loaded at runtime from the subdirectories contained in the 

opArtGen/API/external directory. Five subdirectories exist: loaders, modules, renderers, shapes, 

and warps; each of these contains the external component source or class files for the relevant 

component type.  

Components are loaded from each subdirectory by component loader objects. These objects are 

defined by classes that implement the ComponentLoader<T> interface. This defines a method 

getComponents which must return a Dictionary linking Strings with loaded T objects; and a 

method getFactory which returns a ComponentFactory object to allow easy creation of the 

loaded external components in scripts. 



P a g e  | 59 

 

Two classes exist that implement the ComponentLoader interface: 

AbstractClassComponentLoader and ShapeLoader. ShapeLoader allows Java Shape objects to be 

loaded from SVG files contained within the shapes subdirectory, and extending the 

AbstractClassComponentLoader class provides an easy way to compile and load external 

component classes from source or class files contained in a package directory. 

The class ComponentLIbrary provides a number of static methods that return the 

ComponentLoader objects for the five subdirectories: getLoader, getModuleLoader, 

getRendererLoader, getShapeLoader, getWarpLoader. 

The automatic loading of OpArtGen components by these individual loaders at runtime is 

coordinated by the static method loadAllComponents in the ComponentLibrary class. This 

method is called as soon as the GUI is run and before a script gets executed. Any component 

source files are compiled, and all compiled class files for each component type are loaded into 

Java and may be accessed using reflection.  

Factory objects are provided to spare script authors from having to write a lot of Java reflection 

code to access external components that have been loaded at runtime. Once a component 

loader has loaded its components they may be created via the factory object returned by that 

loader’s getFactory method. A ComponentFactory object provides two methods for creating 

objects: createComponentInstance and createComponentInstances. The first method takes a 

component name as a parameter and returns a new instance of the named object, and the 

second returns a dictionary linking component names to instances for all the components the 

factory is able to create. 

When creating new external components for an already defined component type it is sufficient 

to place the new components in the relevant external subdirectory for that component type, 

and allow the relevant component loader to automatically find and load your new external 

component. If you wish to create a new component type entirely, for example perhaps you need 

a way to allow users to define their own plugin classes for a new module that you have built; 

then you must create a new component loader for your new component type. The new 

component loader class must then be placed in the external loaders subdirectory. 

Loading Shapes 

Shapes are loaded from SVG files by the ShapeLoader class. This uses an instance of the class 

SVGToShapeTranscoder to convert any shapes stored within those SVG files into Java Shape 

objects.  

The SVGToShapeTranscoder class takes an URI to an SVG file and uses it to create a Batik 

JSVGCanvas object. A listener object is used to detect when the JSVGCanavs has finished 

building its internal GVT Tree representation of the SVG file. A GVT Tree is built using the 

following grammar: 

<GraphicsNode> → <CompositeGraphicsNode> 

<GraphicsNode> → ProxyGraphicsNode 

<GraphicsNode> → RasterImageNode 

<GraphicsNode> → ShapeNode 

 



P a g e  | 60 

 

<CompositeGraphicsNode> → RootGraphicsNode 

<CompositeGraphicsNode> → CanvasGraphicsNode 

<CompositeGraphicsNode> → ImageNode 

The JSVGCanvas object passes the listener object a GVTTreeBuilderEvent object when it finishes 

building the GVT Tree. From this event object we can call getGVTRoot retrieving the root node of 

the GVT Tree. The listener object calls the method processGraphicsNode in the transcoder 

object, passing it the RootGraphicsNode object. This method recursively processes the root 

object exposing each node in the tree: whenever it detects an instance of a ShapeNode object 

the Shape object for that node is retrieved. Finally, the set of shapes is returned to the loader 

object. 

GUI Package 

The GUI package contains the classes that provide a visual editor for rendering pipes’ structure 

diagrams and display rendered images in a window on screen. The GUI is layered over the top of 

the API, using the API objects and methods to compose and render images. The GUI itself is 

extendable via Module classes, as modules may define their own display panels for the GUI to 

use. 

Figure 27: GUI Architecture 

Structure Diagrams 

A structure diagram is a visual representation of the graphs of modules for a number of 

rendering pipelines. The structure diagram editor allows modules to be easily added to and 

removed from diagrams, and connections between modules to be made. 

StructureDiagram objects are JPanels containers which hold module panels. A 

DraggableManager class manages the mouse listeners for any module panels that are added to 

the structure diagram when modules are created. A ConnectionManager class manages the 

mouse listeners for any port panels, sends connection requests to the API objects, and draws 

connection lines for any successful connections that are made. 

Creating New Modules in Structure Diagrams 

The GUI uses the Module loader object from the ComponentLibrary to retrieve a factory object 

for all built-in and external modules present at run-time. It builds the create module menus from 

the entries in the text file ModuleNames.txt in the modules package that the factory object is 

able to create. A mouse listener is added to the structure diagram so that the context menu 

displayed when right-clicking on the structure diagram allows you to add any available module. 

When you click on an entry in the create module menu a CreateModuleAction object is fired. 

This uses the factory object to create a new instance of the correct module, retrieves the 



P a g e  | 61 

 

location point in the structure diagram that the user clicked on, and calls the Structure Diagram’s 

addModule method passing it the module instance and point location. 

The Structure Diagram calls the module’s getModulePanel method to retrieve the correct JPanel 

object to display in the diagram. It then ensures the JPanel is correctly sized, and then adds it to 

itself at the requested location. The class AbstractModule provides a default implementation of 

the getModulePanel method that returns an instance of the class DefaultModulePanel. This 

provides a basic module panel that displays the module’s name, input ports, and output ports. 

All implementations of core modules use this method to display themselves in the structure 

diagram. 

State Information in Structure Diagrams  

The structure diagram itself doesn’t maintain the state information for modules and ports 

present in the diagram: this is maintained by the API objects themselves. Their panel objects do 

store a reference to the actual Module or Port objects so that when you try to connect, 

disconnect, or delete them the correct methods can be called on the API object to update the 

rendering pipeline. 

Connections  in Structure Diagrams 

When Port panels are retrieved from the Port API objects to build the default Module panels 

they are registered with the Structure Diagram’s ConnectionManager object. This adds a mouse 

listener to the Port panels. When you wish to connect two module ports by pressing the mouse 

button on the first port, dragging the cursor until it is over the second port, and releasing the 

mouse button; the relevant mouse listener methods are fired. 

The mousePressed method retrieves the Port panel object and notifies the manager that you 

have pressed the mouse button down over that port panel. It then begins to draw a red line 

between the port and the mouse cursor to provide a visual cue that you are attempting to make 

a connection. The mouseDragged method then checks with the manager that the connection is 

still able to continue (i.e. was the component the mouse button pressed over a port panel), and 

if so updates the red line to reflect the new position of the cursor. 

Finally, when you release the button over a port the mouseReleased method is fired. This 

obtains a reference to the port panel object you released the mouse button over using 

SwingUtilities methods: 

// get the actual component object the mouse was released over 

Component target = SwingUtilities.getDeepestComponentAt(diagram, 

pt.x, pt.y); 

 

// try and find a parent port panel that contains the component 

we just found 

Component dest = 

SwingUtilities.getAncestorOfClass(AbstractPortPanel.class, 

target); 

The listener then notifies the manager that the mouse button has been released, passing it a 

reference to the port panel object. The manager checks the port panel object and attempts to 

connect the two ports together using: firstPort.connect(dest). If the method returns true then 



P a g e  | 62 

 

the API has accepted the connection between the two ports, and the manager then adds 

another connector line to the structure diagram. 

The manager also adds component listeners to module panels. The component listeners are 

fired when you drag the modules, and the listeners call the manager’s method 

repaintConnectionLines. This updates the connection lines to reflect the new location of the port 

panels in the structure diagram. 

Canvas Windows 

The GUI displays images rendered by pipelines from scripts or Structure Diagrams in Canvas 

Windows. These are displayed by the CanvasWindowFrame class that extends JFrame. The 

content pane of the canvas window contains one component: a Painter object which is able to 

display Canvas objects. Each Canvas Module has an associated Canvas Window. When a Canvas 

Module has created a Canvas object containing an overridden paint method able to draw its 

image it calls the setCanvas method on its Canvas Window’s painter object and requests the 

Canvas Window to perform a repaint.  

Painter 

The painter object extends JPanel and contains an overridden paintComponent method which 

sets up the correct rendering hints for the Java Graphics object it receives. It then calls the paint 

method of whatever canvas object it is currently storing. Get and set methods are provided to 

store and retrieve the Canvas object. 

The default rendering hints that are used by OpArtGen to achieve high quality output are set in 

the Config class under the field DEFAULT_RENDERING_HINTS. These hints are: 

Rendering Hint Value 

KEY_ALPHA_INTERPOLATION VALUE_ALPHA_INTERPOLATION_QUALITY 

KEY_ANTIALIASING VALUE_ANTIALIAS_ON 

KEY_RENDERING VALUE_RENDER_QUALITY 

KEY_STROKE_CONTROL VALUE_STROKE_NORMALIZE 

 

Executing Scripts 

Script loading and execution is supported by classes that implement the interface ScriptType. 

Three such classes are implemented: SourceScript, CompiledScript, and JavaScript. Respectively 

these support Java scripts in source files, in compiled class files, and JavaScript Rhino scripts. The 

RunScript class in the start package provides a main method that will load a file, attempt to 

create an instance of the correct ScriptType class based on the file extension, and if creation is 

successful then the script will be executed. 

Ordinarily the Canvas Windows hide themselves when you try to close them rather than exiting 

the program. Because the Canvas Window is the only GUI component the user will see when 

using scripts, they need to be set to close the program when opened by a script. To achieve this 

a call is made to the static method CanvasWindowFrame.setExitOnClose by RunScript. If the 

script then creates any Canvas Modules, the associated CanvasWindowFrame objects will 

automatically set their behaviour to exit on close. 



P a g e  | 63 

 

+main(in args : String[])

+RunScript(in scriptFile : File)

-script : ScriptType

RunScript

+launch()

-loadScript()

+CompiledScript(in script : File)

-scriptFile : File

-script : Script

-scriptClassName : String

-scriptPackageURL : URL

CompiledScript

+launch()

+JavaScript(in script : File)

-script : File

JavaScript

+launch()

+SourceScript(in script : File)

-scriptFile : File

-script : CompiledScript

SourceScript

+run()

«interface»

Script

+launch()

«interface»

ScriptType

-Launches

-Launches

-Launches

Figure 28: Class Structure for Script Execution 

Each class extending ScriptType has a constructor that takes in a File object as a parameter and 

then attempts to load the given script. When the launch method is called, SourceScript uses the 

Java Compiler API to compile the source file supplied and then creates a CompiledScript instance 

using the class file produced by compilation. It then calls the launch method of the 

CompiledScript before removing any temporary files created. 

The constructor method for CompiledScript instances uses class loaders are used to load the 

script’s class file and any other required class files. The class definition is then checked to ensure 

that it implements the Script interface, and if so a new instance of the script’s class is created. 

When the launch method is called on a CompiledScript instance, the ComponentLibrary is used 

to load all components and the Script object has its run method called. 

The constructor method for JavaScript instances simply stores the File reference. When the 

launch method is called, the Java Scripting API is used to interpret the contents of the file: a new 

script engine manager instance is created and the engine instance for ECMAScript is retrieved. 

The ComponentLibrary is used to load all components then the engine instance is used to 

evaluate the script. 

  



P a g e  | 64 

 

Implementation of Core Modules 
Reference tables of API objects and their methods for use when writing scripts are provided in 

Appendix 5: API Reference for Scripting (Page 106). In addition to any property values mentioned 

here, all modules also have an instance name which is displayed on the module’s panel in the 

structure diagram. This may be changed using the text input field at the top of each module’s 

General tab: 

               

Canvas Module 

As we have seen, the Canvas Module is the root node of a rendering pipeline 

and allows you to stretch a grid over any sized canvas. It initiates a refresh 

cycle for its rendering pipeline and then performs the final stage of 

processing converting the grid data received to a Java Canvas object, which 

may be displayed on screen or exported to file. 

The Canvas Module has four definable properties: canvas size, canvas margins, canvas 

background colour, and visibility of the canvas’ window. The image defined in the grid data 

received by the Canvas Module is drawn to whatever inner size is left when the margins are 

subtracted from the canvas dimensions. 

The properties window has three tabs allowing you to set these properties: General, 

Dimensions, and Background. The General tab allows you to show and hide the Canvas Window 

which displays the image rendered by the module; the Dimensions tab allows you to choose 

pixel sizes for the canvas height and width, and for the left, right, top and bottom margins; and 

the Background tab allows you to pick a colour that is filled over the entire canvas before 

anything else is drawn to it. 

Each Canvas Module creates its own canvas window instance. To enable the user to resize the 

canvas window and automatically update the Canvas Module’s canvas size property, the module 

adds a component listener to the window with an overridden componentResized method that 

automatically updates the module’s size property  

Ports 

Index Input Port Description 

0 Grid In Recieves grid data that should be drawn to screen or to file. 

 

Export to SVG 

The Canvas Module allows you to save a rendered image to an SVG file. From the GUI this may 

be performed by selecting “Export to File...” from the Canvas Module’s right-click context menu. 

The conversion of the image to SVG format is controlled by its method exportToFile. Drawing the 

image to screen is performed by the Canvas object’s paint method, which receives a Graphics 



P a g e  | 65 

 

instance that can render image data to the screen using Java Graphics API calls. The Batik library 

is used to convert the calls made to the Graphics object into a SVG document tree. 

The Batik library includes the class SVGGraphics2D. This provides an implementation of the 

Graphics2D abstract class which generates SVG documents instead of drawing to the screen. An 

instance of SVGGraphics2D is created to encapsulate an XML document, which is then passed to 

the Canvas object’s paint method. Once this method has returned, the SVG tree contained in the 

SVGGraphics2D’s XML document may then be written to file using an output stream. 

Grid Module 

 The Grid Module is a leaf node module that creates empty grid data objects 

for other modules in the rendering pipeline to process. The module has two 

properties: the number of rows and the number of columns the output grid 

should have. These are accessible under the “General” tab in the module’s 

properties window.  

Ports 

Index Output Port Description 

0 Grid Out Outputs empty grid data with the specified number of rows and 

columns. 

 

Colour Module 

The Colour module is a leaf node or intermediate node 

module that outputs ColourData objects that 

encapsulate a specific Java Color value.  The module 

provides you with one property value to store the Color 

value to use when creating the ColourData objects. This 

is accessible in the General tab in the module’s 

properties window. 

The module also exposes the colour property via three value input ports. When the module 

detects that a port is connected to another module, it uses the value received on that port to set 

the equivalent red green or blue part of the ColourData object it outputs. This allows you to 

connect up Oscillator Modules to allow animated fades in-between colours. 

Ports 

Index Input Port Description 

0 Value In (Red) Sets the red value of the colour output. Accepts values: 0 to 255 

1 Value In (Green) Sets the green value of the colour output. Accepts values: 0 to 

255 

2 Value In (Blue) Sets the blue value of the colour output. Accepts values: 0 to 255 

 

Index Output Port Description 

0 Colour Out Outputs the colour value specified by the module’s colour 

property, or by any modules attached to the Value In ports. 

 



P a g e  | 66 

 

Oscillator Module 

The Oscillator Module is a leaf node module that outputs ValueData 

objects that encapsulate a single double value. Each time the module’s 

nextFrame function is called by the animation loop in the 

RenderingManager object, the value output by the module changes 

following a sine wave pattern.  

The module provides four properties that allow you to configure the sine wave produced. They 

are start value, min value, max value, and period duration, and all may be set in the Sine Wave 

Parameters box in the module’s properties window. The module also keeps count of the current 

frame number.  

The start value you specify allows you to configure the first value that the module outputs when 

animation is not running. The min and max values respectively set the highest and lowest values 

output by the module. The period duration sets the number of frames it takes the module to go 

from outputting the max value to the min value and back to the max value again. 

 

The value that the module outputs on each frame whilst the animation loop is running is 

calculated as follows. For frame number f and period duration d: 

��������	 
 max ����	 � min ����	2  
������ 
 sin �2� �� ��� �� �� � ��������	  

Ports 

Index Output Port Description 

0 Value Out If the animation loop is not running outputs the value defined by 

the start value property. Otherwise outputs the correct value for 

the current frame number. 

 

Shape Repeater Module 

The Shape Repeater Module allows you to place Java 

shape objects in the cells of the grid object received 

on its grid input port. The module has four options 

that allow you to control the placement of shapes in 

the grid: shape, size, tiling options and rendering 

options. 



P a g e  | 67 

 

The shape property stores a Java Shape object ready to place into each cell. The size property 

allows you to specify the size of the shape placed into each cell as a proportion of each 

individual’s cells size, once the grid has been stretched out over the final canvas) The tiling 

options property allows you to choose which cells in the grid the shape gets placed into; and the 

rendering options allows you to choose whether or not to draw the line and/or the fill, and 

which colour to use for each. 

 

 

Shapes are placed in grid cells by creating a ShapeCellRenderer object for each cell a shape 

should be placed in and linking each cell to its own renderer. The shape field for each renderer is 

set to point to the shape object stored by the module. This allows later modules to change the 

way each shape gets rendered whilst saving on memory by using the same shape object. 

Tiling Options 

The tiling options property value gets set in the Shape Placement tab of the module’s properties 

window. The Tiling Options box allows you to choose from a number of predefined options, 

these are: 

• Cover entire grid 

• Alternate cells only (top-left cell filled) 

• Alternate cells only (top-left cell empty)  

• Random placement 

• Custom tiling pattern 

If the custom tiling pattern option is chosen then you may create a pattern of selected and 

unselected checkboxes in the Custom Tiling Pattern box. Each checkbox represents a cell, and 

those that are checked will have a shape placed in them. If the size of the checkbox pattern that 

you create is smaller than the size of the grid, the pattern is repeated over the grid in the 

following way: 



P a g e  | 68 

 

 

The size of the tiling pattern may be altered by clicking on the + and – buttons next to the rows 

and columns labels in the Custom Tiling Pattern box. 

Ports 

Index Input Port Description 

0 Grid In Sets the grid object that this module places shapes into 

1 Value In (Shape 

Size) 

Sets the size of each shape as a proportion of its parent cell’s 

size. Accepts values in-between 0 and 1. 

2 Colour In (Fill 

Colour) 

Overrides the fill colour specified by the module’s rendering 

options property. 

 

Index Output Port Description 

0 Grid Out Outputs a clone of the input grid containing the correct 

placement of shapes in cells as specified by the module’s 

properties. 

 

Grid Repeater Module 

 The Grid Repeater Module behaves in a similar way to 

the Shape Repeater Module. It allows you to place copies 

of a child input grid into cells of a parent input grid. In 

this way you can build up large, complex patterns of 

shapes using small child grids that contain basic shapes. 

The module has one property for tiling options. This property behaves identically to the same 

property found in the Shape Repeater Module. Two grid input ports are provided: one for the 

parent grid, and one for the child grid. 

The module places copies of the child grid in the parents cells using multiple GridCellRenderer 

objects the same way shapes were placed in cells by the Shape Repeater Module. 



P a g e  | 69 

 

 

Ports 

Index Input Port Description 

0 Grid In (Parent) Sets the grid object that this module places child grid copies into. 

1 Grid In (Child) Sets the grid object that this module makes copies of to place in 

the parent grid. 

 

Index Output Port Description 

0 Grid Out Outputs a clone of the input grid containing the correct 

placement of child grid copies as specified by the module’s tiling 

options property. 

 

Colour Series Module 

The Colour Series Module allows you to repeat a series of colours 

over cells in a grid, setting either the line colour or the fill colour 

of any shapes present in that grid. The module has four 

properties: colours list, random order, alter line colour, and alter 

fill colour. The colours list stores an ordered list of colours that are repeated over the input grid. 

The random order property specifies whether the module should use a randomly shuffled copy 

of the colours list each time it is repeated over the grid. The properties alter line colour and alter 

fill colour specify whether the module should alter the line colour and/or the fill colour of any 

shapes stored in the input grid’s cells. 

Colour values are stored in each cell’s renderer regardless of which renderer type it is. This 

means empty cells will still take up one of the colour values in the series. 

 

Colours List 

The Colours List box in the module’s properties window allows you to pick and edit a list of 

colour values for the module to use. The + and – buttons add and remove colours from the list, 



P a g e  | 70 

 

and the arrow buttons change the order of the colours in the list. The Pick button allows you to 

select a different colour to add to the list using the + button. 

 

 

Surface Warp Module 

 The Surface Warp module applies an algorithmic resizing to the 

dimensions of the grid data that it receives. Each different 

algorithmic resizing it can apply is called a warp; each warp may 

resize the widths and heights of the rows and columns of the grid. 

As elements contained in grid cells are sized proportional to the size of the parent cell, the 

elements also get stretched or compressed. 

 

In order to ensure that the grid output from module retains its original total dimensions it is 

necessary that the various warp algorithms that may be applied only alter the grid cells’ 

proportional widths and heights, and that the total proportional width and height of all the grid 

cells are both equal to 1 after a warp has been applied. Each warp has a parameter list allowing 

you to alter the value of parameters used by different warp algorithms. 

The module has one property that stores the current surface warp object being used. The 

module’s properties window allows you to configure the warp type to use, whether to warp the 

grid’s X-axis by altering column widths, whether to warp the grid’s Y-axis by altering row heights, 

and the value of any parameters that warp type has. 

Ports 

Index Input Port Description 

0 Grid In Sets the grid object that this module changes the row heights 

and column widths of. 

 



P a g e  | 71 

 

Index Output Port Description 

0 Grid Out Outputs a clone of the input grid whose row heights and column 

widths have been altered as specified by the module’s warp 

property. 

 Two Quarter Circ le Arcs Warp 

The first warp built for the Surface Warp Module consists of a projection of an evenly spaced 

grid onto two quarter circle arcs, and is similar to “Surface Type 4” in Oliver Payne’s program.  

The un-warped grid surface is stretched along the line made by the two quarter circle arcs and is 

then projected back onto the axis being warped. The projected grid cell widths or heights are 

then used to resize the grid. As each circle is centred at the two ends of the axis the warp is 

being applied to, and the original grid is evenly stretched over the two arcs, we ensure that the 

proportional grid sizes output by the warp total 1. 

The warp has two parameters that may be altered: xArcIntersection and yArcIntersection. These 

alter the distance along each axis that the two arcs intersect for the X-axis and the Y-axis 

respectively. 

The geometry used to calculate the warp applied to the x-axis of a grid is shown below: 

 

Figure 29: Geometry of Two Quarter Circle Arcs Warp 

Calculating the warped grid cell widths 



P a g e  | 72 

 

As the grid is stretched evenly over the two arcs we know that the initial width w of each grid 

cell is equal to the total proportional grid width divided by the number of grid columns: 

� 
 1���  

The parametric equation of a circle allows us to easily calculate the x-coordinates of the edges of 

each grid cell if we know the central angles � of the sectors whose arcs are equal to the grid 

cells. The ratio of the arc length of each circle to the right angle must be the same as the ratio of 

the width of a grid cell to the central angle of its sector. We can calculate these angles for the 

left and right circles as follows: 

Left circle’s radius:    !" 
 �� 

Right circle’s radius:    !# 
 �� 

 

Central angle for each grid cell:  �" 
 $%
&'(,  �# 
 $%

&')   

 

Once the central angles are calculated for each grid cell the x-coordinate of each grid line can 

also be calculated using the parametric equation for a circle and a value for the warped cell 

width obtained: 

 Warped cell width for left arc:  �* 
 +& � +, 
      - 
 �./�	 !�0 ��1	  ���2 0 �+�  
      +3 
 !" . sin 5$

& 6 -7 
      �* 
 !". 8sin 5$

& 6 -&7 � sin 5$
& 6 -,79 

 
The cell widths for the right arc are calculated in a similar way, except with +3 
 1 �
!". sin 5$

& 6 -7. 

As is shown in the geometry diagram, the stretched grid will not always lie with a grid line 

located at the point of intersection of the two arcs. If this is the case a grid cell must be split 

across the two arcs, requiring additional calculations to be performed to obtain the x-

coordinates of the split cell’s grid lines. First, the length of the un-warped grid cell present on 

each of the two arcs must be found. We know the arc length of the left quarter circle, and how 

many full grid cells should be stretched along the left circle: :� � ��� ;. The arc length of the left 

part of the split cell is obtained by subtracting the total length of the full grid cells from the arc 

length of the left quarter circle. A similar method is used to obtain the right arc length of the 

split cell. 

Split cell arc length on left circle:  + 
 !" � 5 ,
<=>? . :!". ��� ;7 

Split cell arc length on right circle:  0 
 !# � 5 ,
<=>? . :!# . ��� ;7 

 

Central angle for left and right parts: @" 
 $A
&'(,  @# 
 $B

&')   

 

It is then simple to obtain the x-coordinates of the grid lines using the parametric equation for a 

circle and calculate the warped cell width as before. 



P a g e  | 73 

 

Cubic Function Warp 

The second warp resulted from the quantitative analysis of Bridget Riley’s “Movement In 

Squares” as discussed in the section Existing Works of Op-Art Recreated Using OpArtGen (Page 

83). The Cubic Function Warp resizes the grid according to a cubic function that relates the un-

warped location of grid lines to their warped locations. So that the total proportional width of 

the grid remains unchanged the warp function used has the following properties: 

• It is a continuous function 

•  Its gradient is always positive 

• The result of applying the function to 0 and 1 is 0 and 1 respectively. 

The function obtained from the anaylsis is 

/ C + D 3.2206+3 � 5.4091+2 6 3.1979+1.0094  

So that the intensity of the effect may be varied, this function was rearranged and the 

coefficient in +L made into a parameter p: 

��!� C + D �. +3 � 5.4091+2 6 3.1979+� � 2.2112  

Ideally we would like the range of the parameter values we supply the warp function with to be 

between two sensible values, such as between 0 and 1. From experimentation, the range of 

suitable � values that produce a warp function that satisfies our three desired properties was 

found to be: 2.8 N � N 5. 

The warp parameter conversion function should linearly adjust the value of p, the cubic 

component multiplier in the function, with a parameter value �* 
 0 corresponding to a 

multiplier value of 2.8 and a parameter value �* 
 1 corresponding to a multiplier value of 5. 

The function that performs this conversion is easily derived from the equation for a straight line 

passing through the points (0, 2.2) and (1, 5): 

��.�	!� C � D 2.2 � 6 2.8 

Our converted warp function then is: 

��!� C + D ��.�	!�O�PQ. +3 � 5.4091+2 6 3.1979+��.�	!�O�PQ � 2.2112  

Merge Module 

 The Merge Module allows you to combine two input grids 

into one output grid. This is useful for creating uneven 

grids, giving you greater flexibility when constructing the 

layout of your image. The module has one property that 

controls the merge type used. Three merge types are 



P a g e  | 74 

 

provided: Horizontal Merge, Vertical Merge, and Overlay Merge. Depending on which merge 

type is currently selected the input ports are renamed to indicate where they will be placed in 

the output grid. 

Horizontal Merge 

The Horizontal Merge type allows you to place each input grid into one cell of an output grid 

that has one row and two columns. An empty 2x1 grid is created that has each cell’s renderer set 

to a GridCellRenderer, and each grid is stored in one of the renderers. 

Left Grid In

Right Grid In

Output Grid

b 

Vertical Merge 

The Vertical Merge is similar to the Horizontal Merge, except the output grid has two rows and 

one column.  

 

Overlay Merge 

The Overlay Merge makes use of the setNextLayer method in grid renderers to create an output 

grid with one cell that contains both input grids. 

 

 



P a g e  | 75 

 

Split Modules 

Split modules allow you to make an additional copy of the data 

received by the input port. Three modules are provided to 

allow you to split grid data, colour data, and value data. 

Splitting value data allows to you control parameters of 

different modules with the same Oscillator Module, so that different elements in an animated 

image change in sync with each other. Split modules may be chained to make more than one 

extra copy of the input data received. 

 

  



P a g e  | 76 

 

Creating external components for OpArtGen 

Custom Component Loading 

When building external components it is necessary that you are aware of how your components 

will be loaded by the program at runtime. If you are creating an additional component for an 

already defined component type, for example a new module, you will be able to drop the class 

file in the correct directory and the program will automatically load it at runtime. If you have 

created a new component type that needs to load external components at runtime then you will 

need to create your own component loader.  

For example: your might want your new module to load in preset objects that allow users to 

plug in their own processing functionality to your module. 

Steps to create a custom component class loader: 

1. Create a class that extends the class AbstractClassComponentLoader<T>. This class uses 

generics to ensure that internal collection types are checked, so make sure to 

parameterise the inheritance by the name of the interface that is common to your 

component type, e.g.: 

public class MyCustomComponentLoader extends 

AbstractClassComponentLoader<MyComponent> { 

  Custom component loader classes must end with Loader. The loader that loads the 

custom component loaders searches for files ending in Loader.java or Loader.class. 

2. Override the abstract methods that are inherited from AbstractClassComponentLoader. 

See Component Loading Classes in Appendix 5: API Reference for Scripting for method 

reference (Page 113). 

3. For the method getFactory the easiest way to return the correct factory object is to 

create an instance of ClassComponentFactory  if the components you are loading are 

Java classes: 

public ComponentFactory<MyComponent> getFactory() { 

return new ClassComponentFactory<MyComponent>(this); 

} 

4. Finally, ensure any new external component classes are loaded at runtime using your 

new custom component class loader by placing the loader’s class file in the 

opArtGen/API/external/loaders directory. 

Your component loader will not load any components until an instance of it is created. You can 

access your component loader and create an instance of it using the following code: 

... 

ComponentFactory<ComponentLoader> factory = 

 ComponentLibrary.getLoaderFactory(); 

factory.createComponentInstance(“MyCustomComponentLoader”); 

... 



P a g e  | 77 

 

Creating New External Modules 

If the functionality present in the core built-in models is not sufficient to create images in a 

certain style, then a new module may be built that performs the required processing of data in 

the rendering pipeline. 

Modules are Java classes that implement the Module interface. Since many of the methods 

defined in this interface are part of the intra-port messaging protocol that the rendering engine 

uses, and as such are common to all modules, this code is already implemented in the abstract 

class AbstractModule. 

To simplify the task of writing a new module a template module code file has been provided that 

contains all the necessary abstract method implementation stubs and some boilerplate code to 

help you understand how to add ports, call-backs etc. to your module. This may be found in the 

report in: Appendix 1: Module Template Code (Page 93). 

1. Create a new class for your module and paste in the code contained in 

ModuleTemplate.java as a template.  

2. Change the class name to name of desired new module ensuring that the name of the 

constructor is also changed. Try to choose a helpful name; for example use 

TextPrinterModule rather than StringOut. 

3. Edit the stub for the method getModuleName to return the string that is to be displayed 

in the structure diagram for the module. Note that this is the name returned by calls to 

getName before setName is called, and is not the name used in the GUI menus. 

4. To define the name and position used for the module in GUI menus add a new line to 

the file ModuleNames.txt. If you wish to add a separator to the menus place a single”-“ 

character on a line. Blank lines in this file are ignored, and comment lines start with a # 

character. 

5. Add any fields needed to store data for your desired module properties. 

6. Create any get or set methods needed to provide API access to the new module’s 

properties. If the property controlled by a set method has an effect on the data output 

by the module then the set method should also include a call to the method 

setDirtyFlag. This ensures that the rendering engine knows that data from this module 

has changed and can refresh all parent modules in the rendering pipeline’s tree. 

7. Create any additional constructors to preset module property values to help when 

writing scripts. Note that all constructors should call the super constructor first, as this 

contains code to ensure the module is initialised in the rendering pipeline correctly, and 

initModule last after property values have been set. 

8. Put any additional module initialization code in the initModule method. 

9. Change type of module's data fields to the desired data type that implements the 

ModuleData interface. A data field of the correct type is needed for each port: e.g. a 



P a g e  | 78 

 

GridData field is needed for a GridPort. When the rendering engine is pushing data 

through the pipeline the ports read and write data from/to these fields. 

10. Add code to create the correct ports in the initPorts method. Each port requires a 

callback object so that it may access private module data fields. The port’s internal state 

(send or receive) is determined by the read/write permissions the callback object used 

to create it has. 

 

 It helps to create private helper methods that create the relevant callback objects using 

anonymous inner classes, eg: 

protected void initPorts() { 

 inputPorts = new LinkedList<Port>(); 

 inputPorts.add(new GridPort(getInCallBack())); 

 outputPorts = new LinkedList<Port>(); 

 outputPorts.add(new GridPort(getOutCallBack())); 

} 

 

private ReadOnlyCallBack getOutCallBack() { 

 return new ReadOnlyCallBack(this) { 

  public ModuleData loadData() { 

   if (dataObject == null) { 

    return null; 

   } 

   return dataObject.clone(); 

  } 

 }; 

} 

 

private WriteOnlyCallBack getInCallBack() { 

 return new WriteOnlyCallBack(this) { 

  public void storeData(ModuleData data) { 

   if (data instanceof GridData) { 

    dataObject = (GridData) data; 

   } else if (data == null) { 

    dataObject = null; 

   } else { 

    throw new IllegalStateException(); 

   } 

  } 

 }; 

} 

11. Edit the stub for the method processModuleData: 

 

This method is the main processing routine for your module. It is called automatically by 

the rendering engine when needed to process data from input ports. The code must 

perform any processing on the data received automatically by the ports in the 

dataObject field. Once processing is complete the resulting data is then cloned and sent 

down the rendering pipeline automatically by the output port.  



P a g e  | 79 

 

12. Edit the method stub for getPropertiesPanel: 

 

If you want your module to have a properties window when used in the structure 

diagram editor, the stub for the method getPropertiesPanel must be completed. It 

should return a JPanel object containing all the necessary user interface components to 

receive user input and store the values in the module’s properties fields using the get 

and set methods. A quick way to do this is to extend the basic panel class 

PropertiesWindowPanel. Use the addTab method in the constructor to add any desired 

pages to the dialog. 

13. If your module processes GridData objects then it may have a visualisation option that 

enables users to preview the effect of your module in the rendering pipeline.  This is 

achieved by the following code 

public class MyModule implements Visualisable { 

... 

 public void visualise(ModuleVisualiser visualiser) { 

  refresh(); 

  visualiser.visualiseData(dataObject); 

} 

 

} 

If your module does not process GridData objects then remove the Visualisable 

declaration and the visualise method. 

Creating a Custom Module Properties Window 

When the user clicks on the module’s context menu to open the properties window, a new 

window frame is created that contains the JPanel returned by getPropertiesPanel. The easiest 

way to create the JPanel object is to create a new class that extends PropertiesWindowPanel 

using the template code provided in Appendix 2: Properties Window Template Code (Page 97).  

To simplify this task a template properties panel file has been provided that contains all the 

necessary abstract method implementation stubs and some boilerplate code to create a panel 

containing OK, Cancel, and Apply buttons; and a tabbed properties pane. This may be found in 

the report in: Appendix 2: Properties Window Template Code (Page 97).  

1. Create a new class for your properties panel and paste in the code contained in 

ModulePropertiesWindowPanelTemplate.java as a template.  

2. Change the class name to name ensuring that the name of the constructor is also 

changed. Try to choose a helpful name; for example use 

TextPrinterModulePropertiesWindowPanel. 

3. Add fields to the class to store each property object retrieved from the module, and the 

relevant GUI object that edits each property value. 



P a g e  | 80 

 

4. Edit the constructor so that the current property value for each property is retrieved 

from the module and stored in the relevant field each time the user opens a new 

properties window. 

5. Use builder methods called from the constructor to create JPanel objects that allow the 

user to edit groups of properties. Add each JPanel object returned as a new tab in the 

properties window using a call to addTab(“Tab Name”, panelObject) 

6. Alter the method stub provided for getPreferredSize so that it returns a new Dimension 

object of the desired size for your properties window. 

7. Alter the method stub provided for setModuleProperties. This is called whenever the 

user clicks the OK or Apply buttons, and should check the current value in each GUI 

object for each property and compare it to the value stored in the field by the 

constructor. If it has changed, then the correct property setter method for your module 

should be called to update the property value stored in your module. 

To add a the new properties window to your external module, replace the stub 

getPropertiesPanel method in the module’s class file with the following code: 

public JPanel getPropertiesPanel() { 

 return new YourModulePropertiesPanelClass(this); 

} 

Creating External Port Types 

If your module needs to send and receive a new data type, a new port type must be created to 

enable this. You must create a new inner class inside the class for your external module that 

extends the abstract class Port. The constructor of your new class should have a single 

parameter accepting a call back object. It should then call the super constructor, passing it the 

call back object and then set the name field as follows: 

public NewPortType(CallBack callback) { 

 super(callback); 

 name = "New Port " + state.toString(); 

} 

Appending the value of state to the ports name enables users to differentiate between input 

and output ports in the GUI. Additionally, by overriding the method getColor you allow users to 

distinguish your port by its colour in the GUI: 

@Override 

public Color getColor() { 

 return Color.YELLOW; 

} 

Creating ModuleData classes 

A new module data class must be created that implements the interface ModuleData to 

encapsulate the data type you wish your new port to send. The interface requires you to 

implement a clone method so that the rendering engine can clone the data objects. This class 



P a g e  | 81 

 

should be placed in the package opArtGen.API.external.data, and the file should be placed in the 

external folder so that it gets loaded at run-time. 

Creating External Renderers 

If you wish your module to be able to place data other than shapes or grids in grid cells then you 

must create a new cell renderer object that is able to store and draw the data. This can easily be 

achieved by extending the class AbstractCellRenderer. You must implement four methods: 

getRenderingOptions, setRenderingOptions(ShapeRenderingOptions), paint(Graphics), and clone, 

in addition to any getter and setter methods needed for the data. 

The get and set methods for the rendering options should store the fill and line colour used by 

your renderer object. These may be retrieved from the rendering options object fields: 

Type Field Description 

boolean drawLine Sets whether or not your renderer should draw lines for its object 

boolean drawFill Sets whether or not your renderer should draw a fill for its object 

Color lineColor Color to use when drawing lines 

Stroke lineStroke Stroke to use when drawing lines 

Paint fillPaint Paint to use when drawing fills (Note: this is set to a Color value) 

 

The paint method must draw the data object to the Graphics device, scaled correctly for the size 

stored in the renderer: 

public void paint(Graphics g) { 

Graphics2D g2d = (Graphics2D) g.create(); 

 Rectangle cellBounds = getBounds(); 

 

 // Scale object according to cell contents scaling factor 

 DimensionDouble contentsSize = getContentsSize(); 

 double sx = contentsSize.width; 

 double sy = contentsSize.height; 

 

 // Translate shape to ensure it stays centered 

 double tx = 0.5 * ((1 - sx) * cellBounds.width); 

 double ty = 0.5 * ((1 - sy) * cellBounds.height); 

 

 // Perform transformations 

 g2d.translate(tx, ty); 

 g2d.scale(sx, sy); 

 

 // Draw object to graphics device 

g2d.draw( ... ) 

... 

 

// Restore original graphics context 

g2d.dispose(); 

} 



P a g e  | 82 

 

Adding Extra Shapes  

Shapes that are used in OpArtGen are stored in the external/shapes folder as SVG files. Use a 

visual SVG editor or a text editor to create new ones. Any shape elements defined in SVG files 

are loaded up as individual shapes by the shape loader at run-time using the following naming 

convention: 

name of shape = <ShapeFileName.svg>_<ID> 

The value of <ID> starts at 1 and is incremented each time a new shape definition is found in the 

SVG file. The new shapes may be accessed in scripts using the following code: 

shapeFactory = ComponentLibrary.getShapeFactory(); 

rectangle =      

  shapeFactory.createComponentInstance("ShapeFileName.svg_1"); 

          //  or "ShapeFileName.svg_2" etc. 

Creating new Surface Warps 

To create a new surface warp type you must create a new class in the package 

opArtGen.API.external.warps that extends the abstract class SurfaceWarp. 

1. You must add any required parameters in the constructor: 

addParameter(new WarpParameter("Name", "Description")); 

2. Override the clone method. 

3. Override the getWarpName method to return a string containing the name of your 

surface warp. 

4. Override the applyWarp(int rows, int cols) method. This must return a GridSpacing 

object specifying the new grid line positions as a proportion of the total grid height or 

width, for the given grid size. A grid spacing object may be constructed from an array 

containing the warped grid column widths and an array containing the warped row 

heights. As an example, the following code returns a grid spacing object that sets all the 

grid line positions to be equally distributed: 

@Override 

public GridSpacing applyWarp(int rows, int cols) { 

 double[] widths = new double[cols]; 

 double[] heights = new double[rows]; 

 Arrays.fill(widths, 1.0 / cols); 

 Arrays.fill(heights, 1.0 / rows); 

 return new GridSpacing(widths, heights); 

} 

 

 

  



P a g e  | 83 

 

Evaluation of OpArtGen 
Most users initially found it hard to understand how to use OpArtGen unless the intuition behind 

the program was explained. Once explained, users found it easy to create artwork using the 

program. As such, the status bar tool tips are not sufficient to help new users. A new-user 

walkthrough feature or set of tutorials needs to be built into the program to aid new users in 

becoming accustomed to the workflow needed to create art in OpArtGen. 

Existing Works of Op-Art Recreated Using OpArtGen 

We now recreate existing works of Op-Art using the program and compare the recreated images 

to the originals. Script files for these images may be found in Appendix 3: Scripts for Recreations 

of Existing Op-Art (Page 99). 

Movement In Squares (Bridget Riley) 

The first test rendering of Movement In Squares using a script file linking a grid module to a 

shape module, surface warp module, and then the canvas module, resulted in the image on the 

left below. The surface warp type used for this rendering was the Two Quater Circle Arcs warp. 

 

 

 

Stylistically the image does resemble Bridget Riley’s work (shown on the right), with eye 

movement around the canvas generating the visual disturbances that are common to Op-Art. 

The motion effect is not as strong as the one generated by Riley’s work, and looking at the 

rendering on more of a pixel-by-pixel basis it seems that this could be due to an incorrect surface 

warp being applied. 

The squares are rectangular at the left of the canvas as the warp has not “squashed up” the grid 

enough in the middle, although the rough pattern of the warp seems accurate. In both our 

reconstructed image and the original work the grid spacing from left to right initially stays 

constant, and then gradually decreases with an increasing rate of decrease, and then reverses 

back up to its original spacing. This pinch still looks stronger in the original image so a different 

surface warp needs to be used to achieve this. 



P a g e  | 84 

 

To construct the new warp the actual grid spacing in the original image was extracted from a 

scan made of a print of the work. The grid line positions from the scanned image were recorded 

and graphed in Excel: 

 

From this graph it appears that the warped grid line positions should vary across the x-axis by a 

function similar to a cubic in x. 

To try and fit a curve to the data I converted the pixel valued grid line locations of the scanned 

image to proportional locations with the leftmost line having a coordinate of 0 and the rightmost 

a coordinate of 1. I also converted the grid column index number values to their proportional 

location coordinates on the x-axis of the un-warped evenly spaced square grid, assuming the 

image has a 31x10 grid. 

These values were then transferred from Excel to Maple, and the LeastSquares function in the 

CurveFitting package was used to obtain a cubic curve: �+L 6 @+& 6 �+ 6 � to fit the data. 

The equation of the resulting curve was:   

� C + D 3.2206+L � 5.4091+& 6 3.1979+ � 0.0076493 

This was unsuitable to use directly as a function for a surface warp due to these results: 

 �O0Q 
 �7.6493 � 10RL  �O1Q 
 1.0017 

This would result in the warp altering the total grid dimensions as the total proportional width of 

the grid is changed from 1 to 1.0017, so the function must be normalized by adding 0.0076493 

so �O0Q 
 0, and then divided by the new resulting value when + 
 1 so that �O1Q 
 1. 

/ C + D 3.2206+3 � 5.4091+2 6 3.1979+1.0094  

When we plot this curve along with the points representing the original grid line positions we get 

the following: 

0

500

1000

1500

2000

2500

P
ix

e
l 

Lo
ca

ti
o

n



P a g e  | 85 

 

 

Notice that our curve approximates the grid line locations for the Movement In Squares image 

effectively. 

As a final check that this function is a suitable approximation we must ensure that the gradient 

remains positive. A negative gradient implies that grid lines with increasing index are not always 

guaranteed to have warped coordinates that increase in value; this is not the case with 

Movement In Squares. 

We find that 

��+ O3.1907+L � 5.3589+& 6 3.1682+Q 
 9.5720+& � 10.7178+ 6 3.1682 

With the Surface Warp Module changed to use the Cubic Function warp type in the script the 

rendered image now looks far closer to the original (original image on right): 

 
 

  

 

 

Cantus Firmus (Bridget Riley) 



P a g e  | 86 

 

 

I scanned in a print of this work and then used an image editing program to extract the RGB 

colour values for each colour used in the image. To ensure that each bar contained a consistent 

colour value and scanning artifacts were removed I applied a vertical motion blur to the image. 

The colour values found were: 

Colour RGB Value 

Light Green 189, 188, 41 

Pink 221, 111, 113 

Light Blue 112, 168, 197 

Dark Grey 34, 26, 23 

Medium Grey 101, 100, 100 

Light Grey 167, 168, 163 

White 248, 251, 249 

  

The first set of colours moving right from the leftmost side of the image is as follows: 

 

The thick dark grey strip is roughly three times the width of the thin coloured strips, and the light 

grey and white strips are equal and roughly twice the width of the thin coloured strips. This can 

be achieved in OpArtGen using an equal grid, and setting the colour series so that dark grey is 

repeated three times in a row, white twice and light grey twice. 

The next set of colours has the order of the thin colour strips reversed: 

 



P a g e  | 87 

 

We now have a third set, but this time it is just the first set repeated. The fourth set is the 

second set repeated. Now the fifth set is the same as the first set but with the light grey replaced 

by the medium grey: 

 

The sixth set is the same as the second set but also with its light grey replaced by the medium 

grey: 

 

The seventh set is the same as the first set, but its light grey is this time replaced by the dark 

grey: 

 

The eighth set is the same as the second set, but its light grey is this time replaced by the dark 

grey: 

 

The ninth set has a changed pattern, and the thick dark grey bar from the eighth set is swapped 

with the medium sized dark grey bar: 

 

The tenth set has the same pattern as the ninth set, except the order of the thin colour strips is 

reversed and the leftmost dark grey bar replaced by a medium grey bar: 

 

The eleventh set is the same as the ninth set but with the leftmost dark grey bar replaced by a 

medium grey bar: 

 

The twelfth set is the same as the tenth set but with the leftmost dark grey bar replaced by a 

light grey bar: 

 

Each colour set is produced in OpArtGen using a Colour Series Module linked to each colour set. 

If all the sets are defined in a script using a list, then the rendering pipeline can be built 

algorithmically inside a for loop. 

It would be useful to modify the merge module so that you can programmatically select how 

many input ports are merged into the one output port. This would have saved having to write a 

separate function in the script to recursively merge together a number of grid outputs. 



P a g e  | 88 

 

The final image generated by the script which may be found in the appendix is shown below.  A 

similar effect was achieved however the colours seem slightly off, perhaps due to slightly 

incorrect colour readings taken from the scanned image.  

 

 

Conclusions and Future Work 
This project has shown that an extensible modular rendering engine provides a viable platform 

for creating Op-Art and other geometric art. The modular approach is able to recreate existing 

works of Op-Art as effectively as previous solutions have been able to. For any artwork styles 

that the program cannot reproduce, the extensibility of the rendering engine allows users to 

later add in the missing functionality themselves. 

Combining the rendering engine with a visual graph based interface allows simple and intuitive 

use of the software by users not familiar with programming. Those comfortable with 

programming may easily extend the program in any way they see fit. I now suggest a number of 

further extensions to the base concept developed during this project that stem from the 

engine’s extensibility and scripting capabilities.  

Real-Time Audio Input and Analysis 

The Advanced Visualisation Studio (AVS) discussed in the Background section of this report uses 

a similar modular rendering system to OpArtGen. The purpose of AVS is not to create still art but 

moving visuals that respond to music. OpArtGen could be extended to provide a real-time audio 



P a g e  | 89 

 

input and analysis feature that allowed the artwork generated to change in response to the 

audio signal being received.  

Given the modular nature of OpArtGen it would be possible to create another module similar to 

the Oscillator module that could hook into the sound in soundcard device using the Java Sound 

API. Any sound data captured by the Java Sound API would be analyzed and converted into 

values that could be output by the module. The outputs of the new module would then respond 

to events occurring in the sound wave being received by the module: for example a ValuePort 

could output either 0 or 1 depending on whether a beat had been detected in the sound; or a 

value in a range corresponding to the current VU level of the sound. 

A feature similar to this could open up several commercial opportunities for using this software:  

• Proprietors of bars and pubs could use the software to generate moving visuals for 

display on flat screen TVs at their premises to create ambience. 

 

• Musicians could use the software to create an engaging backdrop at concerts that would 

be able to dynamically respond to their performance, linking the visuals to the sound. 

 

OpArtGen as a Media Player Plugin 

Rather than using the Java Sound API to obtain sound data for analysis, the OpArtGen program 

could be wrapped up as a plugin for a media player that supports third party plugins, such as 

Winamp. This would allow users to create artwork that responds to their favourite music. Doing 

so would increase user base to a wider demographic than artists interested in creating Op-Art.  

Combining Sound Synthesis with Op-Art 

As noted in the background section, a visual, graph based, modular structure has been employed 

as a successful design for computer based sound synthesis programs. OpArtGen could be 

extended using the Java Sound API to provide a set of modules and data types that allow the 

user to create sounds at the same time as images. 

These new sound modules would work alongside the existing modules and data types already 

used for creating images. Modules that output data types common to image and sound modules 

could be connected to both. For example, an Oscillator Module that gradually altered the hue of 

elements in the image over time could also be used to control the timbre of a sound wave in 

parallel. 

The rendering engine would require some changes in order to guarantee a sufficient frame rate 

for sound data. Currently the rendering engine only updates a pipeline when a setDirtyFlag 

message has been received by the root Canvas Module and a call to updateCanvases is made. 

Even with animation running there is no guarantee of a minimum update rate: the refresh is 

performed by a swing worker thread so under high processor usage requests for modules to 

refresh may stack up. 

Allowing users to create both sonic and visual art from the same set of parameters would create 

immersive works that could engage the senses of viewers/listeners in a powerful way. I have not 



P a g e  | 90 

 

been able to find any software commercially available or otherwise that allows the combined 

generation of art in this manner. 

Real-Time Video Input and Analysis 

It would also be possible to extend OpArtGen to respond to images captured by a video camera. 

A new video input module could be created that used algorithms to output value data based on 

images sampled in real-time from the video. A computer vision library such as Intel’s OpenCV 

(18) could be used to aid in processing the captured image data. This could lead to interesting 

new ways for people to interact with Op-Art works created by users.  

For example, when displaying art created by the program at an exhibition, images could be 

projected onto screens instead of having the artwork printed onto canvas and mounted. Video 

cameras could be set up to capture real-time video of the people viewing the artwork. A video 

input module could use a computer vision library to extract data based on facial features of 

people viewing the artwork, and supply the data as parameters to the other modules used to 

create the images. 

Generative Art: Using Artificial Intelligence Algorithms in Scripts 

Artificial Intelligence techniques such as Genetic Algorithms could be used in scripts to evolve 

module parameters and rendering pipelines that result in entirely computer generated visually 

appealing art. Genetic algorithms are algorithms modelled on evolution theory that deliver 

solutions to difficult optimization or search problems. They are useful for situations where the 

fitness function for candidate solutions is complex or cannot be easily defined mathematically. 

The problem of generating visually appealing art algorithmically may be modelled as an 

optimization problem. For artwork rendered using OpArtGen the problem is optimizing both the 

nodes and edges used in the graph of the rendering pipeline; and the set of parameter values 

used to set the properties of the module in each node of the pipeline. 

Each candidate solution to this problem may be modelled by a string containing a binary 

encoding of the rendering pipeline and parameter values. A script could then be used to 

generate a population of individuals (candidate solutions) and evolve new generations of better 

solutions. Here, the fitness function would give an aesthetic rating for the image generated by 

each candidate solution. This evaluation of individuals would best be performed by an expert 

human: the image produced by each individual would need to be evaluated and assigned a 

fitness value.  

 

Extending the API to Provide Better Scripting Support for Animation 

It is possible to animate images produced by OpArtGen in scripts either using Oscillator modules 

or by creating your own animation loop which alters property values and renders the image each 

iteration. It would be useful to extend the support provided in the API for animation by adding 

some kind of event sequencing functionality to the RenderingManager. This would allow you to 

add frame events that would fire once specific frame numbers were reached by the manager.  

Each frame event would perform a once off or periodically recurring set of tasks such as 

modifying module properties or even modifying the rendering pipeline itself.  



P a g e  | 91 

 

When used in combination with an updated Oscillator Module that allows users to choose from 

a variety of waveforms, or construct their own, complex animation sequences could be built up. 

The frame event model could be extended further to allow animation sequences to be 

constructed without Oscillator Modules. By allowing you to specify events that directly alter the 

property values of a module over a time period the script language could be extended to cover 

animation without having to manually create many nested loops. Fluent interfaces could allow a 

very elegant, natural language to be used: 

// Decrease value of property from current value to 1, starting 

// at frame no. 450, and ending at frame number 500 

(new event()).atFrame(450).decrease(property).to(1).overNext(50) 

Community Site for Users 

To increase the appeal of the program for its users it is necessary for the users to be able to 

easily adapt it without having to code additional modules themselves. This requires a large body 

of custom modules, scripts and components that the users can choose from depending on their 

requirements. The best way to ensure that such a body is developed and that it also reflects the 

requirements of most users is to create an online community site for OpArtGen.  

A community site could host user developed contributions such as scripts, custom built modules 

and effects; and also user created walkthroughs and tips. A similar community was developed 

for AVS at www.winamp.com by Nullsoft (the creators of Winamp and AVS). This community 

alone has generated 3592 plugins for Winamp, of which 2457 are preset collections for AVS. (10) 

That provides for a level of customization that would have been very difficult to achieve by 

Nullsoft alone without the contribution made by community users. 

  



P a g e  | 92 

 

Bibliography 
1. CSound. [Online] http://csound.sourceforge.net/. 

2. Native Instruments. Reaktor. [Online] http://www.native-

instruments.com/index.php?id=reaktor5_us. 

3. Borgzinner, Jon. Op Art. Time. 23 October 1964. 

4. Esaak, Shelley. Op Art- Art History 101 Basics. About.com. [Online] 

http://arthistory.about.com/cs/arthistory10one/a/op_art.htm. 

5. Moorhouse, Paul. Bridget Riley. s.l. : Tate, 2003. p. 14. 

6. Zanker, Johannes and Walker, Robin. A new look at Op art: towards a simple explanation of 

illusory motion. Naturwissenschaften. 2004, Vol. 91, pp. 149-156. 

7. Wikipedia. Figure-ground (perception). [Online] http://en.wikipedia.org/wiki/Figure-

ground_%28perception%29. 

8. Riley, Bridget and Kudielka, Robert. The Eye's Mind: Bridget Riley - Collected Writings, 1965-

99. s.l. : Thames & Hudson Ltd, 1999. pp. 66-67. 

9. Wikipedia. Artists known for their op art. [Online] 

http://en.wikipedia.org/wiki/Op_art#Artists_known_for_their_op_art. 

10. Nullsoft. Winamp Plugin Page. Winamp.com. [Online] http://www.winamp.com/plugins. 

11. Kudielka, Robert. Supposed to be Abstract. Parkett. 2001, 61, p. 26. 

12. Richards, Russell. Generative Art: Music Generation, Digital Art Production and Nebula. 

Nebula 1.3. January 2005, p. 165. 

13. Future Publishing. The Fast Guide To Modular Synthesis. Computer Music Special. Vol. 26, 

pp. 36-37. 

14. —. The Fast Guide To Wavetable Synthesis. Computer Music Special. Vol. 26, p. 19. 

15. Texture Mapping with Vector Graphics: A Nested Mipmapping Solution. Zhang, Wei, Yang, 

Yonggao and Xing, Song. 2006. International Conference on Computer Graphics and Virtual 

Reality (CGVR'06). pp. 97-103. 

16. Payne, Oliver. Op Art Generator And Animator. 2006. pp. 29-30. 

17. Arthur Van Hoff, Kathy Walrath. Animation in Java Applets. JavaWorld. [Online] 

http://www.javaworld.com/javaworld/jw-03-1996/jw-03-animation.html?page=1. 

18. Intel. Open Source Computer Vision Library. [Online] 

http://www.intel.com/technology/computing/opencv/. 

 



P a g e  | 93 

 

Appendix 1: Module Template Code 

ModuleTemplate.java  

package opArtGen.API.modules; 

 

import java.util.LinkedList; 

 

import javax.swing.JPanel; 

 

import opArtGen.API.data.GridData; 

import opArtGen.API.data.ModuleData; 

import opArtGen.API.modules.AbstractModule; 

import opArtGen.API.modules.ModuleVisualiser; 

import opArtGen.API.modules.Visualisable; 

import opArtGen.API.ports.GridPort; 

import opArtGen.API.ports.Port; 

import opArtGen.API.ports.Port.ReadOnlyCallBack; 

import opArtGen.API.ports.Port.WriteOnlyCallBack; 

 

public class ModuleTemplate extends AbstractModule implements 

Visualisable { 

  

 /* 

  * Module Properties 

  */ 

 

 // Field to hold value of a module property 

 private Object property; 

  

 /* 

  * Rendering Support Fields 

  */ 

  

 // Data sent and received by ports. 

 //  - should be a subclass of ModuleData 

 private GridData dataObject; 

  

 /* 

  * User Interface Support Fields 

  */ 

  

 private static int instanceNumber = 1; 

  

 

 /***********************************************************

** 

  * Constructors & Destructor                                   

  

************************************************************/ 

 

 /** 

  * Default constructor. Ensure that you call the super    

  * constructor and the method initModule 

  */ 

 public ModuleTemplate() { 



P a g e  | 94 

 

  super(); 

  initModule(); 

 } 

  

 /** 

  * Perform any module initialization tasks 

  */ 

 private void initModule() { 

  instanceNumber++; 

 } 

 

 /*  

  * Optional method: used to perform any housekeeping tasks  

  * required when module is deleted from the structure 

diagram. 

  */ 

 /* 

 @Override 

 public void destructor() {} 

 */ 

 

  

 /***********************************************************

** 

  * Module Properties Support Methods                          

  

************************************************************/ 

  

 public Object getProperty() { 

  return property; 

 } 

 

 public void setProperty(Object property) { 

  this.property = property; 

 } 

 

 

 /***********************************************************

** 

  * Rendering Support Methods                                      

  

************************************************************/ 

  

 /*  

  * Processes data in dataObject field based on value of any  

  * property fields ready for output by module’s ports.  

  * Called by the rendering engine  

  */ 

 @Override 

 protected void processModuleData() { 

  if (dataObject != null && property != null) { 

   // TODO method stub 

   // Process dataObject based on value of property 

  } 

 } 



P a g e  | 95 

 

  

 /***********************************************************

** 

  * Module Connectivity Methods                            

  

************************************************************/ 

 

 /** 

  * Creates and adds the correct ports for our module 

allowing  

  * us to connect it to other modules 

  */ 

 @Override 

 protected void initPorts() { 

  // TODO method stub 

  inputPorts = new LinkedList<Port>(); 

  inputPorts.add(new GridPort(getInCallBack())); 

  outputPorts = new LinkedList<Port>(); 

  outputPorts.add(new GridPort(getOutCallBack())); 

 } 

  

 /** 

  * Returns a write only CallBack object that enables the 

input  

  * port to write data to our dataObject field 

  */ 

 private WriteOnlyCallBack getInCallBack() { 

  return new WriteOnlyCallBack(this) { 

   public void storeData(ModuleData data) { 

    if (data instanceof GridData) { 

     dataObject = (GridData) data; 

    }  else if (data == null) { 

     dataObject = null; 

    }  else { 

     throw new IllegalStateException(); 

    } 

   } 

  }; 

 } 

  

 /** 

  * Returns a read only CallBack object that enables the 

output  

  * port to read data from our dataObject field 

  */ 

 private ReadOnlyCallBack getOutCallBack() { 

  return new ReadOnlyCallBack(this) { 

   public ModuleData loadData() { 

    if (dataObject == null) { 

     return null; 

    } 

    return (GridData) dataObject.clone(); 

   } 

  }; 

 } 



P a g e  | 96 

 

 

  

 /***********************************************************

** 

  * User Interface Support Methods                                     

  

************************************************************/ 

 

 /*  

  * Returns the module name displayed in the structure 

diagram 

  * Note: the name used in context menus is determined by the 

  * module's entry in ModuleNames.txt 

  */ 

 @Override 

 protected String getModuleName() { 

  // TODO method stub 

  return null; 

 } 

 

 @Override 

 protected int getInstanceNumber() { 

  return instanceNumber; 

 } 

 

 /*  

  * Returns a JPanel object containing the components to  

  * display in the module's properties window.  

  */ 

 public JPanel getPropertiesPanel() { 

  // TODO method stub 

  return null; 

 } 

  

 /* 

  * Remove this method along with the "implements 

Visualisable"  * declaration if this module doesn't output any 

visualisable   * data. 

  */ 

 public void visualise(ModuleVisualiser visualiser) { 

  refresh(); 

  visualiser.visualiseData(dataObject); 

 } 

 

} 

  



P a g e  | 97 

 

Appendix 2: Properties Window Template Code 

ModulePropertiesWindowPanelTemplate.java 

package opArtGen.GUI.propertiesWindow; 

 

import java.awt.Dimension; 

 

import javax.swing.BorderFactory; 

import javax.swing.JPanel; 

import javax.swing.JTextField; 

 

import opArtGen.API.modules.Module; 

import opArtGen.GUI.GUIFactory; 

 

public class ModulePropertiesWindowPanelTemplate extends 

PropertiesWindowPanel { 

 

 /** 

  * Version number for serialisation 

  */ 

 private static final long serialVersionUID = 1L; 

  

 /** 

  * Reference to data object of the module we are editing  

  * properties for 

  */ 

 private Module moduleObject; 

  

 /** 

  * Example property: module name  

  */ 

 private String name; 

  

 /** 

  * User interface field for module name  

  */ 

 private JTextField nameField; 

  

  

 /** 

  * Default constructor 

  *  

  * @param module: reference to module we are editing  

  * properties for 

  */ 

 public ModulePropertiesWindowPanelTemplate(Module module) { 

  this.moduleObject = module; 

  name = module.getName(); 

  JPanel generalPanel = makeGeneralPanel(); 

  addTab("General", generalPanel); 

  validate(); 

 } 

  

 @Override 

 public Dimension getPreferredSize() { 



P a g e  | 98 

 

  return new Dimension(300, 400); 

 } 

  

 /** 

  * Helper function called by constructor to aid in building 

a  

  * tab for the properties window 

  *  

  * @return JPanel containing user interface objects for  

  * General tab 

  */ 

 private JPanel makeGeneralPanel() { 

  nameField = new JTextField(name); 

   

  JPanel panel = new JPanel(); 

  panel.setBorder(BorderFactory.createTitledBorder( 

    BorderFactory.createEtchedBorder(), 

    "Module Properties")); 

   

  // 

  // panel.add(component) calls to build rest of General  

  // tab 

  // 

   

  return 

GUIFactory.makePropertiesWindowGeneralPanel(nameField, panel); 

 } 

  

 /** 

  * Method to check whether the user has changed any property  

  * values and update module using set methods accordingly.  

  * Called by the parent window when either an OK or Apply    

  * button is pressed. 

  */ 

 @Override 

 protected void setModuleProperties() { 

  if (name.compareTo(nameField.getText()) != 0) { 

   name = nameField.getText(); 

   moduleObject.setName(name); 

  } 

 } 

 

} 

  



P a g e  | 99 

 

Appendix 3: Scripts for Recreations of Existing Op-Art 

Movement In Squares 

MovementInSquaresScript.js 

// Import class definitions into Rhino 

importPackage(Packages.java.awt); 

importPackage(Packages.opArtGen.API); 

importPackage(Packages.opArtGen.API.modules); 

importPackage(Packages.opArtGen.API.warps); 

 

// Create modules 

canvas = new CanvasModule("Movement In Squares"); 

grid = new GridModule(); 

shape = new ShapeModule(); 

warp = new SurfaceWarpModule(); 

 

// Load shape 

shapeFactory = ComponentLibrary.getShapeFactory(); 

rectangle =  

shapeFactory.createComponentInstance(“rectangle.svg_1”); 

 

// Connect Modules 

grid.getOutputPort(0).connect(shape.getInputPort(0)); 

shape.getOutputPort(0).connect(warp.getInputPort(0)); 

warp.getOutputPort(0).connect(canvas.getInputPort(0)); 

 

// Configure module parameters 

 

grid.setNumRows(10); 

grid.setNumCols(31); 

 

canvas.setSize(500, 500); 

canvas.setBackground(Color.WHITE); 

canvas.setMargins(new Insets(50, 50, 50, 50)); 

 

shape.setShape(rectangle); 

shape.setSize(1, 1); 

shape.setTilingOptions( 

ShapeTilingOptions.ALTERNATE_CELLS_FIRST_FILLED); 

renderOpts = new ShapeRenderingOptions(); 

renderOpts.drawLine = false; 

renderOpts.drawFill = true; 

renderOpts.fillPaint = Color.BLACK; 

shape.setRenderingOptions(renderOpts); 

 

cubicWarp = new CubicFunctionWarp(); 

cubicWarp.setWarpXAxisEnabled(true); 

cubicWarp.getParameter("xIntensity").setValue(0.1911777168); 

warp.setSurfaceWarp(cubicWarp); 

 

// Display image 

canvas.setCanvasWindowVisible(true); 



P a g e  | 100 

 

Cantus Firmus  

CantusFirmusScript.java 

import java.awt.Color; 

import java.awt.Shape; 

import java.util.Collections; 

import java.util.LinkedList; 

import java.util.List; 

 

import opArtGen.API.ComponentFactory; 

import opArtGen.API.ComponentLibrary; 

import opArtGen.API.modules.AbstractModule; 

import opArtGen.API.modules.CanvasModule; 

import opArtGen.API.modules.ColourSeriesModule; 

import opArtGen.API.modules.GridModule; 

import opArtGen.API.modules.Merge2In1OutModule; 

import opArtGen.API.modules.ShapeRepeaterModule; 

import opArtGen.API.modules.SurfaceWarpModule; 

import opArtGen.API.modules.Merge2In1OutModule.MergeType; 

import opArtGen.API.scripts.Script; 

 

 

public class CantusFirmusScript implements Script { 

  

 // Create colours 

 final Color green = new Color(189, 188, 41); 

 final Color pink = new Color(221, 111, 113); 

 final Color blue = new Color(112, 168, 197); 

 final Color darkGrey = new Color(34, 26, 23); 

 final Color medGrey = new Color(101, 100, 100); 

 final Color lightGrey = new Color(167, 168, 163); 

 final Color white = new Color(248, 251, 249); 

  

 // Create colour lists 

 final List<Color> GPB = new LinkedList<Color>() { 

  {add(green); 

   add(pink); 

   add(blue);} 

 }; 

 final List<Color> BPG = new LinkedList<Color>() { 

  {add(blue); 

   add(pink); 

   add(green);} 

 }; 

 final List<Color> DDD = new LinkedList<Color>() { 

  {add(darkGrey); 

   add(darkGrey); 

   add(darkGrey);} 

 }; 

 final List<Color> DD = new LinkedList<Color>() { 

  {add(darkGrey); 

   add(darkGrey);} 

 }; 

 final List<Color> MM = new LinkedList<Color>() { 

  {add(medGrey); 



P a g e  | 101 

 

   add(medGrey);} 

 }; 

 final List<Color> LL = new LinkedList<Color>() { 

  {add(lightGrey); 

   add(lightGrey);} 

 }; 

 final List<Color> WW = new LinkedList<Color>() { 

  {add(white); 

   add(white);} 

 }; 

  

 List<AbstractModule> colourModules; 

  

 public List<Color> buildSetWideOnLeft(final boolean  

   greenOnLeft, final List<Color> twoGreys) { 

  return new LinkedList<Color>() { 

   {addAll(WW); 

    addAll((greenOnLeft)? GPB : BPG); 

    addAll(DDD); 

    addAll((greenOnLeft)? BPG : GPB); 

    addAll(twoGreys); 

    addAll(GPB);} 

  }; 

 } 

  

 public List<Color> buildSetWideOnRight(final boolean 

    greenOnLeft, final List<Color> twoGreys) { 

  return new LinkedList<Color>() { 

   {addAll(WW); 

   addAll((greenOnLeft)? GPB : BPG); 

    addAll(twoGreys); 

    addAll((greenOnLeft)? BPG : GPB); 

    addAll(DDD); 

    addAll(GPB);} 

  }; 

 } 

  

 public List<AbstractModule> merge(List<AbstractModule> 

layer) { 

  AbstractModule prev = null; 

  AbstractModule next = null; 

   

  List<AbstractModule> ret = new  

   LinkedList<AbstractModule>(); 

   

  for (int i = 0; i < layer.size() / 2; i++) { 

   prev = layer.get(2*i); 

   next = layer.get((2*i) + 1); 

   Merge2In1OutModule merge = new   

    Merge2In1OutModule(); 

   merge.setMergeType(MergeType.HORIZONTAL); 

  

 prev.getOutputPort(0).connect(merge.getInputPort(0)); 

  

 next.getOutputPort(0).connect(merge.getInputPort(1)); 



P a g e  | 102 

 

   ret.add(merge); 

  } 

   

  System.out.println("Merge"); 

   

  return ret; 

 } 

 

 public void run() { 

   

  // Create colour lists 

  List<List<Color>> colourSets = new  

   LinkedList<List<Color>>(); 

  colourSets.add(buildSetWideOnLeft(true, LL)); 

  colourSets.add(buildSetWideOnLeft(false, LL)); 

  colourSets.add(buildSetWideOnLeft(true, LL)); 

  colourSets.add(buildSetWideOnLeft(false, LL)); 

  colourSets.add(buildSetWideOnLeft(true, MM)); 

  colourSets.add(buildSetWideOnLeft(false, MM)); 

  colourSets.add(buildSetWideOnLeft(true, DD)); 

  colourSets.add(buildSetWideOnLeft(false, DD)); 

  colourSets.add(buildSetWideOnRight(true, DD)); 

  colourSets.add(buildSetWideOnRight(false, MM)); 

  colourSets.add(buildSetWideOnRight(true, MM)); 

  colourSets.add(buildSetWideOnRight(false, LL)); 

   

  // Load shape 

  ComponentFactory<Shape> sFactory =  

   ComponentLibrary.getShapeFactory(); 

  Shape rectangle =  

  sFactory.createComponentInstance("rectangle.svg_1"); 

   

  Merge2In1OutModule lastMerge = null; 

   

  // Create rendering pipeline 

  colourModules = new LinkedList<AbstractModule>(); 

   

  for (List<Color> list: colourSets) { 

   System.out.println("colourset"); 

   GridModule grid = new GridModule(1, 16); 

   ShapeRepeaterModule shape = new  

    ShapeRepeaterModule(rectangle); 

   ColourSeriesModule colour = new  

    ColourSeriesModule(list); 

   colour.setAlterFillColour(true); 

  

 grid.getOutputPort(0).connect(shape.getInputPort(0)); 

  

 shape.getOutputPort(0).connect(colour.getInputPort(0)); 

    

   colourModules.add(colour); 

  } 

   

  while(colourModules.size() != 1) { 

    colourModules = merge(colourModules); 



P a g e  | 103 

 

  } 

 

  // Render image 

  CanvasModule canvas = new CanvasModule("Cantus 

Firmus"); 

  canvas.setSize(400, 400); 

 

 colourModules.get(0).getOutputPort(0).connect(canvas.getInpu

tPort(0)); 

   

  canvas.setCanvasWindowVisible(true); 

   

 } 

 

} 

  



P a g e  | 104 

 

Appendix 4: Manual Animation Example 

AnimationScriptExample.java 

import java.awt.Shape; 

 

import opArtGen.API.ComponentFactory; 

import opArtGen.API.ComponentLibrary; 

import opArtGen.API.modules.CanvasModule; 

import opArtGen.API.modules.GridModule; 

import opArtGen.API.modules.ShapeRepeaterModule; 

import opArtGen.API.scripts.Script; 

 

public class AnimationScriptExample implements Script { 

 

 public void run() { 

   

  // Create modules 

  CanvasModule canvas = new CanvasModule("TestScript"); 

  GridModule grid = new GridModule(1, 1); 

  ShapeRepeaterModule shape = new ShapeRepeaterModule(); 

   

  // Load shape 

  ComponentFactory<Shape> sFactory =     

    ComponentLibrary.getShapeFactory(); 

  Shape circle =         

    sFactory.createComponentInstance("rectangle.svg_1"); 

   

  // Connect modules 

  grid.getOutputPort(0).connect(shape.getInputPort(0)); 

 

 shape.getOutputPort(0).connect(canvas.getInputPort(0)); 

   

  // Configure module parameters  

  canvas.setSize(400, 400); 

  shape.setShape(circle); 

   

  // Display image 

  canvas.setCanvasWindowVisible(true); 

 

  while (true) { 

   for (int i = 1; i < 100; i++) { 

    double size = 0.8 - 0.6 * i / 100; 

    shape.setSize(size, size); 

    try { 

     Thread.sleep(100); 

    } catch (Exception e) {} 

    canvas.updateRenderingPipeline(); 

   } 

   for (int i = 100; i > 0; i--) { 

    double size = 0.8 - 0.6 * i / 100; 

    shape.setSize(size, size); 

    try { 

     Thread.sleep(10); 

    } catch (Exception e) {} 

    canvas.updateRenderingPipeline(); 



P a g e  | 105 

 

   } 

  } 

 } 

} 

  



P a g e  | 106 

 

Appendix 5: API Reference for Scripting 
This section provides an abridged API reference to aid you when writing scripts for OpArtGen. 

ModuleData Classes 

ColourData 

Constructors Description 

ColourData() Default constructor. Creates a new ColourData object 

encapsulating a black colour value 

ColourData(int r, int g, int b) Creates a new ColourData object encapsulating a colour 

that has the given red, green and blue colour values 

ColourData(Color colour) Creates a new ColourData object encapsulating the given 

colour value 

 

Public Methods Description 

Color getColour() Returns the Color value encapsulated by this object 

ColourData clone() Returns an identical copy of this ColourData object. 

 

GridData 

Constructors Description 

GridData() Default constructor. Creates a new GridData object 

encapsulating a new empty 1x1 grid. All rows and columns 

are initially equally spaced. 

GridData(int rows, int cols) Creates a new GridData object encapsulating a new empty 

grid with the specified dimensions. All rows and columns 

are initially equally spaced. 

GridData(Cell[][] grid) Creates a new GridData object encapsulating the specified 

array of Cells. All rows and columns are initially equally 

spaced. 

 

Public Methods Description 

static Cell[][] 

generateCells(int rows, int cols) 

Returns a multidimensional array of new empty Cell 

objects with the specified dimensions.  

Cells[][] getCells() Returns the multidimensional array of cells representing 

the grid encapsulated by the GridData object. 

setCells(Cells[][] grid) Sets the grid encapsulated by the GridData object to the 

multidimensional array of cells specified. If the dimensions 

of the new grid are different to the previous grid, then the 

grid spacing is reset to equal. 

setEqualGridSpacing() Sets the row heights and column widths such that all rows 

and columns are equally spaced. 

setGridSpacing(GridSpacing 

spacing) 

Sets the row heights and column widths to equal those 

contained within the supplied GridSpacing object. 

double getRowHeight(int row) Returns the proportional height of the row with given 

index as a fraction of the total height of the grid. 



P a g e  | 107 

 

double getColWidth(int col) Returns the proportional width of the column with given 

index as a fraction of the total width of the grid. 

int getNumRows() Returns the row count for the grid. 

int getNumCols() Returns the column count for the grid. 

Dimension getAbsoluteSize() Returns the absolute size of the grid in pixels (device 

coordinates).  

setAbsoluteSize(Dimension size) Sets the absolute size of the grid in pixels. Recursively 

updates the absolute sizes for all cells and any child grids. 

boolean getGridLinesVisible() Gets the value of a flag indicating whether or not grid lines 

should be drawn for this object. 

setGridLinesVisible(boolean 

visible) 

Sets the value of a flag indicating whether or not grid lines 

should be drawn for this object. Recursively sets the value 

of the same flag for any child grids. 

GridData clone() Returns an identical deep copy of this GridData object. 

 

ValueData 

Constructors Description 

ValueData() Default constructor. Creates a new ValueData object 

encapsulating the value 0. 

ValueData(int value) Creates a new ValueData object encapsulating the given 

int value. The value is stored internally as a double. 

ValueData(double value) Creates a new ValueData object encapsulating the given 

double value. 

 

Public Methods Description 

int getInt() Returns the stored value cast to an int 

int getDouble() Returns the stored value 

setInt(int value) Stores the given int value. The value is stored internally as 

a double. 

setDouble (double value) Stores the given value. 

ValueData clone() Returns an identical copy of this ValueData object. 

 

Module Classes 

AbstractModule 

Note that all modules extend the AbstractModule class. 

Public Methods Description 

String getName() Returns the name for this module instance 

setName(String name)  Sets the name for this module instance 

setDirtyFlag() Sets the dirty flag for this module indicating that its output 

needs to be recalculated by the rendering engine. 

clearDirtyFlag() Clears the dirty flag for this module 

boolean dirtyFlagIsSet() Returns the current state of the dirty flag for this module 

Port getInputPort(int index) Returns the input port with the given index 



P a g e  | 108 

 

Port getOutputPort(int index) Returns the output port with the given index 

List<Port> getInputPorts() Returns a list holding all the input ports for this module 

List<Port> getOutputPorts() Returns a list holding all the output ports for this module 

CanvasModule 

Public Methods Description 

Dimension getSize() Returns the current image canvas size 

setSize(Dimension size)  Sets the size to use for the output image canvas 

Insets getMargins() Returns the current margins for the output image 

setMargins(Insets margins) Sets the margins to use for the output image canvas 

Color getBackground() Returns the current image background colour 

setBackground(Color background) Sets the colour to use for the image background 

boolean 

getCanvasWindowVisible() 

Returns the current visibility of the canvas window 

setCanvasWindowVisible(Boolean 

visible) 

Sets the visibility of the canvas window 

getCanvas() Returns a canvas object containing an overridden paint 

method able to draw the image specified by the current 

rendering pipeline 

updateRenderingPipeline() Updates the rendering pipeline, creating a new canvas 

object with an overridden paint method able to draw the 

image specified by the current rendering pipeline 

 

GridModule 

Public Methods Description 

int getNumRows() Returns the number of rows in the output grid  

setNumRows(int rows) Sets the number of rows in the output grid  

int getNumCols() Returns the number of columns in the output grid  

setNumCols(int cols) Sets the number of columns in the output grid  

 

ColourModule 

Public Methods Description 

Color getColour() Returns the colour value output by this module 

setColor(Color colour) Sets the colour value output by this module 

 

OscillatorModule 

Public Methods Description 

double getStartValue() Returns the value initially output by this module before 

animation commences 

setStartValue(double value) Sets the start value initially output by this module before 

animation commences 

double getMinValue() Returns the minimum value output by this module 

setMinValue(double value) Sets the minimum value output by this module 

double getMaxValue() Returns the maximum value output by this module 



P a g e  | 109 

 

setMaxValue(double value) Sets the maximum value output by this module 

int getPeriodDuration() Gets the duration in frames for each wave cycle output by 

this module 

setPeriodDuration(int duration) Sets the duration in frames for each wave cycle output by 

this module 

nextFrame(int FPS) Causes the module to change its output value based on 

the new frame count and the given animation speed value 

in frames per second 

 

ShapeRepeaterModule 

Public Methods Description 

Shape getShape() Returns the shape object this module is using  

setShape(Shape shape) Sets a new shape object for this module to use 

DimensionDouble getSize() Returns the size of the shape placed into each grid cell as a 

proportion of the total cell size 

setSize(DimensionDouble size) Sets the size of the shape placed into each grid cell as a 

proportion of the total cell size 

TilingOptions getTilingOptions() Gets the tiling options this module is using to decide which 

cells to place shapes into 

setTilingOptions(TilingOptions o) Sets the tiling options this module should use to decide 

which cells to place shapes into 

ShapeRenderingOptions 

getRenderingOptions() 

Gets the rendering options this module is using for each 

cell that a shape is placed into 

setRenderingOptions( 

ShapeRenderingOptions o) 

Sets the rendering options this module should use for each 

cell that a shape is placed into 

 

GridRepeaterModule 

Public Methods Description 

TilingOptions getTilingOptions() Gets the tiling options this module is using to decide which 

cells to place copies of the child grid into 

setTilingOptions(TilingOptions o) Sets the tiling options this module should use to decide 

which cells to place copies of the child grid into 

 

ColourSeriesModule 

Public Methods Description 

List<Color> getColoursList() Returns the current list of colours that this module repeats 

over grid data 

setColoursList(List<Color> cs) Sets the list of colours that this module should use to 

repeat over grid data 

boolean isRandomOrder() Returns whether the module shuffles the colours list each 

time it repeats it over grid data 

setRandomOrder(boolean b) Sets whether the module should shuffle the colours list 

each time it repeats it over grid data 

boolean isAlterLineColour() Returns whether the module alters the line colour used in 

each cell of the grid data 



P a g e  | 110 

 

setAlterLineColour(boolean b) Sets whether the module should alter the line colour used 

in each cell of the grid data 

boolean isAlterFillColour() Returns whether the module alters the fill colour used in 

each cell of the grid data 

setAlterFillColour(boolean b) Sets whether the module should alter the fill colour used 

in each cell of the grid data 

 

SurfaceWarpModule 

Public Methods Description 

SurfaceWarp getSurfaceWarp() Returns the surface warp object this module is currently 

using to alter grid spacing 

setSurfaceWarp(SurfaceWarp w) Sets the surface warp object this module should use to 

alter grid spacing 

 

Merge2In1OutModule 

Public Methods Description 

MergeType getMergeType() Returns the current type of merge this module is 

performing 

setMergeType(MergeType m) Sets the type of merge that this module should perform 

 

MergeType enum Field Description 

HORIZONTAL Horizontal merge (see page 74) 

VERTICAL Vertical merge (see page 74) 

OVERLAY Overlay merge (see page 74) 

 

Port Classes 

Port Type Description 

ColourPort Used to send ColourData between modules 

GridPort Used to send GridData between modules 

ValuePort Used to send ValueData between modules 

 

Port abstract class 

Public Methods Description 

boolean isSendPort() Returns true if this port object is capable of sending 

module data objects 

boolean isReceivePort() Returns true if this port object is capable of receiving 

module data objects 

boolean connect(Port remote) Attempts to connect this port to the remote port object. 

Returns true if the connection was successful, false 

otherwise 

disconnect() Disconnects this port from any remote port 

boolean isConnected() Returns true if this port is currently connected to a remote 



P a g e  | 111 

 

port 

Port getRemotePort() Returns the remote port object that this port is connected 

to. Returns null if it is not currently connected to any port 

Module getModule() Returns the module instance this port belongs to 

String getName() Returns the name of this port instance 

setName(String name) Sets the name of this port instance 

 

Rendering Classes 

RenderingManager 

Public Methods Description 

static RenderingManager 

getInstance() 

Returns the singleton instance of RenderingManager 

startAnimation(int fps) Starts running the animation loop at the given speed 

stopAnimation() Stops running the animation loop 

updateEffectors() Causes all registered effector objects to update via a call to 

their nextFrame() method 

updateCanvases() Updates the rendering pipeline on all Canvas Modules 

registerEffector(AnimationEffector 

e) 

Registers the given effector object with the manager 

 

CellRenderer 

Public Methods Description 

Rectangle getBounds() Returns a rectangle object indicating the location of this 

cell on the output image 

DimensionDouble 

getContentsSize() 

Returns the size of the renderer’s contents as a proportion 

of the parent cell’s size 

setContentsSize(DimensionDouble 

d) 

Sets the size of the renderer’s contents as a proportion of 

the parent cell’s size 

ShapeRenderingOptions 

getRenderingOptions() 

Returns the rendering options this renderer uses while 

drawing to a graphics object 

setRenderingOptions( 

ShapeRenderingOptions opts) 

Sets the rendering options this renderer should use while 

drawing to a graphics object 

CellRenderer clone() Returns a clone of this renderer 

 

GridCellRenderer 

Public Methods Description 

setGridLinesVisible(boolean b) Sets a flag indicating whether the grid stored in this 

renderer should be drawn with the grid lines visible 

GridCellRenderer getNextLayer() Gets the renderer object for the next layer above this one 

setNextLayer(GridCellRenderer r) Sets the renderer object for the next layer above this one 

 

ShapeCellRenderer 



P a g e  | 112 

 

Public Methods Description 

setShape(Shape shape) Sets the shape object drawn by this renderer 

 

TilingOptions 

Public enum Fields Description 

COVER_ENTIRE_GRID Indicates object should be placed in every grid cell 

ALTERNATE_CELLS_FIRST_FILLED Indicates object should be placed in alternate grid cells so 

that the top left grid cell contains an object 

ALTERNATE_CELLS_FIRST_EMPTY Indicates object should be placed in alternate grid cells so 

that the top left grid cell does not contain an object 

RANDOM Indicates object should be placed into grid cells randomly 

CUSTOM Indicates object should be placed into grid cells specified 

by a true value in enum’s custom mask 

 

Public enum Methods Description 

boolean[][] getCustomMask() Returns a boolean array indicating which cells an object 

should be placed into 

setCustomMask(boolean[][] m) Sets a boolean array indicating which cells an object 

should be placed into 

 

Surface Warp Classes 

SurfaceWarp  

Public Methods Description 

boolean isWarpXAxisEnabled() Returns a value indicating whether the surface warp 

should modify grid column widths 

setWarpYAxisEnabled(boolean b) Sets a value indicating whether the surface warp should 

modify grid column widths 

boolean isWarpYAxisEnabled() Returns a value indicating whether the surface warp 

should modify grid row heights 

setWarpYAxisEnabled(boolean b) Sets a value indicating whether the surface warp should 

modify grid row heights 

Set<String> getParameters() Returns a set containing all parameter names for this 

surface warp 

WarpParameter 

getParameter(String name) 

Gets the warp parameter object for the given parameter 

name. The parameter value may be altered by modifying 

the object that this method returns. 

GridSpacing applyWarp(int rows, 

int cols) 

Returns a grid spacing object containing the new grid 

spacing values for a grid of the given size 

 

WarpParameter 

Constructors Description 

WarpParameter(String name, 

String description) 

Creates a new warp parameter with the given name and 

description 



P a g e  | 113 

 

WarpParameter(String name, 

String description, double 

minValue, double maxValue, 

double defaultValue) 

Creates a new warp parameter with the given name and 

description; whose value is initially equal to defaultValue 

and always between minValue and maxValue 

 

Public Methods Description 

String getName() Gets the name of this warp parameter object 

String getDescription() Gets the description of this warp parameter object 

double getValue() Gets the current value of this warp parameter object 

setValue(double value) Sets the new value for this warp parameter object 

 

Component Loading Classes 

ComponentLibrary 

Note all methods return either a ComponentLoader object, or a ComponentFactory object 

Public static Methods Description 

getLoader() Returns the loader that loads component loaders 

getLoaderFactory() Returns a factory able to create external loader objects 

getModuleLoader() Returns the loader that loads modules 

getModuleFactory() Returns a factory able to create external module objects 

getRendererLoader() Returns the loader that loads cell renderers 

getRendererFactory() Returns a factory able to create external cell renderer 

objects 

getWarpLoader() Returns the loader that loads surface warps 

getWarpFactory() Returns a factory able to create external surface warps 

getShapeLoader() Returns the loader that loads shapes 

getShapeFactory() Returns a factory able to create shape objects 

 

ComponentLoader<T> 

Public Methods Description 

Dictionary<String, T> 

getComponents() 

Returns a dictionary linking component names to 

component objects that were loaded by this component 

loader at run-time. If components have not yet been 

loaded then calling this method will cause the loader to 

attempt to load them. 

ComponentFactory getFactory() Returns a factory object able to create component 

instances for all components loaded by this loader. If 

components have not yet been loaded then calling this 

method will cause the loader to attempt to load them. 

 

ComponentFactory<T> 

Public Methods Description 

T createComponentInstance( Returns a new instance of the component with given 



P a g e  | 114 

 

String name) name 

Dictionary<String, T> 

createComponentInstances() 

Returns a dictionary linking component names to new 

instances for all components this factory is able to create 

 

AbstractClassComponentLoader 

Method Description 

protected String 

getComponentTypeName(int multiplicity) 

Returns the name of your custom components in 

English for the given multiplicity: i.e. for 1: “My 

Component”, or for 5 : “My Components” 

protected String 

getComponentSourceFileMask() 

Returns a string containing a Java style RegEx 

pattern that identifies java source files for your 

custom components. For example, if the various 

classes for are named as: 

“Type1MyComponent.java, 

Type2MyComponent.java ...” then this method 

should return the Java style RegEx string 

“MyComponent.java$”. 

protected String 

getComponentClassFileMask() 

Returns a string containing a Java style RegEx 

pattern that identifies compiled java class files for 

your custom components. For the above example 

this method should return: 

“MyComponent.class$” 

protected String 

getExternalComponentsPackageName() 

Returns the name of the package that contains 

either the source or compiled class files for your 

custom components. For the above example this 

method may return: 

“opArtGen.API.external.mycomponents” which 

would correspond to the directory 

opArtGen/API/external/mycomponents. 
-Any source files are automatically compiled at runtime 

protected int 

loadBuiltInComponents() 

 

This method should add any built-in classes for 

your custom components to the inherited field 

components. If you are writing a component 

loader that will only load external components at 

runtime, then this method should simply return.  

public ComponentFactory<MyComponent> 

getFactory() 

This method should return a factory instance 

object for creating new instances any external 

classes loaded at runtime.  

 


