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ABSTRACT
A key problem in verification of multi-agent systems by model
checking concerns the fact that the state-space of the system
grows exponentially with the number of agents present. This
often makes practical model checking unfeasible whenever
the system contains more than a few agents. In this paper we
put forward a technique to establish a cutoff result, thereby
showing that systems with an arbitrary number of agents
can be verified by checking a single system consisting of a
number of agents equal to the cutoff of the system. While
this problem is undecidable in general, we here define a class
of parameterised interpreted systems and a parameterised
temporal-epistemic logic for which the result can be shown.
We exemplify the theoretical results on a robotic example
and present an implementation of the technique as an exten-
sion of mcmas, an open-source model checker for multi-agent
systems.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Checking

General Terms
Theory; Verification

Keywords
Epistemic Logic; Model Checking; Parameterised MAS

1. INTRODUCTION
Verification and validation of systems before deployment

is increasingly seen of fundamental importance not just in
safety-critical applications, but also in more mainstream
applications. Multi-Agent Systems (MAS) are no exception.
The past ten years have witnessed considerable research
in verification techniques aimed at assessing automatically
whether or not a MAS meets its intended specifications.

One of the leading techniques in this area is model check-
ing [5]. In this setting the system S under analysis is encoded
as a transition system MS and a specification P is formalised
as a logical formula φP ; a model checking procedure is used
to determine whether MS |= φP , i.e., whether or not the
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system MS satisfies the formula φP . Since MAS specifica-
tions are often expressed as epistemic, deontic, and ATL
formulas; the techniques put forward in the MAS community
reflect this [15, 13, 17]. While explicit techniques are less
efficient, symbolic checkers such as MCK [13], mcmas [17] and
VerICS [15] are capable of handling state-spaces of the region
of 1015 and beyond. However, MAS-based applications, due
to the agents’ complex and intentional nature, often generate
much larger state spaces. To alleviate this problem, a number
of techniques, including abstraction [7], have been put for-
ward. These have been successful in allowing users to tackle
larger systems, but it is still the case that, generally speaking,
systems with many agents are difficult to verify. The aim of
this paper is to contribute to overcome this shortcoming.

In the present setting we consider a class of MAS composed
of identical agents interacting with the environment. While
this may seem a strong condition, this is a relatively common
assumption in many application areas of interest ranging from
robotics, to artificial life, swarm intelligence, services and in
open systems in general. A natural question in these systems
is whether certain properties hold irrespective of the number
of agents present. For example, in a remote robotic scenario
we may wish to check that a goal is met irrespective of how
many robots are present. It is immediate to see that plain
model checking cannot be used to solve this problem. To
establish this property we would have to consider an infinite
number of different systems each composed of a different
number of agents and run model checking algorithms on each
of these. Not withstanding the fact that we cannot check an
infinite number of systems, this class includes instances for
which model checking would require an unfeasible amount of
memory and time.

In this paper we develop a technique that enables us to
derive the number of agents that is sufficient to consider to
show that a property holds in the system for any number of
agents. In line with the literature on reactive systems [8, 14],
we call this bound the MAS cutoff. In contrast with literature
in reactive systems we here work with interleaved interpreted
systems [16] and temporal-epistemic specifications.

The rest of the paper is organised as follows. In Section 2
we define an interleaved semantics that will use throughout
the paper, a logic that we call IACTL∗K−X which com-
bines the universal fragment of CTL∗ without “next” with
a parameterised version of epistemic logic, and establish
a stuttering-equivalence simulation result. Section 3 intro-
duces the technique to establish the cutoff and presents our
main theoretical result. To exemplify the theory we discuss a
robotic example in Section 4. We discuss our implementation



in Section 5 and present experimental results. We conclude
in Section 6 also discussing related work.

2. PARAMETERISED INTERLEAVED
INTERPRETED SYSTEMS

In this section we introduce a framework for reasoning
about parameterised multi-agent systems. In particular, we
recall the semantics of interleaved interpreted systems [16]
and we introduce parameterised interleaved multi-agent sys-
tems. To reason about the temporal-epistemic properties of
agents, we introduce the logic IACTL∗K−X , a parameterised
extension of ACTL∗−X with indexed atomic propositions and
indexed epistemic modalities.

2.1 Interleaved Interpreted Systems
The interpreted systems (IS) formalism [12] is a stan-

dard semantics for MAS. Here we consider a special class
of interpreted systems, called interleaved interpreted sys-
tems (IIS) [16], in which the agents evolve in parallel asyn-
chronously (i.e., by means of interleaving semantics [5]).
Differently from standard interpreted systems where actions
may be performed by all the agents at the same round, IIS
insist on only one local action at the time to be performed
in the system. If at any given round more than one agent
admits in its repertoire the action to be performed, then
all agents sharing this action perform this action at that
round. Thus, the agents communicate by means of shared
actions. The temporal evolution of an agent’s local states is
accommodated to the needs of interleaving; while in standard
IS the next local state depends on the actions performed by
all agents in the system, in IIS local states depend only on
the agent’s own action. Below, we summarise the framework
of IIS, as presented in [16], to model interleaved MAS.

We assume that a MAS is composed of n agents A =
{1, . . . n}. Each agent i ∈ A is characterised by a finite set
of local states Li and a finite set of actions Acti. Each Acti
contains a special action εi which we call the “silent” action;
as the name suggests, whenever εi is performed, agent i’s
local state does not change. We call ACT =

⋃
i∈AActi the

union of all actions. Actions are performed in compliance
with a protocol Pi : Li → ℘(Acti) governing which actions
can be executed in a given state. The silent action is enabled
at every local state; formally, ∀i ∈ A : ∀li ∈ Li : εi ∈ Pi(li).
For each action a, we call Agent(a) = {i ∈ A | a ∈ Acti} the
set of agents potentially able to perform a. The evolution of
agent i’s local states is described by the transition function
ti : Li × Acti → Li such that ti(li, εi) = li for each li ∈ Li.
Note that ti is a function of agent i’s local action only.

A global state g = (l1, · · · , ln) ∈ L1×· · ·×Ln is an n-tuple
of local states for all the agents in the MAS and represents
the state of the system at a particular instance of time. Given
a global state g = (l1, . . . , ln), we write gi to denote the local
component li of agent i ∈ A in g. Given a set of agents
J = {j1, . . . , j|J|} ⊆ A, we write gJ to denote the tuple of
local components (lj1 , . . . , lj|J|) of agents J in g. The local
protocols and the local evolution functions determine how
the system proceeds from one global state to the next.

Definition 2.1. (Interleaved Semantics) Let G be a set of
global states. The global interleaved evolution function t : G×
Acti×· · ·×Actn → G is defined as follows: t(g, a1, . . . , an) =
g′ iff there exists an action a ∈ ACT such that for all i ∈
Agent(a) we have that ai = a and ti(gi, a) = g′i; and for all
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Figure 1: The IIS for the Autonomous Robot Example.

i ∈ A\Agent(a), we have that ai = εi and ti(gi, ai) = g′i = gi.

In short, we write the above as g
a→ g′.

We assume that the joint silent action is always enabled;
thus, the global transition relation is serial. A sequence of
global states and actions π = g1a1g2a2g3 . . . is said to be an
interleaved path (or simply a path) originating at g1 if for

every pair of successor states we have that gi
ai→ gi+1, for

every i ≥ 1. We write π(i) to denote the i-th global state in
π. The set of all paths originating from g is denoted by Π(g).
The local path of agent i ∈ A in π is the projection of π onto
i; i.e., the sequence πi = g1i a

1g2i a
2g3i . . .. The projection of π

onto a set of agents J is the sequence πJ = g1Ja
1g2Ja

2g3J . . ..
We denote by π[i] the suffix giaigi+1 · · · of π. A state g ∈ G is
said to be reachable from g1 ∈ G if there is a path g1a1g2 · · ·
such that g = gi, for some i ≥ 1.

Definition 2.2. (Interleaved Interpreted Systems) Let AP
be a set of atomic propositions. An interleaved interpreted
system (IIS), or a model, is a 4-tupleM = 〈G, ι,Π, V 〉, where
G is a set of global states, ι ∈ G is an initial global state such

that each state in G is reachable from ι, Π =
⋃
g∈G

Π(g) is the

set of all interleaved paths originating from all states in G,
and V : AP → ℘(G) is a valuation function.

Example 2.3. The IIS presented in Figure 1 is a modified
version of the autonomous robot (AR) example from [12].
A robot runs along an endless straight track; its position is
given in terms of locations numbered as 0, 1, 2, · · ·. The robot
can only move forward along the track starting at position
0. A faulty sensor is attached to the robot measuring its
position; a sensor reading at location q can be any of the
values in Rq = {q−1, q, q+1}. The movement of the robot is
controlled by the environment. The only action the robot can
perform is to halt; if the robot does not halt, the environment
may move the robot one position forward at each time step;
once the robot halts, the environment can no longer move
it. The goal of the robot is never to exit the goal region
GR = {2, 3, 4} upon entering into it and never to halt in
the restricted region RR = {0, 1} . A sound and complete
solution to the autonomous robot problem [12] is for the robot
to do nothing while the value of its sensor is less than 3 and
to halt once the value of its sensor is greater than or equal
to 3. In the figure a state of the environment represents the
position of the robot, and a state psh of the robot represents,
respectively, its position, its sensor reading, and whether it
has halted or not.



2.2 Template Agent and Parameterised Inter-
leaved Systems

Several protocols are designed for an unbounded number
of identical participants. Cache coherence, mutual exclu-
sion, and voting protocols are typical examples in which the
number of participants (caches, processes, and voters respec-
tively) is independent of the design process. Multi-party
negotiation protocols, auctions and open MAS in general
also have this property. In the following we develop a formal
model of a parameterised multi-agent system, composed of
an arbitrary number of identical agents, that can be used in
these circumstances. Given that the number of agents is a
priori unknown, a parameterised system describes an infinite
family of systems where an instance in the family, or concrete
instantiation, is obtained by specifying the number of agents
in the system. Formally, we introduce below parameterised
interleaved interpreted systems (PIIS), an extension of in-
terleaved interpreted systems, to model the aforementioned
classes of systems.

We write T (n) to denote a PIIS, where n ≥ 1 is the param-
eter specifying the number of agents, each constructed from
a template agent T . The template agent is an interleaved
agent encoded with a set of synchronous actions and a set of
asynchronous actions. As it will be clear below, if the action
performed in a global transition is a synchronous action, then
all agents participate in the global action by performing the
same synchronous action. However, if the action performed
in a global transition is an asynchronous action, then exactly
one agent participates in the global action. Therefore, all
agents synchronise at any time step in which a synchronous
action is performed.

Definition 2.4. (Template Agent) Given a set of proposi-
tions AP, a template agent is a tuple T = 〈L, ι, Act, P, t, h〉,
where L is a finite nonempty set of template states from
which ι ∈ L is the unique initial template state, Act =
ActS ∪ActA∪ε is a finite set of template actions, where ActS

is a set of synchronous actions, ActA is a set of asynchronous
actions with ActS ∩ActA ∩ {ε} = ∅, P : L→ ℘(Act) is the
protocol such that for all l ∈ L, ε ∈ P (l), t : L × Act → L
is the deterministic template evolution function such that
for all l ∈ L, t(l, ε) = l, and h : L → ℘(AP) is a labelling
function for the template states.

Given a template agent T , T (n) denotes the parallel com-
position of n concrete agents1 in A = {1, · · · , n}. Each agent
i ∈ A is obtained by subscripting the states and actions
of T as follows: Li = L × {i}, Acti = ActS ∪ ActAi ∪ εi,
where ActAi = ActA × {i}; synchronous template actions are
not subscripted. For a concrete action a ∈ Acti, we write
tl(a) to refer to the corresponding template action; analo-
gously, for a concrete state li ∈ Li, we write tl(li) to refer
to the corresponding template state l. The local protocol
Pi : Li → ℘(Acti) of the i-th agent is defined by a ∈ Pi(li)
iff tl(a) ∈ P (l). The evolution function ti : Li ×Acti → Li
of the i-th agent is defined by ti(li, a) = l′i iff t(l, tl(a)) = l′.
We associate with each i ∈ A a local labelling function
Vi : Li → ℘(AP × {i}) defined by pi ∈ Vi(li) iff p ∈ h(l).

The global transitions we consider in PIIS are as in Defini-
tion 2.1. A global transition from a global state g complies
with the definition if either a synchronous action is enabled

1When it is clear from the context, we write “agent” instead
of “concrete agent”.

for all agents in g or an asynchronous action ai ∈ Acti
is enabled for an agent i ∈ A in g. Indeed, if a ∈ ActS ,
then Agent(a) = A; if ai ∈ ActAi , for some i ∈ A, then
Agent(a) = {i}. Therefore, synchronous actions play the
role of shared actions in IIS, but here synchronous actions
are shared by all agents. We now define parameterised inter-
leaved interpreted systems.

Definition 2.5. (Parameterised Interleaved Interpreted
Systems) Given a natural number n ≥ 1 and a template
agent T = 〈L, ι,Act, P, t, h〉, a parameterised interleaved
interpreted system (PIIS), composed of n concrete agents, is
a tuple T (n) = 〈Gn, ιn,Πn, V n〉, where Gn = L× [n] is a set
of global states, ιn = (ι1, . . . , ιn) is an initial (global) state,

Πn =
⋃
g∈Gn

Π(g) is the set of all interleaved paths originating

from all states in Gn, and V n : Gn → ℘(AP × A) is a
labelling function defined by pi ∈ V n(g) iff pi ∈ Vi(g(i)).

Given a template agent, the above definition denotes an
infinite family of concrete systems. A member of the family,
which we call an instance of the parameterised system, is
obtained by fixing the value of the parameter n.

2.3 The Specification Language IACTL∗K−X

Temporal-epistemic logic has been widely adopted to ex-
press the properties of agents in a MAS. However, we cannot
use propositional temporal-epistemic logics to reason about
an unbounded number of agents. To see this, consider the
parameterised variant of the autonomous robot and suppose
that we want to express the property: “for every i ∈ A,
whenever i halts, then it knows that every other robot’s
position is within the goal region”. This property encodes all
distinct pairs of robots. Therefore, to express the property
for an AR composed of n robots we need to construct a
formula composed of 2!

(
n
2

)
conjuncts. Instead we would like

to express properties that are independent of the number
of agents in the system, as if we were able to quantify over
the agents. To overcome these shortcomings we introduce
the indexed temporal-epistemic logic IACTL∗K−X . Indexed
logics are commonly used in parameterised systems [8].

IACTL∗K−X combines indexed epistemic modalities with
the universal fragment of CTL∗−X [4] (the logic CTL∗, with-
out the next-time operator, extended with indexed atomic
propositions). We consider a stuttering-insensitive logic, i.e.,
a logic insensitive to repeated occurrences of the same state,
or equivalently a logic without the next-time operator [5]).
This is because the next-time operator can be used to count
the number of agents in the system [4, 9] resulting in the
parameterised verification problem being undecidable [9].

Intuitively, any IACTL∗K−X formula ϕ represents an
ACTL∗K−X formula for each concrete system T (n), n ≥ c,
where c is the number of unique indices contained in ϕ; the
formula corresponding to T (n) is the conjunction of all for-
mulae that can be constructed from ϕ by instantiating the
indices with every c-tuple of distinct agents in T (n).

2.3.1 Syntax and semantics of IACTL∗K−X
We assume a set VS of variable symbols which we use to

index the atomic propositions and the epistemic modalities.
There are two types of formulas in IACTL∗K−X : (i) state
formulas which are true at a state and (ii) path formulas
which are true on a path.



Definition 2.6. (Syntax of IACTL∗K−X) The state and
path formulae of IACTL∗K−X over a set AP of propositions
and a set VS of variable symbols are inductively defined as
follows:

• S1. if p ∈ AP and v ∈ VS, then pv and ¬pv are state
formulas;

• S2. if ϕ and ψ are state formulas, then ϕ ∧ ψ, ϕ ∨ ψ
and Kvϕ (v ∈ VS) are state formulas;

• S3. if ϕ is a state formula with exactly J ⊆ VS variable
symbols, then

∧
J ϕ is a state formula;

• S4. if ϕ is a path formula, then A(ϕ) is a state formula;

• P1. any state formula ϕ is also a path formula;

• P2. if ϕ and ψ are path formulas, then ϕ∧ψ and ϕ∨ψ
are path formulas;

• P3. if ϕ and ψ are path formulas, then U(ϕ,ψ) and
R(ϕ,ψ) are path formulas.

The
∧
J connective serves as a universal agent quantifier

ranging over all |J |-tuples of pairwise distinct agents. Given
a formula ϕ, a variable v ∈ VS , occurring in ϕ, is said to
be bound if it is in the scope of a

∧
J connective; otherwise,

v is said to be free. A formula in which there are no free
occurrences of variables is said to be a sentence. We here
consider only sentences. For an IACTL∗K−X formula ϕ, we
write ϕ(J) to indicate that: (i) all variables in J ⊆ VS and
only them occur free in ϕ, and (ii) ϕ does not contain any∧
J connectives. The path quantifier A stands for “for all

paths”. The temporal operators U and R represent “until”
and “release” respectively; the formula U(ϕ,ψ) is read as
“ϕ holds continuously until ψ holds”, whereas the formula
R(ϕ,ψ) is read as “ϕ releases ψ”. The operator K denotes
the epistemic modality; Kvϕ is read as “each concrete agent
i ∈ A knows ϕ”. Since we consider sentences only, v is always
bound by a

∧
J connective; therefore v ranges over all agents.

Consider the AR again; we can now easily express the
properties previously stated by considering the IACTL∗K−X
formula ϕAR1 =

∧
{i,j}AG (hi → Kigj), where the atomic

propositions hi, gi hold respectively in the states where robot
i has halted and is within the goal region.

The specifications we consider in this paper are of the form∧
J ϕ(J). Since these formulas range over all |J |-tuples of

distinct agents, a standard model checking procedure would
have to consider every instantiation of ϕ(J). However, a
result we obtain is that model checking a formula

∧
J ϕ(J) ∈

IACTL∗K−X can be reduced to model checking a single in-
stantiation of ϕ(J), thereby simplifying the complexity of
the model checking procedure. Note that an instantiation of
ϕ(J) is an ACTL∗K−X formula, built as follows:

Definition 2.7. ACTL∗K−X formulae over a set AP of
atomic propositions and a set A of agents are defined as in
Definition 2.6 but omitting (S3) and replacing (S1) and (S2)
with: S1’. if p ∈ AP and i ∈ A, then pi and ¬pi are state
formulas; S2’. if ϕ and ψ are state formulas, then ϕ ∧ ψ,
ϕ ∨ ψ and Kiϕ (i ∈ A) are state formulas;

For an ACTL∗K−X formula ϕ, we write ϕ(J) (J ⊆ A) to
indicate that for each subformula Kiψ and each proposition
pj of ϕ we have that i, j ∈ J . We write ACTL∗KJ

−X for

the restriction of ACTL∗K−X to all formulae of the form
ϕ(J). We interpret IACTL∗K−X formulae over PIIS. The
temporal modalities are interpreted over the global transition
relation and the epistemic modalities are interpreted over
the equality of the local components of the global states.

Definition 2.8. (Satisfaction) Let T (n) = 〈G, ι,Π, V 〉
be a parameterised interleaved interpreted system, let π =
g1, a1, g2, . . . be a path of T (n), let g ∈ G be a state of T (n),
and let ϕ be an IACTL∗K−X formula. Satisfaction of ϕ at g,
denoted (T (n), g) |= ϕ, or simply g |= ϕ, and satisfaction of
ϕ on π, denoted (T (n), π) |= ϕ, or just π |= ϕ, is inductively
defined as follows:

S1. g |= pi iff pi ∈ Vi(gi);
g |= ¬pi iff not g |= pi, for pi ∈ AP ×A;

S2. g |= ϕ ∧ ψ iff g |= ϕ and g |= ψ;
g |= ϕ ∨ ψ iff g |= ϕ or g |= ψ;
g |= Kiϕ iff g′ |= ϕ for every g′ ∈ G such

that gi = g′i;
S3. g |=

∧
J ϕ(J) iff g |= ϕ(C) for every C ∈

{I | I ⊆ A and |I| = |J |};
S4. g |= Aϕ iff π |= ϕ for every path π such

that π(1) = g;
P1. π |= ϕ iff π(1) |= ϕ for any state formula

ϕ;
P2 π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ;

π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ;
P3 π |= U(ϕ,ψ) iff there is an i ≥ 1 such that

π[i] |= ψ and π[j] |= ϕ for all
1 ≤ j < i;

π |= R(ϕ,ψ) iff for every i, if π[j] 2 ϕ, for all
1 ≤ j < i, then π[i] |= ψ.

We use the following abbreviations: >
def
≡ pv ∨ ¬pv, ⊥

def
≡

pv ∧ ¬pv, for some p ∈ AP and v ∈ VS , Fϕ
def
≡ U(>, ϕ)

(“Eventually ϕ”), Gϕ
def
≡ R(⊥, ϕ) (“Always ϕ”). A formula ϕ

is said to be true in T (n), denoted T (n) |= ϕ, iff (T (n), ι) |=
ϕ.

2.3.2 Symmetry reduction for ACTL∗K−X
Symmetry reduction techniques have been used to reduce

the complexity of model checking temporal-epistemic prop-
erties of multi-agent systems [6]. Since a PIIS is composed
of identical agents, intuitively, there is an inherent symme-
try in the system that we can exploit. Indeed, we adapt
a result from reactive systems [11] and we show that an
IACTL∗K−X formula

∧
J ϕ(J) is equivalent to a single in-

stantiation ϕ({1, . . . , |J |}) of ϕ(J).

Lemma 2.9. T (n) |=
∧
J ϕ(J) iff T (n) |= ϕ({1, . . . , |J |}).

Proof. (Sketch) (⇒) Obvious. (⇐) Suppose that T (n) |=
ϕ({1, · · · , k}) and let J ′ = {j1, · · · , jk} be an arbitrary set
of k agents. Let ζ : A → A be a bijective mapping such
that ∀i ∈ {1, · · · , k} : π(i) = ji. Given an object o (either a
state or a formula), let ζ(o) denote the object o′ obtained by

replacing each occurrence of any i ∈ A with ζ(i). As g
a→ g′

is iff ζ(g)
ζ(a)→ ζ(g′), and gi = g′i is iff (ζ(g))ζ(i) = (ζ(g′))ζ(i),

we get that (T (n), ζ(ι)) |= ζ(ϕ({1, · · · , k}), and therefore
(T (n), ζ(ι)) |= ϕ(J ′). As ζ(ι) = ι, we get that (T (n), ι) |=
ϕ(J), therefore T (n) |=

∧
J ϕ(J).



Given the semantics of IACTL∗K−X , model checking a for-
mula

∧
J ϕ(J) on a system T (n) is equivalent to model check-

ing an ACTL∗K−X formula of c!
(
c
|J|

)
conjuncts of the form

ϕ(C), where C ∈ {I | I ⊆ {1, · · · , c} and |I| = |J |}. By the
above lemma we can model check a single conjunct. For exam-
ple, model checking the formula

∧
{i,j}AG (hi → Kigj) can

be reduced to model checking the simpler formula AG(h1 →
K1g2).

2.3.3 Invariance of ACTL∗K−X
As noted above, cutoff techniques concern the identifica-

tion of a system instance, called the cutoff instance, which
can be used to check whether a given property holds for
all system instances. A notion of equivalence between the
system instances is often used to show this result. Stuttering-
insensitive logics are accompanied with the standard notion
of stuttering simulation [18]. A system stuttering simulates
another system if for every behaviour of the latter, there is
a stuttering equivalent behaviour of the former. Informally,
two behaviours are stuttering equivalent if the behaviours
coincide when each sequence of stutter steps (i.e., steps that
do not affect the labelling of the states) are collapsed onto
a single step. Since we consider only universal path quan-
tification, it follows that any ACTL∗−X formula satisfied
by the simulating model is also satisfied by the simulated
model. Below we extend the notion of stuttering equivalence
to ACTL∗K−X . Since our specifications are of the form ϕ(J),
referring only to agents in J ⊆ A, we project the valuation
function onto J . This projection, denoted V |J , is defined by
V |J(g) = V (g) ∩ {pi | i ∈ J}, for every state g ∈ G.

Definition 2.10. (J-Stuttering simulation) A relation
∼Jss⊆ G×G′ is a J-stuttering simulation between two models
M = 〈G, ι,Π, V 〉 and M′ = 〈G′, ι′,Π′, V ′〉 if the following
conditions hold:

1. ι ∼Jss ι′;

2. if g1 ∼Jss g′1 then

(a) if g1i = g2i , for i ∈ J, then g′1i = g′2i for some g′2

such that g2 ∼Jss g′2;

(b) V |J(g1) = V |J(g′1) and for every path π of M
that starts at g1, there is a path π′ of M′ that
starts at g′1, a partition B1, B2 . . . of π, and a
partition B′1, B

′
2, . . . of π′ such that for each j ≥ 1,

Bj and B′j are nonempty and finite, and every
state in Bj is related by ∼Jss to every state in B′j .

A model M′ J-stuttering simulates a model M, denoted
M ≤Jss M′, if there is a J-stuttering simulation between
M and M′. Two models M and M′ are called J-stuttering
simulation equivalent if M≤JssM′ and M′ ≤JssM. Any
ACTL∗KJ

−X formula is preserved under J-stuttering simula-
tion equivalence.

Theorem 2.11. Let M and M′ be two J-stuttering simu-
lation equivalent models. Then, (M, ι) |= ϕ iff (M′, ι′) |= ϕ,
for any ACTL∗KJ

−X formula ϕ.

Proof. Stuttering simulation equivalence is known to
preserve ACTL∗−X formulae [18]. Since atomic propositions

in ACTL∗J−X formulae refer only to agents J ⊆ A, J-stuttering

simulation equivalence preserves ACTL∗J−X formulae. Using

induction on the structure of ϕ it is easy to show that J-
stuttering simulation equivalence also preserves ACTL∗KJ

−X
formulae.

It follows that if we are able to show that the cutoff in-
stance T (c) is J-stuttering equivalent to an arbitrary system
instance T (n), then we can use T (c) to check whether a for-
mula

∧
J ϕ(J) ∈ IACTL∗K−X holds for an arbitrary number

of agents.

3. MODEL CHECKING PIIS
We now present a technique for model checking param-

eterised interleaved interpreted systems. In particular, we
propose an efficient and automated methodology for answer-
ing the following verification query:

∀n ≥ |J | : T (n) |= ψ, where ψ =
∧
J

ϕ(J) ∈ IACTL∗K−X

In other words we would like to check whether the property
ϕ(C) holds for any number n ≥ |J | of agents in the system,
and for any |J |-tuple C of distinct agents. Note that the
number of systems we would like to verify is unbounded.
Therefore, traditional techniques to handle the state explo-
sion problem cannot be used here. The key observation
is that in certain circumstances it is sufficient to analyse
only a finite number of systems to deduce properties about
any larger system. Inspired by the work on cutoffs in the
context of reactive systems [8, 10, 14], we say that a MAS
cutoff c is a value of the system parameter for which the
system instance T (c) exhibits all the behaviour admitted by
any system instance T (n), n ≥ c, with respect to a certain
specification being considered.

Definition 3.1. (MAS Cutoff) Let T (n) be a parame-
terised interleaved interpreted system and let ψ ∈ IACTL∗K−X
be of the form

∧
J ϕ(J). A natural number c ≥ |J | is said to

be a MAS cutoff for ψ if T (c) |= ψ ⇔ ∀n ≥ c : T (n) |= ψ.

It follows that if a cutoff can be identified, then model
checking an infinite family of systems can be reduced to
model checking all system instances up to the cutoff. Cut-
off identification methodologies are typically accompanied
by the following shortcomings: (i) either the cut-off is not
guaranteed to be the smallest [8, 10], or (ii) the cut-off is
not guaranteed to exist leading to incomplete methodolo-
gies [14]. By contrast, we here present a sound and complete
methodology for identifying the smallest cutoff in model
checking PIIS. As we will see later, to achieve this we pay
a price in terms of the range of systems we can apply our
results to. The following lemma shows that the smallest

cutoff for an ACTL∗K
{1,··· ,k}
−X formula ϕ is precisely k, the

total number of agents appearing in the epistemic modalities
and the propositions.

Lemma 3.2. If ϕ({1, · · · , k}) is an ACTL∗K
{1,··· ,k}
−X for-

mula, then T (n) |= ϕ({1, · · · , k}) iff T (k) |= ϕ({1, · · · , k}),
for all n ≥ k.

Proof. Choose an arbitrary n ≥ k. Let [n] = {1, · · · , n}
and [k+ 1, n] = [n] \ [k]. We show that T (n) ≤[k]ss T (k) and
T (k) ≤[k]ss T (n). The lemma then follows.

(⇒ (T (n) ≤[k]ss T (k))) Define a relation ∼[k]ss= {(g, g′) ∈
Gn ×Gk | g[k] = g′}. We show that ∼[k]ss is a [k]-stuttering
simulation between T (n) and T (k). Let g ∼[k]ss g

′. Suppose



that gi = g1i for some i ∈ [k] and let g′1 = g1[k]. We have that

g′i = g′1i and g1 ∼[k]ss g
′1. Now let π = g1a1g2a2g3 · · · be a

path of T (n) originating from g1 = g. We construct a path
ρ of T (k) originating from g′ as required by [k]-stuttering
simulation. Let ρ = g1[k]a

′1g2[k]a
′2g3[k] · · ·, where a′j = aj if

aj ∈
⋃
i∈[k]Acti and a′j = ε otherwise, be the sequence

obtained by the projection of π onto [k]. By assumption on
the joint silent action, ρ is a valid path of T (k). We define
a partition B1, B2, · · · of π and a partition B′1, B

′
2, · · · of ρ

such that |Bj | = |B′j | = 1 for each j ≥ 1. It follows that
Bj ∼[k]ss B

′
j for each j ≥ 1. Therefore, T (n) ≤[k]ss T (k).

(⇐ (T (k) ≤[k]ss T (n))) The idea is to allow every agent
i ∈ [k + 1, n] in T (n) to mimic agent 1 (in T (n)). For this
purpose, define a relation ∼[k]ss by{

(g, g′) ∈ Gk ×Gn | g = g′[k] ∧ ∃a∗ ∈ ActA : ∀i ∈ [k + 1, n] :(
a∗i ∈ Pi(g′i) ∧ tl(ti(g′i, a∗i )) = tl(g′1)

)
∨ tl(g′i) = tl(g′1)

}
If g ∼[k]ss g

′, then each agent i ∈ [k + 1, n] in g′ is ei-
ther at the same local state with agent 1 in g′ or agent i
is able to change its state to the state of agent 1 by per-
forming the asynchronous action a∗i . We show that ∼[k]ss

is a [k]-stuttering simulation between T (k) and T (n). Let
g ∼[k]ss g

′. Simulation requirement 2(a) follows by a similar
argument used in the left to right direction of the lemma.
For simulation requirement 2(b), note that since the global
evolution function is deterministic, a path g1a1g2a2 · · · is
uniquely defined by the sequence g1a1a2 · · ·. We inductively
define a function f which maps a path ρ = g1a1g2a2g3 · · ·,
g1 = g, in T (k) into a path in T (n).

• f(g1a1g2a2g3 · · · ) = g′a∗j1 · · · a
∗
jd
f(a1g2a2g3), where

{j1 · · · jd} = {i ∈ [k + 1, n] | tl(g′i) 6= tl(g′1)};

• f(a1g2a2g3 · · · ) = a1f(a2g3 · · · ), if a1 /∈ ActA1 ;

• f(a1g2a2g3 · · · ) = a1tl(a1)k+1 · · · tl(a1)nf(a2g3 · · · ), if
a1 ∈ ActA1 ;

We partition π into singleton blocks B1, B2, · · · and we
partition f(π) = g1a1 · · · into the sequence B′1, B

′
2, · · ·, where

B′i = gj , if aj−1 ∈
⋃
z∈[2,k]Actz, and B′i = gj · · · gj+d, if

aj−1, · · · , aj+d−1 ∈
⋃
z∈{1}∪[k+1,n]Actz and aj+d ∈

⋃
z∈[k]

Actz. It follows that Bj ∼[k]ss B
′
j , therefore, T (k) ≤[k]ss

T (n).

A consequence of the above lemma is the following:

Theorem 3.3. Let ψ be an IACTL∗K−X formula of the
form

∧
J ϕ(J). Then, ∀n ≥ |J | : T (n) |= ψ iff T (|J |) |= ψ.

Proof. By exploiting symmetry (Lemma 2.9), it suffices
to prove the result for ϕ([|J |]) (Lemma 3.2).

The above theorem is our main theoretical result. It follows
that to verify a formula

∧
J ϕ(J) on all system instances,

it suffices to verify the formula ϕ([J ]) for the system in-
stance T (|J |). Since in the MAS literature most properties
are expressed by using one or two epistemic and proposi-
tional indices, this dramatically improves our verification
abilities. Furthermore we can combine this technique with
others available in the literature. Specifically, upon obtain-
ing the instance T (|J |) we can further apply partial order
reductions [16], abstraction [7], data symmetry reduction [6],
etc., to further reduce the state space of the model.

Corollary 3.4. Model checking parameterised interleaved
interpreted systems against IACTL∗K formulae of the form∧
J ϕ(J) is decidable.

Proof. By Theorem 3.3, it suffices to model check the
system instance of |J | agents against ϕ([|J |]).

The above is in line with literature in reactive systems [3, 8,
10, 9] where, although verification of parameterised systems
is known to be undecidable in general [2], decidable fragments
have been obtained by imposing restrictions on the systems
and the properties studied.

4. EXAMPLE: AUTONOMOUS ROBOTS
For illustration purposes we exemplify the theory presented

above on a parameterised variant of the autonomous robot
example. We assume an arbitrary number of robots each
running along its own track and each equipped with its own
faulty sensor. The environment may move all non-halted
robots one position forward at each time step. We represent
this scenario by means of PIIS. We arbitrarily choose eight
distinct locations; note that the number of locations does not
affect the scenario as long as it is greater than four. Since we
use interleaving semantics, we assume that the environment
moves each robot in sequence; however, we insist on the
environment to move all robots before moving a robot twice.

We proceed to define the template agent T . A template
state is a 4-tuple l = (p, s, h,m), where p and s represent
the position of the robot and the value of its sensor respec-
tively, h represents whether or not the robot has halted,
and m is a binary variable representing whether or not
the environment has moved the robot in an interleaving
sequence (a sequence in which the environment moves all
non-halted robots from position q to q + 1). Therefore,
L = {(p, s, h,m) | 0 ≤ p, s ≤ 7 and h,m ∈ {>,⊥}} is the set
of template states from which we define ι = (0, 0,⊥,⊥) as
the initial template state.

A robot can either do nothing or halt; the set ActA of
asynchronous template actions is ActA = {null=, null+,
null−, halt}; the null actions represent the environment
moving the robot a position forward and either providing
a correct sensor reading (null=) or not (null+, null−). A
robot can move to position q+ 1 only if all non-halted robots
have moved to position q; the unique synchronous template
action n s (next step) synchronises all robots before the
environment can move a robot. As it will be clear below,
when a null action is performed at position q, then m is set to
> and the protocol selects the action n s thereby disallowing
a robot to move at position q+1 before all robots have moved
to position q.

The template protocol P selects one of the null actions at
position q when m = ⊥ and the sensor reading is less than
3. The synchronous action n s is the only allowed action
when m = >. Whenever the sensor reading is greater than
2, the halting condition is satisfied; therefore, the protocol
selects the halt action: P ((p < 7, s < 3, h = ⊥,m = ⊥)) =
{null=, null+, null−}; P ((p = ∗, s = ∗, h = ∗,m = >)) =
{n s}; P ((p = ∗, s ≥ 3, h = ⊥,m = ⊥)) = {halt}, where
∗ expresses any value. The template evolution function

contains the following transitions: (p, s,⊥,⊥)
null=→ (p+1, p+

1,⊥,>); (p, s,⊥,⊥)
null+→ (p+1, p+2,⊥,>); (p, s,⊥,⊥)

null−→
(p+ 1, p,⊥,>); (p, s,⊥,>)

n s→ (p, s,⊥,⊥) and (p, s,⊥,⊥)
halt→

(p, s,>,>).



We introduce the following atomic propositions: AP =
{h(halted), g(goal region), r(restricted region)}. The inter-
pretation of these propositions is given by the following
valuation function: V (h) = {l ∈ L | l3 = >}, V (g) = {l ∈
L | 2 ≤ l1 ≤ 4}, and V (r) = {l ∈ L | 0 ≤ l1 ≤ 1}.

We verify that the halting condition is sound and com-
plete in the parameterised variant by verifying the formulae
ϕAR2 =

∧
{i}AG(gi → AG(gi)) and ϕAR3 =

∧
{i}AG(ri →

¬hi). The specification ϕAR2 expresses that “for every robot
i, if i is within the goal region, then i never exits the goal
region”. The formula ϕAR3 states that “for every robot i,
if i is within the restricted region, then i has not halted”.
Note that the combined state space for the systems to be
checked is unbounded. Observe also that model checking
the above specifications is equivalent to model checking the
formulae AG(g1 → AG(g1)) ∧ · · · ∧ AG(gn → AG(gn)) and
AG(r1 → ¬h1) ∧ · · · ∧ AG(rn → ¬hn), on each system in-
stance T (n), n ≥ 1. This is clearly not possible to check
via standard model checking techniques. However, by using
Lemmas 2.9 and 3.2 we can deduce that the MAS cutoff is
equal to 1 and reduce the problem to checking the formu-
las AG(g1 → AG(g1)) and AG(r1 → ¬h1) on the system
instance T (1). This is a simple problem: we can easily check
the specifications are verified, thereby deducing that the
parameterised queries are also satisfied.

To proceed in our analysis further, we can also verify ϕAR1.
Also we could check that a robot knows that every other robot
halted at the same time: ϕAR4 =

∧
{i,j}AG(hi → Kihj).

Similarly to what above, the formulae ϕAR1 and ϕAR4 can
be reduced through Lemma 2.9 to ϕ′AR1 = AG(h1 → K1g2)
and ϕ′AR4 = AG(h1 → K1h2), which can be verified on the
system instance T (2) obtained by using a cutoff equal to 2
through Lemma 3.2. Also in this case we can check the
result on the much smaller model and verify that the formula
ϕ′AR1 holds while ϕ′AR4 does not (since the sensor readings
may differ). So we infer that ϕAR1 holds on the unbounded
system while ϕAR4 does not.

5. EVALUATION

Implementation.
We have implemented the presented methodology as an

extension to the open-source model checker mcmas [17]. The
extended model checker, also open-sourced and named mcmas-

p, is available from [1]. ISPL, the input language of mcmas,
was suitably extended to allow for the definition of PIIS
and to support the specification of indexed formulae. The
description of a PIIS in this language (called PISPL) in-
cludes the declaration of a template agent. This declaration
differs from agent declarations in ISPL by having sections
of asynchronous and synchronous actions, and an initial
state section. The specifications supported by mcmas-p are
expressed in indexed ACTLK−X .

Given a PIIS and a formula to be verified, mcmas-p de-
termines the cutoff c for the system as in Theorem 3.3 by
counting the number of unique indices used in the specifi-
cation to be tested. A concrete system of c agents, each an
indexed copy of the template agent, is then automatically
constructed and represented symbolically. The specifications
are automatically reduced to formulae in ACTLK−X , as de-
scribed in Lemma 2.9. The OBDD-based algorithms utilised
by mcmas are then used to verify the system against the

reduced ACTLK−X formulae. The BDD encoding of the
joint protocol is different from that of mcmas to enforce the
interleaving semantics used here.

Experimental Results.
In order to evaluate the methodology presented, we consid-

ered the parameterised autonomous robot scenario against
the specification ϕAR1. We used a PC with an Intel Core i7
processor clocked at 2.20 GHz, with 6144 KiB cache, and run-
ning 64-bit Fedora 17, kernel 3.3.4. The results are reported
in Table 1. The Robots and States columns respectively show
the system instance (number of robots) and its state space;
the Instantiations column shows the number of the possi-
ble instantiations of ϕAR3, each to be verified by the model
checker; the Time and Memory columns show the CPU time
and memory usage respectively. These results show that, as
expected, the state space and the length of the formulae to
be verified grow exponentially with the number of agents in
the system. As a consequence of this, verification quickly
becomes unfeasible under the time and memory constraints.
This is exemplified for the system of 90 robots, where mcmas

did not finish the model construction within the timeout of
one hour. In addition to this, of course, plain model checking
cannot ever ensure the property holds on a system of arbi-
trary many agents. In comparison mcmas-p constructed and
verified a system of 2 robots in under 0.1 seconds thereby
showing the property holds for an unbounded number of
agents.

6. CONCLUSIONS AND RELATED WORK
In this paper we have developed a technique to verify that

a temporal-epistemic property holds in a MAS irrespective
of the number of agents present in the system. The prob-
lem is undecidable in general but we have defined a suitable
semantics for which we gave a sound and complete proce-
dure for determining a cutoff for a system. To do so we
have defined a suitable parameterised logic and developed
stuttering-equivalence simulation results for it on PIIS. We
find the result encouraging as it opens the way for the ver-
ification of a large number of protocols previously verified
only for individual instances containing a limited number
of agents. Open systems with an unbounded number of
homogeneous participants, e.g., including negotiations and
auctions, seem particularly suitable for this analysis.

Related Work.
Existing literature on parameterised verification [3, 19, 20,

10, 8, 14] is limited to reactive systems and plain temporal
logics. Moreover, mainstream methodologies [10, 8, 14] do
not guarantee soundness, completeness and the identification
of the smallest cutoff at the same time. In [14] a cutoff is
identified by enumerating the system instances and finding
the smallest instance able to simulate a “special” structure
which includes the behaviour of every instance. Although
the technique is widely applicable and independent of the
communication topology, a cutoff is not guaranteed to exist.
Results closer to those in this paper are the sound and
complete techniques put forward in [10, 8]. Similarly to
this contribution, [10, 8] present stuttering-simulation results
between the cutoff model and every system instance thereby
ensuring soundness and completeness; however, the results



Model Instantiations Time (s) Memory (KiB)

Robots States

2 201 2 0 9010
30 1.260 92× 1027 870 18 44744
60 3.594 02× 1057 3540 868 63894032
90 timeout 8010 timeout timeout

Table 1: mcmas verification results for ϕAR1.

in [10] are applicable to ring topologies only and the technique
in [8] does not identify the smallest cutoff.

In addition to cutoffs, abstraction techniques have of course
been used in parameterised verification. In [19] concrete
states are counter abstracted; an abstract state is a tuple of
counters, one for each local state, denoting the number of
system participants in the state. This process can be auto-
mated, but it is only applicable to a narrow class of systems
and it is restricted to liveness properties. Environmental
abstraction [3] extends counter abstraction by counting the
number of participants that satisfy a given predicate and,
although achieving wider applicability, the methodology has
not, to our knowledge, been automated yet. In [20] a network
invariant is identified which exhibits the behaviour of all
system instances; if the invariant satisfies a property, then
the property is satisfied by all system instances. A network
invariant, however, is not guaranteed to exist, and, even when
it does, its identification is not automated. In addition, none
of these works tackle epistemic logic, nor MAS semantics, as
we do here.

Future Work.
A current limitation of the PIIS formalism is that agents

cannot evolve differently depending on the environment’s
action. This limits the application of the technique to par-
ticular systems such different network topologies. In future
work we plan to alleviate this limitation as well as apply
the methodology here presented to protocols of practical
interests.
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