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Abstract

We develop a technique to evaluate the fault-
tolerance of a multi-agent system whose number
of agents is unknown at design time. We present
a method for injecting a variety of non-ideal be-
haviours, or faults, studied in the safety-analysis
literature into the abstract agent templates that are
used to generate an unbounded family of multi-
agent systems with different sizes. We define the
parameterised fault-tolerance problem as the de-
cision problem of establishing whether any con-
crete system, in which the ratio of faulty versus
non-faulty agents is under a given threshold, sat-
isfies a given temporal-epistemic specification. We
put forward a sound and complete technique for
solving the problem for the semantical set-up con-
sidered. We present an implementation and a case
study identifying the threshold under which the al-
pha swarm aggregation algorithm is robust to faults
against its temporal-epistemic specifications.

1 Introduction
Over the past decade considerable progress has been made
in developing techniques to verify that multi-agent systems
(MAS) behave as intended [Bordini et al., 2006; 2003]. In
particular, symbolic model checking [Meyden and Su, 2004;
Raimondi and Lomuscio, 2005], bounded and unbounded
model checking [Kacprzak et al., 2004] and abstraction [Be-
lardinelli et al., 2016] have proven useful to verify MAS
against temporal-epistemic specifications. Some of these
methods have resulted in push-button verification engines
such as McK [Gammie and van der Meyden, 2004], Ver-
ics [Kacprzak et al., 2008] and MCMAS [Lomuscio et al.,
2017].

One limitation of all these techniques is that they address
the verification of MAS consisting of a number of agents
fixed at design time. However, a number of protocols em-
ployed in the MAS domain, e.g., auctions, search and res-
cue protocols for robots, etc., are employed on the grounds
they are assumed to be correct with respect to some speci-
fication irrespective of how many agents populate the MAS.
Parameterised model checking (PMC) has recently been put

forward as a technique to address this [Kouvaros and Lomus-
cio, 2016b]. PMC enables the engineer to study protocols,
rather than specific concrete systems, where any number of
agents follow template behaviours. In cases of practical in-
terest, ranging from swarm robotics [Kouvaros and Lomus-
cio, 2015b; 2016a] to security protocols [Boureanu et al.,
2016], PMC can be used to determine whether MAS with
an unbounded number of components comply with a given
temporal-epistemic specification.

A key issue in evaluating protocols, from swarms robotics
to auctions and beyond, is the extent to which they are re-
silient to adverse functioning behaviour of some of the agents
in the system. For example, to evaluate the appropriateness of
a swarm robotics formation flying protocol it is generally not
sufficient to establish whether the local behaviours establish
a group formation, but also the degree of robustness of the
protocol to local faults. In particular, we may be interested
in questions such as: If, for whatever reason, an agent dis-
plays faulty behaviour, will this propagate through the group
thereby splitting the formation, or will the swarm remain in
formation tolerating the faulty unit? If the protocol is tolerant
to some faults, is there an upper bound ratio of faulty versus
non-faulty agents above which correctness is no longer guar-
anteed? If so, what is it? This paper aims to develop a tech-
nique to answer similar questions in the context of temporal-
epistemic specifications. Being able to provide an answer to
these questions enables the engineer to engineer MAS that
are resilient to adverse functioning circumstances.

The rest of the paper is organised as follows. In Section 2
we present the syntax of indexed CTLK and the semantics of
parameterised interleaved interpreted systems which we will
use to model MAS. In Section 3 we develop a method for in-
jecting faulty behaviour into the templates of correct agents
thereby generating systems that meet a predetermined ratio of
faulty versus non-faulty agents. In Section 4 we define the pa-
rameterised fault-tolerance problem as the decision problem
of establishing whether all (infinitely many) systems under a
certain ratio of faults satisfy a given specification of interest.
We put forward a complete algorithm that solves the prob-
lem under the semantics studied. In Section 5 we present an
implementation and report the experimental results obtained
when studying the Alpha swarm aggregation algorithm.

Related Work. The PMC problem has long been studied
in the context of reactive systems and temporal specifica-
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tions [Bloem et al., 2015]. More recently PMC has been put
forward to study fault tolerance in the context of distributed
computing [John et al., 2013; Fisher et al., 2009]. However
these approaches do not tackle epistemic specifications nor
ratios of faulty versus non-faulty components, and the techni-
cal machinery is different from the one developed here.

As mentioned, some approaches to the PMC problem for
MAS against epistemic specifications have been put forward
in the recent past [Kouvaros and Lomuscio, 2016b]. Even
if fault-tolerance is considered as an advantage of swarms
over other robotic architectures, and PMC has been applied
to swarms [Kouvaros and Lomuscio, 2015a; 2015b], we are
not aware of other solutions using PMC to achieve the aims
above.

There is a considerable body of literature in safety-analysis
putting forward the use of fault-injection in combination with
model checking for the analysis of fault-tolerance in dis-
tributed systems. Our approach follows the one pioneered
in [Joshi and Heimdahl, 2005; Bozzano and Villafiorita,
2007]. This approach was extended to the analysis of MAS
in [Ezekiel and Lomuscio, 2017] and used in [Ezekiel et al.,
2011] for the analysis of an underwater autonomous vehi-
cle. However, none of these approaches tackle the analysis
of fault-tolerance for systems with an unbounded number of
components, which is our key objective here.

2 Background
Parameterised interleaved interpreted systems (PIISs) extend
interleaved interpreted systems (IIS) [Lomuscio et al., 2010]
to reason about the temporal-epistemic properties of asyn-
chronous MAS with an unbounded number of agents [Kou-
varos and Lomuscio, 2013]. Below we outline the PIISs se-
mantics as presented in [Kouvaros and Lomuscio, 2013]. A
PIIS consists of the descriptions of an agent template from
which an unbounded number of homogeneous agents may be
constructed and an environment in which the agents operate 1.

The agent template T = 〈L, ι, Act, P, t〉 defines a non-
empty set of local states L, a unique initial state ι ∈ L, and a
non-empty set of actions Act = A ∪ AE ∪ GS . Each action
is either an asynchronous action (A) or an agent-environment
action (AE ) or a global-synchronous action (GS ). Each type
of action enables a different communication pattern between
the concrete agents (see Def. 2). The actions are performed
in compliance with a protocol P : L → P(Act) that selects
which actions may be performed at a given state. The evolu-
tion of the local states is characterised by a transition function
t : L× Act→ L returning the next local state given the cur-
rent local state and the action performed at the state. The en-
vironment e = 〈Le, ιe, Acte, Pe, te〉 is associated with a non-
empty set of local states Le, a unique initial state ιe ∈ Le, a
non-empty set of actions Acte = Ae ∪ AE ∪GS , a protocol
Pe, and a transition function te.

Definition 1 (PIIS). A parameterised interleaved interpreted
system is a tuple S = 〈T, e,V〉, where V : L → 2L AP ∪
2G AP is a labelling function on the agent template’s states

1The framework can accommodate a finite number of agent tem-
plates; for simplicity we here only present the single template case.

for a set L AP of local atomic propositions and a set G AP
of global atomic propositions.

PIISs describe an unbounded family of concrete IIS, each
one obtained by setting the parameter prescribing to the num-
ber of agents in the system. Given a PIIS S and an integer
n ≥ 1, the IIS S(n) of n agents is the result of the composi-
tion of n copies of T with the environment. We write A for
the set A = {1, . . . , n} of concrete agents instantiated from
T . A global state g = 〈l1, . . . , ln, le〉 is a tuple of local states
for all the agents and the environment in S(n); it describes
the system at a particular instant of time. For a global state g
we write g.i to denote the local state of agent i in g. The sys-
tem’s global states evolve over time in compliance with the
global transition relation.
Definition 2 (Global transition relation). The global transi-
tion relation R ⊆ G× Act ∪ Acte ×G on a set G of global
states is defined as (g, a, g′) ∈ R iff one of the following
holds:
• (Asynchronous). (i) a ∈ A∪Ae; (ii) there is i ∈ A∪{e}

s.t. a ∈ P (g.i) and t(g.i, a) = g′.i; (iii) for all j 6= i,
g.j = g′.j.
• (Agent-environment). (i) a ∈ AE; (ii) there is i ∈ A s.t.
a ∈ P (g.i) and t(g.i, a) = g′.i; (iii) a ∈ Pe(g.e) and
te(g.e, a) = g′.e; (iv) for all j 6= i, j 6= e, g.j = g′.j.
• (Global-synchronous). (i) a ∈ GS; (ii) for all i ∈ A,
a ∈ P (g.i) and t(g.i, a) = g′.i; (iii) a ∈ Pe(g.e) and
te(g.e, a) = g′.e.

Above R defines only one action to be performed at each
time step. If this is an asynchronous action, then exactly one
agent participates in the global transition; if it is an agent-
environment action, then exactly one agent and the environ-
ment participate in the global transition; if it is a global-
synchronous action, then all the agents and the environment
participate in the global transition.

We now define the concrete systems generated from S .
Definition 3 (Concrete semantics). Given a PIIS S and
n ≥ 1, the IIS S(n) is a tuple S(n) = 〈G, g0, R, V 〉,
where G ⊆ Ln × Le is the set of reachable global states
via R from the initial global state g0 = 〈ι, . . . , ι, ιe〉, and
V : G→ (2L AP×A)∪2G AP is the labelling function on the
global states defined as follows: (p, i) ∈ V (g) iff p ∈ V(g.i),
for p ∈ L AP , i ∈ A; and q ∈ V (g) iff for all 1 ≤ j ≤ n,
q ∈ V(g.j), for q ∈ G AP .

A PIIS generates different IIS depending on the parame-
ter for the system. Each system is composed of a different
number of agents. The local propositional variables in an IIS
are indexed by each of the concrete agents; (p, i) holds in a
global state if the agent i is at a local state labelled with p
by the template labelling function; this will enable us to con-
struct specifications independently of the size of the concrete
system on which they are evaluated. A global atomic propo-
sition q holds in a global state if all the agents are at a local
state labelled with q by the template labelling function; this
will allow us to formulate specifications expressing ratios of
faulty to non-faulty agents.

A path π is an infinite sequence π = g0a0g1a1g2 . . . such
that (gi, ai, gi+1) ∈ R for every i ≥ 0. We write π(i) for the
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i-th state in π. The set of all paths originating from a state g
is denoted by Π(g).

We express specifications in the indexed logic
IACTLK\X . The logic extends ACTLK\X (the uni-
versal fragment of the temporal-epistemic logic CTLK
without the next time operator) by introducing indexed
atomic propositions and indexed epistemic modalities that
are quantified over the concrete agents [Kouvaros and
Lomuscio, 2016b]. Given a set IND of indices, a set L AP
of local atomic propositions and a set G AP of global
atomic propositions, IACTLK\X formulae are defined by
the following BNF grammar:

φ ::= (p, v) | ¬(p, v) | q | ¬q | φ ∧ φ | φ ∨ φ | A(φUφ) |
A(φRφ) | Kiφ | ∀v : φ

where p ∈ L AP , q ∈ G AP , and v ∈ IND . The epis-
temic modality Kiφ is read as “agent i knows that φ”. The
temporal modality A(φUψ) stands for “for all paths, at some
point ψ holds and before then φ is true along the path”; and
A(φRψ) denotes “for all paths, ψ holds along the path up to
and including the point when φ becomes true in the path”. An
IACTLK\X formula is said to be a sentence if every variable
appearing the formula is in the scope of a universal quantifier.
Hereafter we consider only indexed IACTLK\X sentences.

We now define the satisfaction relation.
Definition 4 (Satisfaction of IACTLK\X). The satis-
faction relation |= for an IIS S(n), and an IACTLK\X
sentence φ is inductively defined as follows (clauses for
propositional connectives are immediate and thus omitted):

(S(n), g) |= A(φ1Uφ2) iff for every π ∈ Π(g), for
some i ≥ 0 (S(n), π(i)) |=
φ2 and for all 0 ≤ j < i,
(S(n), π(j)) |= φ1;

(S(n), g) |= A(φ1Rφ2) iff for every π ∈ Π(g), for all
i ≥ 0, if (S(n), π(j)) 6|=
φ1, for all 0 ≤ j < i, then
(S(n), π(i)) |= φ2;

(S(n), g) |= Kiφ iff for all g′ ∈ G, g.i = g′.i
implies (S(n), g′) |= φ;

(S(n), g) |= ∀v : φ iff (S(n), g) |= φ[v 7→ ag]
for all ag ∈ A.

An IACTLK\X formula φ is said to be true in S(n), de-
noted S(n) |= φ, if (S(n), g0) |= φ. The parameterised
model checking problem is to check whether φ is true in every
concrete system generated from S .
Definition 5 (PMCP). Given a PIIS S and an IACTLK\X
formula φ, the parameterised model checking problem
(PMCP) is the decision problem of determining whether the
following holds:

S(n) |= φ for every n > 1.

If this holds, then φ is said to be satisfied by S; this is denoted
by S |= φ.

The PCMP is in general undecidable [Apt and Kozen,
1986]. Nevertheless restrictions can be imposed on the sys-
tems leading to decidable problems; these have been ex-
ploited in a variety of applications ranging from networking

to MAS against temporal or epistemic specifications [Emer-
son and Namjoshi, 1995; Kouvaros and Lomuscio, 2016b].

3 Fault Injection via Model Updates
In this section we construct a faulty PIIS Sf =〈
(T, T f ), ef , V f

〉
from a given PIIS S = 〈T, e, V 〉; to dis-

tinguish between the two, sometimes we refer to “faulty” Sf
and “nominal”, or “non-faulty”, PIIS S . In doing so we are in-
spired by the work on fault-injection in safety-analysis [Boz-
zano and Villafiorita, 2007], which, differently from our ap-
proach, operates on concrete models rather than abstract ones.
In essence, Sf is a PIIS of two agent templates: T and T f ;
its concrete instantiations compose an arbitrary number of
agents from T and T f . As we show below, Sf can be used
to reason about S’s tolerance to faults in the system. Specif-
ically, in what follows we will devise a method to establish
how many faulty agents, expressed as a ratio of faulty versus
correctly functioning agents, a MAS can tolerate with respect
to a given specification for the system.

Technically T f is an extension of T ; intuitively T f can
represent all T ’s behaviours but also additional ones encod-
ing (by means of additional states, actions and transitions)
various notions of faults which can non-deterministically be
exhibited by any concrete agent built from T f . In what fol-
lows we instantiate the mainstream taxonomy of faults pre-
viously used to reason about fault-tolerant systems [Bozzano
and Villafiorita, 2007; Joshi and Heimdahl, 2005] on PIISs.

We use the Cartesian product of a finite set Var of Boolean,
integer, and enumerate variables to encode the agent tem-
plate’s local states, and define a fault as an update on either
of these variables that is not modelled by the transition func-
tion of the original nominal template. We write lv to denote
the value of the variable v at local state l and D(v) to express
the value domain of v. Intuitively each variable represents a
different component of the agent and it is associated with dif-
ferent failure modes depending on its type:

• Boolean faults encode behaviours where a Boolean vari-
able can erroneously get inverted, non-deterministically
updated, or stuck at its current value. T f models the
realisation of Boolean faults by performing the actions
invert(v), random 0 (v) and random 1 (v), stuck(v),
respectively, for each Boolean variable v; we write BAct
for the set of all actions pertaining to Boolean faults.

• Integer faults represent situations where an integer vari-
able is erroneously increased, decreased, or not updated
as it should. T f models the realisation of integer faults
by performing the actions ramp d(v), ramp u(v),
stuck(v), respectively, for each integer variable v; we
write IAct for the set of all actions pertaining to integer
faults.

• Enumerate faults encode transitions where the value of
an enumerate variable is replaced by a different value in-
correctly, or not updated when it should have. T f mod-
els the realisation of enumerate faults by performing the
actions replace(v , x , y) (replace value x of v with y),
update(v , x ) (update v to x), stuck at(v , x ) (v is stuck
at x whenever at x) for each enumerate variable v; we
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write EAct for the set of all actions pertaining to enu-
merate faults.

We now present the faulty agent template T f by defin-
ing all of its components. T f is given as a tuple T f =〈
Lf , ιf , Actf , P f , tf

〉
, where Lf =

∏
VAR × faulty ×

injected is the set of local states and ιf = (ι,⊥,⊥) is
the initial state. The Boolean variable injected represents
whether a fault has ever been injected by a concrete agent
following the template. The Boolean variable faulty encodes
whether a concrete agent will ever inject a fault while the
system is evolving. (Note that no faults are ever injected to
the variables faulty and injected .) In particular at the ini-
tial state the agent chooses non-deterministically whether it
will ever inject a fault. If so, it performs the asynchronous
action faulty X thereby setting faulty to true; otherwise it
performs the asynchronous action faulty × thereby setting
faulty to ⊥. The set Actf of actions is equal to Actf =
Act ∪ {faulty X, faulty ×} ∪ FACT , where FACT =
(Act × (BAct ∪ IAct ∪ EAct)) is the set of actions respon-
sible for injecting faults. The protocol P f : Lf → P(Actf )
is defined by

• P f (ιf ) = {faulty X, faulty ×};
• P f (l) = P (l) whenever l 6= ιf and lfaulty = ⊥;

• P f (l) = P (l)∪(P (l)×BAct∪IAct∪EAct) whenever
l 6= ιf and lfaulty = >.

By means of the above at each time-step a fault is non-
deterministically injected.

We now explain the consequences, in terms of local transi-
tions, following the presence of a fault. Formally, whenever a
fault represented by the action (a, af ) ∈ FACT is injected,
the variables of the agent are updated as per t(l, a) but for the
variable associated with af . Specifically the transition func-
tion tf : Lf × Actf → Lf is defined by tf (l, act) = l′ iff
either one of the following holds:

• Initialisation: l = ιf and either act = faulty X, l′ =
(ι,>,⊥), or act = faulty ×, l′ = (ι,⊥,⊥).
• Nominal transition: l 6= ιf , l′faulty = lfaulty , l′injected =

⊥, act ∈ Act, and l′x = (t(l, act))x for x 6= faulty 6=
injected .
• Faulty transitions: l 6= ιf , lfaulty = l′faulty = >,
l′injected = >, l′x = (t(l, a))x for x 6= v 6= faulty 6=
injected , and either one of the following holds:

- Boolean inverted: act = (a, invert(v)) and l′v = ¬lv .
- Boolean random: act = (a, random x (v)), l′v = x and
x ∈ {0, 1}.

- Boolean stuck: act = (a, stuck(v)) and l′v = lv .
- Integer ramped down: act = (a, ramp d(v)) and l′v =

max(0, lv − 1).
- Integer ramped up: act = (a, ramp u(v)) and l′v =

min(|D(v)|, lv + 1).
- Integer stuck: act = (a, stuck(v)) and l′v = lv .
- Enumerate replace: act = (a, replace(v , x , y)) and ei-

ther lv = x, l′v = y or lv 6= x, l′v = (t(l, a))v .

- Enumerate update: act = (a, update(v , x )) and l′v = x.
- Enumerate stuck: act = (a, stuck at(v , x )) and either
lv = l′v = x or lv 6= x, l′v = (t(l, a))v .

The faulty environment ef extends e by including all faulty
agent-environment and global-synchronous actions. Formally
ef =

〈
Lfe , ι

f
e , Act

f
e , P

f
e , t

f
e

〉
, where: Lfe = Le; ιfe = ιe;

Actfe = Acte ∪ AE f ∪ GS f ; P fe is as P e but defined on
the faulty actions by (a, af ) ∈ P fe iff a ∈ Pe; and tfe is as
te but defined on the faulty actions by tfe (l, (a, af )) = l′ iff
te(l, a) = l′.

Lastly, to define the faulty PIIS Sf we consider the
labelling function V f = V ∪ V ′ to be the union of
the labelling function V of S and the labelling function
V ′ : Lf → 2L AP ∪ 2G AP ∪ 2{injected,faulty} that assigns
propositional variables to T f ’s states as follows: V ′(l) =
V ((lv1 , . . . , lv|VAR|)) ∪ {injected | linjected=>} ∪ {faulty |
lfaulty=>}, where injected and faulty are global atomic
propositions. In other words V ′ extends V by labelling the
states in Lf with injected , faulty whenever the correspond-
ing variables are true. So if faulty is true at a state, then all
faulty agents will potentially display a fault during the evolu-
tion of the system; if injected is true at a state, then all faulty
agents have injected a fault at the current time-step.

Having defined the notion of faulty PIISs, we move to ex-
press specifications to reason about the fault-tolerance of an
unbounded MAS w.r.t. a ratio 1/λ of faulty to nominal agents
and a specification φ; note that, as we will formally define
in the next section, we are only concerned with the concrete
systems satisfying said ratio. For instance, the total tolerance
specification expresses that the system is not affected (as far
as φ is concerned) by the actions of the faulty agents:

φTT , AGφ (Total Tolerance)

In other words, the faulty system satisfies φTT if φ always
remains true in it, irrespective of how many agents display
faulty behaviour.

The bounded tolerance specification can be used to give
guarantees on the satisfaction of φ whenever the ratio of
faulty to nominal agents is below 1/λ:

φBT , AG(¬faulty → φ) (Bounded Tolerance)

The intermittent tolerance specification determines whether φ
is tolerant to a ratio of 1/λ faulty to nominal actions occurring
simultaneously at the current time-step:

φIT , AG(injected → φ) (Intermittent Tolerance)

The recoverability specification encodes the eventual recov-
erability of the system in terms of the satisfaction of φ:

φR , AG(injected → AFφ) (Recoverability)

So on the faulty system the specification φmay fail, but even-
tually it becomes satisfied, thereby indicating an element of
recovery of the system with respect to φ.

4 Parameterised Fault-tolerance Problem
The previous section discussed the automatic construction of
a faulty PIIS Sf =

〈
(T, T f ), ef , V f

〉
given a nominal PIIS
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init

nominal

faulty

T

Tf

init X

init X

init n

init f

(a) Agent template Tλ.

nominal 1

nominal 2

nominal λ

ef

init n

init n

init n

init f

init X

init X

init X

(b) Environment template eλ.

Figure 1: The PIIS Sλ.

S = 〈T, e, V 〉. In this section we develop a method to reason
automatically about the faulty system Sf . In particular we
aim to be able to answer the following question. Does a sys-
tem of arbitrarily many n ≥ 1 agents, up to bn/λc of which
may develop faults, satisfy a given specification? We define
this formally as the decision problem below.

Definition 6 (PFTP). Given a PIIS S , a natural number
λ, and an IACTLK\X formula φ, the parameterised fault-
tolerance problem is the decision problem of determining
whether the following holds:

Sf
(
(n, nf )

)
|= φ for every n ∈ N, nf ∈ N with nf = bn/λc.

If this holds, then φ is said to be satisfied by Sf ; this is de-
noted by Sf |=λ φ.

In other words the PFTP w.r.t. a specification φ and a ratio
1/λ returns “yes” if all the concrete systems of n agents of
which bn/λc are faulty satisfy the specification φ.

We now compare the PFTP and the PMC when they are
both defined on faulty systems built from Sf . Note that while
the PFTP has technical similarities with the PMCP, the ob-
ject of study is inherently different: while the PMCP studies
all possible faulty systems, the PFTP is limited to faulty sys-
tems satisfying a predetermined ratio of faults. This has con-
sequences on the methodology to be employed. While PMCP
approaches use counter abstraction methodologies [Kouvaros
and Lomuscio, 2015a] (which reduce the PMCP to the prob-
lem of checking a single abstract system encoding all con-
crete systems) or cutoff techniques [Kouvaros and Lomuscio,
2016b] (which reduce the PMCP to the problem of checking
all concrete systems up to a cutoff system), these procedures
cannot be directly employed to solve the PFTP. Specifically,
no conclusions can be drawn on the PFTP if the PMCP re-
turns a negative answer. This is because the concrete systems
falsifying the specification may contain more faulty agents
than the ratio the PFTP prescribes.

To solve this problem we devise abstract templates Sλ that
are built from the faulty Sf but only generate concrete sys-
tems satisfying the λ constraint on the ratio of faulty agents
present. The PIIS Sλ includes a single agent template that
includes an initialisation phase. The initialisation phase will
ensure that any concrete systems generated from Sλ include
exactly one faulty agent every λ nominal agents.

We now describe the PIIS Sλ =
〈
Tλ, eλ, V λ

〉
, represented

in Figure 1. In any concrete system built from Sλ all agents
are initially in state init and the environment is initially in
state nominal 1 . At init the agents can either perform the
agent-environment action init n or the agent-environment
action init f . Each action can be performed only when the
environment can also perform the action. But the environ-
ment is defined to perform λ init n actions consecutively
followed by an init f action; the former action updates the
state of the agent to nominal and the latter to faulty . There-
fore there is one agent in state faulty for every λ − 1 agents
in state nominal . In these states the agents can only perform
the global synchronous action init X which marks the end
of the initialisation phase. Following this the system reaches
a global state in which there is one agent in the initial state
of T f for every λ − 1 agents in the state of T , and the envi-
ronment is in the initial state of ef . Following this the agents
behave identically to T f and T respectively.

Finally the evaluation function V λ labels a state from T or
T f with an atomic proposition iff the state is labelled with the
proposition by V f .

The following theorem shows that Sλ can be used to solve
the PFTP on Sf .
Theorem 1. Let S be a PIIS, λ ∈ N, and φ an IACTLK\X
formula. The following holds: Sf |=λ φ iff Sλ |= φ.

We can exploit Theorem 1 by constructing Sλ automat-
ically, thereby obtaining a procedure to evaluate the fault-
tolerance of a system against a specification for a given ratio.
In particular, given a nominal PIIS S = 〈T, e, V 〉, λ ∈ N, and
an IACTLK\X formula φ the PIIS Sf =

〈
(T, T f ), ef , V f

〉
is constructed; T f extends T to include Boolean, integer,
and enumerate faults. Then the PIIS Sλ is built follow-
ing the description above; the PMCP is then solved on it
by employing any parameterised model checker for MAS,
e.g., MCMAS-P [Kouvaros and Lomuscio, 2016b]. The latter
would return true iff the PFTP is true for Sf , λ, and φ.

5 Evaluation
We developed MCMAS-PFI, a toolkit realising the fault injec-
tion method described earlier, on top of MCMAS-P, an open-
source model checker for the verification of PIISs [Kouvaros
and Lomuscio, 2013]. MCMAS-P’s input language closely
follows the modular structure of the agent templates. This was
extended to include the declaration, as per Section 2, of the
faults to be injected on the variables encoding the agents.

Upon its invocation MCMAS-PFI builds the faulty agent
template by updating, using the procedure described in Sec-
tion 3 applied to the faults specified, the MCMAS-P’s in-
ternal structures representing the agent template’s compo-
nents. These are further modified, by using the algorithm
in Section 4, to obtain the PIIS Sλ whose concrete instan-
tiations satisfy the given ratio 1/λ. The base model-checker
MCMAS-P is then called to verify Sλ against the given speci-
fications. Following this, the user can conclude, by using The-
orem 1, whether the specifications hold on a MAS of any size
whose ratio of faulty to nominal agents falls below 1/λ.

Fault-tolerance in the Alpha algorithm. We now assess
the fault-tolerance of the Alpha swarm aggregation algo-
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rithm [Winfield et al., 2008], a protocol used to aggregate
robotic swarms in the areas of operation. We adopt the typi-
cal setting employed to analyse the algorithm [Dixon et al.,
2012]. In particular we assume that each robot moves on a
two-dimensional arena and communicates with its peers via a
wireless sensor of limited range. The arena is assumed to be
finite and allowed to wrap around, i.e., for an α×α arena, the
cell (1, 1) is to the right of the cell (1, α).

We now describe the algorithm. To begin, define a robot
to be in another robots neighbourhood if the position of the
former is in the range of the latter’s sensor. Each robot keeps
track of the number of its neighbours. This determines the
robots’ connectedness statuses. Specifically, a robot is said to
be connected if its neighbourhood is composed of at least α
robots, for a threshold α. The behaviour of each of the robots
is characterised by their connectivity status and by whether
they are in forward motion mode or in coherence motion
mode: if a robot is in forward mode and connected, then it
moves forward; if it is in forward mode, but not connected,
then it performs a 180◦ turn and changes its motion mode to
coherence; if it is in coherence mode, but not connected, then
it moves forward; finally, if it is in coherence mode and con-
nected, then it performs a random 90◦ turn and changes its
motion mode to forward.

In the following we fix a 5 × 5 arena, assume a commu-
nication range of 1, and let α = 2. Initially the robots are
connected, in forward mode, and collectively have every pos-
sible direction of movement. We refer to [Kouvaros and Lo-
muscio, 2015b] for the formal account of the PIISs modelling
this instantiation of the algorithm. We are here interested in
analysing the swarm’s connectedness property [Dixon et al.,
2012] “every nominal robot knows that it will be infinitely
often connected” as encoded by the indexed ACTLK\X for-
mula 2 φAA , ∀v : KvGF (connected , v). In particular, we
are interested in assessing the tolerance of φAA to local mal-
functions of the robots. These can generally be realised by
either hardware failures or the unpredictability of the envi-
ronment. We consider the following faults:
• Direction failures. Either a robot becomes unable to

change direction, or it adopts the wrong direction. To ac-
count for these failures, stuck at and update faults are
injected to the enumerate variable encoding direction.
• Detection failures. A robot fails to detect some of the

robots in its neighbourhood. This may result in the erro-
neous update of the connectivity status of the robot, as
modelled by the random fault injected in the Boolean
variable representing connectedness.
• Motion failures. The motion mode of a robot may not

be updated as it should. stuck at and update faults are
injected to the enumerate variable encoding the motion
mode to represent these failures.

Having described the above failures as input to
MCMAS-PFI we instantiated the fault-tolerance speci-
fications of Section 2 on φAA. MCMAS-PFI concluded
that these are satisfied given λ = 4; this implies that the

2Note that the formula is evaluated by quantifying only over the
nominal agents.

specifications are also satisfied whenever λ > 4. However,
all specifications were falsified on input λ = 3; this implies
that the specifications are also falsified whenever λ > 2 or
λ = 1. Intuitively whenever the percentage of faulty robots
is 33% and above, the exhibited faults impact the overall
behaviour of the swarm not only by splitting the connected
cluster of robots, but also by potentially never allowing them
to regroup. This contributes to the recent body of work on the
formal analysis of the Alpha algorithm [Dixon et al., 2012;
Kouvaros and Lomuscio, 2015b] by establishing the tol-
erance of the algorithm to direction, detection and motion
failures on a swarm of any size whose percentage of faulty
agents is below 33%. Having formal bounds on the system’s
tolerance to faults at runtime, provides clear guidance to
engineer the system appropriately to ensure its overall
specifications are satisfied.

6 Conclusions
Most of the research conducted in validation of MAS con-
cerns the development of systems for showing that a MAS is
correct with respect to a given specification. While progress
in this area is of fundamental importance, comparatively less
attention is devoted to the problem of evaluating how robust
a MAS is when it is functioning at runtime. Of course, this
is a question routinely addressed by engineers before deploy-
ment; but few techniques are available to address this aspect
formally and automatically. One exception is safety analysis.
In particular, as discussed in the paper, safety analysis via
fault-injection provides a way of studying the consequences
of faults with respect to a specification, and therefore assess
the resilience of a system with respect to faults.

Fault-injection has so far been limited to systems and MAS
whose agents are known at design time. Yet, when MAS are
deployed as in, e.g., auctions, swarm systems, etc., the num-
ber of agents that will populate the system is not known. As
a consequence, no existing technique can evaluate the con-
sequences of non-ideal behaviour of a portion of the com-
ponents for a system of varying size. Yet, some unbounded
MAS are employed precisely because they offer a degree of
robustness with respect to run-time faults. The method that
we presented in the paper enables the formal and automatic
analysis of the robustness of an unbounded MAS with respect
to a given temporal-epistemic specification. In particular, we
can assess whether all (infinitely many) systems in which the
ratio of faulty versus non-faulty agents is under a given pa-
rameter satisfy the specification. The tool we presented makes
it possible to study this problem automatically.

Note that in the paper we did not discuss the problem of
identifying the ratio under which a system satisfies a given
specification. Still, the tool that we presented already makes
this possible by iteratively calling it until the ratio is found.
A deeper analysis of this will be conducted in future work
together with further applications to swarm analysis.
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