
Symbolic Synthesis of Fault-Tolerance Ratios
in Parameterised Multi-Agent Systems

Panagiotis Kouvaros1, Alessio Lomuscio2 and Edoardo Pirovano2

1 University of Cyprus, Department of Computer Science
2 Imperial College London, Department of Computing

panagiotis.kouvaros@gmail.com, a.lomuscio@ic.ac.uk, e.pirovano17@ic.ac.uk

Abstract
We study the problem of determining the robust-
ness of a multi-agent system of unbounded size
against specifications expressed in a temporal-
epistemic logic. We introduce a procedure to syn-
thesise automatically the maximal ratio of faulty
agents that may be present at runtime for a spec-
ification to be satisfied in a multi-agent system.
We show the procedure to be sound and amenable
to symbolic implementation. We present an im-
plementation and report the experimental results
obtained on a number of protocols from swarm
robotics.

1 Introduction
A key criterion when assessing protocols in multi-agent sys-
tems (MAS) is establishing their correctness against a set of
specifications. While important, this is often not sufficient
for deployment in several scenarios of practical significance.
Even if a protocol can be shown to be demonstrably correct,
the designer has no information on the impact of possible
faults and malfunctions at runtime. This is of importance in
large MAS where the individual risk of failure is high, as is
the case in robotic swarms [Winfield et al., 2005].

It is therefore of interest not just to establish correctness,
but the degree of fault-tolerance of a protocol with respect
to possible faults in the system. In the case of MAS com-
posed of a fixed number of agents known at design time, tech-
niques inspired by safety-analysis [Bozzano and Villafiorita,
2007], allow the engineer to study the consequences of a va-
riety of faults against specifications of interest [Ezekiel and
Lomuscio, 2009; 2017]. For example in [Ezekiel et al., 2011]
the resilience of an autonomous submarine AUTOSUB6000
against possible faults was assessed in this manner.

Often, however, the number of agents constituting a MAS
is not known in advance, or indeed changes at runtime. This
is the case in several areas of artificial intelligence includ-
ing robotic swarms for monitoring or repair, auctions, etc.
In these cases, it is useful to determine the maximal ratio of
faulty agents (as a proportion of the whole population) that
the protocol can tolerate against some specification. For ex-
ample, in a flocking protocol we may be interested in the per-
centage of drones that need to be faulty for the rest of the

swarm to lose its ability to fly in formation [Kouvaros and
Lomuscio, 2017]. Determining this ratio can have significant
consequences on engineering aspects of the system.

Under general conditions, determining this ratio is unde-
cidable [Apt and Kozen, 1986]. In [Kouvaros and Lomuscio,
2017], a method for checking a class of systems of interest
against a given ratio of faults is put forward. This induces
a procedure for calculating an approximation of the ratio.
However, this calculation rests on model checking systems of
varying sizes and is therefore computationally expensive and
often entirely impractical. In this paper we develop a novel
technique to derive the fault tolerance ratio symbolically. The
ratio, as we explain, is incorporated into a model that en-
codes various combinations of faulty and correct agents oper-
ating at runtime. This symbolic calculation, which amounts
to solving a version of the parameterised model checking
(PMC) problem [Kouvaros and Lomuscio, 2016] in combi-
nation with a generalised model checking algorithm, enables
us to synthesise the ratio as a one-shot procedure.

Related work. The PMC problem has been exten-
sively studied [Bloem et al., 2015]. More recently, it has
also been used to study fault tolerance in distributed algo-
rithms [Aminof et al., 2018; John et al., 2013; Zhang et al.,
2009]. However, these approaches either are not amenable to
analysing MAS (due to, for instance, a lack of epistemic spec-
ifications) or do not tackle the issue we tackle here of finding
the ratio of faulty to non-faulty components.

The rest of the paper is organised as follows. In Section 2
we fix the notation and introduce the parameterised seman-
tics upon which the framework is developed. In Section 3 we
present a generalised model checking procedure which can
be used to synthesise the ratio of faulty agents in a MAS of a
fixed number of agents. We build on this in Section 4 where,
by combining this with results in parameterised model check-
ing, we derive a provably sound procedure for MAS of arbi-
trary size. We present an implementation of the technique in
Section 5 and report on its use on transport and aggregation
protocols for swarm systems. We conclude in Section 6.

2 Background
Models. Parameterised interleaved interpreted systems (PI-
ISs) give a model to reason about MAS composed of an un-
bounded number of agents by extending interleaved inter-
preted systems (IIS) [Lomuscio et al., 2010]. The presenta-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

324

tion here follows that in [Kouvaros and Lomuscio, 2017]. A
PIIS is made up of an agent template, which describes the be-
haviour of individual agents and an environment which cap-
tures the rest of the state of the system. The framework can
accommodate a finite number of different agent templates,
but for simplicity we present the definitions with just one.

The agent template T = 〈L, ι, Act, P, t〉 defines a finite,
non-empty set of local agent states L together with a dis-
tinguished initial state ι ∈ L. The non-empty set Act =
A ∪ AE ∪ GS gives the actions that can be performed by
the agents, which are either asynchronous actions, agent-
environment actions or global-synchronous actions. Each
type of action gives a different communication pattern be-
tween the agents, as outlined in Definition 2. The actions are
performed in compliance with a protocol P : L → P(Act)
that defines which actions are enabled in each state. The
agent’s transition function t : L × Act → L describes the
evolution of the agent’s state: given its local state and the ac-
tion performed, it returns its new local state.

Similarly, the environment e = 〈Le, ιe, Acte, Pe, te〉 de-
fines a finite, non-empty set of local states Le, a distin-
guished initial state ιe ∈ Le, a non-empty set of actions
Acte = Ae ∪ AE ∪ GS , a protocol Pe : Le → P(Acte),
and a transition function te : Le ×Acte → Le.
Definition 1 (PIIS). A parameterised interleaved interpreted
system is a tuple S = 〈T, e,V〉, where V : L → 2AP is a
labelling function on the agent template’s states for a set AP
of atomic propositions.

Each PIIS describes an unbounded collection of concrete
systems obtained by choosing different numbers of agents in
the system. Given a PIIS S and n ∈ Z+ the IIS S(n) of
n agents is the result of the composition of n copies of T
with the environment. We denote the set of concrete agents
instantiated from T by A = {1, . . . , n}. A global state
g = 〈l1, . . . , ln, le〉 is a tuple of local states for all the agents
and the environment in S(n); it describes the system at a par-
ticular instant of time. For a global state g we write g.i to de-
note the local state of agent i in g and g.e to denote the state
of the environment in g. The system’s global states evolve
over time in compliance with the global transition relation.
Definition 2 (Global transition relation). The global transi-
tion relation R ⊆ G× Act ∪ Acte ×G on a set G of global
states is defined as (g, a, g′) ∈ R iff one of the following
holds:
• (Asynchronous). (i) a ∈ A∪Ae; (ii) there is i ∈ A∪{e}

s.t. a ∈ P (g.i) and t(g.i, a) = g′.i; (iii) for all j 6= i,
g.j = g′.j.
• (Agent-environment). (i) a ∈ AE; (ii) there is i ∈ A s.t.
a ∈ P (g.i) and t(g.i, a) = g′.i; (iii) a ∈ Pe(g.e) and
te(g.e, a) = g′.e; (iv) for all j 6= i, j 6= e, g.j = g′.j.
• (Global-synchronous). (i) a ∈ GS; (ii) for all i ∈ A,
a ∈ P (g.i) and t(g.i, a) = g′.i; (iii) a ∈ Pe(g.e) and
te(g.e, a) = g′.e.

We sometimes write g → g′ for ∃a : (g, a, g′) ∈ R.
Above R defines precisely one action to be performed at

each time step. If this is an asynchronous action, then ex-
actly one agent participates in the global transition; if it is an

agent-environment action, then exactly one agent and the en-
vironment participate in the global transition; if it is a global-
synchronous action, then all the agents and the environment
participate in the global transition.

Having defined the global transition relation, we can pro-
ceed to give the concrete semantics describing the behaviour
of a system S(n) composed of n agents and an environment.
Definition 3 (Concrete semantics). Given a PIIS S and n ∈
Z+, the IIS S(n) is a tuple S(n) = 〈G, g0, R, V 〉, where
G ⊆ Ln × Le is the set of reachable global states via R
from the initial global state g0 = 〈ι, . . . , ι, ιe〉, and V : G→
2AP×A is the labelling function on the global states defined
by (p, i) ∈ V (g) iff p ∈ V(g.i), for each p ∈ AP , i ∈ A,
where AP is a finite set of atomic propositions.

Notice that for each atomic proposition p we create a copy
for each of the n agents and label a global state with (p, i) if
the agent i is at a local state labelled with p by the template
labelling function.

A path π is an infinite sequence π = g0a0g1a1g2 . . . such
that (gi, ai, gi+1) ∈ R for every i ≥ 0. We write π(i) for the
i-th state in π. The set of all paths originating from a state g
is denoted by Π(g).

Specifications. We now define the logic ICTLK\X which
extends the temporal-epistemic logic CTLK without the next
time operator by introducing indexed atomic propositions and
indexed epistemic modalities that are quantified over the con-
crete agents [Kouvaros and Lomuscio, 2016]. Given a set
IND of indices, a set AP of atomic propositions, ICTLK\X
formulae are defined by the following BNF grammar:

φ ::= true | (p, v) | ¬φ | φ ∧ φ | φ ∨ φ | E(φUφ)

| EGφ | Kiφ | ∀v : φ

where p ∈ AP and v ∈ IND . The epistemic modality Kiφ
is read as “agent i regards φ as being epistemically possi-
ble”. The temporal modality E(φ1Uφ2) denotes “for some
path, at some point φ2 holds and before then φ1 is true along
the path”; and EG(φ) denotes “for some path, φ holds at ev-
ery state”. We also use standard CTL abbreviations such as
Fφ ≡ true Uφ. The universal quantifier allows us to express
properties irrespective of the number of agents in the system.
An ICTLK\X formula is said to be a sentence if every vari-
able appearing the formula is in the scope of a universal quan-
tifier. Hereafter we consider only sentences.
Definition 4 (Satisfaction of ICTLK\X). The satisfaction
relation |= for an IIS S(n), and an ICTLK\X sentence
φ is inductively defined as follows (the clauses for the
atomic propositions and the Boolean operators are omitted):

(S(n), g) |= E(φ1Uφ2) iff for some π ∈ Π(g), for
some i ≥ 0 (S(n), π(i)) |=
φ2 and for all 0 ≤ j < i,
(S(n), π(j)) |= φ1;

(S(n), g) |= EGφ iff for some π ∈ Π(g), for all
i ≥ 0, (S(n), π(i)) |= φ;

(S(n), g) |= Kiφ iff for some g′ ∈ G with
g.i = g′.i it is the case that
(S(n), g′) |= φ;

(S(n), g) |= ∀v : φ iff (S(n), g) |= φ[v 7→ ag]
for all ag ∈ A.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

325

Notice that, since all agents are behaviourally identical,
the evaluation of a universally quantified formula is equiva-
lent to the evaluation of only one of its ground instantiations,
where the variables in an instantiation are mapped to differ-
ent agents [Kouvaros and Lomuscio, 2016]. Hereafter, we
will only consider such ground instantiations.

Two fragments of this logic are important for our purposes:
the existential fragment ECTLK\X is obtained by restricting
negation to only being applied to propositions, i.e. replacing
¬φ by ¬(p, v) in the syntax. The dual universal fragment
ACTLK\X is the negation of this fragment, i.e. the language
{¬φ | φ ∈ ECTLK \X}.

Our specifications will be expressed in ACTLK\X . A for-
mula φ is said to be true in S(n), denoted S(n) |= φ, if
(S(n), g0) |= φ. We will use a definition of cutoffs similar to
that given in [Kouvaros and Lomuscio, 2013b].

Definition 5 (Cutoff). An integer c ∈ Z+ is said to be a
cutoff for a PIIS S if for all ACTLK\X formulas φ we have
that S(c) |= φ implies S(n) |= φ for all n ≥ c.

Faults. We will assume that a faulty PIIS Sf =〈
(T, T f), ef , V f

〉
can be constructed from a given PIIS S =

〈T, e, V 〉 according to the faults we wish to consider. The full
details of the faults that can be considered and how the cor-
responding faulty PIIS is constructed are omitted for space
and can be found in [Kouvaros and Lomuscio, 2017]. The
faulty PIIS Sf is constructed from the non-faulty PIIS S by
adding a second agent template T f that may, in addition to
performing all the behaviours T performs, also perform cer-
tain faulty behaviours. The environment is modified suitably
for synchronisation purposes and the valuation function is ex-
tended to label states with a new atomic proposition faulty
that holds in agent i’s local state precisely if agent i has ex-
hibited faulty behaviour at some point in the past. We de-
note by Sf ((nn, nf)) the concrete system with nn non-faulty
agents and nf faulty ones instantiated from T and T f respec-
tively. Also note that formulae are evaluated on a faulty PIIS
by quantifying only over non-faulty agents.

3 Ratio Synthesis
As a stepping stone to parameterised fault tolerance, we now
define the notion of fault tolerance for concrete MAS of a
fixed size.

Definition 6 (Fault Tolerance). Given a faulty PIIS Sf , a ra-
tio λ ∈ [0, 1], an integer n ∈ Z+ and an ACTLK\X formula
φ, we say that size n instances of Sf are λ-tolerant with re-
spect to φ if it is the case that:

Sf ((nn, nf)) |= φ for every nn, nf ∈ Z

such that nn + nf = n and nf/n ≤ λ

If this is the case we write Sf |=λ
n φ.

Intuitively, the above definition says that if a proportion up
to λ of the n agents exhibit faulty behaviour then the specifi-
cation φ is satisfied. In what follows we are concerned with
finding how tolerant a system is to faults with respect to a
specification. We formalise this decision problem as follows.

Algorithm 1 λ-synthesis Decision Procedure
1: procedure λ-SYNTHESIS(Sf , φ, n)
2: X← Lambda(Sf ((0, n)),¬φ);
3: if ∃ρ : (g0, ρ) ∈ X then
4: return min {ρ ∈ [0, 1] | (g0, ρ) ∈ X};
5: else
6: return total;
7: end if
8: end procedure

Definition 7 (λ-synthesis). Given a faulty PIIS Sf , an integer
n ∈ Z+ and an ACTLK\X formula φ, find λ ∈ [0, 1] such
that Sf 6|=λ

n φ and Sf |=λ′

n φwhenever λ′ < λ, or return total
if no such λ exists (i.e. the specification is always satisfied).

Our approach is loosely inspired by the procedures for pa-
rameter synthesis used in biological modelling [Beneš et al.,
2016; Barnat et al., 2012] but with important adaptations for
our setting of fault tolerance in multi-agents systems. Our
procedure, shown in Algorithm 1, passes the system of n
faulty agents and the negation of our specification to a sub-
procedure Lambda, shown in Algorithm 2.

This sub-procedure works similarly to the labelling algo-
rithm for model checking CTL [Clarke et al., 1999]. The
algorithm recursively labels the states of a system with the
subformulas of the specification under question that they sat-
isfy. Differently from the CTL labelling algorithm, Lambda
labels states with both said subformulas and the minimum ra-
tio of faulty agents to total agents that is sufficient for the
specification to be satisfied at the state. Thus, Lambda op-
erates on sets of pairs of states and ratios instead of sets of
states. Note that since Lambda takes as input the negation
of an ACTLK\X formula, the procedure is defined for the
existential fragment ECTLK\X of CTLK\X .

We now give some preliminary definitions that we will use
in our procedure. For a global state g we use λ(g) to denote
the ratio of agents that have exhibited a fault to total agents,
i.e.

λ(g) , | {i ∈ A | (faulty, i) ∈ V (g)} |/n

Given a set of global states X we use ratio(X) to denote the
minimum ratio of faulty agents in a state in X . Formally:

ratio(X) , min {λ(g) | g ∈ X }

For a set X ∈ G × [0, 1] we sometimes simply write X for
the projection of X on the states. Formally:

X , {g ∈ G | ∃ρ ∈ [0, 1] : (g, ρ) ∈ X}

Given X let pre∃(X) denote the pre-image of X defined as:

pre∃(X) , {(g, ρ) | g ∈ pre∃(X) ∧ ρ = ratio(next(g) ∩X)} .

where next(g) , {g ′ | g → g ′} expresses the set of succes-
sor states of g and pre∃(X) , {g | ∃g′ : g → g′ ∧ g′ ∈ X}
denotes the preimage of a set of states X .

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

326

Algorithm 2 Labelling Procedure
1: procedure LAMBDA(Sf ((0, n)), φ)
2: case φ
3: (p, ag) : return {(g, λ(g)) | (p, ag) ∈ V (g)}.
4: ¬(p, ag) : return {(g, λ(g)) | (p, ag) /∈ V (g)}.
5: φ1 ∧ φ2 : return X where (g, ρ) ∈ X iff there are
ρ′ and ρ′′ such that (g, ρ′) ∈ Lambda(Sf ((0, n)), φ1),
(g, ρ′′) ∈ Lambda(Sf ((0, n)), φ2) and ρ =
max(ρ′, ρ′′).

6: φ1 ∨ φ2 : return X where (g, ρ) ∈ X
iff (g, ρ′) ∈ Lambda(Sf ((0, n)), φ1) or (g, ρ′′) ∈
Lambda(Sf ((0, n)), φ2), for some ρ′, ρ′′ with ρ =
min(ρ′, ρ′′).

7: Kiψ : return LambdaK(Sf ((0, n)), i, ψ).
8: E(φ1Uφ2) :
9: return LambdaEU (Sf ((0, n)), φ1, φ2).

10: EGψ : return LambdaEG(Sf ((0, n)), ψ).
11: end case
12: end procedure
13: procedure LAMBDAK(Sf ((0, n)), i, φ)
14: X← Lambda(Sf ((0, n)), φ);
15: return {(g, ρ) ∈ G × [0, 1] | ∃g′ ∈ X : g.i = g′.i ∧

ρ = ratio({g′ ∈ X | g.i = g′.i})}.
16: end procedure
17: procedure LAMBDAEU (Sf ((0, n)), φ1, φ2)
18: X← Lambda(Sf ((0, n)), φ1);
19: Y← G× {0};
20: Z← Lambda(Sf ((0, n)), φ2);
21: while Y 6= Z do
22: Y← Z;
23: Z ← Z ∪ {(g, ρ) ∈ G× [0, 1] | ∃ρ′, ρ′′ ∈ [0, 1] :

(g, ρ′) ∈ pre∃(Z) ∧ (g, ρ′′) ∈ X ∧ ρ = max(ρ′, ρ′′)}.
24: end while
25: return Z;
26: end procedure
27: procedure LAMBDAEG(Sf ((0, n)), φ)
28: X← G× {0};
29: Y← Lambda(Sf ((0, n)), φ);
30: while X 6= Y do
31: X← Y;
32: Y ← {(g, ρ) ∈ Y × [0, 1] | ∃ρ′, ρ′′ ∈ [0, 1] :

(g, ρ′) ∈ pre∃(Y) ∧ (g, ρ′′) ∈ Y ∧ ρ = max(ρ′, ρ′′)}.
33: end while
34: return Y;
35: end procedure

We now describe the Lambda procedure. The proposi-
tional cases are trivial: we can simply label each state which
satisfies or does not satisfy the atomic proposition with the
ratio of faulty agents at that state. For the conjunction case,
notice we need both φ1 and φ2 to hold so the minimum neces-
sary ratio of faults is the largest of the ratios for each of these
two to hold. The disjunction case is similar.

For the epistemic modality case, notice we need at least
one epistemic successor to satisfy φ so we take the minimum
ratio for this to be the case.

For the φ1Uφ2 case, we use a set Z that begins with the
states satisfying φ2 and the fault ratios under which this is

the case. Then, we add predecessors of this set that satisfy
φ1 and label them with the maximum of the ratio needed to
ensure they satisfy φ1 and the least ratio needed to ensure a
successor satisfies φ2. This is repeated until a fixed point is
reached.

For the EGφ case, we begin by finding all the states satis-
fying φ and labelling them with the ratio needed for this to be
the case. Then, we repeatedly reduce this set to include only
those states that can reach a successor within the set and pos-
sibly increase the label of the state if all the successors have
a higher label than it does. This is repeated until a fixed point
is reached.

We now show that the output of λ-SYNTHESIS reflects the
minimum ratio for which the Fault Tolerance problem would
return false w.r.t the concrete system and specification given
as input. We prove this by means of two steps.
Theorem 1. Let λ = λ-SYNTHESIS(Sf , φ, n) 6= total for a
faulty PIIS Sf and an ACTLK\X formula φ. Then Sf 6|=λ

n φ.

Proof sketch. By definition of λ-SYNTHESIS and an adap-
tation of the proof for the CTL labelling algorithm [Clarke
et al., 1999], we have that ¬φ is satisfied in the submodel of
Sf ((0, n)) built only from states in which the ratio of agents
exhibiting faults is less than or equal to λ. Consequently, we
have Sf 6|=λ

n φ.

Before proceeding with the next part of the proof, we
show some intermediate results. Denote by G the set of
global states of Sf ((0, n)) and G′ the set of global states of
Sf ((nn, nf)). Refer to the agents in Sf ((0, n)) by A and to
the agents in Sf ((nn, nf)) by A′.
Definition 8. A bijection ξ : A 7→ A′ is fault-preserving at
some global state g ∈ G iff every agent i ∈ A that has never
exhibited a fault in state g is mapped to a non-faulty agent
ξ(i) ∈ A′.

We define a global state g ∈ G and a global state g′ ∈ G′ to
be similar, denoted g′ ≈ g, iff there is some fault-preserving
bijection ξ such that for every i ∈ A it is the case that g.i =
g′.ξ(i), i.e. every agent is in the same local state as the agent
it is mapped to.
Definition 9. A simulation relation @⊆ G′×G is defined by
g′ @ g iff:

• g′ ≈ g
• For every path π′ in Sf ((nn, nf)) there is a path π in
Sf ((0, n)) such that π′(i) @ π(i) for every i ≥ 0.

• For every g′1 with g′.i = g′1.i there is a g1 with g.i =
g1.i and g′1 @ g1.

Lemma 1. If g′ ≈ g then g′ @ g.

Proof sketch. The proof idea is to let each faulty agent i in
Sf ((0, n)) mimic the agent ξ(i) in Sf ((nn, nf)).

We can now proceed to prove the second part of the cor-
rectness of the λ-SYNTHESIS procedure.
Theorem 2. Let λ = λ-SYNTHESIS(Sf , φ, n) 6= total for
a faulty PIIS Sf and an ACTLK\X formula φ. Then for all
λ′ < λ we have that Sf |=λ′

n φ.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

327

Proof sketch. Let nn, nf ∈ Z be such that nn + nf = n and
nf/n = λ′ < λ. We need to show that Sf ((nn, nf)) |= φ.

Let label(ψ) denote the set of minimal labels computed by
Lambda(Sf ((0, n)), ψ). We show, by structural induction
on ψ, that g′ @ g∧∃ρ : (g, ρ) ∈ label(¬ψ) implies either one
of the following: g′ |= ¬ψ, if ψ is a propositional formula;
g′ |= ψ, if ψ is not propositional. Then, we can apply this
to the initial states with ρ = λ to get our result. The propo-
sitional and boolean cases are straightforward. The temporal
cases follow from the existentiality of ψ and Lemma 1.

We show the case of ψ = Kiψ
′. We have (g, ρ) ∈

label(K i¬ψ′). We need to show that g′ |= Kiψ. Suppose
g′ 6|= Kiψ. Then, there is a state g′1 with g′.i = g′1.i and
g′1 |= ¬ψ. By Lemma 1 there is a state g1 in Sf (n) with
g′1 @ g1, ratio(g1) = ratio(g ′1) ≤ λ′ < λ and g1 |= ¬ψ.
Therefore ∃ρ : (g1, ρ) ∈ label(¬ψ). Since ratio(g1) < λ the
latter contradicts that λ is minimum.

Together, Theorem 1 and Theorem 2 show that Algorithm 1
is a sound decision procedure for the λ-synthesis problem.

4 Parameterised Ratio Synthesis
We now introduce a notion of parameterised fault tolerance
similar to that in [Kouvaros and Lomuscio, 2017], but, instead
of checking a system with a given ratio of faults against a
specification, we here determine the minimum ratio of faults
for the specification to be violated.

Definition 10 (Parameterised Fault Tolerance). Given a
faulty PIIS Sf , a ratio λ ∈ [0, 1], and an ACTLK\X for-
mula φ, we say that Sf is λ-tolerant with respect to φ if it is
the case that Sf |=λ

x φ for all x ∈ Z+. We denote this by
Sf |=λ φ.

We wish to synthesize the least λ that falsifies a specifica-
tion, which we formalise in the decision problem below.

Definition 11 (Parameterised λ-synthesis). Given a faulty
PIIS Sf and an ACTLK\X formula φ, find λ ∈ [0, 1] such
that Sf 6|=λ φ and Sf |=λ′

φ whenever λ′ < λ or return total
if no such λ exists (i.e. the specification is always satisfied).

Instead of tacking this problem directly, we consider a dis-
crete version of it.

Definition 12 (Discrete Parameterised λ-synthesis). Given a
faulty PIIS Sf , an ACTLK\X formula φ and a discretisation
step d ∈ Z+, find the solution to parameterised λ-synthesis
to within 1/d.

Notice that a complete decision procedure for this problem
cannot exist, as this would give a decision procedure for the
parameterised model checking problem, which is known to
be undecidable [Apt and Kozen, 1986]. Nonetheless, as for
the parameterised model checking problem, it is of interest to
explore decidable fragments [Emerson and Namjoshi, 1995;
Kouvaros and Lomuscio, 2016]. We do this in the procedure
shown in Algorithm 3.

The procedure takes as input the faulty PIIS Sf and the
step d and then calls a cutoff identification procedure [Kou-
varos and Lomuscio, 2013a; 2013b; 2015] to identify a cutoff
c for the system composed solely of faulty agents, i.e., the

Algorithm 3 Parameterised λ-Synthesis Decision Procedure
1: procedure P-λ-SYNTHESIS(Sf , φ, d)
2: Identify a cutoff c for

〈
T f , ef , V f

〉
or return fail;

3: m← total;
4: for n← 1 to max(d, c) do
5: m← min(m,λ-SYNTHESIS(Sf , φ, n));

where we define min(total, x) = x
6: end for
7: return m;
8: end procedure

PIIS
〈
T f , ef , V f

〉
. Since cutoffs do not exist in general, by

necessity the cited identification procedures are incomplete.
In the case a cutoff cannot be identified, then our procedure
fails. In the case a cutoff is identified, then our procedure calls
the λ-SYNTHESIS procedure on each concrete instance up
to the maximum of the cutoff and the discretisation step and
returns the minimum result of these calls. We aim to prove
that, to within 1/d, this is the least ratio for which φ is falsi-
fied. As in the previous section, we do this in two steps.
Theorem 3. Let λ = P-λ-SYNTHESIS(Sf , φ, d) 6= total for
a faulty PIIS Sf , an ACTLK\X formula φ and a discretisa-
tion step d ∈ Z+. Then Sf 6|=λ φ.

Proof. Note that for some n it is the case that Sf 6|=λ
n φ by

the correctness of λ-SYNTHESIS. The result follows imme-
diately.

Theorem 4. Let λ = P-λ-SYNTHESIS(Sf , φ, d) 6= total for
a faulty PIIS Sf , an ACTLK\X formula φ and a discretisa-
tion step d ∈ Z+. Then for all λ′ < λ − (1/d) we have that
Sf |=λ′

φ.

Proof sketch. Let nn + nf = n with nf/n = λ′ < λ. We
need to show Sf ((nn, nf)) |= φ.

Denote by c the cutoff for
〈
T f , ef , V f

〉
. The cases

where n ≤ max(d, c) follow directly from the correctness
of λ-SYNTHESIS. So, it remains to consider when n >
max(d, c). Suppose for a contradiction Sf ((nn, nf)) |= ¬φ.
Then, the initial state of Sf ((0, n)) would be labelled with
some λ′′ ≤ λ′ < λ by Lambda(Sf ((0, n)),¬φ). Now con-
sider the PIIS Sλ

′′
which is a restriction of

〈
T f , ef , V f

〉
to allow at most a ratio of λ′′ faulty agents. By the la-
belling algorithm we have that Sλ

′′
(n) |= ¬φ. Notice that

max(d, c) is also a cutoff for Sλ
′′

so it follows from this that
Sλ

′′
(max(d, c)) |= ¬φ. But now we have Sf |=λ′′

max(d,c) φ

for λ′′ < λ−(1/d), contradicting the minimality of the return
value for λ-SYNTHESIS(Sf , φ,max(d, c)).

Together, Theorem 3 and Theorem 4 show that Algorithm 3
is a sound decision procedure for the discrete parameterised
λ-synthesis problem.

5 Evaluation
We implemented our algorithms in MCMAS-PFTS, a toolkit
constructed from MCMAS-P, a model checker for the verifica-
tion of PIIS [Kouvaros and Lomuscio, 2013b]. The tool takes

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

328

Example Cutoff FTR Synthesis Iterative
TGC 3 33% 1sec 1sec

Transport 2 50% 16sec 36sec
Alpha 4 33% 986sec 1980sec

Table 1: Experimental results obtained with MCMAS-PFTS.

as input a description of the agent template and the faults to
be injected. It then constructs the faulty agent, using the pro-
cedures detailed in [Kouvaros and Lomuscio, 2017].

We used MCMAS-PFTS to assess the fault-tolerance of the
train-gate-controller, a commonly used benchmark for the
verification of MAS, and transport and aggregation protocols
in robot swarms. For simplicity, we took the discretisation
step to be equal to the cutoff in every case. We are not aware
of any other approaches for computing the fault-tolerance ra-
tio of a MAS but to compare the run time of our synthesis ap-
proach to a benchmark, we compare it to the run time of the
the naı̈ve approach of iteratively checking concrete systems
for all possible ratios of faulty to non-faulty agents using the
techniques in [Kouvaros and Lomuscio, 2017]. Our results
are summarised in Table 1.

Train-Gate-Controller. We modelled the train-gate-
controller example from [van der Hoek and Wooldridge,
2002] in which arbitrarily many trains are trying to pass
through a tunnel. A controller needs to ensure that only one
is present in the tunnel at any given time. We modelled the
fault representing that a train might remain stuck in the tun-
nel when it should have left and checked the property “if a
train is in the tunnel, it knows no other train is,” expressed in
ACTLK\X as

φ1 , ∀i, j : AG((tunnel , i)→ Ki¬(tunnel , j)).

We found a cutoff of 3, giving us a fault tolerance ratio of
33%. For this small example, there is no improvement over
the naı̈ve approach with both finding the result in 1 second.

Collective transport. We modelled a simplified ver-
sion of the algorithm described in [Ferrante et al., 2013;
Brambilla, 2014]. In this protocol a group of robots are phys-
ically connected to an object and need to move it to a target
location. However, the robots have limited sensing so may
not all perceive the goal and thus need to agree on a direction
to move to. Robots that are perceiving the goal will choose
a suitable direction and broadcast it to other robots. All the
robots, whether they can perceive the goal or not, will cal-
culate the average of the received directions, and collectively
move in the same direction.

We made a few assumptions to model the system. In par-
ticular, we discretised time, space and direction of movement
and assumed that the robots are working on a finite 5 × 5
grid. The grid is allowed to wrap around, so (5, 1) is left
of (1, 1) and (1, 5) is above it. We also assumed that each
robot only receives broadcasts from 3 of its neighbours. We
initialised the robots at coordinates either (1, 1) or (1, 2) or
(2, 1) or (2, 2) and their goal located at (3, 5). We modelled
a fault consisting of a robot choosing to move in the wrong
direction. We checked the property “all non-faulty robots are
always moving towards the target,” expressed by the formula

φ2 , ∀i : AG(to target , i).

We found a cutoff of 2, giving us a fault tolerance ratio of
50% in 16 seconds, compared to 36 seconds using the itera-
tive approach. Hence, the procedure here introduced was an
order of magnitude faster than the naı̈ve approach.

Alpha algorithm. Finally, we assessed the fault-tolerance
of the Alpha swarm aggregation algorithm [Winfield et al.,
2008], a protocol used to aggregate robotic swarms in the
areas of operation. Define a robot to be in another robot’s
neighbourhood if the position of the former is in the range of
the latter’s sensor. Each robot keeps track of the number of
its neighbours. A robot is said to be connected if its neigh-
bourhood is composed of at least α robots, for a threshold α.
The behaviour of each of the robots is characterised by their
connectivity status and by whether they are in forward motion
mode or in coherence motion mode: if a robot is in forward
mode and connected, then it moves forward; if it is in for-
ward mode, but not connected, then it performs a 180◦ turn
and changes its motion mode to coherence; if it is in coher-
ence mode, but not connected, then it moves forward; finally,
if it is in coherence mode and connected, then it performs a
random 90◦ turn and changes its motion mode to forward.

We adopted a number of assumptions commonly made
to analyse the algorithm [Kouvaros and Lomuscio, 2017;
Dixon et al., 2012]. In particular, we fixed a 5 × 5 arena
(once again wrapping around), assumed a communication
range of 1, and let α = 2. Initially the robots are connected,
in forward mode, and collectively have every possible direc-
tion of movement. Formally, we adopted the PIIS proposed
in [Kouvaros and Lomuscio, 2015]. We injected direction
faults which inhibit a robot from changing direction when it
should have as a result of, for example, a mechanical failure.
We are here interested in analysing the swarm’s connected-
ness property [Dixon et al., 2012] “every non-faulty robot
knows that it will be infinitely often connected,” expressed in
ACTLK\X as

φ3 , ∀i : KiGF (connected , i).

We found a cutoff of 4, giving us a fault tolerance ratio
of 33% in 986 seconds, compared to 1980 seconds obtained
via the iterative approach. As in the previous example, the
procedure was an order of magnitude faster.

6 Conclusions
We have presented a method for computing the ratio of faulty
agents that a protocol can tolerate whilst still satisfying a
specification. Calculating the ratio is important when deploy-
ing systems as potential failure risks can then be assessed and
remedial action can be taken. Alternatively, if a protocol is
found to be very robust to errors, more faults can be tolerated
at runtime, thereby possibly generating savings.

We are not aware of other approaches for addressing the
same problem. When performing the evaluation we com-
pared the approach to an iterative procedure of our construc-
tion built from [Kouvaros and Lomuscio, 2017]. We found
the present approach to be faster by an order of magnitude on
significant examples.

In future work we intend to apply this methodology to
study resilience properties in further swarm algorithms.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

329

References
[Aminof et al., 2018] Benjamin Aminof, Sasha Rubin, Ilina

Stoilkovska, Josef Widder, and Florian Zuleger. Param-
eterized model checking of synchronous distributed algo-
rithms by abstraction. In Proceedings of VMCAI18, pages
1–24. Springer International Publishing, 2018.

[Apt and Kozen, 1986] Krzysztof R. Apt and Dexter Kozen.
Limits for automatic verification of finite-state concurrent
systems. Information Processing Letters, 22(6):307–309,
1986.

[Barnat et al., 2012] Jiri Barnat, Lubos Brim, Adam Krejci,
Adam Streck, David Safranek, Martin Vejnar, and Tomas
Vejpustek. On parameter synthesis by parallel model
checking. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics, 9(3):693–705, 2012.

[Beneš et al., 2016] Nikola Beneš, Luboš Brim, Martin
Demko, Samuel Pastva, and David Šafránek. Parallel
SMT-based parameter synthesis with application to piece-
wise multi-affine systems. In Proceedings of ATVA16, vol-
ume 9938 of LNCS, pages 192–208. Springer, 2016.

[Bloem et al., 2015] Roderick Bloem, Swen Jacobs, Ayrat
Khalimov, Igor Konnov, Sasha Rubin, Veith Veith, and
Josef Widder. Decidability of Parameterized Verification.
Morgan and Claypool Publishers, 2015.

[Bozzano and Villafiorita, 2007] Marco Bozzano and
Adolfo Villafiorita. The FSAP/NuSMV-SA safety anal-
ysis platform. Software Tools for Technology Transfer,
9(1):5–24, 2007.

[Brambilla, 2014] Manuele Brambilla. Formal methods for
the design and analysis of robot swarms. PhD thesis, Ecole
Polytechnique de Bruxelles, 2014.

[Clarke et al., 1999] Edmund M. Clarke, Orna Grumberg,
and Doron Peled. Model Checking. The MIT Press, Cam-
bridge, Massachusetts, 1999.

[Dixon et al., 2012] Clare Dixon, Alan FT Winfield,
Michael Fisher, and Chengxiu Zeng. Towards temporal
verification of swarm robotic systems. Robotics and
Autonomous Systems, 60(11):1429–1441, 2012.

[Emerson and Namjoshi, 1995] E. Allen Emerson and
Kedar S. Namjoshi. Reasoning about rings. In Pro-
ceedings of POPL95, pages 85–94. Pearson Education,
1995.

[Ezekiel and Lomuscio, 2009] Jonathan Ezekiel and Alessio
Lomuscio. Combining fault injection and model checking
to verify fault tolerance in multi-agent systems. In Pro-
ceedings of AAMAS09, pages 113–120. IFAAMAS Press,
2009.

[Ezekiel and Lomuscio, 2017] Jonathan Ezekiel and Alessio
Lomuscio. Combining fault injection and model checking
to verify fault tolerance, recoverability, and diagnosabil-
ity in multi-agent systems. Information and Computation,
254(2):167–194, 2017.

[Ezekiel et al., 2011] Jonathan Ezekiel, Alessio Lomuscio,
Levente Molnar, and Sandor Veres. Verifying fault toler-
ance and self-diagnosability of an autonomous underwater

vehicle. In Proceedings of IJCAI11, pages 1659–1664.
AAAI Press, 2011.

[Ferrante et al., 2013] Eliseo Ferrante, Manuele Brambilla,
Mauro Birattari, and Marco Dorigo. Socially-Mediated
Negotiation for Obstacle Avoidance in Collective Trans-
port, volume 83 of STAR, pages 571–583. Springer Berlin
Heidelberg, 2013.

[van der Hoek and Wooldridge, 2002] Wiebe van der Hoek
and Michael Wooldridge. Tractable multiagent planning
for epistemic goals. In Proceedings of AAMAS02, pages
1167–1174. ACM Press, 2002.

[John et al., 2013] Annu John, Igor Konnov, Ulrich Schmid,
Helmut Veith, and Josef Widder. Parameterized model
checking of fault-tolerant distributed algorithms by ab-
straction. In Proceedings of FMCAD13, pages 201–209.
IEEE, 2013.

[Kouvaros and Lomuscio, 2013a] Panagiotis Kouvaros and
Alessio Lomuscio. Automatic verification of parame-
terised interleaved multi-agent systems. In Proceedings
AAMAS13, pages 861–868. IFAAMAS, 2013.

[Kouvaros and Lomuscio, 2013b] Panagiotis Kouvaros and
Alessio Lomuscio. A cutoff technique for the verification
of parameterised interpreted systems with parameterised
environments. In Proceedings of IJCAI13, pages 2013–
2019. AAAI Press, 2013.

[Kouvaros and Lomuscio, 2015] Panagiotis Kouvaros and
Alessio Lomuscio. Verifying emergent properties of
swarms. In Proceedings of IJCAI15, pages 1083–1089.
AAAI Press, 2015.

[Kouvaros and Lomuscio, 2016] Panagiotis Kouvaros and
Alessio Lomuscio. Parameterised verification for multi-
agent systems. Artificial Intelligence, 234:152–189, 2016.

[Kouvaros and Lomuscio, 2017] Panagiotis Kouvaros and
Alessio Lomuscio. Verifying fault-tolerance in parame-
terised multi-agent systems. In Proceedings of IJCAI17,
pages 288–294. AAAI Press, 2017.

[Lomuscio et al., 2010] Alessio Lomuscio, Wojciech
Penczek, and Hongyang Qu. Partial order reduction
for model checking interleaved multi-agent systems.
Fundamenta Informaticae, 101(1–2):71–90, 2010.

[Winfield et al., 2005] Alan FT Winfield, Chrostopher J.
Harper, and Julien Nembrini. Towards dependable swarms
and a new discipline of swarm engineering. In Proceed-
ings of SAB2004, volume 3342 of LNCS, pages 126–142.
Springer, 2005.

[Winfield et al., 2008] Alan FT Winfield, Wenguo Liu,
Julien Nembrini, and Alcherio Martinoli. Modelling a
wireless connected swarm of mobile robots. Swarm In-
telligence, 2(2-4):241–266, 2008.

[Zhang et al., 2009] Yingqian Zhang, Efrat Manisterski,
Sarit Kraus, VS Subrahmanian, and David Peleg. Com-
puting the fault tolerance of multi-agent deployment. Ar-
tificial Intelligence, 173(3):437–465, 2009.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

330

