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ABSTRACT
We investigate the formal verification of consensus proto-
cols in swarm systems composed of arbitrary many agents.
We use templates to define the behaviour of the agents in
an opinion dynamics setting and formulate their verifica-
tion in terms of the associated parameterised model check-
ing problem. We define a finite abstract model that we show
to simulate swarms of any size, thereby precisely encoding
any concrete instantiation of the swarm. We give an auto-
matic procedure for verifying temporal-epistemic properties
of consensus protocols by model checking the associated fi-
nite abstract model. We present a toolkit that can be used to
generate the abstract model automatically and verify a given
protocol by symbolic model checking. We use the toolkit to
verify the correctness of majority rule protocols in arbitrary
large swarms.

1. INTRODUCTION
Robotic swarm systems have been put forward as a robust

alternative to single-robots in a variety of domains, e.g.,
remote exploration, maintenance of industrial plants, etc.
Typically a swarm is a collection of agents running the same
simple program. The physical agents in a swarm are often
relatively low-powered devices with limited sensing and com-
munication capabilities. Even if their capabilities are limited
by physical and computational constraints, their collective
ability can be significant. For example, simple protocols can
ensure robotic swarms perform flocking behaviour, or other
collective properties [3, 28, 29].

Consensus, or opinion formation, protocols [7, 13, 18, 19,
22, 30, 31, 32] are of particular significance in the context of
robot swarms since they can be used as the basis for coor-
dination. The aim of a consensus protocol is for the agents
in the system to agree on a particular outcome, e.g., which
area to move to collectively as a swarm. Before being applied
and developed for swarms, they were initially introduced in
distributed computing [9, 12] and also used for reasoning
about social, economic, and natural sciences problems and
scenarios.

In an opinion formation protocol agents maintain a state
encoding their present opinion on the issue they need to
converge upon. The opinion is associated with an action
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that an agent may perform. For example, if the agents need
to agree on a destination, this may simply be the direction
of travel. An agent’s opinion is updated at each time step
following observations and communication with the agent’s
peers.

A key issue with opinion formation protocols is to investi-
gate their convergence. In this paper we put forward a for-
mal methodology that can be applied to analyse consensus
protocols that follow the majority rule. In these protocols
the agents in the system update their opinions simply by
considering the opinions of their neighbours and adopting
the one that is favoured by the simple majority of these.
While this mechanism appears simple, a large number of
applications including collective transport [7], task sequenc-
ing [23], and the best-of-n decision problem [32] rely on the
majority rule or simple variations of it. For example, vari-
ations of the rule have been put forward to account for la-
tency or nesting. In latency models agents do not change
their opinion for a time that is proportional to the quality
of their current opinions [7]. In nesting models the process
of opinion formation only takes place in a nest, where the
agents with opinions of better quality spend proportionally
more time [32].

The analysis of these systems is normally conducted by
means of two techniques. Optimisation techniques can pro-
vide assurances of the behaviour of the swarm; these use
differential equations on continuous domains and assume an
infinite number of agents in the system [30, 31]. In contrast,
simulation techniques compute the actual evolution but only
for a swarm of a given size [7, 32]. However, an ideal analy-
sis of a swarm should give guarantees of a behaviour of the
system irrespective of the number of agents in the system
when it is deployed. A key essence of protocol verification is,
indeed, that conclusions ought to be drawn independently
from or with minimal assumptions on the number of agents
in the system.

Parameterised model checking has previously been applied
for the analysis of generic swarm systems of an arbitrary
number of components [16]. In this paper we extend the
methodology put forward in [16] to model consensus proto-
cols following the majority rule. The results that we report
indicate that under limited assumptions the methodology
here presented can be used to analyse any consensus pro-
tocol in this class. We are not aware of other automated
model checking techniques that can provide formal guaran-
tees on the outcome of consensus protocols irrespective of
the number of agents in the system.

The rest of the paper is organised as follows. In Sec-
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tion 2 we introduce a specialised template-based semantics
for consensus protocols in swarm systems, and we present
the syntax of the temporal-epistemic language that we will
use to analyse the protocols. In Section 3 we introduce a
class of abstract models that can be used to reason about
the infinitely many instantiations of a given consensus pro-
tocol. In Section 4 we present an implementation of the
theoretical results in the form of a novel toolkit that we use
to validate a majority rule protocol. We conclude in Section
5 by discussing related work.

2. OPINION FORMATION SEMANTICS
In this section we introduce an opinion formation seman-

tics for robotic swarms. In line with the standard treat-
ment of robot swarms, the semantics here introduced ac-
counts for an unbounded collection of behaviourally identical
agents [3, 28]. Each agent interacts with its peers through
local exchanges, realised by the repeated application of the
majority-rule, that enable the swarm to reach consensus on
a certain opinion.

In its simplest form, a majority-rule protocol is described
as follows [18]. At each time step a team of three randomly
picked agents is formed. Each agent can be in one of two
states; each state is associated with one of two opinions. The
members of a team adopt the opinion held by the majority
of the members in team. This process is repeated until con-
sensus is reached on one of the two opinions. Studies have
shown that a collective agreement is eventually established
on the opinion with the highest initial density [18].

Several extensions to the simple protocol above have been
proposed. For example, [7, 19] introduce the concept of la-
tency. Latency refers to a period of time in which the agents
do not engage in the opinion formation procedure. Specifi-
cally, following the adoption of an opinion, an agent enters
a latent state from which the agent does not interact with
other agents. The time in which the agent remains in the
latent state depends on the quality of the recently adopted
opinion. As a result, simulation studies indicate that the
swarm collectively adopts the opinion characterised by the
shortest latency period [7]. For instance, if opinions repre-
sent actions, the swarm converges on the action requiring
less time to perform. For example, a swarm may decide
to take the shortest path to a destination [7, 30], the best
site to explore [13, 32], and so forth. In these cases the
majority-rule protocol is often used as a decision making
mechanism to solve the best-of-n decision problem [22, 32],
i.e., the problem of establishing consensus on the opinion
with the highest quality among a set of n opinions.

In the rest of this section we introduce a formal seman-
tics for reasoning about the temporal-epistemic properties
of opinion formation protocols based on the majority-rule.

2.1 Semantics
We begin by specifying a generic agent template modelling

the agents in a swarm. The concrete system of n agents
is constructed from the template by providing the number
n ≥ 1 of actual agents in the swarm.

The models we define are loosely based on interpreted
systems [11] and parameterised interpreted systems [15, 16].
They are, however, specialised and extended to the mod-
elling of opinion formation protocols. The agent template is
defined as follows.

Definition 2.1 (Agent Template). An agent template
is a tuple A = (O, h, α, t), where:

• O is a nonempty and finite set of opinions;

• h : O → N is a mapping from the set of opinions
into the set natural numbers, where h(o) represents the
quality of opinion o. O and h define a set

L = {(o, v, l) : o ∈ O, 0 ≤ v ≤ max(h(o) : o ∈ O),

l ∈ {false, true}}

of local states, where each triple (o, v, l) encodes an
opinion o, a latent value v, and whether or not the
template is into latent state (l = true, and l = false,
respectively);

• α ∈ N is the size of the neighbourhood for the template
at any given time step;

• t : L×O → L is a transition function that returns the
next local state given the current local state and the
majority opinion held by neighbouring agents.

Note that a local state is built from an observable com-
ponent representing an opinion, and a non-observable com-
ponent associated with a latent value and the latent status.
The domain of the latent value depends on the opinions’
maximum quality. Intuitively, different behaviours are asso-
ciated with different opinions. For instance, as we exemplify
in Section 4, the latent value can be used to keep track
of the time an agent is engaged in the protocol before it
goes into latent state; this period of time is proportional
to its currently held opinion. For a local state l, we write
opinion(l), value(l), and latent(l) to denote the opinion, the
latent value, and the latent status, respectively, encoded in l.
We assume that whenever latent(l) = false and t(l, o) = l′,
then opinion(l′) = o; i.e, at each time step, an agent switches
to the majority opinion in its neighbourhood if not in latent
state.

Note the special case of the majority rule in which an
agent’s neighbourhood is equally split among opinions. This
is typically resolved by either considering neighbourhoods of
an odd number of agents, or by withholding the currently
held opinion, or by randomly adopting an opinion [18, 32].
This can be easily added to the framework without altering
any of the technical details presented in this paper.

An agent template describes an unbounded family of con-
crete opinion formation systems; each system is obtained by
instantiating the template with the actual number of agents
in the system. In other words, given n ≥ 1, the concrete sys-
tem SA(n) is the result of composing precisely n concrete
agents participating in the opinion formation system. Each
concrete agent is represented in the interpreted systems for-
malism [11], a standard semantics for multi-agent systems.
That is, a concrete agent i is associated with a set of local
states Li, a set of actions Acti, a protocol Pi that governs
which actions may be performed in a given local state, and
a transition function ti that determines the temporal evolu-
tion of the agent.

Definition 2.2 (Concrete Agent). Given an agent
template A = (O, h, α, t) and n ≥ 1, the concrete agent Ai,
with 1 ≤ i ≤ n, is a tuple Ai = (Li, Ii, Acti, Pi, ti), where:

• Li = L is the set of local states for agent i;

1201



• Ii = {(o, v, l) : o ∈ O, v = h(o), l = false} is the set of
initial states for agent i;

• Acti = {acto : o ∈ O} is the set of actions for agent i;

• the local protocol Pi : Li → P(Acti) for agent i is
defined for each l ∈ Li as follows:

– Pi(l) =
{
actopinion(l)

}
if latent(l) = true;

– Pi(l) = Acti if latent(l) = false;

• the local transition function ti : Li × Acti → Li for
agent i is such that ti(l, acto) = l′ iff t(l, o) = l′.

So, a concrete agent inherits from its template the set of
local states and its local transition function. The agent is
initially active and it holds an arbitrary opinion. For each
opinion o, the agent admits a corresponding action acto that
is enabled by the protocol whenever the agent holds the
opinion; intuitively, acto represents the majority opinion in
its neighbourhood upon which the agent acts. Whenever the
agent is in latent state, its protocol only enables the action
associated with its currently held opinion; i.e, an agent does
not engage in the opinion formation protocol when it is in
latent state in that it can only update its latent value and
status independently of the other agents’ opinions.

We now describe the overall system. A global state g =
(l1, . . . , ln) is a tuple of local states for all the agents in
the system; g describes the configuration of the system at a
particular instant of time. Given a global state g, we write
g.i for the local state li of agent Ai in g. Given an opinion o,
we write #(g, o) to denote the number of agents with opinion
o in g. By #false(g), we mean the number of agents that are
not in latent state in g. We use #false(g, o) to express the
number of agents with opinion o that are not in latent state
in g, and #true(g, o) for the number of agents with opinion
o that are in latent state in g.

Following the application of the majority rule at a global
state g, an agent updates its current opinion to opinion o if
there are at least mj(g) agents with opinion o in its neigh-
bourhood, where mj(g) is equal to the following:

mj(g) =

⌈
α

| {o : ∃i. opinion(g.i) = o ∧ latent(g .i) = false} |

⌉
The probability P (g, o) that an agent will adopt opinion o
when applying the majority rule at state g is calculated as
follows:

P (g, o) =

min(α,#false(g,o))∑
r=mj(g)

(
α
r

)( #false(g)−α
#false(g,o)−r

)
( #false(g)

#false(g,o)

)
We now define the concrete semantics, i.e, the notion of a

concrete opinion formation system.

Definition 2.3 (Concrete System). Given an agent
template A = (O, h, α, t) and n ≥ 1, the concrete opinion
formation system (OFS) with n agents is a tuple SA(n) =
(G(n), I(n), R(n), V (n)), where:

• G(n) ⊆ L1×. . .×Ln is the set of global states reachable
via R(n) from the set of initial global states I(n) =
I1 × . . .× In;

• R(n) ⊆ G(n) × G(n) is the global transition relation
that is defined as (g, g′) ∈ R(n) iff the following hold:

– for all o ∈ O, we have that

#(g′, o) = [#false(g). P (g, o)] + #true(g, o)

where [x] denotes the nearest integer to x plus-
minus 1 such that

∑
o∈O #(g′, o) = n;

– there is a joint action (a.1, . . . , a.n) ∈ Act1×. . .×
Actn such that for all 1 ≤ i ≤ n, we have that
ti(g.i, a.i) = g′.i;

• V (n) : G(n) → P(AP) is a labelling function for a
set AP = {p(o) : o ∈ O} of atomic propositions that
is defined as follows: p(o) ∈ V (n)(g) iff opinion(g.i) =
o for every 1 ≤ i ≤ n.

A path is a sequence π = g0g1g2 . . . with (gi, gi+1) ∈ R(n),
for every i ≥ 0. Given a path π we write π(i) for the i-th
state in π. The set of all paths originating from a state g is
denoted by Π(g).

Following the above definition, an agent template gen-
erates a family of systems; each system is composed of a
different number of agents. The concrete transition relation
R(n) is such that whenever (g, g′) ∈ R(n), the density of
each opinion o in g′ corresponds to the probability that an
agent will have said opinion in the next time step. Note that
our analysis is not probabilistic, since we do not consider
transitions that reflect every possible outcome of a given
probability distribution; but it is qualitative in the sense
that it aims to establish the correctness of a given protocol
w.r.t its average behaviour on an infinite number of rounds.
Further, note that R(n) does not explicitly depend on the
neighbourhood of each agent. Indeed, we abstract away the
spatial position for a robot and, in line with existing liter-
ature [7, 18], we assume a random neighbourhood for each
agent at any instant of time.

The labelling function assigns an atomic proposition p(o)
on a state iff all the agents agree on opinion o in the state.
As we explain below, this will enable us to define consensus
specifications which can be interpreted on a concrete system.

2.2 Specifications
We express OFSs specifications in ACTLK, the universal

fragment of the temporal-epistemic logic CTLK [24]. CTLK
has long been used to express temporal-epistemic properties
of the agents in a multiagent system. We fix the notation
below; we refer to [25] for more details. Given a set Agents
of agents and a set AP of atomic propositions, ACTLK for-
mulae are defined by the following BNF grammar:

φ ::=p(o) | ¬p(o) | φ ∧ φ | φ ∨ φ | AXφ | A(φUφ) | A(φRφ) |
KAiφ | EΓφ | CΓφ

where p(o) ∈ AP , Ai ∈ Agents, and Γ ⊆ Agents. The
epistemic modality KAiφ is read as“agent Ai knows that φ”;
EΓφ encodes“every agent in group Γ knows that φ”; and CΓφ
expresses “it is common knowledge in Γ that φ” [11]. The
temporal modality AXφ represents “for all paths, φ holds
at the next step”; A(φUψ) stands for “for all paths, at some
point ψ holds and before then φ is true along the path”; and
A(φRψ) denotes “for all paths, ψ holds along the path up to
and including the point when φ becomes true in the path”.
The interpretation of ACTLK formulae on an OFS SA(n) is
given as usual: the temporal modalities are interpreted by
means of the global transition relation [6], and the epistemic
modalities are interpreted by using the epistemic possibility
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relations [11]. The epistemic possibility relation for an agent
Ai ∈ Agents is defined as follows:

∼Ai=
{

(g, g′) ∈ G(n)×G(n) : g.i = g′.i
}
.

We write (S(n), g) |= φ to mean that a formula φ is true
at state g in SA(n). If SA(n) is clear, then we simplify the
notation to g |= φ.

Definition 2.4 (Satisfaction of ACTLK). Given an
OFS SA(n), the satisfaction relation |= is inductively defined
as follows:

g |= p(o) iff p(o) ∈ V (n)(g) for any p(o) ∈
AP;

g |= ¬p(o) iff g 6|= p(o);
g |= φ ∧ ψ iff g |= φ and g |= ψ;
g |= φ ∨ ψ iff g |= φ or g |= ψ;
g |= AXφ iff for every π ∈ Π(g), we have

that π(1) |= φ;
g |= A(φUψ) iff for every π ∈ Π(g), there is

i ≥ 0 such that π(i) |= ψ and
π(j) |= φ for all 0 ≤ j < i;

g |= A(φRψ) iff for every π ∈ Π(g) and for all
i ≥ 0, if π(j) 6|= φ, for all 0 ≤
j < i, then π(i) |= ψ;

g |= KAiφ iff for all g′ ∈ G(n), g ∼Ai g
′ im-

plies g′ |= φ;
g |= EΓφ iff for all g′ ∈ G(n), g ∼E,Γ g′

implies g′ |= φ;
g |= CΓφ iff for all g′ ∈ G(n), g ∼C,Γ g′ im-

plies g′ |= φ.

In the definition above, the relation ∼E,Γ is defined as the
union of the epistemic relations for all the agents in Γ : Eφ ,⋃
Ai∈Γ

∼i, and the relation ∼C,Γ is defined as the transitive

closure of ∼E,Γ. An ACTLK formula φ is said to be true in
SA(n), denoted as SA(n) |= φ, if (SA(n), g) |= φ for every
g ∈ I(n). The customary abbreviations of truth and falsity

are assumed: > , p(o) ∨ ¬p(o), ⊥ , p(o) ∧ ¬p(o). Further,

we define AFφ , A(>Uφ) representing “for all paths, φ

eventually becomes true”, and AGφ , A(⊥Rφ) standing for
“for all paths, φ is globally true”.

We now express some specifications of interest. We are
interested in verifying whether an OFS will eventually reach
consensus on a certain opinion. Observe that consensus
ought to be stable, i.e., it should not be violated at future
points. This is expressed by the following formula:

φ1 , AF
∨
o∈O

AGp(o)

Further, a typical requirement of opinion formation proto-
cols is that the swarm will eventually agree on the opinion
of the highest quality:

φ2 , AFAGp(o),

where o denotes an opinion with h(o) ≥ h(o) for all o ∈ O.
Additionally, we would like to check whether every agent
knows the above properties and whether the swarm has com-
mon knowledge of the above properties:

φ3 = EΓφ1 φ4 = EΓφ2 φ5 = CΓφ1 φ6 = CΓφ2

where Γ = Agents. Finally, we are interested in assessing
whether it is always the case that individual knowledge of

consensus implies group and common knowledge of consen-
sus, as expressed by the following formulae:

φ7 = AG(KAiφ1 → EΓφ1) φ8 = AG(KAiφ2 → EΓφ2)

φ9 = AG(KAiφ1 → CΓφ1) φ10 = AG(KAiφ2 → CΓφ2)

where Ai ∈ Agents and Γ = Agents. Following the un-
bounded nature of OFSs, for the rest of the paper we restrict
ACTLK to specifications φ in which:

1. for each KAi appearing in φ, we have i = 1. Thus,
the epistemic modalities appearing in a formula φ can
only refer to agent A1. Note, however, that φ can be
read as referring to any agent of any concrete system.
Indeed, studies on the inherent symmetry present in
systems of homogeneous agents have shown the fol-
lowing [17]: the interpretation of φ on a concrete sys-
tem SA(n) is equivalent to the interpretation of φi on
SA(n), where φi is obtained from φ by replacing each
epistemic modality KA1 with KAi .

2. for each EΓ and CΓ appearing in φ, Γ denotes the
set of all concrete agents in the system on which the
modalities are interpreted.

3. PARAMETERISED VERIFICATION FOR
OPINION FORMATION SYSTEMS

In this section we put forward a verification procedure
for the analysis of OFSs independently of the number of
agents in the system. Our technique is based on previous
work in the literature aimed to solve the parameterised model
checking problem [5, 10, 15]; but it is extended and adapted
to opinion formation protocols. In the context of OFSs, we
define the decision problem as follows.

Definition 3.1 (PMCP). Given an agent template A
and an ACTLK formula φ, the parameterised model check-
ing problem (PMCP) is the decision problem of determining
whether the following holds:

SA(n) |= φ for every n ≥ α.

Obviously the PMCP involves checking an unbounded
number of systems. Consequently, the problem cannot by
solved by traditional model checking techniques for finite
state systems. Indeed, the problem is known to be undecid-
able in general [2]. However, we observe that any real-world
swarm system obeys the small neighbourhood property de-
fined below; this enables us not only to show the problem is
decidable but also to give a finite abstraction that allows us
to solve the PMCP for the case under analysis.

We begin by formulating the small neighbourhood prop-
erty. Given an agent templateA defined on a neighbourhood
size α ∈ N, we say that an OFS SA(n) satisfies the small
neighbourhood property if at each time step the number of
agents not in latent state is much greater than the neigh-
bourhood size. By “much greater” we mean that for any

given global state g and opinion o, we have that
(

#false(g,o)

#false(g)

)α
=(

#false(g,o)−α
#false(g)−α

)α
± ε, for some small constant ε. We write

n � α to denote this. Since swarms are typically made of
very large numbers of agents each interacting with very few
neighbours, all systems of interest satisfy the small neigh-
bourhood property. Given this, we formally restate the
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PMCP defined above as one that assumes small neighbour-
hoods.

Definition 3.2 (PMCP for small neighbourhoods).
The PMCP for OFSs with small neighbourhoods of size α
concerns establishing whether the following holds:

SA(n) |= φi for every n� α.

In the following we will assume that the OFSs that we
consider obey the small neighbourhood property and present
a solution for the PMCP for small neighbourhoods.

3.1 Weighted abstraction
To solve the PMCP we introduce the notion of weighted

abstraction. By means of a weighted abstraction we build
an abstract model that represents every concrete system.
An abstract state is a set of pairs of weights and template
local states in R × L; it represents every concrete state in
which the ratio of agents in each local state to all the agents
approximates the weight associated with the state. Note
that every local state that does not appear in an abstract
state is assumed to be associated with a weight equal to 0.

We now describe the construction of the abstract model.
Given an abstract state γ and an opinion o, we write %(γ, o)
to denote the sum of the weights associated with o, i.e,
%(γ, o) =

∑
(w,l)∈γ,opinion(l)=o w. By %false(γ), we mean the

sum of weights corresponding to local states that have the
latent status set to false. We use %false(γ, o) to express the
sum of weights corresponding to local states that have the
latent status set to false and have opinion o, and %true(γ, o)
for the sum of weights corresponding to local states that
have the latent status set to true and have opinion o.

A concrete agent in a global state represented by γ up-
dates its current opinion to opinion o if there are at least
m̂j(γ) agents with opinion o in its neighbourhood, where

m̂j(γ) is equal to the following:⌈
α

| {o : ∃(w, l) ∈ γ s.t. opinion(l) = o ∧ latent(l) = false} |

⌉
In the previous section we have defined the probability P (g, o)
that a concrete agent in a state g will update its current opin-
ion to opinion o. We now calculate P (g, o) from an abstract
state γ that represents g. If g is a state of n agents, then
P (g, o) can be expanded as follows:

min(α,#false(g,o))∑
r=m̂j(γ)

(
α

r

)
#false(g, o)

#false(g)

#false(g, o)− 1

#false(g)− 1
· · ·

#false(g, o)− r + 1

#false(g)− r + 1

n−#false(g, o)

#false(g)− r · · ·

n−#false(g,o) − α+ r + 1

#false(g)− α+ 1

From the above and the small neighbourhood assumption it
is easy to show that P̂ (γ, o) = P (g, o) ± ε, where P̂ (γ, o) is
given by the following:

P̂ (γ, o) =

α∑
r=m̂j(γ)

((
α

r

)(
%false(γ, o)

)r
(

%false(γ)−%false(γ, o)
)α−r)

P̂ provides a means to represent concrete transitions that
are enabled from any concrete state represented by a given
abstract state. The following definition makes this precise.

Definition 3.3 (Weighted Abstraction). Given an
agent template A = (O, h, α, t), assume a finite uniformly
discrete set W in the metric space [0, 1]. The abstract model

is a tuple ŜA =
(
Ĝ, Î, R̂, V̂

)
, where:

• Ĝ ⊆ P(W × L) is the set of abstract states;

• Î = {X : X = {(w, (o, h(o), false) : o ∈ O}} is the set
of initial abstract states such that

∑
(w,l)∈X w = 1 for

each X ∈ Î.

• R̂ ⊆ Ĝ × Ĝ is the abstract transition relation that is
defined as (γ, γ′) ∈ R̂ iff the following hold:

– for all o ∈ O, we have that

%(γ′, o) = [%false(γ). P̂ (γ, o)] + %true(γ, o)

where [x] denotes the nearest weight to x such that∑
o∈O %(γ′, o) = 1;

– for every (w, l) ∈ γ there is (w′, l′) ∈ γ′ with
t(l, o′) = l′, where o′ = opinion(l ′);

– for every (w′, l′) ∈ γ′ there is (w, l) ∈ γ with
t(l, o′) = l′, where o′ = opinion(l ′);

• V̂ : Ĝ → P(AP) is the abstract labelling function de-

fined as p(o) ∈ V̂ (γ) iff for all (w, l) ∈ γ we have that
opinion(l) = o.

Thus, the set of initial abstract states represents any pos-
sible initial density of opinions in a concrete system. The ab-
stract transition relation is such that whenever (γ, γ′) ∈ R̂,
the density of each opinion in γ′ corresponds to the proba-
bility that a concrete agent in a state represented by γ will
have said opinion in the next time step. Finally, the ab-
stract labelling function assigns an atomic proposition p(o)
on a state iff the opinion o is the only opinion encoded in
the state.

While weighted abstraction provides a natural way to in-
terpret temporal formulae built from global atomic propo-
sitions, it does not allow for the interpretation of epistemic
modalities. This is because the individual agents’ behaviours
are not encoded in the abstract model. Therefore, although,
as we show below, the abstract model can be used to check
temporal specifications, the verification of epistemic spec-
ifications is problematic. To circumvent this, we perform
weighted abstraction on the concrete space modulo one agent.
In other words, we compose the abstract model with one
concrete agent. In this setting an abstract state is built
from a concrete component and an abstract component.
The abstract component is an abstract state as given in
Definition 3.3; it represents the local states for the agents
A2, . . . , An in a concrete state g with n agents. The con-
crete component corresponds to the local state of agent A1

in g. Given an abstract state γ, we write γ.c for the concrete
component in γ, and γ.â for the abstract component in γ.

Definition 3.4 (Partial Weighted Abstraction).
Given an agent template A = (O, h, α, t), the composition
of the abstract model with one concrete agent is a tuple

ŜA(1) =
(
Ĝ(1), Î(1), R̂(1), V̂ (1)

)
where:
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• Ĝ(1) = L1 × Ĝ;

• Î(1) = I1 × Î;

• R̂(1) ⊆ Ĝ(1) × Ĝ(1) is defined as (γ, γ′) ∈ R̂(1) iff

(γ.â, γ′.â) ∈ R̂ and (γ.c, opinion(γ′.c)) = γ′.c;

• V̂ (1) : Ĝ(1)→ P(AP) is defined as p(o) ∈ V̂ (1)(γ) iff

opinion(γ.c) = o and p(o) ∈ V̂ (γ.â).

Finally, we consider group and common knowledge. Since
the abstract model is composed of exactly one agent and a
concrete system is composed of arbitrarily many agents, it
is easy to see that the group and common knowledge modal-
ities are not necessarily preserved from a concrete system to
the abstract model. To alleviate this problem, we abstract
the satisfaction relation for ∼EΓ and ∼CΓ as follows.

Definition 3.5 (Abstract ∼ÊΓ
). The abstract rela-

tion for group knowledge ∼ÊΓ
⊆ Ĝ(1) × Ĝ(1) is defined as

(γ, γ′) ∈∼ÊΓ
iff either one of the following holds:

• γ ∼A1 γ
′;

• there is a template local state l ∈ L such that (w, l) ∈ γ
and (w′, l) ∈ γ′ for some weights w,w′.

Intuitively, two abstract states are ∼ÊΓ
-related iff they

have concrete representatives that are ∼i-related for an ar-
bitrary agent Ai.

Definition 3.6 (Abstract ∼ĈΓ
). The abstract rela-

tion for common knowledge ∼ĈΓ
⊆ Ĝ(1) × Ĝ(1) is defined

as the transitive closure of ∼ÊΓ
.

The abstract satisfaction relation |=ab is defined for group

knowledge as (ŜA, γ) |=ab EΓφ iff for all γ′ with γ ∼ÊΓ
γ′,

we have that (ŜA, γ′) |=ab φ; for common knowledge it is

defined as (ŜA, γ) |=ab CΓφ iff for all γ′ with γ ∼ĈΓ
γ′, we

have that (ŜA, γ′) |=ab φ; |=ab is defined for the other cases
as in Definition 2.4.

We now establish a correspondence between the concrete
systems and the abstract model. Specifically, we show that
the abstract model simulates every concrete system. Addi-
tionally, we show that there is a concrete system that simu-
lates the abstract model. By means of the former result, the
satisfaction of an ACTLK formula on the abstract model
entails the satisfaction of the formula on every concrete sys-
tem. Conversely, by means of both results, the falsification
of an ACTLK formula on the abstract model implies the ex-
istence of a concrete system that falsifies the formula. Con-
sequently, the PMCP is reduced to checking the abstract
model against a given specification. We begin by defining
a notion of simulation between a concrete system and the
abstract model.

Definition 3.7 (Simulation). A relation R ⊆ G(n)×
Ĝ(1) is a simulation between a concrete system SA(n) and

the abstract model ŜA(1) if the following conditions hold:

1. For every g ∈ I(n), there is a γ ∈ Î(1) with (g, γ) ∈ R;

Whenever (g, γ) ∈ R, then

2. V (n)(g) = V̂ (1)(γ);

3. If (g, g′) ∈ R(n) for some g′ ∈ G(n), then there is a

γ′ ∈ Ĝ(1) such that (γ, γ′) ∈ R̂(1) and (g′, γ′) ∈ R;

4. If g ∼A1 g
′ for some g′ ∈ G(n), then there is a γ′ ∈

Ĝ(1) such that γ ∼A1 γ
′ and (g′, γ′) ∈ R.

5. If g ∼Ai g′ for some i with 2 ≤ i ≤ n and some

g′ ∈ G(n), then there is a γ′ ∈ Ĝ(1) such that γ ∼ÊΓ
γ′

and (g′, γ′) ∈ R.

We say that the abstract model ŜA(1) simulates a con-
crete system SA(n) if there is a simulation relation between

SA(n) and ŜA(1). ACTLK formulae are preserved from the
abstract model to the concrete system being simulated.

Lemma 3.8. Assume that ŜA(1) simulates SA(n). Then,

ŜA(1) |=ab φ implies SA(n) |= φ, for any ACTLK formula
φ.

Proof Sketch. Assume a simulation relationR between
SA(n) and ŜA(1). We show that

(g, γ) ∈ R, γ |=ab φ implies g |= φ

by induction on φ. φ ∈ AP : from simulation requirement
2; φ = AXψ, φ = A(φUψ), φ = A(φRψ): from requirement
3 [4]; φ = KA1φ: from requirement 4; φ = EΓψ: from
requirements 4 and 5. Let φ = CΓψ and assume γ |=ab φ.
We have to show that g |= φ. Let g′ with g ∼CΓ g′. Then,
there is a sequence g1g2 . . . gk such that g = g1, g′ = gk and
for all i with 1 ≤ i < k, there is an agent Aj ∈ Γ such that
gi ∼Aj gi+1. By requirements 4 and 5, there is sequence

γ1γ2 . . . γk such that γ = γ1 and for all i with 1 ≤ i < k,
γi ∼ÊΓ

γi+1. Hence, γ ∼ĈΓ
γk, and therefore γk |=ab ψ. By

the inductive hypothesis, g′ |= ψ, and thus g |= φ.
By the conclusion of the above induction and by simula-

tion requirement 1, the lemma is entailed.

A simulation relation between the abstract model and a
concrete system is defined similarly to Definition 3.7, but
by swapping the LHS with the RHS in each of the clauses.
We say that a concrete system SA(n) simulates the abstract

model ŜA(1) if there is a simulation relation between ŜA(1)
and SA(n).

Lemma 3.9. Assume that SA(n) simulates ŜA(1). Then,

SA(n) |= φ implies ŜA(1) |=ab φ, for any ACTLK formula
φ.

Proof. The proof is similar to the proof of Lemma 3.8.

A concrete system SA(n) and the abstract model ŜA(1)

are said to be simulation equivalent if SA(n) simulates ŜA(1)

and ŜA(1) simulates SA(n).

Lemma 3.10. Assume that ŜA(1) simulates SA(n) and

SA(n) simulates ŜA(1). Then, ŜA(1) |=ab φ iff SA(n) |= φ,
for any ACTLK formula φ.

Proof. (⇒) Lemma 3.8. (⇐) Lemma 3.9.

We now show that the abstract model simulates every
concrete system, and we prove the existence of a concrete
system that simulates the abstract model.
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Lemma 3.11. Given an agent template A and an ACTLK
formula φ, the following hold:

1. for all n� α, ŜA(1) simulates SA(n);

2. there is n� α such that SA(n) simulates ŜA(1).

Proof Sketch.
(1) Assume n � α. Define a mapping δn : G(n) → Ĝ(1)

from concrete states to abstract states as follows: δn(g) =
(g.1, X), where

X =

{
(w, l) : ∃i. 2 ≤ i ≤ n, g.i = l and w ≈ #(g, l)

n

}
,

w ≈ x whenever w is the nearest weight to x, and #(g, l)
denotes the number of agent in local state l in g. Assume
the relation R = {(g, γ) : δn(g) = γ}. We show that R is a

simulation relation between SA(n) and ŜA(1). Simulation
requirement 1 follows from the definitions of the initial states
for the two models. Let (g, γ) ∈ R be arbitrary. We show
simulation requirements 2, 3, 4, 5.

• Requirement 2. From the definition of R.

• Requirement 3. Assume (g, g′) ∈ R(n) for some g′ ∈
G(n). From the small neighbourhood assumption we

have that P̂ (γ, o) = P (g, o) ± ε, for each opinion o.
Therefore,

#(g′, o)

n
≈ [%false(γ). P̂ (γ, o)] + %true(γ, o)

for each opinion o. That is, the above two expres-
sions have the same nearest weight. The latter entails
(γ, δn(g′)) ∈ R̂(1). Also, (g′, δn(g′)) ∈ R. Therefore
the requirement is satisfied.

• Simulation requirement 4. Assume g ∼A1 g
′ for some

g′ ∈ G(n). Let π be a path in SA(n) such that π(i) =
g, for some i ≥ 0. By simulation requirements 1 and
3, there is a path π̂ in ŜA(1) with π̂(i) = δn(π(i)).
As such, we have that γ ∼A1 π̂(i). Consequently the
requirement is satisfied.

• Simulation requirement 5. Assume g ∼Ai g
′ for some

i with 2 ≤ i ≤ n and some g′ ∈ G(n). From simula-

tion conditions 1 and 3, δn(g′) ∈ Ĝ(1). By definition
of ∼ÊΓ

, γ ∼ÊΓ
δn(g′). Obviously, (g′, δn(g′)) ∈ R.

Hence the requirement is satisfied.

(2) Pick n� α such that SA(n) admits every initial den-
sity of opinions that is represented by the set of abstract
initial states. Define R as above. Then the proof proceeds
along the same lines with the proof in (1).

A consequence of the above is the following.

Theorem 3.12. Given an agent template A and an ACTLK
formula φ, the following hold:

1. ŜA(1) |= φ implies ∀n� α.SA(n) |= φ.

2. ŜA(1) 6|= φ implies ∃n� α.SA(n) 6|= φ.

Proof. (1) By (1) of Lemma 3.11 and by Lemma 3.8.
(2) From Lemma 3.11 there is n� α such that SA(n) and

ŜA(1) are simulation equivalent. Therefore the thesis follows
from Lemma 3.10.

Theorem 3.12 is our main theoretical result. The theorem
provides a constructive methodology for solving the PMCP
by checking the abstract model against a given specification.

4. APPLICATIONS
We implemented the weighted abstraction methodology

presented earlier in MCMAS-OFP, an experimental toolkit that
we built from MCMAS-P, an open-source model checker for the
verification of unbounded multi-agent systems [15]. We de-
signed the input language for MCMAS-OFP, called ISPL-OFP, to
allow for the semantic structures considered here. The lan-
guage closely follows the modular structure of an agent tem-
plate. In particular, a template’s declaration includes dec-
larations of the template’s opinions and their qualities, its
transition function, and its neighbourhood size. Figure 4.1
exemplifies ISPL-OFP on the protocol described below.

Given an input description for an agent template, MCMAS-
OFP constructs the abstract model which it encodes sym-
bolically. The base model-checker MCMAS [20] is then called
to verify the abstract model against the given specifica-
tions. Following this, the user can conclude, as per The-
orem 3.12, whether the specifications hold on a swarm of
any size that satisfies the small neighbourhood assumption.
We refer to [21] for more details.

4.1 A majority rule protocol
To evaluate the approach, we consider a majority rule

protocol put forward to solve the best-of-n decision prob-
lem [32]. The protocol assumes two opinions where each
opinion corresponds to a spatial area (site) associated with
certain resources that determine its quality. Upon explor-
ing a site, an agent determines the site’s quality. Then the
agent returns to the nest where it engages in the opinion for-
mation protocol. According to the protocol, the agents can
either be in a dissemination state or in an exploration state.
In the former case, the agents move around the nest while
maintaining a well-mixed spatial distribution. Additionally,
they broadcast their opinions by means of wireless sensors
of limited range. The time an agent spends in this state is
proportional to the quality of the opinion it currently holds.
Before an agent goes into the exploration state, it updates
its opinion according to the majority rule. In the exploration
state, the agent leaves the nest to explore the site associated
with its current opinion. The site is explored for a period
of time that is proportional to its quality. Afterwards, the
agent returns to the nest.

We encode the above scenario in the formalism of OFSs.
We represent the dissemination state by means of template
states with the latent status set to false, and we express the
exploration state by using template states with the latent
status set to true. The ratio of the qualities for the sites, as
well as the neighbourhood size given below correspond to the
robot experiments performed in [32]. The agent template
A = (O, h, α, t) is defined as follows: O = {A,B}, where
A,B represent the two sites; h(A) = 8, h(B) = 4 (thus, site
A is twice as good as site B); α = 25. Finally, the template
transition relation t : L×O → L is defined by:

• t((o, v, false), o′) = (o′, v − 1 , false) if v > 0;

• t((o, v, false), o′) = (o′, h(o′), true) if v = 0;

• t((o, v, true), o) = (o, v − 1 , true) if v > 0;

• t((o, v, true), o) = (o, h(o), false) if v = 0.

So, whenever the template changes its latent status, the
latent value is set to the quality of the currently held opin-
ion. It then decreases at each time step until it reaches 0 at
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Agent Template
Opinions = {A,B};
Qualities = {A->8, B->4};
NeighbourhoodSize = 25;
Evolution:
opinion = majority and lvalue = lvalue-1 if

lvalue>0 and latent=false;
opinion = majority and lvalue = 8 and

latent=true if opinion=A and lvalue=0
and latent=false;

opinion = majority and lvalue = 4 and
latent=true if opinion=B and lvalue=0
and latent=false;

lvalue = lvalue-1 if lvalue>0 and latent=true;
lvalue = 8 and latent = false if opinion=A and

lvalue=0 and latent=true;
lvalue = 4 and latent = false if opinion=B and

lvalue=0 and latent=true;
end Evolution
end Template

Figure 1: ISPL-OFP snippet.

which point the template switches its latent status. Thus,
the period of time an agent spends in the dissemination (ex-
ploration, respectively) state is here modelled by the number
of time steps the template is in non-latent (latent, respec-
tively) state.

We used MCMAS-OFP to verify the above protocol against
the specifications introduced in Section 2. By means of these
results we conclude not only that the protocol reaches a con-
sensus, but it also reaches a consensus on the opinion with
the highest quality, namely site A. Additionally, not only
every agent knows this, but it is also common knowledge
among the swarm that consensus is eventually reached.

The construction of the abstract model and its verification
against all formulae took approximately 5 seconds on an
Intel Core i7 machine clocked at 3.4 GHz, with 7.7 GiB
cache, running 64-bit Fedora 20, kernel 3.16.6. MCMAS-OFP
and the ISPL-OFP file encoding the scenario are available
at [21].

5. CONCLUSIONS AND RELATED WORK
In this paper we investigated the formal verification of

consensus protocols in swarms. We put forward templates
to model the behaviour of the agents in an opinion dynamics
setting, and we formulated their verification in terms of the
associated parameterised model checking problem. While
this is undecidable in general, we built a finite abstract
model that we showed to simulate any swarm of any size un-
der very permissive conditions. As we proved, the abstract
model encodes any concrete instantiation of the swarm and
can be used to verify its properties. We presented a toolkit
that can be used to generate said abstract model automat-
ically and verify opinion formation protocols. Indeed, we
used the toolkit to verify the correctness of a majority rule
protocol in swarms.

The key aspect of this work is that it operates at protocol
level and not at system level. In other words, we do not just
assess a particular system instantiation; but evaluate the
whole class of swarm instances following a consensus proto-
col. We are not aware of other work in the swarm systems
literature that is based on parameterised model checking.
As stated in the introduction, swarm protocols, including
consensus protocols, are typically analysed either via sim-
ulation [7, 32] or via optimisation methods [30, 31]. By

means of optimisation techniques one can typically evalu-
ate the behaviour of the system with very large number of
components; whereas simulation approaches are limited by
the size of the population under analysis. Equally, model
checking techniques for swarm systems are typically limited
by the number of agents in the swarm [1, 8, 14, 27, 26, 33].
In this paper we set out to overcome some of these limita-
tions by providing a first formal, yet completely automatic,
approach to the problem. The model we put forward is
general enough to model all consensus protocols that follow
various forms of the majority rule. While these protocols
are normally defined in probabilistic terms, we showed that
a purely discrete analysis that merely accounts for the possi-
ble evolutions of the system can provide considerable insight
in the protocol.

The results here presented build upon recent work in which
the foundations of parameterised verification for multi-agent
systems were laid out [16]. This paper differs from that
work in several key aspects. Firstly, we here investigate
concrete protocols and not just arbitrary multi-agent inter-
actions. This requires the definition of novel, specialised
models and appropriate templates. Secondly, given the dif-
ferent semantics, the cut-off results presented in [16] cannot
be here applied; instead we used an ad-hoc construction of
an abstract model to simulate all possible behaviours of the
system. Thirdly, while the toolkit we released is based on
MCMAS-P and we reuse its routines for parsing the files and
performing symbolic model checking operations, the key as-
pect of the implementation that we presented is its support
for the automatic construction of the abstract model. This
has correspondences with work in counter-abstraction, in-
cluding [15], but the technical details of the abstract model
are different.

In the future we intend to work on other swarm proto-
cols in order to ascertain whether they can also be analysed
by means of parameterised model checking and appropriate
abstractions.
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