
Parameterised Verification of Infinite State Multi-Agent Systems
via Predicate Abstraction

Panagiotis Kouvaros and Alessio Lomuscio
Department of Computing, Imperial College London, UK

{p.kouvaros, a.lomuscio}@imperial.ac.uk

Abstract

We define a class of parameterised infinite state multi-agent
systems (MAS) that is unbounded in both the number of
agents composing the system and the domain of the vari-
ables encoding the agents. We analyse their verification prob-
lem by combining and extending existing techniques in pa-
rameterised model checking with predicate abstraction pro-
cedures. The resulting methodology addresses both forms of
unboundedness and provides a technique for verifying un-
bounded MAS defined on infinite-state variables. We illus-
trate the effectiveness of the technique on an infinite-domain
variant of an unbounded version of the train-gate-controller.

Introduction

Over the past decade considerable progress has been made in
the development of techniques to verify multi-agent systems
(MAS) against agent-based specifications. These include
SAT-based and BDD-based verification methods (Kacprzak,
Lomuscio, and Penczek 2004; Raimondi and Lomuscio
2005). Current model checkers, such as Verics, MCK and
MCMAS (Kacprzak et al. 2008; Gammie and van der Mey-
den 2004; Lomuscio, Qu, and Raimondi 2015), can effi-
ciently verify large state-spaces.

The methods developed differ in many aspects, including
the specifications supported and the input language used to
represent the MAS to be analysed. However, they all analyse
finite-state MAS that have two fundamental assumptions:
firstly, the number of agents is finite and known at design
time; secondly, the descriptions of the agents in the system
use variables with finite domain. While both these assump-
tions ensure that the verification problem remains decidable
(even PTIME-complete in several cases), their applicability
is hampered in real-world applications.

For example, when analysing open MAS where agents
join and leave the system at run time it may not be pos-
sible to know at design time how many agents the system
will have at runtime. Similarly, in robotic swarms, the num-
ber of agents in a swarm is not known at design time. Re-
cently, proposals to tackle the unbounded nature of agents
have been put forward (Kouvaros and Lomuscio 2013;
2016). Decidable cases have been identified and cut-offs and

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

counter-abstraction methods have been developed so that
systems composed with an unbounded number of agents can
be analysed. In these techniques the agents can be described
by variables with finite domain only.

Irrespective of the choice of the programming language,
MAS are typically programmed by using variables with in-
finite domains (integers, reals, etc.). This makes it difficult
to ensure that a finite-state model accurately represents the
system to be verified. To overcome this predicate-abstraction
methods for infinite-state models have recently been put for-
ward (Lomuscio and Michaliszyn 2015; 2016).

These two streams of work can independently deal with
two sorts of unboundedness and potential undecidability
of the verification problem: infinite state variables and un-
bounded number of agents. However, they work in isolation
and cannot presently be combined. It follows that MAS with
an unbounded number of components where each of them
has at least one infinite-state variable cannot be analysed.
In the present paper we develop a solution to this problem
by introducing a technique that combines cut-off generation
and predicate abstraction. The technique first uses predicate
abstraction on the templates on the agents, thereby generat-
ing finite abstractions. Sufficient conditions are given for a
cut-off of the system to be generated automatically. Having
established a cut-off, the specification can then be checked
on a three-valued semantics on all systems up to the cut-off.
If the specification is found either to be true or false, then we
can derive a conclusion on the original, infinite state system.

The rest of the paper is organised as follows. In Section 2,
we give the syntax and semantics for the logic-based tech-
nique. In Section 3, we derive the main formal results and
give an algorithm for the verification of MAS. We exemplify
the methodology on a widely-adopted scenario in Section 4.
We conclude in Section 5.

Related work. The technique here introduced is related
to the two independent lines of work mentioned above (pa-
rameterised verification and predicate abstraction). None of
them can address the infinite-state systems we work with
in this paper. The technique here proposed can be seen as
a combination of parameterised verification with predicate
abstraction in the MAS domain. To achieve this, not only
stronger conditions on cut-offs need to be identified, but also
a three-valued semantics on these needs to be given so that
they can be algorithmically checked.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3013

Techniques to tackle both forms of unboundedness con-
sidered here were previously put forward in the context of
reactive systems (John et al. 2012). However the semantics
are incomparable to the semantics of this paper which are
AI-based and thus require a different technical treatment.
Also, (John et al. 2012) considers temporal specifications
only and no attempt is made to analyse epistemic properties.

PIIS with Unbounded Variables

Parameterised interleaved interpreted systems (PIIS) extend
interleaved interpreted systems (IIS) (Lomuscio, Penczek,
and Qu 2010) to reason about the temporal-epistemic prop-
erties of asynchronous MAS with an unbounded number
of agents (Kouvaros and Lomuscio 2013). Below we out-
line the PIIS semantics as presented in (Kouvaros and Lo-
muscio 2013), but, differently from the cited work, we here
work on infinite state agents. There are, therefore, two forms
of unboundedness in the systems we consider; one results
from the domain of the variables encoding the agents; the
other from the number of agents composing the system.
We refer to these systems as PIIS with unbounded vari-
ables (PIISUV). A PIISUV consists of the descriptions of an
agent template from which an unbounded number of homo-
geneous agents may be constructed and an environment in
which the agents operate. Note the framework can accom-
modate a finite number of agent templates; for simplicity we
do not pursue this here.

The agent template T = 〈L, ι, Act, P, t〉 defines a non-
empty, possibly infinite set of local states L, a unique initial
state ι ∈ L, and a non-empty, possibly infinite set of ac-
tions Act = A ∪ AE ∪ GS . Each action is either an asyn-
chronous action (A) or an agent-environment action (AE)
or a global-synchronous action (GS). Each type of action
enables a different communication pattern between the con-
crete agents. In particular, asynchronous actions enable the
asynchronous evolution of an agent; agent-environment ac-
tions enable pairwise synchronisation between one agent
and the environment; global-synchronous actions enable full
synchronisation among all the agents and the environment.
The actions are performed in compliance with a protocol
P : L → P(Act) that selects which actions may be per-
formed at a given state. The evolution of the local states is
characterised by a transition function t : L × Act → L re-
turning the next local state given the current local state and
the action performed at the state.

The environment e = 〈Le, ιe, Acte, Pe, te〉 is similarly
associated with a non-empty, possibly infinite set of local
states Le, a unique initial state ιe ∈ Le, a non-empty, pos-
sibly infinite set of actions Acte = AE ∪ GS , a protocol
Pe, and a transition function te. Note that for the synchro-
nisation purposes described above e admits the same agent-
environment and global-synchronous actions with T .

We include the asynchronous “null’ actions null and
nulle to the sets of actions Act and Acte respectively. It
is assumed that: the protocol P is such that for every l ∈ L
we have that null ∈ P(l) (i.e., the null action is enabled at
every template state); the transition function t is such that
t(l,null) = l (i.e, the local state does not change whenever

the null action is performed). The environment’s null action
nulle is similarly described.

Definition 1 (PIISUV). A parameterised interleaved inter-
preted system with unbounded variables is a tuple S =
〈T, e,V〉, where V : L × AP → {tt,ff, uu} is a labelling
function on the agent template’s states for a set AP of
atomic propositions.

PIISUV give a generic description of an unbounded col-
lection of concrete IIS, each one obtained by setting the
parameter prescribing to the number of agents in the sys-
tem. Given a PIISUV S and an integer n ≥ 1, the IIS S(n)
of n agents is the result of the composition of n copies of
T with the environment. Atomic propositions in the con-
crete systems are interpreted over three truth values: true
tt, false ff , and undefined uu. We say that a truth value
x is defined whenever x �= uu. We write A for the set
A = {1, . . . , n} of concrete agents instantiated from T . A
global state g = 〈l1, . . . , ln, le〉 is a tuple of local states for
all the agents in S(n); it describes the system at a particular
instant of time. For a global state g we write g.i to denote the
local state of agent i in g. The system’s global states evolve
over time in compliance with the agents’ local protocols and
local evolution functions. The evolution is described by the
global transition relation.

Definition 2 (Global transition relation). The global transi-
tion relation R ⊆ G × Act × G on a set G of global states
is defined as (g, a, g′) ∈ R iff one of the following holds:

1. (Asynchronous transition). (i) a ∈ A; (ii) there is i ∈ A
with a ∈ P (g.i) and t(g.i, a) = g′.i; (iii) for all j �= i,
g.j = g′.j.

2. (Agent-environment transition). (i) a ∈ AE; (ii) there is
i ∈ A with a ∈ P (g.i) and t(g.i, a) = g′.i; (iii) a ∈
Pe(g.e) and te(g.e, a) = g′.e; (iv) for all j �= i, j �= e,
g.j = g′.j.

3. (Global-synchronous transition). (i) a ∈ GS; (ii) for ev-
ery i ∈ A we have that a ∈ P (g.i) and t(g.i, a) = g′.i;
(iii) a ∈ Pe(g.e) and te(g.e, a) = g′.e.

Above R defines only one action to be performed at each
time step. If this is an asynchronous action, then exactly one
agent participates in the global transition; if it is an agent-
environment action, then exactly one agent and the envi-
ronment participate in the global transition; if it is a global-
synchronous action, then all the agents and the environment
participate in the global transition. The agents not partici-
pating in a global transition are assumed to perform the null
action at each time step. Since a global transition may al-
ways be taken by means of a null action, R is serial.

We now define the concrete systems generated from S .

Definition 3 (Concrete semantics). Given a PIISUV S and
n ≥ 1, the IIS S(n) is a tuple S(n) = 〈G, g0, R, V 〉, where
G ⊆ Ln × Le is the set of reachable global states via
the global transition relation R from the initial global state
g0 = (ι, . . . , ι, ιe), and V : G × (AP × A) → {tt,ff, uu}
is the labelling function on the global states defined as
V (g, (p, i)) = x iff V(g.i, p) = x, where g ∈ G, p ∈ AP ,
i ∈ A, x ∈ {tt,ff, uu}.

3014

A PIISUV generates different IIS depending on the param-
eter for the system. Each system is composed of a differ-
ent number of agents. The propositional variables in an IIS
are indexed by each of the concrete agents; (p, i) holds in
a global state if the agent i is at a local state labelled with
p by the template labelling function. This will enable us to
construct specifications independently of the size of the con-
crete system on which they are evaluated.

A path π is a sequence π = g0a0g1a1g2 . . . such that
(gi, ai, gi+1) ∈ R for every i ≥ 0. We write π(i) for the
i-th state in π and π(i, Act) for the i-th action in π. The set
of all paths originating from a state g is denoted by Π(g). A
global state g is said to be reachable from a global state g′ if
there is a path π ∈ Π(g′) with π(i) = g for some i ≥ 0.

Example 1 (Train-gate-controller). We exemplify the techni-
cal notions introduced above on a variant of the train-gate-
controller (TGC) (Alur, Henzinger, and Kupferman 2002)
where both the number of trains and some of the domains
for the variables in the trains’ programs are unbounded. The
system is composed of a controller and an arbitrary num-
ber of trains. Each train runs along a circular track and all
tracks pass through a narrow tunnel. The tunnel can accom-
modate only one train to be in it at any time. Both sides
of the tunnel are equipped with traffic lights which can be
either green or red. To enter the tunnel each train commu-
nicates to the controller a counter representing the number
of times the train has already entered the tunnel. The con-
troller operates the colour of the traffic lights instructing the
trains enter and exit the tunnel; in doing so priority is given
to the train that communicated the smallest counter. We are
here not interested in strategic play and we assume truthful
communication.

We model the TGC as a PIISUV G = 〈T, e,V〉, where T
represents the trains and e represents the controller. These
are defined as follows.

• L = {(away , i), (wait , i), (tunnel , i) : i ∈ N}. A train
may be away from the tunnel, waiting to enter the tun-
nel, or in the tunnel; in all cases i represents the train’s
counter. Le = {(green, μ), (red , μ) : μ ∈ N∗}, where μ
is a sorted array representing the counters of the trains
that have requested to enter the tunnel.

• ι = (away , 0), ιe = (green, ε). Initially the trains are
away and there are no pending requests to enter the tun-
nel.

• Act = Acte = {(signal , i), (enter , i) : i ∈ N}∪ {exit}.
A train can request to enter the tunnel by signalling its
counter, enter the tunnel, and exit the tunnel. All actions
are agent-environment actions.

• – P ((away , i)) = {(signal , i)} and
t((away , i), (signal , i)) = (wait , i). Whenever
the train is away from the tunnel it can request to enter
it and go into the waiting state.

– P ((wait , i)) = {(enter , i)} and
t((wait , i), (enter , i)) = (tunnel , i + 1). If in
the waiting state the train can enter the tunnel; in
doing so it increases its counter by one.

– P ((tunnel , i)) = {exit} and t((tunnel , i), exit) =

(wait , i). If in the tunnel, the train can exit the tunnel
and go into the away state.

– Pe((green, μ)) = {(signal , i) : i ∈ N} ∪
{(enter , μ[0])}, te((green, μ), (signal , i)) =
(green, insert(μ, i)), and te((green, μ), (enter , i)) =
(red , remove(μ, i)). The environment handles requests
from all trains but it only accepts the one having the
smallest counter.

– Pe((red , μ)) = {exit} and te((red , μ), exit) =
(green, μ). Whenever a train is in the tunnel the con-
troller does not handle any new requests.

Specification language

We express specifications in two logics built on the
same syntax but with different semantics: the two-valued
logic indexed ACTLK2v

−X and the three-valued logic in-
dexed ACTLK3v

−X . The logic indexed ACTLK−X ex-
tends ACTLK−X by introducing indexed atomic propo-
sitions and indexed epistemic modalities; intuitively, in-
dexed ACTLK−X formulae quantify over the concrete
agents (Kouvaros and Lomuscio 2016). ACTLK−X is uni-
versal fragment of the temporal-epistemic logic CTLK with-
out the next time operator. Given a set AP of atomic
propositions, and a set VAR of variable symbols, indexed
ACTLK2v

−X and indexed ACTLK3v
−X formulae are defined

by the following BNF grammar:
φ ::=(p, v) | ¬(p, v) |φ ∧ φ |φ ∨ φ |A(φUφ) |A(φRφ) |

Kvφ | ∀vφ
where p ∈ AP and v ∈ VAR. The epistemic modality Kvφ
is read as “agent v knows that φ” (Fagin et al. 1995). The
temporal modality A(φUψ) stands for “for all paths, at some
point ψ holds and before then φ is true along the path”; and
A(φRψ) denotes “for all paths, ψ holds along the path up to
and including the point when φ becomes true in the path”.

A variable appearing in an indexed ACTLK−X formula is
said to be free if it is not in the scope of a universal quanti-
fier. An ACTLK−X formula is said to be a sentence if there
are no free variables appearing in the formula. We here con-
sider only ACTLK−X sentences. We say that an ACTLK−X

sentence is an m-indexed formula if there are precisely m
variables from VAR appearing in the formula.

The interpretation of the temporal modalities on an
IIS is given by means of the global transition rela-
tion (Clarke, Grumberg, and Peled 1999), and the epis-
temic modalities are interpreted by using the epistemic pos-
sibility relations (Fagin et al. 1995). The epistemic possi-
bility relation for an agent i is defined as follows: ∼i=
{(g, g′) ∈ G×G : g.i = g′.i}. In the following we assume
the Kleene semantics for boolean connectives and report the
three-valued satisfaction relation |=3. The two valued sat-
isfaction relation |=2 can be derived from |=3 by restrict-
ing to the clauses for tt and classical negation. We write
((S(n), g) |=3 φ) = x to mean that the formula φ is evalu-
ated to x at g. If S(n) is clear, then we simplify the notation
to (g |=3 φ) = x.
Definition 4 (Satisfaction). The 3-valued satisfaction rela-
tion |=3 for an IIS S(n), a global state g of S(n), and a
formula φ is defined as follows:

3015

• (g |=3 (p, i)) = V (g, (p, i)).
• (g |=3 φ1 ∧ φ2) = tt iff (g |=3 φ1) = tt and (g |=3

φ2) = tt.
• (g |=3 φ1 ∧ φ2) = ff iff either (g |=3 φ1) = ff or (g |=3

φ2) = ff .
• (g |=3 φ1 ∨ φ2) = tt iff either (g |=3 φ1) = tt or (g |=3

φ2) = tt.
• (g |=3 φ1∨φ2) = ff iff (g |=3 φ1) = ff and (g |=3 φ2) =
ff .

• (g |=3 A(φ1Uφ2)) = tt iff for all π ∈ Π(g), there is
i ≥ 0 s.t. (π(i) |=3 φ2) = tt and for all j < i (π(j) |=3

φ1) = tt.
• (g |=3 A(φ1Uφ2)) = ff iff there is π ∈ Π(g) s.t. for all

i ≥ 0 we have (π(i) |=3 φ2) = ff or there is j < i with
(π(j) |=3 φ1) = ff .

• (g |=3 A(φ1Rφ2)) = tt iff for all π ∈ Π(g), either there
is some i ≥ 0 with (π(i) |=3 φ1) = tt and for all j ≤ i
(π(j) |=3 φ2) = tt; or for all i ≥ 0 (π(i) |=3 φ2) = tt.

• (g |=3 A(φ1Rφ2)) = ff iff there is π ∈ Π(g) s.t. there is
i ≥ 0 with (π(i) |=3 φ2) = ff , and for all i ≥ 1 we have
(p(i) |=3 φ1) = ff or (p(j) |=3 φ2) = ff for some j ≤ i.

• (g |=3 Kiφ) = tt iff (g′ |=3 Kiφ) = tt for all g′ with
g ∼i g

′.
• (g |=3 Kiφ) = ff iff (g |=3 φ) = ff .
• (g |=3 ∀vφ) = tt iff (g |=3 φ[v �→ ag]) = tt for all

ag ∈ {1, . . . , n}.
• (g |=3 ∀vφ) = ff iff (g |=3 φ[v �→ ag]) = ff for some

ag ∈ {1, . . . , n}.
• In all other cases the value of a formula is undefined.

Remark 1. Following (Lomuscio and Michaliszyn 2015) the
above defines an epistemic formula Kiφ as ff at a state if φ
is ff at the state. While this is stronger than the standard
definition (that assigns (g |=3 Kiφ) = ff iff there is g′ with
g′ ∼i g and (g′ |=3 φ) = ff), it is crucial for preserving the
value of a formula from the abstract models to the concrete
ones (Theorem 2).

ACTLK−X generalises indexed CTL (Clarke, Grumberg,
and Browne 1989), a parametric variant of CTL that intro-
duces quantification operators over the system components.
In addition to the next-time operator, the unrestricted nesting
of the quantification operators can be used to represent the
actual number of participants in the system (Clarke, Grum-
berg, and Browne 1989), thereby making the verification
problem undecidable (Clarke et al. 2004). To circumvent
this, indexed CTL typically excludes the next-time opera-
tor and is restricted to its prenex fragment in which all the
quantifiers appear at the front of the formula (Aminof et al.
2014). In light of this, for the rest of the paper, we consider
m-indexed ACTLK−X formulae complying to the following
schema:

∀v1 . . . ∀vm
⎛
⎝ ∧

i,j∈{1,...,m}
¬(vi = vj) → φ({v1, . . . , vm})

⎞
⎠

where φ is an ACTLK−X formula with no quantifiers that
is built from precisely the variables v1, . . . , vm. We sim-
ply write φ to denote an m-indexed formula of the above
schema.
Example 2. Consider the specification “whenever a train
is in the tunnel it knows that no other train is in the tunnel
at the same time” of the train-gate-controller. This can be
expressed by the following 2-indexed formula:

φG = ∀v∀uAG((tunnel , v) → Kv¬(tunnel , u)),
where the atomic proposition tunnel holds in the template
states in which the train is in the tunnel. The evaluation of
φG on a concrete system is determined by evaluating the
conjunction of all its ground instantiations under any as-
signment for the variables. For instance, when evaluated on
a concrete system with two agents, φG denotes the formula
AG((tunnel , 1) → K1¬(tunnel , 2))∧AG((tunnel , 2) →
K2¬(tunnel , 1)).

An ACTLK−X formula φ is said to be true in S(n), de-
noted S(n) |=2 φ, if (S(n), g0) |=2 φ. We define (S(n) |=3

φ) = tt if ((S(n), g0) |=3 φ) = tt, (S(n) |=3 φ) = ff if
((S(n), g0) |=3 φ) = ff , and (S(n) |=3 φ) = uu other-
wise. Defined truth values are preserved from the 3-valued
satisfaction relation to the 2-valued one.
Theorem 1 (Relation between |=2 and |=3). Let S(n) be an
IIS, g a global state of S(n), and φ an ACTLK−X formula.
The following hold:

1. (g |=3 φ) = tt =⇒ g |=2 φ.
2. (g |=3 φ) = ff =⇒ g �|=2 φ.

In the following we exploit the above result to define a
procedure to solve the verification problem for PIISUV .

Parameterised Verification

We now put forward a methodology to assess the correctness
of a MAS formalised as a PIISUV . The decision problem,
generally known as the parameterised model checking prob-
lem, is to check that a given PIISUV meets its specifications
irrespective of the number of agents in the system.
Definition 5 (PMCP). Given a PIISUV S and an m-indexed
formula φ, the parameterised model checking problem
(PMCP) is the decision problem of determining whether the
following holds:

S(n) |=2 φ for every n > m.

If this holds, then φ is said to be satisfied by S; this is de-
noted by S |=2 φ.

The PCMP is in general undecidable even for finite-state
templates (Apt and Kozen 1986). Moreover, since every con-
crete system has a possibly infinite state space, the plain
model checking problem on any concrete system is also un-
decidable. Thus we face two challenges to address the verifi-
cation problem for PIISUV : we need to bound the number of
variables encoding a concrete system and the number of sys-
tems that need to be checked. To do the former we abstract
the agent template and the environment using predicates de-
rived from the PIISUV and the specifications under consid-
eration. We show that defined truth values are preserved

3016

from the systems generated from the abstract PIISUV to the
systems generated from the original PIISUV . As a result,
the PMCP is reduced to checking an unbounded number of
finite-state systems. To address the unbounded nature of the
number of agents to be considered, we identify a sufficient
condition between the agent template and the environment
for determining a natural number, the cut-off, expressing the
number of systems that is sufficient to verify in order to solve
the PMCP. We show how this condition can be checked on
the abstract PIISUV . Consequently the PMCP is reduced to
checking the systems generated from the abstract PIISUV up
to the cut-off system. We first describe the predicate abstrac-
tion method and then show how a cut-off can be determined.

Predicate abstraction

Assume an agent template T , a tuple ps T of state predi-
cates, a tuple pa of asynchronous action predicates, a tu-
ple pae of agent-environment action predicates, and a tu-
ple pgs of global-synchronous action predicates. Intuitively,
each predicate represents a condition on the template’s pro-
tocol or transition relation. The satisfaction of conjunctions
λ of state predicates and their negation, called state cubes, on
a template’s state is denoted as l |= λ. Similarly, the satisfac-
tion of conjunctions α of action predicates and their nega-
tion, called action cubes, on a template’s action is denoted
as a |= α. A state (respectively, action) cube is satisfiable iff
it is satisfied by some local state (respectively, action). The
agent template is abstracted via predicates in the following
way.

Definition 6 (Abstract agent template). Given
an agent template T and a list of predicates
(ps T , pa, pae, pgs), the abstract agent template is the
tuple T̂ = 〈L̂, ι̂, Âct, P̂may , P̂must , t̂may , t̂must〉, where:

• L̂ is the set of all satisfiable state cubes.
• ι̂ is the initial state cube satisfiable only by ι.

• Âct = Â ∪ ÂE ∪ ĜS is the union of the sets of all
satisfiable asynchronous, agent-environment and global-
synchronous action cubes.

• the may protocol P̂may is defined as α ∈ P̂may(λ) iff
there are l ∈ L, a ∈ Act with l |= λ, a |= α and a ∈ P (l).

• the may transition relation t̂may is defined as
t̂may(λ, α, λ′) iff there are l, l′ ∈ L, a ∈ Act with
l |= λ, l′ |= λ′, a |= α, and t(l, a) = l′.

• the must protocol P̂must is defined as α ∈ P̂must(λ) iff
for every l ∈ L, a ∈ Act, if l |= λ and a |= α, then
a ∈ P (l).

• the must transition relation t̂must is defined as
t̂must(λ, α, λ′) iff for all l ∈ L, a ∈ Act, if l |= λ and
a |= α, then t(l, a) = l′ for some l′ with l′ |= λ′.

Intuitively the may and must components of T̂ are re-
spectively over- and under-approximations of the tem-
poral evolution of T . The abstract environment ê =

〈L̂e, ι̂e, Âcte, P̂
may
e , P̂must

e , t̂may
e , t̂must

e 〉 is similarly de-
fined over p ae, p gs and a tuple ps e of state predicates.

λaway

λwait

λtunnel

λsignal

λenter

λexit

(a) Abstract train.

λgreen,ε

λgreen

λred

λsignal

λenter

λexit

(b) Abstract controller.

Figure 1: The abstract PIISUV of the TGC.

Definition 7 (Abstract PIISUV). Given a PIISUV S and a
list of predicates (ps T , pa, pae, pgs, ps e), the predicate ab-
straction of S is the tuple Ŝ = 〈T̂ , ê, V̂〉, where T̂ is the ab-
stract agent template w.r.t ps T , pa ag, pae, pgs, ê is the ab-
stract environment w.r.t ps e, pae, pgs, and V̂ is such that for
any λ ∈ L̂, p ∈ AP , x ∈ {tt,ff}, we have V̂(λ, p) = x iff
V(l, p) = x for all l ∈ L with l |= λ.

Example 3 (Train-gate-controller). Figure 1 depicts the ab-
stract PIISUV Ĝ = 〈T̂ , ê, V̂〉 of the train-gate-controller. T̂
is constructed w.r.t the state predicates λaway = (away , 0),
λwait = (wait , 0), λtunnel = (tunnel , 0), and the ac-
tion predicates λsignal = (signal , 0), λenter = (enter , 0),
λexit = exit; ê is built w.r.t the same action predicates
and the state predicates λgreen,ε = (green, ε), λgreen =
(green, 0), λred = (red , ε). In the figure the arrows rep-
resent both the may and must transition relations.

Given a PIISUV S with predicate abstraction Ŝ and an in-
teger n ≥ 1, the abstract IIS Ŝ(n) of n abstract agents com-
poses n copies of T̂ with ê. Its construction is identical to
the construction of the concrete systems, but it defines a may
global transition relation R̂may and a must global transition
relation R̂must . R̂may (R̂must , respectively) is defined as in
Definition 2, but considering the may (must, respectively)
protocols and transition functions. R̂may is used to interpret
the clauses for tt in Definition 4, whereas R̂must is used to
interpret the clauses for ff in Definition 4.

Definition 8 (Abstract semantics). Given a PIISUV S with
predicate abstraction Ŝ and n ≥ 1, the abstract IIS Ŝ(n) is
a tuple Ŝ(n) = 〈Ĝ, ĝ0, R̂

may , R̂must , V̂ 〉, where Ĝ, ĝ0 and
V̂ are defined as in Definition 3.

The abstract systems can be used to interpret ACTLK−X

formulae as per the 3-valued semantics: for every n ≥ 1
the evaluation of a formula to true (false, respectively) on
Ŝ(n) implies the evaluation of the formula to true (false,
respectively) on S(n).
Theorem 2 (Preservation theorem). Let S be a PIISUV with
predicate abstraction Ŝ , n ≥ 1 an integer, and φ an
ACTLK−X formula. The following hold:

3017

1. (Ŝ(n) |=3 φ) = tt =⇒ (S(n) |=3 φ) = tt;

2. (Ŝ(n) |=3 φ) = ff =⇒ (S(n) |=3 φ) = ff .

In view of the theorem above, methodologies can be
devised to derive predicates automatically on the basis of
the system and the specifications under examination. For
instance, procedures for plain, non-parameterised, infinite
state MAS were put forward in (Lomuscio and Michaliszyn
2016). Since the agent template and the environment can
be viewed as agents in the typical MAS setting, the cited
works can be adapted to automatically generate the abstract
PIISUV . By doing so we would obtain an unbounded num-
ber of abstract, finite state interleaved interpreted systems.
It follows that if the specification is tt in all abstractions,
then the specification holds on the original PIISUV ; if it is
evaluated to ff in at least one abstract system, then the speci-
fication does not hold on the original PIISUV ; otherwise, no
conclusions can be drawn. Note the PMCP is still intractable
since an unbounded number of abstract systems need to be
checked. In the following we solve this problem by bound-
ing the number of systems to be analysed.

Agent-environment simulation

We introduce a notion of simulation between the agent
template and the environment. Intuitively, the states of
the environment of a PIISUV admitting this simulation
represent shared resources that can be accessed by the
agents via agent-environment synchronisations. For a given
PIISUV and an m-indexed formula we show that if this simu-
lation exists, then to solve the PMCP it is sufficient to check
the concrete system of m agents only. We first fix some no-
tation.

Given a local state l we write l → l′ to mean that there is
an asynchronous action a and a state l′ with a ∈ P (l) and
t(l, a) = l′. For a set of states X we use X → X ′ to de-
note that there is a state l ∈ X such that l → l′ and X ′ =
X ∪ {l′}. The reflexive and transitive closure of → is de-
noted by ∗ . Concretely, X ∗ X ′ represents the set of lo-
cal states X ′ in which an unbounded number of agents may
asynchronously move into from X . Given a state l and either
an agent-environment or a global-synchronous action a we
write l a l′ to mean that there is a state l′ with a ∈ P (l) and
t(l, a) = l′. For a set of states X and an agent-environment
action a we write X a X ′ to express that there is a state
l in X with l a l′ and X ′ = X \ {l} ∪ {l′}. For a set of
states X and a global-synchronous action a we use X a X ′

to mean that X ′ =
{
l′ : ∃l ∈ X. l a l′

}
. By X ∗a X ′

we mean that there is X ′′ with X ∗ X ′′ a X ′. In other
words, X ∗a X ′ represents the set of local states X ′ that
results from an unbounded sequence of asynchronous transi-
tions from X followed by an agent-environment or a global-
synchronous transition. When applied on the environment’s
state the above operators are interpreted in the same way
using the environment’s protocol and transition function. Fi-

nally, we use ?; x (!; x , respectively) to indicate that the
operator x is applied to the abstract PIISUV using the may
(must, respectively) protocol and transition function.

We now define an agent-environment simulation.

Definition 9 (Agent-environment simulation). An agent-
environment simulation between T and e is a relation R ⊆
P(L)×Le such that ({ι} , ιe) ∈ R and whenever (X, le) ∈
R the following conditions hold:

1. If X ∗a X ′, then le
a l′e and (X ′, l′e) ∈ R.

2. If X ∗a1

X1 ∗a2 · · · ∗ak

Xk, X ∗b X ′ and

le
a1

l1e
a2 · · · ak

lke
b lk+1

e , then (X∪Xk, lke) ∈ R.
We write T ≤ e to denote that there is an agent-

environment simulation between T and e. In the rest of
the paper we restrict our discussion to the subclass of
PIISUV admitting an agent-environment simulation. Intu-
itively, this is the subclass of PIISUV in which global-
synchronous actions determine a subclass of the shared
resources the agents can access. We assume that global-
synchronous actions are enabled at every state of the agent
template. Upon performing a global-synchronous action the
system updates the set of accessible shared resources. By
condition 1 not only does the environment always allow this
to happen, but also it always permits an agent to take the
lock on a resource via agent-environment synchronisations.
Following the lock on a resource the agent has to release
the lock before another agent can synchronise with the en-
vironment. In line with this, whenever different agents may
synchronise with the environment in successive time steps,
the last synchronisation of the preceding agent is interpreted
as resource-releasing; thus agent-environment synchrnoni-
sations are not subsequently blocked by the environment, as
expressed by condition 2.

This is a subclass of the PIIS studied in (Kouvaros and
Lomuscio 2016). However, the methodology there presented
considers finite state templates only, and it assumes that all
agent-environment and global-synchronous actions are en-
abled at exactly one state of the environment. As a result,
the original formulation of the agent-environment simula-
tion cannot be applied to the present setting.

We now show that whenever T ≤ e the evaluation of an
m-indexed formula on the system with m agents is equiva-
lent to the evaluation of the formula on every bigger system.
Integers following this property are commonly referred to as
cut-offs (Emerson and Kahlon 2000).
Theorem 3 (Cut-off theorem). Let S = 〈T, e,V〉 be a
PIISUV with T ≤ e, φ an m-indexed formula, and n ≥ m
an integer. The following holds:

S(m) |=2 φ iff S(n) |=2 φ.

By Theorem 3 and Theorem 2 the PMCP can be solved by
checking the abstract system with m agents. This assumes
that T ≤ e can be established. However T and e are pos-
sibly infinite state structures. To circumvent this, we give
a three-valued semantics for the agent-environment simu-
lation thereby enabling the simulation test to be performed
on the abstract PIISUV . We write (T̂ ≤ ê) = tt to mean
that the abstract PIISUV admits an agent-environment sim-
ulation, (T̂ ≤ ê) = ff to express that it does not, and
(T̂ ≤ ê) = uu to denote that it is unknown whether it does.
Definition 10 (Three-valued semantics for agent-environ-
ment simulations).

3018

• (T̂ ≤ ê) = tt if there is a relation R̂ ⊆ P(L̂) × L̂e

such that ({ι̂} , ι̂e) ∈ R̂ and whenever (X̂, λe) ∈ R̂ the
following conditions hold:

1. If X̂ ?; ∗α
X̂ ′, then λe

!;α
λ′
e and (X̂ ′, λ′

e) ∈ R̂.

2. If X̂
?; ∗α1

X̂1 ?; ∗α2 · · · ?; ∗αk

X̂k, X̂
?; ∗b

X̂ ′

and λe
?;α1

λ1
e

?;α2 · · · ?;αk

λk
e

?; b
λk+1
e , then

(X̂ ∪ X̂k, λk
e) ∈ R̂.

• (T̂ ≤ ê) = ff if there is no relation R̂ ⊆ P(L̂) × L̂e

such that ({ι̂} , ι̂e) ∈ R̂ and whenever (X̂, λe) ∈ R̂ the
following conditions hold:

1. If X̂ !; ∗α
X̂ ′, then λe

?;α
λ′
e and (X̂ ′, λ′

e) ∈ R̂.

2. If X̂ !; ∗α1

X̂1 !; ∗α2 · · · !; ∗αk

X̂k, X̂ !; ∗b
X̂ ′ and

λe
!;α1

λ1
e

!;α2 · · · !;αk

λk
e

!; b
λk+1
e , then (X̂ ∪

X̂k, λk
e) ∈ R̂.

• (T̂ ≤ ê) = uu in all other cases.

The abstract PIISUV can be used to perform the simulation
test according to the three-valued semantics.

Theorem 4 (Simulation test). Let S be a PIISUV with pred-
icate abstraction Ŝ. The following hold:

1. (T̂ ≤ ê) = tt =⇒ T ≤ e.

2. (T̂ ≤ ê) = ff =⇒ T � e.

With a successful simulation test the analysis of the ab-
stract system with m agents is sufficient to establish the cor-
rectness of the original PIISUV .

Theorem 5 (PMC theorem). Let S = 〈T, e,V〉 be a
PIISUV with predicate abstraction Ŝ = 〈T̂ , ê, V̂〉 such that
(T̂ ≤ ê) = tt. Let φ be an m-indexed formula. The follow-
ing hold:

1. (Ŝ(m) |=3 φ) = tt =⇒ S |=2 φ.

2. (Ŝ(m) |=3 φ) = ff =⇒ S �|=2 φ.

The above is the main result of the paper. It provides
the underpinnings for a constructive, sound but incomplete
methodology to solve the PMCP for infinite state MAS.
Concretely, verification of PIISUV can be conducted as fol-
lows. Firstly, the abstract PIISUV is built from predicates
derived from the original PIISUV and an m-indexed spec-
ification. Then it is checked whether or not the abstract
PIISUV admits an agent-environment simulation. If so, then
the abstract system with m agents is checked against the
specification; otherwise, no conclusions can be drawn. If the
value of the specification is defined on said abstract sys-
tem, then we can deduce whether or not the specification
is satisfied on the original PIISUV ; if the value is unde-
fined, then the satisfaction of the specification on the original
PIISUV can not be determined. Note that there is no diffi-
culty in performing refinement if either the specification or
the agent-environment simulation is undefined by following
the procedure in (Belardinelli, Lomuscio, and Michaliszyn
2016).

Example 4 (Train-gate-controller). Consider the relation
R̂ = {(λaway , λgreen,ε), (λwait , λgreen), (λtunnel , λred)}
between the abstract train T̂ and the abstract controller ê. R̂
satisfies all the conditions of the first clause of Definition 10.
Therefore (T̂ ≤ ê) = tt. Hence, by Theorem 5, the abstract
system of 2 trains can be used to establish the correctness
of the train-gate-controller against φG; this can be put into
any epistemic model checker which would return true.

Conclusions

In this paper we have introduced a methodology for verify-
ing infinite-state MAS with an unbounded number of com-
ponents. We have given a three-valued predicate abstraction
methodology for deriving finite descriptions of the agents
and established sufficient conditions for the derivations of
cut-offs.

In future work we intend to implement the methodology
here described.

Acknowledgments

The research described in this paper was supported by the
EPSRC under grant EP/I00520X/1 and a Doctoral Prize Fel-
lowship.

References

Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.
Aminof, B.; Jacobs, S.; Khalimov, A.; and Rubin, S. 2014.
Parameterized model checking of token-passing systems. In
Proceedings of the 15th International Conference on Veri-
fication, Model Checking, and Abstract Interpretation (VM-
CAI14), volume 8318 of Lecture Notes in Computer Science,
262–281. Springer.
Apt, K., and Kozen, D. C. 1986. Limits for automatic veri-
fication of finite-state concurrent systems. Information Pro-
cessing Letters 22(6):307–309.
Belardinelli, F.; Lomuscio, A.; and Michaliszyn, J. 2016.
Agent-based refinement for predicate abstraction of multi-
agent systems. In Proceedings of the 22nd European Con-
ference on Artificial Intelligence (ECAI16).
Clarke, E.; Talupur, M.; Touili, T.; and Veith, H. 2004.
Verification by network decomposition. In Proceedings of
the 15th International Conference on Concurrency Theory
(CONCUR04), volume 3170 of Lecture Notes in Computer
Science. Springer. 276–291.
Clarke, E.; Grumberg, O.; and Browne, M. 1989. Reasoning
about networks with many identical finite state processes.
Information and Computation 81(1):13–31.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999. Model
Checking. Cambridge, Massachusetts: The MIT Press.
Emerson, E., and Kahlon, V. 2000. Reducing model check-
ing of the many to the few. In Proceedings of the 17th Inter-
national Conference on Automated Deduction (CADE00),
volume 1831 of Lecture Notes in Computer Science, 236–
254. Springer.

3019

Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. Cambridge: MIT Press.
Gammie, P., and van der Meyden, R. 2004. MCK: Model
checking the logic of knowledge. In Proceedings of 16th
International Conference on Computer Aided Verification
(CAV04), volume 3114 of Lecture Notes in Computer Sci-
ence, 479–483. Springer.
John, A.; Konnov, I.; U.Schmid; Veith, H.; and Widder, J.
2012. Counter attack on byzantine generals: Parameter-
ized model checking of fault-tolerant distributed algorithms.
arXiv preprint arXiv:1210.3846.
Kacprzak, M.; Nabialek, W.; Niewiadomski, A.; Penczek,
W.; Pólrola, A.; Szreter, M.; Woźna, B.; and Zbrzezny, A.
2008. Verics 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae 85(1):313–328.
Kacprzak, M.; Lomuscio, A.; and Penczek, W. 2004. Veri-
fication of multiagent systems via unbounded model check-
ing. In Proceedings of the Third International Conference on
Autonomous Agents and Multiagent Systems (AAMAS04),
638–645. ACM.
Kouvaros, P., and Lomuscio, A. 2013. A cutoff technique for
the verification of parameterised interpreted systems with
parameterised environments. In Proceedings of the 23rd In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI13), 2013–2019. AAAI Press.
Kouvaros, P., and Lomuscio, A. 2016. Parameterised
verification for multi-agent systems. Artificial Intelligence
234:152–189.
Lomuscio, A., and Michaliszyn, J. 2015. Verifying multi-
agent systems by model checking three-valued abstractions.
In Proceedings of the 14th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS15), 189–
198.
Lomuscio, A., and Michaliszyn, J. 2016. Verification of
multi-agent systems via predicate abstraction against ATLK
specifications. In Proceedings of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS16).
Lomuscio, A.; Penczek, W.; and Qu, H. 2010. Partial order
reduction for model checking interleaved multi-agent sys-
tems. Fundamenta Informaticae 101(1–2):71–90.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2015. MC-
MAS: A model checker for the verification of multi-
agent systems. Software Tools for Technology Transfer.
http://dx.doi.org/10.1007/s10009-015-0378-x.
Raimondi, F., and Lomuscio, A. 2005. Automatic verifica-
tion of multi-agent systems by model checking via OBDDs.
Journal of Applied Logic 5(2):235–251.

3020

