
Department of Computing
Imperial College London

Parameterised Verification for Multi-Agent Systems

Panagiotis Kouvaros

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London, October 2015

Abstract

In the past ten years several methods have been put forward for the efficient model checking

of multiagent systems against agent-based specifications. Yet, since the number of states is

exponential in the number of agents in the system, the model checking problem remains in-

tractable for systems of many agents. This is particularly problematic when wishing to reason

about unbounded systems where the number of components is not known at design time. Sys-

tems ranging from robotic swarms to e-commerce applications constitute typical examples in

which the number of participants is independent of the design process.

This thesis develops parameterised model checking techniques for the validation of multia-

gent systems irrespectively of the number of the agents present. To do this, a semantics that

captures parameterised, synchronous multiagent systems and one that models parameterised,

interleaved multiagent systems are introduced. Both semantics extend interpreted systems in

a parameterised setting where the number of agents is the parameter.

Parameterised model checking techniques for the semantical classes introduced are developed.

A sound and complete cutoff methodology is studied for parameterised interpreted systems.

A sound but incomplete cutoff procedure for parameterised interleaved interpreted systems is

also studied. While the latter procedure is in exponential space, three notable subclasses are

isolated and more effective verification techniques are put forward. The algorithms proposed

are shown to be sound. For one class the decidability of the verification problem is shown and

a complete cutoff procedure is discussed.

Finally, the model checker MCMAS-P is introduced. The tool supports the verification of un-

bounded multiagent systems against temporal-epistemic specifications. MCMAS-P implements

the procedures here developed; the procedure invoked depends on the properties of the system

under examination. Experimental results obtained on cache coherence protocols, mutual ex-

clusion protocols, swarm foraging algorithms, and swarm aggregation algorithms are reported.

i

ii

To the memory of Michalis Kouvaros

iii

iv

Acknowledgements

I would like to acknowledge my supervisor Prof. Alessio Lomuscio for his guidance and sup-

port.

I would also like to thank my MSc supervisor Prof. Ian Hodkinson, who taught me logic, and

whose excitement and knowledge inspired me to pursue a doctorate degree.

I am grateful to the Department of Computing of Imperial College London for giving me the op-

portunity to carry out research as a doctoral student in computer science. I acknowledge the fi-

nancial support of the EPSRC Research Project Trusted Autonomous Systems (EP/I00520X/1).

Last but not least, I would like to thank my family for their unconditional love, support, and

encouragement. This thesis is dedicated to the memory of my brother Michalis Kouvaros.

v

vi

Declaration of Originality

I hereby declare that the research composing this thesis is my own, except where otherwise

acknowledged.

vii

viii

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative Com-

mons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, dis-

tribute or transmit the thesis on the condition that they attribute it, that they do not use it for

commercial purposes and that they do not alter, transform or build upon it. For any reuse or

redistribution, researchers must make clear to others the licence terms of this work.

ix

x

Contents

Table of Contents xi

List of Tables xvii

List of Algorithms xix

List of Figures xxi

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 4

1.3 Research output . 5

1.4 Summary of contents . 6

2 Background 8

2.1 Interpreted systems . 8

2.1.1 Interpreted systems . 8

2.1.2 Interleaved interpreted systems . 11

2.2 Temporal-epistemic logics . 13

xi

xii CONTENTS

2.3 Equivalences . 16

2.3.1 Equivalences preserving ACTL∗K and CTL∗K 16

2.3.2 Equivalences preserving ACTL∗K\X and CTL∗K\X 17

2.4 Model checking multiagent systems . 19

2.4.1 Symbolic model checking . 19

2.4.2 SAT-based translations . 21

2.4.3 State space reductions . 23

2.4.4 Automata-based techniques . 25

2.4.5 The model checker MCMAS . 26

2.5 Parameterised model checking . 28

2.5.1 Parameterised modelling languages . 30

2.5.2 Parameterised model checking techniques 34

3 Formalisms for unbounded multiagent systems 39

3.1 Parameterised interpreted systems . 39

3.1.1 Autonomous robot . 43

3.2 Parameterised interleaved interpreted systems 45

3.2.1 Examples . 52

3.3 Specifications for unbounded multiagent systems 59

3.3.1 Syntax of indexed CTL∗K . 60

3.3.2 Satisfaction of indexed CTL∗K . 62

3.3.3 Symmetry reduction . 63

3.4 Equivalences . 66

CONTENTS xiii

3.4.1 Equivalences preserving indexed ACTL∗K\X 66

3.4.2 Equivalences preserving indexed ACTLK up to a level of depth 67

3.5 Summary . 72

4 Verifying parameterised interpreted systems 74

4.1 Parameterised model checking problem . 74

4.2 The PIS procedure . 76

4.2.1 Overview . 76

4.2.2 Step 1: abstraction . 77

4.2.3 Step 2: pruning . 85

4.2.4 Step 3: counting . 88

4.2.5 Summary . 90

4.2.6 Proof of soundness . 91

4.3 Applications . 97

4.3.1 Autonomous robot . 97

4.3.2 The Beta swarm aggregation algorithm 98

5 Verifying parameterised interleaved interpreted systems 104

5.1 Parameterised model checking problem . 104

5.2 The PIIS procedure . 106

5.2.1 Overview . 106

5.2.2 Step 1: abstraction . 107

5.2.3 Step 2: simulation check . 115

xiv CONTENTS

5.2.4 Summary . 117

5.2.5 Proof of soundness . 118

5.3 Applications . 122

5.3.1 Train-Gate-Controller . 122

5.3.2 The Alpha swarm aggregation algorithm 122

6 The SMR,SGS and SFE classes of PIIS 127

6.1 Introduction . 127

6.2 Verifying SMR systems . 130

6.2.1 Agent-environment simulation . 130

6.2.2 Model checking procedure for SMR systems 134

6.2.3 Verifying the robot foraging scenario . 136

6.2.4 Proof of soundness . 137

6.3 Verifying SGS systems . 147

6.3.1 Agent-environment simulation . 147

6.3.2 The SGS procedure . 148

6.3.3 Verifying the Train-Gate-Controller . 149

6.3.4 Proof of soundness . 150

6.4 Verifying SFE Systems . 157

6.4.1 The SFE procedure . 157

6.4.2 Verifying the autonomous robot example 158

6.4.3 Proof of soundness . 159

6.5 Conclusions . 163

7 MCMAS-P: A model checker for the verification of unbounded multiagent systems165

7.1 Implementation details . 165

7.1.1 Agent-environment simulation test . 168

7.2 Experimental Results . 170

8 Conclusions 172

8.1 Summary of thesis contributions . 172

8.2 Comparison with related work . 174

8.3 Future work . 175

8.3.1 Dynamic UMAS and templates over unbounded variables 175

8.3.2 Parameterised synthesis . 176

8.3.3 Fault-tolerant UMAS . 177

xv

xvi

List of Tables

6.1 Comparison of the SMR, SGS, and SFE classes. 163

7.1 Verification results for parameterised model checking. 170

7.2 Verification results for traditional model checking. 171

8.1 Summary of theoretical results. 173

xvii

xviii

List of Algorithms

1 Parameterised model checking procedure for parameterised interpreted systems. 91

2 Parameterised model checking procedure for parameterised interleaved inter-

preted systems. 118

3 Parameterised model checking procedure for SMR systems. 135

4 Parameterised model checking procedure for SGS systems. 148

5 Parameterised model checking procedure for SFE systems. 157

xix

xx

List of Figures

2.1 The interleaved interpreted system for the Train-Gate-Controller. 13

2.2 The OBDD representation of the boolean function a ∧ (b ∨ c) (from [Rai06]). . . 21

2.3 The ISPL description of the Train-Gate-Controller. 29

2.4 Counter abstraction. 34

2.5 Counter abstraction with a threshold of 2. 34

3.1 The autonomous robot scenario. 43

3.2 The parameterised interpreted system of the autonomous robots. 44

3.3 Fragment of the concrete system for the autonomous robots with two robots . . 46

3.4 Examples of the five types of transitions possible in a concrete evolution from a

global state. 51

3.5 The parameterised interleaved interpreted system for the robot foraging scenario. 52

3.6 The parameterised interleaved interpreted system for the Train-Gate-Controller. 55

3.7 Fragment of the concrete system for the train-gate-controller with two priori-

tised trains and two normal trains. 58

3.8 The parameterised interleaved interpreted system of the autonomous robot. . . 59

3.9 Cycle-stuttering relations between cyclic blocks for a temporal depth of 2. . . . 70

xxi

4.1 Abstraction realised by the PIS procedure. 79

4.2 Fragment of the abstract model for the parameterised interpreted system of the

autonomous robot scenario. 82

4.3 The abstraction of a PIS may contain spurious paths. 86

4.4 A fragment of the agent template for the Beta swarm aggregation algorithm. . . 100

4.5 A fragment of the abstract model for the Beta swarm aggregation algorithm. . . 101

5.1 Fragment of the abstract system for the parameterised interleaved interpreted

system of the Train-Gate-Controller. 113

5.2 Fragment of the parameterised interleaved interpreted system of the Alpha al-

gotithm. 126

6.1 Agent-environment simulation between Ti and E 131

6.2 Looping behaviour of a concrete environment in a path. 133

6.3 The m-stuttering simulation of a bigger system S(n) by the cutoff system S(c). 141

6.4 The m-stuttering simulation of the cutoff system S(c) by a bigger system S(n). 146

6.5 The m-stuttering simulation of a bigger system S(n) by the cutoff system S(c). 150

6.6 the m-stuttering simulation of the cutoff system S(c) by a bigger system S(n). . 153

6.7 The m-stuttering simulation of a bigger system S(n) by the cutoff system S(c). 160

6.8 The m-stuttering simulation of the cutoff system S(c) by a bigger system S(n). 161

7.1 The PISPL encoding of the Train-Gate-Controller. 166

7.2 MCMAS-P architecture. 167

xxii

Chapter 1

Introduction

Multiagent systems (MAS) are distributed computing systems where every component, or

agent, is autonomous in its actions, adaptive to its environment, and proactive in achieving

its goals [Wei99, SLB08, Woo09]. With the development and deployment of MAS in diverse

applications, such as search-and-rescue [Mur00], web-services [MS04], personal negotiation

assistants [RZSH+14], there is an increasing need to study powerful and versatile method-

ologies for their verification [LQR15, GvdM04, KNN+08, CLMM15, WLP05, BFVW06, HW02a,

LPQ10, KP04b, DWFZ12]. A key technique that has emerged in the past ten year is that of

model checking [CGP99, HR00]. In model checking a system is represented by a semantical

structure, or a model, and a specification is encoded as a logic formula. Then, an automatic

procedure establishes whether the model satisfies the formula.

Differently from reactive systems, where plain temporal formulae are used, specifications for

MAS are given in richer logics that represent high-level attitudes of agency. In particular,

model checking MAS against epistemic specifications has proven useful in applications such as

autonomous vehicles [ELMV11], service-oriented computing [LQS11] and security [BCL09].

Model checking techniques are often based on exhaustive search of the state space of the

model, thereby providing full guarantees of correctness. However, the size of the state space

grows exponentially in the number of variables encoding the system. As a result, MAS with

many components remain hard to model check.

1

2 Chapter 1. Introduction

Nevertheless, a number of methodologies have been put forward to overcome the state explo-

sion problem. Techniques such as symbolic model checking [LQR15], abstraction [CDLR09],

partial order reduction [LPQ10], bounded model checking [WLP05], have made it possible to

verify systems with very large state spaces (see section 2.4 for a further discussion).

Although these are significant results, a fundamental assumption in most of these techniques is

that all the components present in the MAS are defined and modelled at design time. But what

if the MAS is deployed in varying number of components depending on the domain? We refer

to these systems as unbounded MAS (UMAS). UMAS are MAS where the number of components

is not known at design time. Insect-size surveillance vehicles, search and rescue missions,

industrial supply chains, scenarios in the Internet of Things, multi-party negotiation protocols

and auctions, voting protocols, e-services, are all examples of UMAS. In these cases, one could

encode a system with a given number of agents and verify that a specification holds. However,

additional agents may possibly interfere with the system in unpredictable ways resulting in the

specifications being violated. Therefore, to fully verify the system, the process would have to

be repeated for any possible number of components. This is computationally impossible.

The above verification problem cannot be solved by a trivial application of standard model

checking as this would entail model checking an infinite number of systems. To solve this, we

require a technique that can be applied independently of the number of agents in the system.

The overall objective of this thesis is the development of automatic methodologies for

the verification of unbounded multiagent systems irrespectively of the number of agents

present.

1.1 Objectives

We break down the above overall objective into three objectives. We begin with a short discus-

sion on parameterised model checking (for a further discussion, see section 2.5).

Parameterised model checking is a model checking approach that is concerned with the deci-

sion problem of establishing whether a certain specification holds for a system composed of

any number of homogeneous participants. The approach is extensively studied in the context of

1.1. Objectives 3

reactive systems [EK00, AKR+14, ACJT96, CTTV04, ADHR07, CGB89, EN98, EFM99, EK03a,

KKW10, PS00, ZP04, CTV06, APR+01, EN96, HBR09, GS92, AHH13, DSZ10, EN95]. These

lines of work formulate the parameterised model checking problem in a finitary way by giv-

ing a behavioural template for the participants and the specification to be checked. Given the

parameter for the actual number of participants in the system, the concrete system of these

participants can be build. The standard model checking problem can then be solved for the

concrete system.

The first objective of this thesis is the formulation of the parameterised model checking

problem for UMAS.

Differently from the existing literature, the above objective targets AI-based, autonomous

MAS [Woo09]. These require different primitives from reactive systems both in terms of mod-

elling and specifications. In semantic terms, we are inspired by the longstanding tradition in

MAS to model systems of agents in terms of interpreted systems [FHMV95]. To account for an

unbounded number of agents, we introduce abstract agent templates from which concrete in-

terpreted systems can be generated. Emphasis is given to the synchronisation patterns that may

emerge between the agents and the environment, and not to particular topologies as in much

of the existing literature [EN95, DSZ10, DSZ11, CTTV04, AJKR14, EK04, HSBR10, HBR09].

Additionally, emphasis is given to rich temporal-epistemic formulae to express specifications,

and not just safety and liveliness properties, as in much of the existing literature [Mai01,

BLS02, KKW10, PXZ02, ACJT96, EN98, EFM99].

As said above, a naive approach to solving the parameterised model checking problem entails

checking an infinite number of systems, i.e., all possible systems built from any number of

agents. Given that the number of agents is not bounded, it also entails checking systems

of unbounded size. Nevertheless, some approaches to the problem are motivated by strong

empirical evidence that unbounded systems often exhibit a cutoff [EK00, KKW10, AHH13,

EN95, HSBR10, HBR09, AJKR14, AKR+14]. A cutoff expresses the number of components

that is sufficient to analyse when evaluating a given specification. That is, given a cutoff, the

parameterised model checking problem is reduced to the problem of model checking each

concrete system up to the cutoff. This leads to the following.

4 Chapter 1. Introduction

The second objective of this thesis is the development of sound, automatic cutoff identi-

fication procedures for UMAS.

We now discuss the third and final objective. Along with theoretical investigations, a num-

ber of automatic tools were developed for the verification of MAS. Most of these are based

on symbolic data structures. Most of these support epistemic specifications [LPQ10, LPW07,

MS99, PL03, vdMS04, RL05]. Others target deontic specifications [RL04, WLP05, CLMM14,

CLMM15] or specifications expressing strategic abilities [KP04a, LR06b]. Symbolic checkers

such as MCK [GvdM04], MCMAS [LQR09] and VERICS [KNN+08] are all capable of handling

state spaces in the region of 1015 and beyond. However, they do not support parameterised

verification.

The third objective of this thesis is to extend the functionality of agent-based model

checking tools to support parameterised verification for UMAS.

To summarise, the thesis’s goal is to put forward techniques to solve the parameterised model

checking problem for UMAS. To do this, the parameterised model checking problem will be

formulated in the context of multiagent systems. Following this, cutoff methodologies will be

developed to solve the problem. Finally, a tool realising these techniques will be presented.

1.2 Contributions

The main contributions of this thesis are categorised and listed as follows:

1. Conceptual

• We introduce parameterised interpreted systems (PIS), a semantics for synchronous

UMAS.

• We introduce parameterised interleaved interpreted systems (PIIS), a semantics for

asynchronous UMAS.

• We introduce indexed ACTL∗K, an indexed temporal-epistemic logic for expressing

properties of UMAS.

1.3. Research output 5

• We introduce the notion of cycle-stuttering simulation. This can be used to show

behavioural equivalence between two systems.

2. Methodological

• We introduce an automatic procedure for the verification of PIS.

• We introduce an automatic procedure for the verification of PIIS.

• We introduce three automatic procedures for the verification of three subclasses of

PIIS.

3. Theoretical

• We prove the verification procedure for PIS to be sound and complete.

• We prove the verification procedure for PIIS to be sound.

• For each of the subclasses of PIIS, we prove the associated verification procedure to

be sound. For one class we show a sound and complete result.

4. Implementation

• We introduce MCMAS-P, a tool for model checking PIIS.

1.3 Research output

The majority of the results composing this thesis were presented, in shorter form, in the fol-

lowing papers:

• P. Kouvaros, A. Lomuscio, “Parameterised Verification for Multiagent Systems”, Artificial

Intelligence, 2016.

• P. Kouvaros, A. Lomuscio, “Verifying Emergent Properties of Swarms”, Proceedings of the

24th International Joint Conference on Artificial Intelligence (IJCAI15), 2015.

• P. Kouvaros, A. Lomuscio, “A Counter Abstraction Technique for the Verification of Robot

Swarms”, Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI15),

2015.

6 Chapter 1. Introduction

• P. Kouvaros, A. Lomuscio, “A Cutoff Technique for the Verification of Parameterised Inter-

preted Systems with Parameterised Environments”, Proceedings of the 23rd International

Joint Conference on Artificial Intelligence (IJCAI13), 2013.

• P. Kouvaros, A. Lomuscio, “Automatic Verification of Parameterised Interleaved Multi-

Agent Systems”, Proceedings of the 12th International Conference on Autonomous Agents

and Multi-Agent systems (AAMAS13), 2013.

1.4 Summary of contents

The rest of the thesis is organised as follows.

Chapter 2 introduces the technical background to this thesis.

In chapter 3 we introduce PIS and PIIS. In particular, we give the definitions for the agent

templates, the environment template, and we identify different types of interactions that the

agents and the environment can engage in. This is followed by the introduction of the specifica-

tion language which consists of an indexed version of a temporal-epistemic logic. The chapter

continues with some key theoretical observations regarding the notions of stuttering simula-

tions and cycle-stuttering simulations that can be defined on these systems and an exploration

on the extent to which these preserve logical satisfaction.

Chapters 5, 6 and 7 report the main theoretical results of the thesis. In chapter 4 we study

parameterised interpreted systems, and we give a sound and complete parameterised model

checking procedure. In chapter 5 we investigate parameterised interleaved interpreted sys-

tems, and we present a sound but incomplete procedure. In chapter 6 we define three special

classes of PIIS, each representing different synchronisation patterns for the agents in the sys-

tem. For each of these classes we introduce a sound parameterised model checking procedure.

For one class we provide a sound and complete procedure.

Chapter 7 reports an implementation that we built from the techniques described in Chapters 5

and 6. Specifically, the chapter introduces MCMAS-P, an extension of MCMAS, a model checker

for the verification of MAS. As we will explain, MCMAS-P conducts an iterative check on the

1.4. Summary of contents 7

existence of certain simulations that guarantee, by the methods of chapters 5 and 6, that a

cutoff exists. If this can be shown, the checker performs plain model checking on corresponding

concrete systems in line with the requirements of the theory developed. The chapter reports

the experimental results obtained on the Alpha swarm aggregation protocol [WLNM08], on a

swarm foraging algorithm [Liu07], on the MSI, MESI, and MOESI cache coherence protocols,

and on the Train-Gate-Controller [HW02b, LPQ10].

We conclude in chapter 8 where we summarise the contributions of the thesis; we compare

them with related work; and we identify possible future work.

Chapter 2

Background

2.1 Interpreted systems

Interpreted systems are a standard semantics for describing multi-agent systems [FHMV95].

They provide a natural setup to interpret specifications in a variety of languages including

temporal-epistemic logic and alternating temporal logic [FHMV95, AHK02]. The formalism

typically assumes synchrony between the agents, i.e, the agents evolve simultaneously by per-

forming an action at every tick of an external global clock. In many settings, however, e.g.,

games [FHMV95], swarm robotics [BDT99], agents operate in terms of internal clocks and can

evolve in an interleaved, asynchronous fashion. Interleaved interpreted systems are a class of

interpreted systems constraining the interleaved evolution of the agents’ actions [LPQ10]. This

section summarises interpreted systems and interleaved interpreted systems.

2.1.1 Interpreted systems

We begin with a MAS composed of n agents A = {1, . . . , n} acting in an environment E. The

environment is treated as a special agent allowing us to consider a MAS as composed of the

set A ∪ {E} of agents. Each agent i ∈ A ∪ {E} is described by the following.

• A nonempty and finite set of local states Li. A local state encodes all the information

accessible to the agent in the current configuration of the system.

8

2.1. Interpreted systems 9

• A nonempty and finite set of local actions Acti. Local actions represent the possible

actions that the agent can perform.

• A protocol Pi that governs which actions may be performed at a given local state. The

protocol is a function Pi : Li → P(Acti) that assigns a set of actions to each local state.

• An evolution function ti that determines the temporal evolution of the agent’s local states.

The evolution function is a function ti : Li ×Act1 × . . .×Actn ×ActE → Li that returns

the next local state given the agent’s current local state, its action, and all other agents’

actions.

Local states are private in the sense that they can not be observed by other agents, whereas

local actions are global since they can be “seen” by other agents. Whenever more than one

action is enabled for an agent at a given local state, the agent is assumed to select non-

deterministically which action to perform.

A global state g = (l1, . . . , ln, lE) is a tuple of local states for all the agents in the system; it

describes the system at a particular instant of time. Given a global state g = (l1, . . . , ln, lE) and

an agent i, we write lsi(g) to denote the local state lsi(g) = li of agent i in g. The set S of

all possible global states is the Cartesian product S = L1 × . . . × Ln × LE of the agents’ sets

of local states. A joint action a = (a1, . . . , ln, lE) is a tuple of local actions for all the agents in

the system. For a joint action a = (a1, . . . , ln, lE) and an agent i, we denote the local action of

agent i in a by lai(a). The set ACT = Act1 × . . . Actn ×ActE of all possible joint actions is the

Cartesian product of the agents’ sets of local actions.

We now have all the necessary ingredients to define an interpreted system.

Definition 2.1 (Interpreted system). Let AP be a set of atomic propositions. An interpreted

system IS is a tuple

IS =
(
(Li, Acti, Pi, ti)i∈A , (LE , ActE , PE , tE), I, V

)
where I ⊆ S is a set of initial global states and V : S → P(AP) is a valuation function on the set

S of possible global states.

10 Chapter 2. Background

The system’s global states evolve over time in compliance with the agents’ local protocols and

local evolution functions, thereby inducing a global transition function.

Definition 2.2 (Global transition function). The global transition function t : S ×ACT → S is

defined as follows.

t(g, a) = g′ iff ti(lsi(g), lai(a)) = lsi(g
′) and lai(a) ∈ Pi(lsi(g)) for all i ∈ A ∪ {E}

We sometimes write the above as g →a g
′.

A path π is a finite or infinite sequence π = g1a1g2a2g3 . . . with gi →ai g
i+1, for every i ≥ 1

whenever applicable. Given a path π, we write π(i) for the i-th state in π. By π[i], we denote

the suffix giaigi+1 . . . of π. The set of all paths originating from a state g is denoted by Π(g).

A global state g is said to be reachable from a global state g1 if there is a path π ∈ Π(g1) such

that π(i) = g for some i ≥ 1.

Given an interpreted system IS, we can associate a Kripke modelMIS to IS that can be used

to interpret temporal-epistemic formulae [FHMV95].

Definition 2.3 (Model). Given an interpreted system IS, its associated Kripke model MIS is a

tupleMIS = (G, I,R, (Ki)i∈A, V), where

• G ⊆ S is the set of reachable global states, i.e, the set of states reachable via the global

transition function from the set of initial global states.

• R ⊆ G × G is the global transition relation defined as (g, g′) ∈ R iff there is a joint action

a such that g →a g
′.

• Ki ⊆ G × G is the epistemic accessibility relation for agent i defined on local equalities for

the agents’ states: Ki(g, g′) iff lsi(g) = lsi(g
′).

See section 2.2 for the definition of the satisfaction relation |= for CTL∗K.

2.1. Interpreted systems 11

2.1.2 Interleaved interpreted systems

We have thus far considered actions in interpreted systems to be performed at the same round

by all the agents. This gives a natural way to model synchronous multiagent systems. To

model asynchronous multiagent systems, interleaved interpreted systems have been put for-

ward [LPQ10]. Interleaved interpreted systems insist on only one local action to be performed

at a given time. It is further assumed that if more than one agents admit in their repertoire of

actions the action to be performed, then all agents sharing 1 the action have to perform it at

the round. Additionally, interleaved interpreted systems deviate from the standard treatment

of interpreted systems by assuming the resulting local state of an agent to depend only on

the agent’s action at the previous round as opposed to all the agents’ actions. The agents are

therefore communicating by means of shared actions. We below make this discussion precise

by giving the formal definition of an interleaved interpreted system.

Let us assume a MAS composed of n agents A = {1, . . . , n} operating in an environment E.

The description of an agent i ∈ A ∪ {E} includes a nonempty and finite set of local states Li,

a unique inital state ιi, and a nonempty and finite set of actions Acti. Actions are performed

in compliance with a protocol Pi : Li → Acti that selects which actions can be performed at a

given local state. The evolution of an agent i’s local states is specified by a transition function

ti : Li × Acti → Li returning the next local state given the agent’s (current) local state and

action. Note that the local transition function considered here has the local action as the only

parameter.

A “null” action εi is assumed to be a member of any set Acti. It is assumed that for every

state li ∈ Li we have that: (i) εi ∈ Pi(li) (i.e., the null action is enabled at every local state);

(ii) ti(li, εi) = li (i.e., an agent stutters in its current local state whenever it performs the null

action).

We now define interleaved interpreted systems.

Definition 2.4 (Interleaved interpreted system). Let AP be a set of atomic propositions. An

1A local action is said to be shared by two or more agents if said agents admit the action in their repertoire of
actions.

12 Chapter 2. Background

interleaved interpreted system is a tuple

IIS =
(
(Li, ιi, Acti, Pi, ti)i∈A , (LE , ιE , ActE , PE , tE), ι, V

)
where ι = (ι1, . . . , ιn, ιE) is the unique initial global state, and V : S → P(AP) is a valuation

function on the set S of possible global states.

To define the global transition function, given an action a ∈
⋃
i∈A∪{E}Acti, let Agent(a) =

{i ∈ A ∪ {E} : a ∈ Acti} to be the set of agents admitting the action in their repertoire.

Definition 2.5 (Global transition function). The global transition function t : S × ACT → S is

defined as follows: t(g, a) = g′ iff there is an action a ∈ Act1 ∪ . . . ∪Actn ∪ActE such that:

• for all i ∈ Agent(a), we have that lai(a) = a, lai(a) ∈ Pi(lsi(g)), and ti(lsi(g), lai(a)) =

lsi(g
′);

• and for all i ∈ (A ∪ {E}) \ Agent(a), we have that lai(a) = εi and ti(lsi(g), lai(a)) =

lsi(g
′) = lsi(g).

In short we write the above as g →a g
′.

In other words, at each round, all agents participating in the global transition are required

to perform the same local action. The agents not participating in the global transition are

assumed to perform the null action. Every agent admitting said local action in its repertoire has

to perform it at the round; if there is a local protocol not permitting this, then the local action

cannot be performed at the round. So, communication in interleaved interpreted systems is by

means of shared actions.

Example 2.1. Figure 2.1 presents the interleaved interpreted system of the untimed version of the

Train-Gate-Controller (TGC) as presented in [HW02b] and adapted from [AdAH+00]. The system

of TGC is composed of a controller and two trains. Each train runs along a circular track and both

tracks pass through a narrow tunnel. The tunnel can accommodate only one train at any time.

Both sides of the tunnel are equipped with traffic lights, which can be either green or red. The

controller operates the colour of the traffic lights to let the trains enter and exit the tunnel.

2.2. Temporal-epistemic logics 13

WAIT

TUNNEL

AWAY

enter_1

exit_1

approach_1

(a) Train 1.

GREEN

RED

enter_1 enter_2

exit_1 exit_2

(b) Controller.

WAIT

TUNNEL

AWAY

enter_2

exit_2

approach_2

(c) Train 2.

Figure 2.1: The interleaved interpreted system for the Train-Gate-Controller.

In the figure, the transitions that are depicted with the same style of edges are synchronised. For

clarity, null ε actions are omitted in the figure.

Consider train 1. The train is initially in state WAIT where it waits to enter the tunnel. The

controller, initially in state GREEN , may synchronise with train 1 on the action enter_1 . Fol-

lowing this, train 1 goes to state TUNNEL, whereas the controller goes to state RED . As a result,

train 2 cannot perform the enter_2 action and enter the tunnel, since the action is not enabled

by the controller’s protocol at state RED . Instead, the controller’s protocol enables the action

exit_1 on which action it may synchronise with Train 1. Upon this synchronisation, train 1 goes

to state AWAY and the controller goes to state GREEN . Then, train 1 can perform the action

approach_1 and go back to state WAIT where it may again synchronise with the controller and

enter the tunnel, or train 2 may synchronise with the controller on the enter_2 action and enter

the tunnel.

Given an interleaved interpreted system IIS, a Kripke modelMIIS can be associated to IIS

in a similar manner to Definition 2.3. We use the term “model” throughout the thesis to mean

either an interpreted system or an interleaved interpreted system, if not otherwise stated.

2.2 Temporal-epistemic logics

Combinations of branching time logic (CTL) [CE81, Eme90, BAPM83] and linear time logic

(LTL) [Pnu77, CGP99, HR00] with knowledge have long been used to express properties of

agents in a MAS [FHMV95, LR06a, LQR09, KL13a]. This thesis is concerned with the temporal-

14 Chapter 2. Background

epistemic logic CTL∗K [LPQ10]. CTL∗K combines the epistemic logic S5 2 [FHMV95] with the

temporal logic CTL∗ [HR00], a logic combing the expressive power of LTL and CTL. We recall

the basic definitions.

There are two types of formulas in CTL∗K: state formulae which are interpreted over states,

and path formulae which are interpreted over paths.

Definition 2.6. (Syntax of CTL∗K) State and path formulae of CTL∗K over a set AP of proposi-

tions and a set A of agents are inductively defined as follows.

S1. every atomic proposition p ∈ AP is a state formula;

S2. if ϕ and ψ are state formulas, then ¬ϕ, ϕ ∨ ψ and Kiφ(i ∈ A) are state formulas;

S3. if ϕ is a path formula, then E(ϕ) is a state formula;

P1. any state formula ϕ is also a path formula;

P2. if ϕ and ψ are path formulas, then ¬ϕ and ϕ ∨ ψ are path formulas;

P3. if ϕ and ψ are path formulas, then so are Xϕ and ϕUψ.

The knowledge modality Ki stands for “agent i knows that”; the path quantifier E is read

“there exists a path”; the temporal operators X, U denote the “next” and “until” modalities,

respectively.

CTL∗K formulae are interpreted on a model M = (G, I,R, (Ki)i∈A, V) as standard [CGP99,

FHV95]: the temporal modalities are interpreted by means of the global transition relation;

the epistemic modalities are interpreted over the epistemic accessibility relations. We write

(M, g) |= φ ((M,π) |= φ, respectively) to mean that a state formula (path formula, respec-

tively) is true at a state g (path π, respectively) in M . If M is clear from the context, then we

simplify the notation to g |= φ (π |= φ, respectively).

Definition 2.7 (Satisfaction of CTL∗K). Given a model M = (G,R, (Ki)i∈A, I, V) , the satisfac-

tion relation |= is inductively defined as follows.

2S5 is the normal modal logic KT45 of the class of symmetric, transitive, and Euclidean frames.

2.2. Temporal-epistemic logics 15

S1. g |= p iff p ∈ V (g) for any p ∈ AP ;

S2. g |= ¬ϕ iff g 6|= ϕ;

g |= ϕ ∨ ψ iff g |= ϕ or g |= ψ;

g |= Kiφ iff g′ |= φ for every g′ ∈ G with Ki(g, g′);

S3. g |= Eϕ iff there exists a path π ∈ Π(g) such that π |= φ;

P1. π |= ϕ iff π(1) |= ϕ for any state formula ϕ;

P2. π |= ¬ϕ iff π 6|= ϕ;

π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ,

P3. π |= Xφ iff π[2] |= φ;

π |= ϕUψ iff there is an i ≥ 1 such that π[i] |= ψ and π[j] |= φ for all 1 ≤ j < i.

A formula φ is said to be true in M , denoted M |= φ, if for all g ∈ I, we have that g |= φ. The

customary abbreviations of truth and falsity are assumed: > , p ∨ ¬p, ⊥ , p ∧ ¬p, for some

p ∈ AP . The boolean connective ∧ is given by φ ∧ ψ , ¬(¬φ ∨ ¬ψ). Dual modalities prefixed

by the path quantifier A (“for all paths”) can be defined as standard [Huth and Ryan, 2004]:

Aφ , ¬E¬φ. Further, we define Fφ , U(>, φ) with the usual meaning of “Eventually φ”, and

Gφ , ¬F¬φ standing for “Always φ”.

Some important fragments of CTL∗K are defined as follows.

Definition 2.8.

• LTLK is the fragment of CTL∗K in which all formulae are of the form Aφ, where φ does not

contain the path quantifiers E and A.

• CTLK is the fragment of CTL∗K in which the path quantifiers E,A and the temporal modali-

ties X,U, F,G may appear only in combinations EX,EU,EF,EG,AX,AU,AF,AG. That

is, CTLK is the logic obtained by removing clauses S3, P1, P2, P3 from Definition 2.6 and

adding the following clause:

S3’. if φ and ψ are state formulas, then AXφ, A(φUψ) are state formulas.

• ACTL∗K is the universal fragment of CTL∗K in which the path quantifier E does not appear

16 Chapter 2. Background

in any formula, and the negation appears only in subformulas not containing any temporal

or epistemic modalities.

• ECTL∗K is the existential fragment of CTL∗K in which the path quantifier A does not appear

in any formula, and the negation appears only in subformulas not containing any temporal

or epistemic modalities.

• LTL, CTL, ACTL∗, ECTL∗ are fragments of LTLK, CTLK, ACTL∗K, ECTL∗K, respectively, in

which epistemic modality K does not appear in any formula.

• For any logic L, the stuttering-insensitive fragment of L, denoted L\X, is the fragment of L

in which the temporal modality X does not appear in any formula.

2.3 Equivalences

Simulations are certain relations between models that preserve the satisfaction of modal for-

mulas [Mil80]. Several notions of simulations attracted much attention in the analysis of

model checking techniques [CDLR09, BCG88, CGL94]. The key application of these studies is

the simplification of the original model to check to a possibly much smaller abstract model by

identifying simulation relations between the two models. We define the standard notions of

simulations for the temporal-epistemic logics ACTL∗K, CTL∗K, and their stuttering-insensitive

fragments ACTL∗K\X, CTL∗K\X, respectively.

2.3.1 Equivalences preserving ACTL∗K and CTL∗K

A model M′ = (G′, I ′, R′, (K′i)i∈A, V ′) simulates a model M = (G, I,R, (Ki)i∈A, V) if every

behaviour exhibited by the latter is also exhibited by the former. Since an ACTL∗K formula

may only quantify over all paths, every ACTL∗K formula satisfied byM′ is also satisfied byM.

Definition 2.9 (Simulation [CDLR09]). A relation ∼s⊆ G × G′ is a simulation between two

modelsM andM′ if the following conditions hold:

(i) For every g ∈ I, there is a g′ ∈ I ′ with g ∼s g′;

2.3. Equivalences 17

Whenever g ∼s g′, then

(ii) V (g) = V ′(g′);

(iii) If Ki(g, g1) for some g1 ∈ G and some i ∈ A, then there is a g′1 ∈ G′ such that K′i(g′, g′1)

and g1 ∼s g′1.

(iv) If (g, g1) ∈ R for some g1 ∈ G, then there is a g′1 ∈ G′ such that (g′, g′1) ∈ R′ and g1 ∼s g′1;

We say that a model M′ simulates a model M, denoted M ≤s M′, if there is a simulation

relation betweenM andM′. ACTL∗K formulae are preserved under simulation.

Theorem 2.1 ([CDLR09]). LetM andM′ be two models withM≤sM′. Suppose thatM′ |= φ

for some ACTL∗K formula φ. Then,M |= φ.

We call two modelsM andM′ simulation equivalent ifM≤sM′ andM′ ≤sM. The following

theorem relates ACTL∗K with simulation equivalence.

Theorem 2.2 ([CDLR09]). LetM andM′ be two simulation equivalent models. Then,M |= φ

iffM′ |= φ, for any ACTL∗K formula φ.

A relation ∼s is a bisimulation if both ∼s and ∼−1
s = {(g′, g) ∈ G′ ×G : g ∼s g′} are simula-

tions. We define two modelsM andM′ to be bisimulation equivalent if there is a bisimulation

betweenM andM′. The following theorem relates CTL∗K with bisimulation equivalence.

Theorem 2.3 ([CDLR09]). LetM andM′ be two bisimulation equivalent models. Then,M |= φ

iffM′ |= φ, for any CTL∗K formula φ.

2.3.2 Equivalences preserving ACTL∗K\X and CTL∗K\X

Stuttering simulations are relations between models that preserve the satisfaction of stuttering-

insensitive modal formulae. A model M′ = (G′, I ′, R′, (K′i)i∈A, V ′) stuttering simulates a

modelM = (G, I,R, (Ki)i∈A, V) if for every behaviour of the latter, there is stuttering equiv-

alent behaviour of the former. Informally, two behaviours are stuttering equivalent if the

behaviours coincide when each sequence of stutter steps (i.e., steps that do not affect the

18 Chapter 2. Background

labelling of states) are collapsed onto a single step. Since an ACTL∗K\X formula may only

quantify over all paths, every ACTL∗K formula satisfied byM is also satisfied byM′.

Definition 2.10 (Stuttering simulation [LPQ10]). A relation ∼ss⊆ G×G′ is a stuttering simu-

lation betweenM andM′ if the following conditions hold:

(i) For every g ∈ I, there is a g′ ∈ I ′ with g ∼ss g′;

Whenever g ∼ss g′, then

(ii) V (g) = V ′(g′);

(iii) If Ki(g, g1) for some g1 ∈ G and some i ∈ A, then there is a g′1 ∈ G′ such that K′i(g′, g′1)

and g1 ∼ss g′1.

(iv) For every path π ∈ Π(g), there is a path π′ ∈ Π(g′), a partition B1, B2, . . . of the states in

π, and a partition B′1, B
′
2, . . . of the states in π′ such that for each j ≥ 1, Bj and B′j are

nonempty and finite, and every state in Bj is related by ∼ss to every state in B′j .

We say that a model M′ stuttering simulates a model M, denoted M ≤ss M′, if there is a

stuttering simulation relation betweenM andM′. ACTL∗K\X formulae are preserved under

stuttering simulation.

Theorem 2.4 ([LPQ10]). LetM andM′ be two models withM≤ssM′. Suppose thatM′ |= φ

for some ACTL∗K\X formula φ. Then,M |= φ.

We call two modelsM andM′ stuttering simulation equivalent ifM ≤ss M′ andM′ ≤ss M.

The following theorem relates ACTL∗K\X with stuttering simulation equivalence.

Theorem 2.5 ([LPQ10]). LetM andM′ be two stuttering simulation equivalent models. Then,

M |= φ iffM′ |= φ, for any ACTL∗K\X formula φ.

A relation ∼ss is a stuttering bisimulation if both ∼ss and ∼−1
ss = {(g′, g) ∈ G′ ×G : g ∼s g′}

are stuttering simulations. We define two models M and M′ to be stuttering bisimulation

equivalent if there is a stuttering bisimulation between M and M′. The following theorem

relates CTL∗K\X with stuttering bisimulation equivalence.

2.4. Model checking multiagent systems 19

Theorem 2.6 ([LPQ10]). LetM andM′ be two stuttering bisimulation equivalent models. Then,

M |= φ iffM′ |= φ, for any CTL∗K\X formula φ.

2.4 Model checking multiagent systems

Given a modelMS representing a system S and a formula φP encoding a specification P , model

checking is the problem of establishing whether or not MS |= φP . Though MS can be a model

for the any logic, for the purpose of this thesis, MS denotes either an interpreted system or an

interleaved interpreted system, and φP denotes a temporal-epistemic formula.

This section briefly summarises some of the existing approaches in model checking multiagent

systems. The techniques reviewed below extend techniques originally put forward for model

checking temporal models by taking into account epistemic specifications. They are here cat-

egorised into four groups: (i) symbolic model checking; (ii) SAT-based translations; (iii) state

space reductions; and (iv) automata-based techniques.

2.4.1 Symbolic model checking

The labelling algorithm

Given a model M = (G, I,R, (Ki)i∈A, V) and a CTLK formula φ, the labelling algorithm cal-

culates the set JφK = {g ∈ G : g |= φ} of states satisfying φ. To do this, the algorithm works

inductively on the structure of φ and labels the states in G with the sub-formulas of φ that are

satisfied in those states. The computation is initiated on the smallest sub-formulas of φ and

worked outwards toward φ in the following way:

• If φ is an atomic formula p, then label with p any state g such that p ∈ V (g);

• If φ is of the form φ1∨φ2, then label with φ1∨φ2 any state g that is already labelled with

either φ1 or φ2;

• If φ is of the form ¬φ1, then label with ¬φ1 any state g that is not already labelled with

φ1;

20 Chapter 2. Background

• If φ is of the form E(φ1Uφ2), then:

– label with E(φ1Uφ2) any state g that is already labelled with φ2;

– repeat the following until no more states can be labelled: label with E(φ1Uφ2)

any state g that is already labelled with φ1 and has at least one its R-related states

labelled with E(φ1Uφ2).

• If φ is of the form EXφ1, then label with EXφ1 any state g that has at least one of its

R-related states labelled with φ1.

• If φ is of the form Kiφ1, then label with Kiφ1 any state g that has all of its Ki-related

states labelled with φ1.

Having calculated JφK, the model checking problem can be solved by deciding whether or not

I ⊆ JφK. The algorithm can be analysed by means of the fixpoint characterisation of CTLK to

show both termination and soundness [HR00, CGP99, RL05]. Its complexity is |φ| . (|G|+ |R|),

where |φ| is the number of connectives in φ, |G| is the number of states, and |R| is the number

of transitions.

Symbolic model checking

Note that the complexity of the labelling algorithm is linear in the size of the model to check.

Still, the size of the model is exponential in the number of variables encoding the system. This

gives rise to the state explosion problem. To alleviate this problem, symbolic model checking

techniques encode the model symbolically by means of compact data structures. This section

discusses symbolic model checking using Ordered Binary Decision Diagrams (OBDDs).

OBDDs are a compact encoding for the manipulation of boolean functions. For example, as-

sume the boolean function f(a, b, c) , a ∧ (b ∨ c). Its binary decision tree is depicted in

Figure 2.2a. An algorithmic simplification of the binary decision tree results in the decision

diagram shown in Figure 2.2b. This “reduced” structure is called the OBDD of f . OBDDs are

canonical (i.e., each boolean function is represented by a unique OBDD) and can implement

2.4. Model checking multiagent systems 21

a

b

c

0 0

c

0 0

b

c

0 1

c

1 1

0
1

(a) Binary decision tree

a

b

c

0 1

(b) OBDD

Figure 2.2: The OBDD representation of the boolean function a ∧ (b ∨ c) (from [Rai06]).

any operation on boolean functions in polynomial time. This makes them a valuable tool in

digital system design, verification, and testing [Bry92].

In symbolic model checking, the states and relations of the model are encoded by means of

boolean formulae. In this setting, the formula φ to check corresponds to the boolean formula

representing the set of states satisfying φ. To compute it, the operations on sets used by the

labelling algorithm are implemented in terms of operations on boolean functions. Finally, the

latter are implemented in terms of operations on OBDDs. The interested reader is referred

to [HR00, CGP99] for more details.

2.4.2 SAT-based translations

SAT-based translation techniques reduce the model checking problem to the boolean satisfi-

ability problem (SAT). The exploitation of SAT solvers has advantages over symbolic model

checking since SAT solvers do not usually require exponential space. The SAT-based transla-

tion techniques discussed below are: (i) bounded model checking; and (ii) unbounded model

checking.

Bounded model checking

A logic L is said to have bounded semantics if the following holds: whenever a formula φ ∈ L

is satisfiable on a model M, φ is satisfiable on M along a path of length k, for some integer

22 Chapter 2. Background

k. Instead of considering the entirety of the state space, bounded model checking techniques

check the negation of φ on a fragmentMk ofM. Roughly speaking,Mk is obtained by taking

all possible paths of length k in M. Assuming the logic under consideration has bounded

semantics,M |= ¬φ iff there is an integer k such thatMk |= ¬φ. The latter decision problem

is reduced to the satisfiability problem of the boolean formula [M]k ∧ [¬φ]k, where [M]k is the

boolean encoding ofMk and [¬φ]k is the boolean encoding of ¬φ. In other words,Mk |= ¬φ

iff [M]k ∧ [¬φ]k is satisfiable.

Bounded model checking was introduced in [BCCZ99] where the approach was formulated

on LTL models. Bounded model checking for the universal fragment of CTL models was in-

troduced in [PWZ02]. The ideas developed in the latter work were extended to the universal

fragment of CTLK [LŁP03]. This line of work was followed by bounded model checking tech-

niques for correct behaviour [WLP05], and bounded model checking techniques for knowledge

in real time [LPW07].

Bounded model checking is remarkably more efficient than symbolic model checking in iden-

tifying counterexamples 3. However, bounded model checking is an incomplete approach to

model checking; i.e., it is not guaranteed to establish whether or not M |= φ. As a result,

bounded model checking techniques are commonly used to find errors in the system under

consideration, whereas symbolic model checking techniques are commonly used to show cor-

rectness. Therefore, each approach complements the other.

Bounded model checking techniques for multiagent systems are implemented in the tool Ver-

ICS. For a more detailed comparison of bounded and symbolic model checking knowledge,

we refer to [KLN+06].

Unbounded model checking

Unbounded model checking is a symbolic model checking approach introduced in [McM02]. In

this approach, the set of states and the transition relations are encoded in conjunctive normal

form instead of OBDDs. This representation makes it possible to reduce the operations defined

for symbolic model checking to boolean satisfiability problems. Unbounded model checking
3A counterexample is a path on which the negation of the formula to check is satisfied.

2.4. Model checking multiagent systems 23

was adapted to knowledge in [KLP04] and [KP04a]. The former work deals with combinations

of temporal and epistemic logic, whereas the latter work deals with combinations of alternating

time logic and epistemic logic. Unbounded model checking techniques for multiagent systems

are also implemented in the tool VerICS.

2.4.3 State space reductions

State space reduction techniques reduce the state space to check without altering the satisfac-

tion status of a given formula. Typically, these techniques can be used in combination with

either symbolic model checking or bounded model checking techniques. This section discusses

abstraction and partial order reduction.

Abstraction

Abstraction techniques build an abstract, smaller model that is based on the original model.

The abstract model is used instead of the original one to verify a given formula. There are

different ways to abstract the model. Below, existential abstraction and symmetry reduction are

discussed.

Existential abstraction. An existential abstraction is a surjective function h : G → Ĝ that

maps the set G of concrete states to the set Ĝ of abstract states. By means of h, the concrete

state space is partitioned into equivalence classes making up the abstract state. In other words,

the abstract space is equal to Ĝ = {[g] : g ∈ G}, where [g] denotes the equivalence class con-

taining the concrete state g. The equivalence classes are induced by the equivalence relation

{(g, g′) : h(g) = h(g′)}. In existential abstraction, an abstract model is built that simulates the

concrete model, thus preserving the satisfaction of universal formulae from the abstract model

to the concrete one.

Existential abstraction is applied to interpreted systems in [CDLR09]. Given an interpreted

system IS =
(
(Li, Acti, Pi, ti)i∈A , I, V

)
, the local states and actions of each agent are collapsed

into equivalence classes. The equivalence relations are chosen by the user. It is assumed that

the atomic propositions do not distinguish between equivalent local states, i.e., for every pair

24 Chapter 2. Background

(g, g′) of concrete global states, if p ∈ V (g) and lsi(g) ≡ lsi(g
′) for all i ∈ A, then p ∈ V (g′).

The abstract interpreted system ÎS =
((
L̂i, ˆActi, P̂i, t̂i

)
i∈A

, Î, V̂
)

is built as follows.

• L̂i = {[l] : l ∈ Li};

• ˆActi = {[a] : a ∈ Acti};

• P̂i([l]) = {[a] : a ∈ Pi(l)};

• t̂i([l], [a]) = [l′] iff ti(l, a) = l′;

• V̂ ([g]) = V (g).

It is shown that Î simulates I. Î can therefore be used instead of I for the verification of an

ACTLK formula.

Symmetry reduction. Intuitively, symmetry is an interchange of certain objects, e.g., local

states, in the system that preserves the behaviour of the system. Formally, a symmetry of

a set X ⊆ G of global states is a bijection ζ : G → G that does not alter X, i.e, ζ(X) =

{ζ(g) : g ∈ X} = X. Similarly, a symmetry of a relation X ⊆ G×G between global states is a

bijection ζ : G→ G that does not alter X, i.e., ζ(X) = {(ζ(g), ζ(g′)) : (g, g′) ∈ X}.

Symmetries in multiagent systems have been exploited by means of data symmetries [CDLQ09a].

Data symmetries are domain permutations for the variables encoding the system: ζv : Dv →

Dv, where Dv is the domain of variable v. Bijections can be defined on local and global states

by point-wise application of ζ on the data elements occurring in the states. Two global states

g, g′ are said to be data symmetric, denoted g ≡ g′, iff ζ(g) = g′ for some domain permuta-

tion ζ. Given an interpreted system IS =
(
(Li, Acti, Pi, ti)i∈A , I, V

)
, it is shown that a CTLK

formula can be equivalently evaluated on the system ÎS =
(

(Li, Acti, Pi, ti)i∈A , Î, V
)

, where

Î contains exactly one (representative) initial state for each equivalence class induced by the

equivalence relation ≡.

Additionally, symmetries in multiagent systems have been exploited by means of agent sym-

metries [CDLQ09b]. Agent symmetries are permutations on the agents encoding the system:

ζ : A → A. Bijections on global states can defined by replacing the local state of each agent

2.4. Model checking multiagent systems 25

i with the local state of the agent ζ(i). Two global states g, g′ are said to be agent symmet-

ric, denoted g ≡ g′, iff ζ(g) = g′ for some agent permutation ζ. Given an interpreted system

IS =
(
(Li, Acti, Pi, ti)i∈A , I, V

)
, it is shown that a CTLK formula can be equivalently evaluated

on the system ÎS =
(

(Li, Acti, Pi, ti)i∈A , Î, V
)

, where Î contains exactly one (representative)

initial state for each equivalence class induced by the equivalence relation ≡.

Partial order reduction

Partial order reduction is a state space reduction technique for interleaved systems. Intuitively,

an interleaved system allows for a sequence of actions to be performed in arbitrary orderings

of the actions. Given a sequence of actions, this can be exploited to reduce the state space

whenever the following two conditions are met: (i) the resulting global state is irrespective

of the specific ordering of the actions in the sequence; (ii) the formula to check cannot distin-

guish between different orderings of the actions in the sequence. Assuming these conditions

are met, partial order reduction techniques remove all orderings of a given path but one. This

is typically accomplished by building the reduced model in a depth-first-search manner. The

algorithm to do this selects only some of the possible paths to explore. Specifically, the algo-

rithm eliminates paths for which a stuttering equivalent path already occurs in the reduced

model.

The above ideas have been extended to interleaved interpreted systems in [LPQ10]. For a more

detailed discussion on partial order reduction, the interested reader is referred to [Pel93].

2.4.4 Automata-based techniques

Automata-based techniques reduce the model checking problem to the nonemptiness problem

for Büchi automata. A Büchi automaton is a tuple A = (Q,Q0,Σ, δ, F) where:

• Q is a finite set of states;

• Q0 ⊆ Q is a set of initial states;

• Σ is a finite alphabet;

26 Chapter 2. Background

• δ ⊆ Q× Σ×Q is a set of transitions;

• F ⊆ Q is a set of accepting states.

Given an infinite word σ = a0, a1, . . ., σ ∈ Σ∗, a run r of A on σ is a sequence q0, q1, . . ., where

q0 ∈ Q0 and (qi, ai, qi+1) ∈ δ, for all i > 0. Let i(r) be the set of states that occur in r infinitely

often. A Büchi automaton A is said to accept a run r if i(r)∩F 6= ∅ (i.e., there is some accepting

state in F that occurs infinitely often in r). A Büchi automaton A is said to accept an infinite

word σ if there is an accepting run of A on σ. The language of A is the set of infinite words

accepted by A; it is denoted by L(A). The nonemptiness problem for a Büchi automaton A is

to decide whether the language of A is nonempty, i.e, L(A) 6= ∅.

The model checking problem is reduced to the nonemptiness problem of Büchi automata in

the following way. LetM be a temporal model and let φ be an LTL formula. M is translated

into a Büchi automaton AM such that L(AM) corresponds to the set of paths in M. Further,

the formula ¬φ is translated into a Büchi automaton A¬φ such that A¬φ accepts precisely the

paths satisfying ¬φ. It is proven thatM |= φ iff L(Am) ∩ L(A¬φ) = ∅.

The method was introduced in [VW86] for the logic LTL. It was extended to epistemic logic

and interpreted systems with perfect recall 4 [MS99]. The model checker MCK [GvdM04]

implements these theoretical results.

2.4.5 The model checker MCMAS

MCMAS is a model checker for the verification of multi-agent systems. It is implemented in C++

and released as open source. MCMAS supports symbolic model checking techniques for CTLK;

OBDDs are manipulated using the CUDD library [Som05]. Additionally, the checker can han-

dle specifications expressed in alternating time logic (ATL) [AHK02] and deontic logic [LS03].

MCMAS takes as input an ISPL file. An ISPL file is structured into four sections.

1. Agents’ declarations section. The agents’ declarations follow closely the modular frame-

work of interpreted systems. In particular, an agent’s declaration includes declarations
4Intuitively, in a system with perfect recall each agent knows its history of local states it has gone

through [FHMV95].

2.4. Model checking multiagent systems 27

of the agent’s local states, its local actions, its protocol and its evolution function.

The set of local states is given in terms of a set of variables. Each variable can be of either

one of three types: (i) integer; (ii) Boolean; (iii) enumeration.

The protocol is declared in terms of condition:actions pairs. The condition spec-

ifies the values of the variables enabling the actions.

The evolution function is described by means of if-then statements. The precondition

is a boolean expression specifying the current values of the variables and the joint action,

whereas the postcondition determines the variables’ next values.

Agent <agent_id>

<agent_body>

end Agent

agent_body::

Vars:

<var_ID> : <var_domain>;

...

end Vars

Actions = { <action_id> , <action_id> ... };

Protocol:

<protocol_condition> : { <action_id>, <action_id> ... };

...

end Protocol

Evolution:

<assignment> if <precondition> ;

...

end Evolution

2. Evaluation section. The valuation function is encoded as a list of if-then statements.

The precondition is a boolean expression specifying the values of the variables for which

the atomic proposition expressed by the postcondition holds.

28 Chapter 2. Background

Evaluation

<proposition_id> if <boolean_expression>;

...

end Evaluation

3. Initial states section. The set of initial global states is represented by a boolean expres-

sion on the variables.

InitStates

<boolean_expression>

end InitStates

4. Formulae section. The set of formulae to check are built as usual from the atomic

propositions specified in the evaluation section.

Formulae

<formulae_list>

end Formulae

Figure 2.3 shows the ISPL file encoding the Train-Gate-Controller.

2.5 Parameterised model checking

The parameterised model checking problem is the decision problem of establishing whether a

certain specification holds on a system comprised of an arbitrary number of participants. The

problem has been extensively studied in the context of reactive systems. In the general setting

it was shown to be undecidable [AK86]. However, given the importance of the problem, a rich

body of work has been mainly concerned with three ways to tackle its difficulty:

1. The identification of restricted classes of systems on which decidability results can be

drawn. For instance, specific communication topologies were analysed, e.g., rings [EN95,

EK04], trees [AHH13, AJMd02], cliques [DSZ11], linear topologies [AHH13, ADHR07],

when analysing network protocols for an unbounded number of hosts.

2.5. Parameterised model checking 29

Agent Environment
Vars:

s: { g,r }
end Vars
Actions = { E_1,L_1,E_2,L_2 };
Protocol:

s = g : { E_1,E_2 };
s = r : { L_1,L_2 };

end Protocol
Evolution:

s = g if s = r and ((Action = L_1) or (Action = L_2 and
T_2.Action = L_2));

s = r if s = g and ((Action = E_1) or (Action = L_2 and
T_2.Action = E_2));

end Evolution
end Agent

Agent T_1
Vars:

s: { w,t,a }
end Vars
Actions = { E_1,L_1,B_1 };
Protocol:

s = w : { E_1 };
s = t : { L_1 };
s = a : { B_1 };

end Protocol
Evolution:

s = w if s = a and Action = B_1 ;
s = t if s = w and Action = E_1 and Environment.Action = E_1;
s = a if s = t and Action = L_1 and Environment.Action = L_1;

end Evolution
end Agent

Agent T_2
...

end Agent

Evaluation
t_1 if T1.s = t;
t_2 if T2.s = t;

end Evaluation

Formulae
AG (t_1 -> K(T_1,!t_2);

end Formulae

Figure 2.3: The ISPL description of the Train-Gate-Controller.

30 Chapter 2. Background

2. The development of sound but necessarily incomplete methodologies. These method-

ologies are not generally guaranteed to solve the parameterised model checking prob-

lem. Still, they have made it possible to formally verify a variety of algorithms including

Szymanski’s mutual exclusion algorithm [Szy88], Lamport’s bakery algorithm [PXZ02,

ADHR07], the dining philosophers protocol [HBR09], and several cache coherence pro-

tocols [HSBR10, ADHR07].

3. The development of partially automated methodologies [CTV06, CTV08, WL90, CGB89,

CG87, KM89]. These techniques require manual guidance.

The majority of studies in parameterised model checking tackle safety properties [ACJT96,

AHH13, Mai01, ADHR07, DT98]. Others target liveliness properties [EFM99, EN98, PXZ02,

PS00, BJ+00]. Some investigate LTL specifications [HBR09, EK00, HSBR10, GS92, EN96,

EK03b], CTL specifications [CTTV04], and CTL∗ specifications [EN95, AJKR14, CGB89]. One

issue in these works is to avoid formalisms that are able to represent the number of participants

in the system. For example, consider a ring of processes that communicate by passing a token

in a fixed direction, and assume that the proposition t1 is true whenever process 1 has the

token. Then, the formula

AG(t1 → XXXXXt1)

is read “whenever process 1 has the token, it will again receive the token in exactly five steps”.

This is only true if the ring has exactly five processes [CGB89]. It is often the case that prop-

erties of this form lead the parameterised model checking problem to undecidability [EK03b].

The next operator X is therefore typically excluded from the specifications to avoid this.

The next two sections report on some of the ways the parameterised model checking problem

is formalised and on the techniques employed to solve it.

2.5.1 Parameterised modelling languages

The parameterised model checking problem (PMCP) is typically formulated in a finitary, ab-

stract way by giving a template for the participants in the system and the formula to be verified.

By providing the parameter n representing number of actual participants in the system, the

2.5. Parameterised model checking 31

concrete system of n participants can be constructed upon which the standard model check-

ing problem can be solved. In a widely studied definition [EK00, GS92, EN96, EN98, EK03b,

EFM99, AKR+14], a template T is given by a 4-tuple T = (S,L,R, ι), where

• S is a finite, nonempty set of states;

• L is a finite set of transition labels;

• ι is the initial state;

• R ⊆ S × L× S is the transition relation.

The set L of transition labels is equal to the union of the sets Σin of internal transition labels,

Σb × {?} of input broadcast labels, Σb × {!} of output broadcast labels, Σar × {?} of input

asynchronous rendezvous labels, Σar × {!} of output asynchronous rendezvous labels, Σpr ×

{?} of input pairwise rendezvous labels, Σpr × {!} output pairwise rendezvous labels, and the

sets of conjunctive and disjunctive boolean guards. These sets of labels correspond to different

communication primitives studied in the literature:

• Internal actions [GS92]. A participant performs an internal action with no communi-

cation taking place.

Assume two global states g and g′ of a given concrete system. A global transition from

g to g′ can happen by means of an internal label a if there is a participant i such that

(lsi(g), a, lsi(g
′)) ∈ R, and for all participants j 6= i, lsj(g) = lsj(g

′).

• Broadcast [EN98]. A participant sends a message to all other participants. It is assumed

that each participant is always ready to receive the message. The transition relation is

therefore in compliance with the following condition: for every a ∈ Σb and every state

s ∈ S, there is a state s′ ∈ S such that (s, a?, s′) ∈ R.

Assume two global states g and g′ of a given concrete system. A global transition from

g to g′ can happen by means of a broadcast label a if there is a participant i such that

(lsi(g), a!, lsi(g
′)) ∈ R, and for all participants j 6= i, (lsj(g), a?, lsj(g

′)) ∈ R.

32 Chapter 2. Background

• Asynchronous rendezvous [DRB02]. A participant sends a message irrespective of

whether there is a participant ready to receive the message.

Assume two global states g and g′ of a given concrete system. A global transition from g to

g′ can happen by means of an asynchronous rendezvous label a if there is a participant i

such that (lsi(g), a!, lsi(g
′)) ∈ R, and either: (i) for all participants j 6= i, lsj(g) = lsj(g

′);

i.e, there is no participant ready to receive the message; or (ii) there is a participant j 6= i

such that (lsj(g), a?, lsj(g
′)) ∈ R, and for all participants q 6= j, q 6= i, lsq(g) = lsq(g

′);

i.e., a participant is ready to receive the message.

• Pairwise rendezvous [GS92]. A participant sends a message only if there is a participant

ready to receive the message.

Assume two global states g and g′ of a given concrete system. A global transition from g

to g′ can happen by means of a pairwise rendezvous label a if the following hold: (i) there

is a participant i such that (lsi(g), a!, lsi(g
′)) ∈ R; (ii) there is a participant j 6= i such

that (lsj(g), a?, lsj(g
′)) ∈ R; and (iii) for all participants q 6= j, q 6= i, lsq(g) = lsq(g

′).

• Conjunctive boolean guards [EK00]. A conjunctive boolean guard is constructed from

the schema
∧

(a∨ . . .∨ b). A guard of this form expresses that all participants other than

the one firing the transition are currently in one of the local states a, . . . , b.

Assume two global states g and g′ of a given concrete system. A global transition from

g to g′ can happen by means of a conjunctive boolean guard
∧

(a ∨ . . . ∨ b) if there is a

participant i such that (lsi(g),
∧

(a ∨ . . . ∨ b), lsi(g′)) ∈ R, and for all participants j 6= i,

lsj(g) = lsj(g
′) = a ∨ . . . ∨ lsj(g) = lsj(g

′) = b.

• Disjunctive boolean guards [EK00]. A disjunctive boolean guard is constructed from

the schema
∨

(a∨ . . .∨ b). A guard of this form expresses that there is a participant other

than the one firing the transition in one of the local states a, . . . , b.

Assume two global states g and g′ of a given concrete system. A global transition from g

to g′ can happen by means of a disjunctive boolean guard
∨

(a ∨ . . . ∨ b) if the following

hold: (i) there is a participant i such that (lsi(g),
∨

(a ∨ . . . ∨ b), lsi(g′)) ∈ R; (ii) there

is a participant j 6= i such that lsj(g) = a ∨ . . . ∨ lsj(g) = b; and (iii) for all participants

q 6= i, lsq(g) = lsq(g
′).

2.5. Parameterised model checking 33

Each of the above primitives has been separately studied, but always in combination with

internal actions.

Broadcast protocols were introduced in [EN98]. The PMCP has been analysed in terms of

safety, liveliness, and LTL properties. It was initially shown to be decidable for safety properties

and undecidable for liveliness properties [EFM99]. It was then shown to be undecidable for

LTL\X properties [EK03b]. Nevertheless, a decidability result was given for LTL properties

under the restriction of initialisable templates [EK03b]; i.e, systems in which every state of the

template has a transition by means of an internal label to the initial state.

Asynchronous rendezvous primitives were introduced in [DRB02] for the verification of multi-

threaded Java programs. The PMCP was shown to be decidable for safety properties and

undecidable for LTL\X properties [EK03b].

Pairwise rendezvous primitives were introduced in [GS92] where a parameterised model check-

ing procedure for LTL properties was put forward.

Disjunctive and conjunctive guards first appeared in [EK00]. For both settings, the PMCP was

shown to be decidable for LTL\X properties. It was later observed that the inclusion of the

next operator leads to undecidability [EK03b].

Other parameterised modelling languages have been considered. In particular, there is an in-

creasing interest in the verification of communication networks with an unbounded number

of hosts. Typically, the communication topology of a network is represented by a graph. The

graph may correspond to specific, predefined topologies [CTTV04, EN95, AJKR14], or to ar-

bitrary topologies generated by context-free grammars [SG90, BCK08, SWJ08]. In a network

grammar, an initial variable represents the network type, the terminals represent instances of

process types, and the nonterminals represent subnetwork types [SG90]. The parameterised

model checking problem in this context is the decision problem of determining whether a given

specification holds irrespectively of the size of a generated topology.

34 Chapter 2. Background

Concrete space

Abstract space

(n,n, l,o, l,n,n,n, l, l) (l,o, l,n, l,n, l,n, l, l)

((l,4), (m,0), (n,5), (o,1)) ((l,6), (m,0), (n,3), (o,1))

Figure 2.4: Counter abstraction.

Concrete space

Abstract space

(n,n, l,o, l,n,n,n, l, l) (l,o, l,n, l,n, l,n, l, l)

((l,2), (m,0), (n,2), (o,1))

Figure 2.5: Counter abstraction with a threshold of 2.

2.5.2 Parameterised model checking techniques

This section briefly summarises some of the existing approaches in parameterised model check-

ing. The techniques discussed below are categorised into three groups: (i) abstraction; (ii)

cutoffs; and (iii) network invariants.

Abstraction

Abstraction techniques [PXZ02, CTV08, GS92, CTV06, EN96, EFM99, YL10, EN98] rely on the

analysis of a single finite state abstract system encoding all possible concrete systems. Typically,

these techniques require manual guidance for obtaining the abstract mapping. Further, they

are often incomplete: if a certain specification is falsified on the abstract model, then it does

not necessarily follow that there is a concrete system falsifying the specification. Below we

discuss counter abstraction and environment abstraction.

2.5. Parameterised model checking 35

Counter abstraction

Intuitively, in counter abstraction the identities of the participants are abstracted away. An

abstract state is a tuple of counters, one per local state, such that it reflects the number of

participants in each local state. Figure 2.4 exemplifies this idea on a global transition of a con-

crete system with ten participants. In the figure the concrete state g = (n, n, l, o, l, n, n, n, l, l),

representing that the first participant is in state n, the second is in state n, the third is in

state l, and so forth, is abstracted to γ = ((l, 4), (m, 0), (n, 5), (o, 1)), representing that there

are four participants in state l, zero participants in state m, and so forth. Similarly, the state

g′ = (l, o, l, n, l, n, l, n, l, l) is abstracted to γ′ = ((l, 6), (m, 0), (n, 3), (o, 1)). The concrete transi-

tion g → g′ is abstracted to γ → γ′.

Counter abstraction is explored in [GS92] where the abstract model is defined in terms of a

Petri Net [KM69]. In this work a concrete system is built by templates with pairwise rendezvous

labels. It is observed that since the number of participants is unbounded, the abstract space

is unbounded. Nevertheless, it is shown that the PMCP can be solved by considering only the

paths in the abstract model that are bounded in length. As each of these paths has a concrete

representative path in a system of a bounded number of participants, an automata-theoretic

procedure can be defined for the verification of LTL properties. The procedure runs in time

doubly exponential in the size (the number of states and transitions) of the template from

which a concrete system is generated.

In other approaches, the counters in the abstract model are abstracted by imposing a certain

threshold on their values. Figure 2.5 exemplifies this on a global transition with ten partici-

pants and a threshold of 2. In the figure the concrete states g = (n, n, l, o, l, n, n, n, l, l) and

g′ = (l, o, l, n, l, n, l, n, l, l) are abstracted to ((l, 2), (m, 0), (n, 2), (o, 1)), representing that there

are at least two participants in state l, zero participants in state m, at least two participants

in state n, and one participant in state o. Similarly, the state g′ = (l, o, l, n, l, n, l, n, l, l) is ab-

stracted to γ′ = ((l, 6), (m, 0), (n, 3), (o, 1)). The concrete transition g → g′ is abstracted to

γ → γ′.

Although the threshold-based counter abstraction of a given system corresponds to a finite

abstract model, it often does so by overapproximating concrete behaviours, thereby hindering

36 Chapter 2. Background

the verification of a property. For example, as shown in Figure 2.5, there is a transition from

the abstract state to itself, whereas the abstract state has no concrete representative with a

transition to itself. A spurious path is said to be an abstract path that does not correspond to

any concrete behaviour. These paths are identified via a procedure given in [EN96]. The pro-

cedure is given in the context of templates with conjunctive and disjunctive boolean guards,

as presented in Section 2.5.1, but with synchronous composition of the participants. In the

asynchronous case, the PMCP is shown undecidable for LTL formulae [EN96]. This was fol-

lowed by an incomplete counter abstraction procedure for the verification of asynchronously

communicating processes [PXZ02].

Environment abstraction

Environment abstraction combines counter abstraction with predicate abstraction. In environ-

ment abstraction, rather than keeping track of the number of participants in each local state,

a record of the number of participants that satisfy certain predicates is kept. A predicate is a

first order atomic formula over the variables encoding the template. The abstract transition

relation in this setting is defined by a parametric extension of existential abstraction. In other

words, there is an abstract transition from a state γ to a state γ′ if there is a concrete system of

n ≥ 1 participants in which there is a concrete transition from a state g to a state g′, where g, g′

are represented by γ, γ′, respectively. These ideas have been put forward in [CTV06, CTV08].

Cutoffs

Cutoff techniques identify an integer called the cutoff. A cutoff expresses the number of com-

ponents that is sufficient to consider when evaluating a given specification. So, rather than

checking every concrete system for every value of the parameter, the PMCP can be solved by

checking all concrete systems up to the cutoff. The cutoff identification procedures may either

be dynamic or static, as discussed below.

Dynamic cutoff identification procedures identify cutoffs on-the-fly during the verification pro-

cedure. At each step of the procedure, a concrete system of n participants is verified and

2.5. Parameterised model checking 37

it is in parallel determined whether or not n is a cutoff. If so, then the verification proce-

dure terminates. Otherwise, the procedure proceeds to the next step where a concrete system

of n + 1 participants is considered. Dynamic cutoffs were used for the analysis of boolean

programs against safety properties [KKW10], linear and tree like topologies against safety

properties [AHH13], and arbitrary topologies against LTL\X properties [HBR09, HSBR10].

Static cutoff identification procedures identify cutoffs before the actual verification commences.

The cutoff procedure takes as input the participants’ template and the formula to check, and

returns a cutoff. Following the calculation of a cutoff, each concrete system up to the cutoff is

built and verified. Differently from dynamic approaches, where the minimal cutoff is identi-

fied, static approaches do not necessarily identify a minimal cutoff. However, they can typically

analyse richer specifications. Static cutoffs were used for the analysis of ring topologies against

CTL∗ \X properties [EN95], arbitrary topologies against CTL\X [CTTV04] and CTL∗ \X prop-

erties [AJKR14], systems built from templates with conjunctive and disjunctive guards against

LTL\X properties [EK00], and resource allocation networks against LTL\X properties [EK02].

Network invariants

Network invariant approaches assume the specification is represented by a finite state system.

Satisfaction of the specification on a concrete system is established in terms of a preorder on

systems. That is, a concrete system T (n) satisfies the specification φ iff T (n) ≤ φ, for some

preorder ≤. Therefore, the PMCP in this setting is to check whether or not T (n) ≤ φ, for every

n ≥ 1. This is determined by identifying a network invariant. Informally, a network invariant I

is a finite state system encoding any possible behaviour of any concrete system. Formally, I is

a finite state system such that:

1. T ≤ I;

2. T ‖ I ≤ I, where ‖ denotes parallel composition.

Note that if I is a network invariant, then T ‖ T ‖ · · · ‖ T︸ ︷︷ ︸
n

≤ I, i.e., T (n) ≤ I, for any n ≥ 1.

The PMCP is thus reduced to the problem of determining whether or not I ≤ φ.

38 Chapter 2. Background

The method of network invariants was introduced in [WL90]. It is shown that invariants

do not generally exist. Investigations on network invariants were followed in [AJ99], where

sufficient criteria for their existence were given. Heuristics for the automatic generation of

invariants were later introduced in [APR+01, ZP04].

Chapter 3

Formalisms for unbounded multiagent

systems

This chapter proposes two formalisms for reasoning about unbounded multiagent systems.

Section 3.1 introduces a semantics for synchronous UMAS that extends interpreted systems.

Section 3.2 presents a semantics for asynchronous UMAS that is based on interleaved in-

terpreted systems. Section 3.3 introduces a specification language that extends temporal-

epistemic logic, and that can be used to express properties of agents in a UMAS. Section 3.4

follows with the definition of certain notions of simulations between concrete systems, and an

analysis on the preservation of logical satisfaction between similar systems.

3.1 Parameterised interpreted systems

This section introduces parameterised interpreted systems (PIS) [KL15b]. PIS extend interpreted

systems to reason about temporal-epistemic properties in a UMAS setting. A PIS models an

unbounded collection of agents where each agent adheres to a different role. Each role is

associated with a generic agent template which specifies the behaviour of each agent of said

role. The description of a PIS consists of the descriptions of a finite number of agent templates

and the description of the environment template. The environment template expresses the

behaviour of the environment under any given number of agents. A parameter for a PIS is a

39

40 Chapter 3. Formalisms for unbounded multiagent systems

tuple of natural numbers, one for each role, that determines the actual number of agents in

the system. Given a parameter (n1, . . . , nk) for the system, the concrete interpreted system

corresponding to the composition of ni agents, for each role i, can be constructed.

Assume a set T = {T1, . . . , Tk} of agent templates and an environment template E . Each

template has a similar description to a standard agent in interpreted systems. However, its

transition function does not depend on the joint action performed in the system, but it depends:

(i) on the action performed by a concrete agent following this template; on the action of the

environment; and (iii) on the projection of the joint action for all other concrete agents into a

set. Thus, the identities of the agents are abstracted away in a joint action, thereby reflecting

the unbounded nature of the system. In other words, a concrete agent can observe the actions

performed in the system at a given time but it cannot observe which agent performed which

action.

Definition 3.1 (Agent template). An agent template Ti is a tuple Ti = (Li, Acti, Pi, ti), where

• Li is a set of template states;

• Acti is a set of template actions;

• Pi : Li → P(Acti) is the template protocol;

• ti : Li ×Acti × P(
⋃
Ti Acti)×ActE → Li is the template transition function.

The environment template E is defined along the same lines as an agent template. Its transition

function depends: (i) on the action performed by the environment; and (ii) on the projection

of the joint action for all the concrete agents into a set.

Definition 3.2 (Environment template). An environment template E is defined as a tuple E =

(LE , ActE , PE , tE), where

• LE is a set of template states;

• ActE is a set of template actions;

• PE : LE → P(ActE) is the template protocol;

3.1. Parameterised interpreted systems 41

• tE : LE ×ActE × P(
⋃
Ti Acti)→ LE is the template transition function.

A PIS consists of a finite collection of agent templates and a template environment.

Definition 3.3 (Parameterised interpreted system). A Parameterised Interpreted System is a

tuple PIS = (T , E , I,V), where

• T =
{

(L1, Act1, P1, t1), . . . , (L|T |, Act|T |P|T |, t|T |)
}

is a nonempty and finite set of agent

templates;

• E = (LE , ActE , PE , tE) is an environment template;

• I = I1× . . .× I|T | × IE is the set of initial template states, where Ii ⊆ Li is the set of initial

template states for agent template i.

• V = {Vi : Li → P(AP i) : i ∈ T } is a set of valuation functions, one for each agent template.

Each Vi is defined on a set of atomic propositions AP i . It is assumed that AP1 , . . . ,AP |T |

are pairwise disjoint sets.

Let PIS = (T , E , I,V) be a parameterised interpreted system of k roles. Let n = (n1, . . . , nk) ∈

Nk be a concrete value of the system’s parameter. We write n.i for the natural number associ-

ated with template Ti in n. For a k-tuple of natural numbers x, we write x ≤ n to mean that

x.1 ≤ n.1, . . . x.k ≤ n.k. We now describe the n’st concrete instantiation of a PIS. The concrete

system PIS (n) is an interpreted system that results from the composition of n.i instantiations

{(i, 1), . . . , (i, n.i)} of each agent template Ti, and an instantiation of the environment tem-

plate. Given a x ≤ n, we write A(x) for the set A(x) = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ x.i} of

concrete agents. The concrete agents are instantiated by taking indexed copies of their corre-

sponding agent templates.

Definition 3.4 (Concrete agent). Given a PIS PIS = (T , E , I,V) and a value n ∈ Nk for its

parameter, the concrete agent (i, j) =
(
Lji , Act

j
i , P

j
i , t

j
i

)
is defined as follows:

• Lji = Li × {j};

• Actji = Acti;

42 Chapter 3. Formalisms for unbounded multiagent systems

• P ji : Lji → P(Actji) is defined for each concrete local state (l, j) by P ji ((l, j)) = Pi(l);

• tji : Lji ×ACT → Lji is such that

tji ((l, j), a) = (l′, j) iff ti
(
l, laji (a), {lasr(a) : (r, s) ∈ A(n)} , laE(a)

)
= l′,

where laji (a) denotes the local action of agent (i, j) in a.

So, the local states of a concrete agent are made of the template local states indexed by the

name of the agent in question. The agent inherits from its template the actions, the protocol

and the transition function. The concrete environment is similarly obtained.

Definition 3.5 (Concrete environment). Given a PIS PIS = (T , E , I,V) and a value n ∈ Nk for

its parameter, the concrete environment E = (LE , ActE , PE , tE) is defined as follows.

• LE = LE ;

• ActE = ActE ;

• PE : LE → P(ActE) is defined for each concrete local state l by PE(l) = PE(l);

• tE : LE ×ACT → LE is such that

tE (l, a) = l′ iff tE (l, laE(a), {lasr(a) : (r, s) ∈ A(n)}) = l′,

where lasr(a) denotes the local action of agent (r, s) in a.

Finally, a PIS’s instantiation, and the concrete semantics we consider for synchronous UMAS,

is the interpreted system composed of the concrete agents and the concrete environment.

Definition 3.6 (Concrete system). Given a PIS PIS = (T , E , I,V) and a value n ∈ Nk for its

parameter, the concrete system PIS(n) is the interpreted system

PIS(n) =
(

(Lji , Act
j
i , P

j
i , t

j
i)(i,j)A(n), (LE , ActE , PE , tE), I, V

)
,

where:

3.1. Parameterised interpreted systems 43

0 1 2 3 4 5 6 7

Goal region

Figure 3.1: The autonomous robot scenario.

• I =
{

(l11, . . . , l
n.k
k , lE) : l11 ∈ I1 × {1} , . . . , ln.kk ∈ Ik × {n.k} , lE ∈ IE

}
is the set of initial

concrete states;

• V : S → P(AP) is the concrete valuation function defined on the set S = L1
1 × . . .×Ln.kk ×

LE of possible global states, and on the set AP = (AP1 × {1, . . . , n.1}) ∪ . . . ∪ (APk ×

{1, . . . , n.k}) of atomic propositions as follows:

for p ∈ AP i and 1 ≤ j ≤ n.i , (p, j) ∈ V (g) iff p ∈ Vi(l),

where l is the template local state of agent (i, j) in g.

Hence a PIS S is a concise description of an unbounded collection
{
S(n) : n ∈ Nk

}
of (con-

crete) interpreted systems. For each concrete system PIS (n), we can associate a temporal-

epistemic model SPIS(n) =
(
G(n), I(n), R(n), (Kji)(i,j)∈A(n), V (n)

)
as described in section 2.1.1.

When PIS(n) is clear from the context we simply write S(n) for SPIS(n). Given a global state

g, we write lsji (g) for the local state of agent (i, j) in g. The template local state of agent (i, j)

in g is denoted by tlsji (g).

3.1.1 Autonomous robot

This section encodes a parameterised variant of the autonomous robot scenario in the param-

eterised interpreted systems language.

The autonomous robot scenario was introduced in [FHMV95]. It includes an autonomous

robot running along an endless straight track (see Figure 3.1). The position of the robot is

given in terms of locations numbered as 0, 1, 2, The robot is initially at position 0. It can

only move forward along the track and its movement is controlled by the environment. The

44 Chapter 3. Formalisms for unbounded multiagent systems

00⊥

12⊥

11⊥

10⊥

33⊥ 33>
(s=, X,move)

(s+, X,move)

(s+, X,move)

(s+, X,move)

(halt,X,move)

(s,X,move)

(s+, X,move)

(s−, X,move)

(a) Template robot 1.

0

1

(X,move)

(b) Environment template.

Figure 3.2: The parameterised interpreted system of the autonomous robots.

only action the robot can perform is to halt. If the robot halts, then the environment can no

longer move the robot. Otherwise, the environment moves the robot one position forward at

each time step.

A sensor is attached to the robot that measures its position. The sensor is faulty in the sense

that a sensor reading at position q can be any of the values in {q − 1, q, q + 1}. The goal of the

robot is to halt in the goal region {2, 3, 4}. A solution to the autonomous robot problem in the

single robot case is for the robot to do nothing while the value of its sensor is less than 3, and

to halt once the value of its sensor is greater than or equal to 3 [FHMV95]. We show that this

solution applies to the arbitrary case with an unbounded number of robots.

We consider a generalisation of the above description in which an arbitrary number of robots

run synchronously along the track. We encode this scenario as a PIS composed of an agent

template representing the robots and an environment template modelling the environment.

Since the templates can only be finite structures, the modelling here proposed assumes a finite

track.

The template for the robots and the template for the environment are given by Figure 3.2. In

the figure, an edge from node l to node l′ that is labelled with (a,A, aE) represents the template

transition t(l, a, A, aE) = l′. A template state (p, s, h) of a robot represents its position p, its

sensor reading s, and whether it has halted (h = >) or not (h = ⊥). A template state p of the

environment represents the position of the robots. The system has a unique initial template

state (00⊥, 0). The actions s=, s+, s− determine the status of the sensor reading at each time

3.2. Parameterised interleaved interpreted systems 45

step. The status of a reading can either be: (i) correct whenever s= is performed; (ii) wrong

and one position higher whenever s+ is performed; or (iii) wrong and one position lower

whenever s− is performed. The symbol X ⊆ {s+, s−, s+, s, halt} denotes an arbitrary subset

of the set of actions admitted by the template robot.

So, at each time step, the environment performs the action move and moves to the next po-

sition in the track irrespective of agents’ actions performed at the time step. Each agent non-

deterministically performs one of the actions s=, s+, s− at each time step. Upon performing

one of these actions, an agent moves to a state encoding the next position, say q, in the track,

and the updated value of its sensor which could either be q − 1, q, or q + 1, depending on

which action the agent performed; this transition is irrespective of the other agents’ actions.

Whenever the value of the sensor of an agent is greater than or equal to 3, the agent can only

perform the halt action; then, the agent updates the halting status in its state and it forever

remains in the resulting local state.

Figure 3.3 depicts a fragment of the concrete system with two robots. Each global state is

a 3-tuple representing, from left to right, the local state of the first robot, the local state of

the second robot, and the local state of the environment. An edge from a global state g to a

global state g′ that is labelled with (a, a′, a′′) represents that robot 1 performs the action a in

g, robot 2 performs the action a′ in g, the environment performs the action a′′ in g, and the

resulting global state is g′.

3.2 Parameterised interleaved interpreted systems

This section introduces parameterised interleaved interpreted systems (PIIS) [KL13a, KL13b,

KL15a, KL16]. PIIS extend interleaved interpreted systems to reason about temporal-epistemic

properties in an asynchronous UMAS setting. Similarly to PIS, a PIIS models an unbounded

collection of agents where each agent adheres to a different role. Each role is associated

with a generic agent template which specifies the behaviour of each agent of said role. The

description of a PIIS consists of the descriptions of a finite number of agent templates and the

description of the environment template. The environment template expresses the behaviour

46 Chapter 3. Formalisms for unbounded multiagent systems

(0,⊥)1, (0,⊥)1,0

(0,⊥)1, (1,⊥)2,1 (1,⊥)1, (1,⊥)2,1

(2,⊥)1, (1,⊥)1,2 (3,⊥)1, (3,⊥)2,2 (3,⊥)1, (1,⊥)2,2

(4,⊥)1, (2,⊥)2,3 (3,>)1, (3,>)2,3 (3,>)1, (3,⊥)2,3

(s1
−, s

2
=,move) (s1

=, s
2
=,move)

(s1
=, s

2
−,move)

(s1+, s
2
+,move)

(s1+, s
2
+,move)

(s1+, s
2
−,move)

(s1
+, s

1
−,move) (halt1 , halt2 ,move) (halt1 , s2

=,move)

Figure 3.3: Fragment of the concrete system for the autonomous robots with two robots

of the environment under any given number of agents. A parameter for a PIIS is a tuple of

natural numbers, one for each role, that determines the actual number of agents in the system.

Given a parameter (n1, . . . , nk) for the system, the concrete interleaved interpreted system

corresponding to the composition of ni agents, for each role i, can be constructed.

Assume a set T = {T1, . . . , Tk} of agent templates. Each template Ti = (Li, ιi, Acti, Pi, ti)

is similarly described to a standard agent in interleaved interpreted systems. However, the

template Ti distinguishes between five types of actions: (i) asynchronous actions; (ii) agent-

environment actions; (iii) role-synchronous actions; (iv) global-synchronous actions; (v) multi-

role actions. Each type of action is differently shared in a concrete system thus prescribing to a

different communication pattern.

1. An asynchronous action from template Ti is uniquely instantiated for each concrete agent

performing role i. Thus, whenever an asynchronous action is performed, exactly one

agent is participating in the global transition.

2. An agent-environment action from template Ti, modelling agent-environment commu-

nication, is instantiated as an asynchronous action, but each instantiation is shared by

3.2. Parameterised interleaved interpreted systems 47

the concrete environment. Hence, whenever an agent-environment action is performed

exactly one agent and the environment are participating in the global transition.

3. A role-synchronous action from template Ti, describing multi-agent-environment com-

munication, is shared by all the concrete agents performing role i and the concrete en-

vironment. Therefore, whenever a role-synchronous action is performed, all the agents

performing role i and the environment are participating in the global transition.

4. A global-synchronous action is shared by all the concrete agents of any role and the con-

crete environment. Consequently, whenever a global-synchronous action is performed,

all the agents and the environment are participating in the global transition.

5. Multi-role actions are designated for pairwise communication between agents perform-

ing different roles and the environment. A multi-role action defined for an agent tem-

plate Ti is always shared with a second agent template Tr. The set of multi-role actions

admitted by template Ti is the disjoint union
⋃
Tr MRi ,r of the sets of actions shared

between template i and every other template Tr; we assume that MRi ,r = MRr ,i . A

multi-role action shared between template Ti and template Tr is instantiated for each

pair of concrete agents performing roles i and r, respectively, and the instantiation is

also admitted by the concrete environment. As a result, whenever a multi-role action is

performed, the following agents are participating in the global transition: exactly one

agent performing role i, exactly one agent performing role r, and the environment.

In section 3.2.1 we exemplify the above synchronisation patterns. First we give the definitions

of the agent and environment templates, and the definition of the concrete semantics.

Definition 3.7 (Agent template). An agent template Ti is an agent (Li, ιi, Acti, Pi, ti) with a set

Acti = Ai ∪ AE i ∪ RS i ∪ GS ∪MRi of actions, where Ai is a set asynchronous actions, AE i

is a set of agent-environment actions, RS i is a set of role-synchronous actions, GS is a set of

global-synchronous actions that is shared with all other templates, and MRi =
⋃
Tr

MRi ,r is

a set of multi-role actions. It is assumed that the sets Ai,AE i ,RS i ,GS ,MRi ,1 , . . . ,MRi ,|T | are

pairwise disjoint.

The environment template E is described similarly to an agent template, but for the synchro-

48 Chapter 3. Formalisms for unbounded multiagent systems

nisation purposes described above, E ’s set of actions is the union of the agent templates’ sets

of agent-environment, role-synchronous, global-synchronous, and multi-role actions.

Definition 3.8 (Environment template). An environment template E = (LE , ιE , ActE , PE , tE) is

an agent defined on the set ActE =
⋃
Ti (AE i ∪ RS i ∪MRi) ∪GS of actions.

A PIIS consists of a finite collection of agent templates and a template environment.

Definition 3.9 (Parameterised interleaved interpreted system). A Parameterised Interleaved

Interpreted System is a tuple PIIS = (T , E ,V), where

• T = {(L1, ι1, Act1, P1, t1), . . . , (Lk, ιk, Actk, Pk, tk)} is a nonempty and finite set of agent

templates;

• E = (LE , ιE , ActE , PE , tE) is an environment template;

• V = {Vi : Li → P(AP i) : i ∈ T } is a set of valuation functions, one for each agent template.

Each Vi is defined on a set of atomic propositions AP i . It is assumed that AP1 , . . . ,AP |T |

are pairwise disjoint sets.

Let PIIS = (T , E ,V) be a parameterised system of k roles. Let n = (n1, . . . , nk) ∈ Nk be

a concrete value of the system’s parameter. Let n.i denote the natural number associated

with template Ti in n. For a k-tuple of natural numbers x, we write x ≤ n to mean that

x.1 ≤ n.1, . . . x.k ≤ n.k. We now describe the n’st concrete instantiation of a PIIS. The concrete

system PIIS (n) is an interleaved interpreted system that results from the composition of n.i

instantiations {(i, 1), . . . , (i, n.i)} of each agent template i and an instantiation of the environ-

ment template. Given x ≤ n, we write A(x) for the set A(x) = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ x.i}

of concrete agents. Each concrete agent is instantiated by taking indexed copies of its agent

template.

Definition 3.10 (Concrete agent). Given a PIIS PIIS = (T , E ,V) and a value n ∈ Nk for its

parameter, the concrete agent (i, j) =
(
Lji , ι

j
i , Act

j
i , P

j
i , t

j
i

)
is defined as follows.

• Lji = Li × {j}, where (ιi, j) ∈ Lji is the initial concrete local state;

3.2. Parameterised interleaved interpreted systems 49

• Actji = Aji ∪AE j
i ∪ RS i ∪GS ∪MRj

i , where:

– Aji = Ai × {j};

– AE j
i = AE i × {j};

– MRj
i =

⋃
(r,s)∈A(n) MRj ,s

i ,r , where MRj ,s
i ,r = MRi ,r × {{(i , j), (r , s)}} is the set of con-

crete multi-role actions shared precisely between the concrete agent (i, j) and the con-

crete agent (r, s) (note that MRj ,s
i ,r = MRs,j

r ,i).

• P ji : Lji → P(Actji) is defined for each concrete local state l by

P ji (l) =
{
a : a ∈ Actji and aτ ∈ Pi(lτ)

}
,

where aτ (lτ , respectively) denotes the corresponding template action (state, respectively)

from which a (l, respectively) has been instantiated;

• tji : Lji ×Act
j
i → Lji is such that

tji (l, a) = l′ iff ti(lτ , aτ) = l′τ .

So, the local states of a concrete agent are made of the template local states indexed by the

name of the agent in question. The agent inherits from its template the actions, the protocol

and the transition function. The concrete environment is similarly obtained by instantiating

each action shared with the agent templates.

Definition 3.11 (Concrete environment). Given a PIIS PIIS = (T , E ,V) and a value n ∈ Nk

for its parameter, the concrete environment E = (LE , ιE , ActE , PE , tE) is defined as follows.

• LE = LE and ιE = ιE ;

• ActE =
⋃

(i,j)∈A(n)

(
AE j

i ∪MRj
i

)
∪
⋃
i∈T RS i ∪GS ;

• PE : LE → P(ActE) is defined for each local state l by

PE(l) = {a : a ∈ ActE and aτ ∈ PE(lτ)} ;

50 Chapter 3. Formalisms for unbounded multiagent systems

• tE : LE ×ActE → LE is such that

tE(l, a) = l′ iff tE(lτ , aτ) = l′τ .

Finally, a PIIS’s instantiation, and the concrete semantics we consider for asynchronous UMAS,

is the interleaved interpreted system composed of the concrete agents and the concrete envi-

ronment.

Definition 3.12 (Concrete system). Given a PIIS PIIS = (T , E ,V) and a value n ∈ Nk for its

parameter, the concrete system PIIS(n) is the interleaved interpreted system

PIIS(n) =
(

(Lji , ι
j
i , Act

j
i , P

j
i , t

j
i)(i,j)A(n), (LE , ιE , ActE , PE , tE), ι, V

)
,

where:

• ι = ((ι1, 1), . . . , (ιk, n.k), ιE) is the unique initial global state;

• V : S → P(AP) is the concrete valuation defined on the set S = L1
1 × . . . × Ln.kk × LE of

possible global states, and on the set AP = (AP1×{1, . . . , n.1})∪ . . .∪(APk×{1, . . . , n.k})

of atomic propositions as follows:

for p ∈ AP i and 1 ≤ j ≤ n.i , (p, j) ∈ V (g) iff p ∈ Vi(l),

where l is the template local state of agent (i, j) in g.

For each concrete system PIIS (n) we can associate a temporal-epistemic model SPIIS(n) =(
G(n), ι(n), R(n), (Kji)(i,j)∈A(n), V (n)

)
as standard (see section 2.1.2). When PIIS (n) is clear

from the context we simply write S(n) for SPIIS(n). Given a global state g, we write lsji (g) for

the local state of agent (i, j) in g. The template local state of agent (i, j) in g is denoted by

tlsji (g).

In compliance with the interleaved semantics, we can distinguish five types of transitions on

a concrete system. In particular, a global transition from a state g can only happen in the

following cases: (i) a concrete asynchronous Aji action is enabled for agent (i, j) performing

3.2. Parameterised interleaved interpreted systems 51

g

=

g1

=

ls1
1(g)

lsxi (g)

lsyi (g)

ls
n̄(k)
k (g)

lsE(g)

(l,1)

(r, x)

(z, y)

(q, n̄(k))

lE

(l′, 1)

(r, x)

(z, y)

(q, n̄(k))

lE

A1
1

(a) Asynchronous.

g

=

g2

=

(l, 1)

(r, x)

(z, y)

(q, n̄(k))

lE

(l, 1)

(r, x)

(z, y)

(q′, n̄(k))

l′E

AE
n̄(k)
k

(b) Agent-environment.

g

=

g3

=

(l, 1)

(r,x)

(z,y)

(q, n̄(k))

lE

(l, 1)

(r′, x)

(z′, y)

(q, n̄(k))

l′E

RS i

(c) Role-synchronous.

g

=

g4
=

(l,1)

(r,x)

(z,y)

(q, n̄(k)

lE

(l′, 1)

(r′, x)

(z′, y)

(q′, n̄(k))

l′E

GS

(d) Global-synchronous.

g

=

g5

=

(l,1)

(r,x)

(z, y)

(q, n̄(k)

lE

(l, 1)

(r′, x)

(z, y)

(q, n̄(k))

l′E

MR
x,1
i,1

(e) Multi-role.

Figure 3.4: Examples of the five types of transitions possible in a concrete evolution from a
global state.

role i at g; (ii) a concrete agent-environment AE j
i action is enabled for the environment and

for agent (i, j) performing role i at g; (iii) a concrete role-synchronous RS i action is enabled

for the environment and for all the agents performing role i at g; (iv) a concrete global-

synchronous GS action is enabled for the environment and for all the agents at g; (v) a concrete

multi-role MRj,q
i,r action is enabled for the environment, for agent (i, j) performing role i,

and for agent (r, q) performing role r at g. These transitions are depicted in Figure 3.4: (a)

asynchronous for agent (1, 1); (b) agent-environment for agent (k, n(k)) and the environment;

(c) role-synchronous for all the agents from template Ti and the environment; (d) global-

synchronous for all the agents and the environment; (e) multi-role for agents (i, x), (1, 1) and

the environment. Symbols in bold indicate the components of a global state on which the

enabling of each action depends. Dashed lines from a global state denote the components in

the state that are updated upon the corresponding global transition.

52 Chapter 3. Formalisms for unbounded multiagent systems

RW

MF

SA

R

searchobserve

scan

deposit
reached

observe

fail

fail

(a) Template robot.

N_F

F

reached

observe, scan

deposit

(b) Template food source.

Figure 3.5: The parameterised interleaved interpreted system for the robot foraging scenario.

3.2.1 Examples

We exemplify the technical notions introduced above on three examples: the Train-Gate-

Controller model [HW02b], a robot foraging scenario [Liu07], an autonomous robot exam-

ple [FHMV95]. The Train-Gate-Controller illustrates the agent-environment and the global-

synchronous communication patterns. The robot-foraging scenario gives an intuitive example

of multi-role synchronisations. We discuss role-synchronous communication in the context

of the autonomous robot example. We here focus on the semantic modelling. We will later

discuss specifications in section 3.3 and verification methodologies in chapters 5 and 6.

Robot Foraging Scenario

In the following we describe an untimed version of the robot foraging scenario (RFS) intro-

duced in [Liu07]. The RFS includes an arbitrary number of robots initially resting in a nest

before undertaking a campaign in search for food by means of a random walk. Upon observing

a food source, a robot tries to reach for it. If it succeeds, then (i) it collects and deposits the

food in the nest; (ii) it makes the location of the food known so that all other robots can find

it. Otherwise, if it fails to reach the food source, it then scans the area to locate the source

again, or locate a new source. If the scan is successful, then the robot attempts to reach the

food source. Otherwise, if the scan is not successful (under a timeout), then the robot returns

to its nest.

3.2. Parameterised interleaved interpreted systems 53

We can encode the scenario as a PIIS SRFS composed of an agent template TR representing

the robots and an agent template TFS representing the food sources. The template robot is

depicted in Figure 3.5a. In the figure R stands for “Resting”, RW for “Random Walk”, MF for

“Move to Food”, and SA for “Scan Area”. TR is initially in state R representing that the robot

is resting in its nest. The states RW , MF , SA represent that the robot is performing a random

walk, the robot is moving to the food, and the robot is scanning the area, respectively. The

template food source is given by Figure 3.5b. In the figure N_F stands for “Not Found” and F

stands for “Found”. TFS is initially in the state N_F representing that the food source has not

been found. The state F represents that the food source is found.

We now describe the global transitions induced by the templates. As discussed in the previous

section, a multi-role action is always admitted in the repertoire of actions of precisely two

agent templates. The action is instantiated for each pair of agents instantiated from the two

templates. In a global transition induced by a multi-role action only the agents for which the

action is instantiated and the environment are participating in the transition.

• search. This an asynchronous action that is defined for the template robot. It is enabled

at state R and it represents a robot moving out of its nest to search for food. A global

transition by means of the search action results the robot performing the action to move

to state RW .

• fail . This is also an asynchronous action that is enabled at states RW and SA of the

template robot. The action represents a robot failing to locate a food source when per-

forming a random walk and when scanning the area, respectively. A global transition via

the fail action results the robot performing the action to move to state R.

• observe. This is a multi-role action shared between the two templates. Assume the

instantiation (observe, {(TR, i), (TFS , j)}) of the action for robot i and food source j.

A concrete transition via the (observe, {(TR, i), (TFS , j)}) action is only enabled if the

robot i is either in state RW or in state SA, and the food source j is in state N_F .

Intuitively the robot can observe the food source if the latter has not already been found.

The action causes the robot i to change its state to MF .

54 Chapter 3. Formalisms for unbounded multiagent systems

• reached . This is also a multi-role action that is shared between the two templates. Fol-

lowing the concrete transition described above, a concrete transition by means of the

(reached , {(TR, i), (TFS , j)}) action is enabled. This transition causes the food source j

to change its state to F , thus modelling that robot i has succeeded in reaching the food

source j.

• deposit . The above transition enables the multi-role action (deposit , {(TR, i), (TFS , j)}).

A transition via this action causes the robot i to move to state R.

• scan. Finally, scan is also a multi-role action. Intuitively, robot i may fail to reach the

food source j (i.e., the (reached , {(TR, i), (TFS , j)}) action is not performed). In this

case the (scan, {(TR, i), (TFS , j)}) action is enabled. Upon this transition, the robot i

updates its state to SA.

The Train-Gate-Controller

In section 2.1.2 we defined the IIS of the Train-Gate-Controller (TGC) composed of a controller

and two trains. We now give the PIIS model of a parameterised version of the TGC. We extend

the original description to include an arbitrary number of two types of trains: prioritised trains

and normal trains. A prioritised train can enter the tunnel at any given time, assuming there

is no other train in the tunnel, whereas a normal train can only enter the tunnel when there

is no other train waiting to enter the tunnel. To accomplish this, the traffic lights include two

shades of the green colour: prioritised green and normal green. Prioritised green is used by the

controller to serve prioritised trains, whereas normal green is used by the controller to serve

normal trains.

The scenario can be encoded as a PIIS composed of an agent template representing prioritised

trains (Figure 3.6a), an agent template representing normal trains (Figure 3.6b), and an en-

vironment template representing the controller (Figure 3.6c). A prioritised train is initially

in state WAIT , the controller is initially in state P_GREEN , and a normal train is initially

in state TUNNEL_LOCKED . Therefore, prioritised trains are initially waiting to enter the

tunnel, normal trains are initially locked from entering the tunnel, and the controller initially

serves only prioritised trains. The actions p_enter and p_exit are agent-environment actions

3.2. Parameterised interleaved interpreted systems 55

WAIT

TUNNEL

AWAY

TUNNEL_LOCKED

p_enter

p_exit

n_lockp_lock
p_approach

(a) Prioritised train.

WAIT

TUNNEL

AWAY

TUNNEL_LOCKED

n_enter

n_exit

p_lock n_lock

n_approach

p_lock

(b) Normal train.

P_GREEN N_GREEN

RED

p_enter

p_exit

n_lock

p_lock

n_enter

n_exit

(c) Controller.

Figure 3.6: The parameterised interleaved interpreted system for the Train-Gate-Controller.

56 Chapter 3. Formalisms for unbounded multiagent systems

modelling the prioritised trains entering and exiting the tunnel. Similarly, the actions n_enter

and n_exit are agent-environment actions enabling the normal trains to enter and exit the

tunnel. The action n_lock is a global-synchronous action; it represents the normal trains tak-

ing the lock on the tunnel. Also, the action p_lock is a global-synchronous action; it models

the prioritised trains taking the lock on tunnel. Finally, the actions p_approach, n_appoach are

asynchronous actions.

The templates induce the following agent-environment and global-synchronous concrete tran-

sitions:

• p_enter ,n_enter . In addition to the agent performing the action entering the tunnel, the

environment participates in the global transition. This causes the environment to change

its state to RED , thereby disallowing other trains to enter the tunnel.

• p_exit ,n_exit . The environment synchronises with the agent that is currently in the

tunnel via the p_exit and n_exit actions. The synchronisation causes the environment to

change its state to P_GREEN , if the agent is a prioritised train, or to N _GREEN , if the

agent is a normal train. Following this, other trains are allowed to enter the tunnel.

• n_lock . This action is only enabled if: (i) the environment is in state P_GREEN ; (ii)

there is no train in the tunnel; (iii) all prioritised trains are in state AWAY . A con-

crete global-transition via the n_lock action causes the environment to update its state to

N _GREEN . Thus, the transition frees the tunnel to serve normal trains whenever there

are no prioritised trains waiting to be served.

• p_lock . This action is only enabled if: (i) the environment is in state N _GREEN ; (ii)

there is no train in the tunnel. Upon performing this action the environment moves to

state P_GREEN . Therefore, the transition locks the tunnel to serve prioritised trains;

this can happen irrespective of whether there are normal trains waiting to be served.

The above transitions are depicted in Figure 3.7 for a fragment of the concrete system with

two prioritised trains and two normal trains. Each global state in the figure is a 5-tuple rep-

resenting, from left to right, the local state of the first prioritised train, the local state of the

3.2. Parameterised interleaved interpreted systems 57

second prioritised train, the local state of the controller, the local state of the first normal train,

and the local state of the second normal train. In the figure W stands for WAIT , PG for

P_GREEN , L for TUNNEL_LOCKED , T for TUNNEL, R for RED , A for AWAY , and NG

for N _GREEN .

Autonomous robot with a unique shared sensor

Section 3.1.1 described a generalisation of the autonomous robot example from [FHMV95] in

which an arbitrary number of robots run synchronously along the track. We here assume that

the robots have access to a unique shared sensor. To illustrate the role-synchronous actions,

we introduce a second type of robots, identical to the description of the first type, but with

no access to a sensor. We refer to the two types of robots as type 1 robots and type 2 robots,

respectively. Type 2 robots halt after receiving a halting event from type 1 robots. The event is

signaled after the type 1 robots have halted.

We encode the scenario as a PIIS SAR composed of an agent template TR1 representing robots

with access to a sensor, an agent template TR2 representing robots with no access to a sensor,

and an environment template E for synchronisation purposes. The encoding assumes a finite

track with 8 distinct locations.

TR1 is given by Figure 3.8a. A template state represents the position of the robot, its sensor

reading, and whether it has halted or not, respectively. TR2 is depicted in Figure 3.8b. A

template state represents the position of the robot and whether it has halted or not, respec-

tively. Finally, E is defined by Figure 3.8c. A template state represents the position of the

robots and whether or not the type 1 robots have halted. The templates induce the following

role-synchronous and global-synchronous transitions:

• move+,move=,move−. These are global-synchronous actions. A concrete transition via

these actions causes all the robots to move one step forwards. Additionally, type 1 robots

change their sensor reading to be either the correct reading (move=), the correct reading

plus 1 (move+), or the correct reading minus 1 (move−).

• halt. The role-synchronous action halt is enabled at any state in which the sensor reading

58 Chapter 3. Formalisms for unbounded multiagent systems

W1,W2,PG,L1,L2

T1,W2,R,L1,L2 W1,T2,R,L1,L2

A1,W2,PG,L1,L2 W1,A2,PG,L1,L2

A1,T2,R,L1,L2 T1,A2,R,L1,L2

A1,A2,PG,L1,L2

L1,L2,NG,A1,A2

L1,L2,NG,W1,A2 L1,L2,NG,A1,W2

L1,L2,NG,W1,W2L1,L2,R,T1,A2 L1,L2,R,A1,T2

p_enter1 p_enter2

p_exit1 p_exit2

p_enter2 p_enter1

p_exit2 p_exit1

p_approach1p_approach2

n_lock p_lock

n_approach1 n_approach2

n_enter1 n_approach2 n_approach1 n_enter2

p_lock p_lock

p_lock p_lock

p_lock

p_approach1p_approach2

Figure 3.7: Fragment of the concrete system for the train-gate-controller with two prioritised
trains and two normal trains.

3.3. Specifications for unbounded multiagent systems 59

00⊥

12⊥

11⊥

10⊥

13⊥ 13>
move=

move+

move+

move+

halt

signal
move+

move−

(a) Template robot 1.

0⊥

1⊥

0>

1>

move+

move=

move−

signal

signal

(b) Template robot 2.

0⊥

1⊥

0>

1>

move+

move=

move−

halt

halt

signal

signal

(c) Environment template.

Figure 3.8: The parameterised interleaved interpreted system of the autonomous robot.

of type 1 robots is greater than or equal to 3. Type 1 robots halt upon this transition and

the environment stores in its state the fact that they have halted.

• signal. Following the above transition, a concrete transition via the global-synchronous

action signal is enabled. The transition causes the type 2 robots to halt.

3.3 Specifications for unbounded multiagent systems

To establish the correctness of a UMAS irrespectively of the number of agents present, we

express properties that reflect its parameterised nature. In other words, we are interested in

expressing properties irrespectively of the number of agents in the system.

Such properties are not easily expressible by means of propositional temporal epistemic logics.

Indeed, suppose that we want to express the property “for every robot i, whenever i is halted,

it knows that in the next two time steps every other robot is halted” for the autonomous

robot scenario (section 3.1.1). This property encodes all distinct pairs of robots. Therefore,

to express the property for a concrete system composed of n robots we need to construct a

formula composed of of 2!
(
n
2

)
conjuncts. Instead we would like to express properties that are

independent of the number of agents in the system, as if we were able to quantify over the

agents.

To overcome these shortcomings we consider an indexed variant of the temporal-epistemic

logic CTL∗K. This logic introduces indexed atomic propositions and indexed epistemic modali-

ties.

60 Chapter 3. Formalisms for unbounded multiagent systems

3.3.1 Syntax of indexed CTL∗K

Let S denote either a PIS S = (T , E , I,V) or a PIIS S = (T , E ,V) of |T | = k roles and assume

that each valuation function Vi ∈ V is defined on the set AP i of atomic propositions, where

AP1 , . . . ,APk are pairwise disjoint sets. Let VAR = {VARi : 1 ≤ i ≤ k} be a set of pairwise

disjoint sets of variable symbols. Each set VARi is associated with agent template Ti. We now

define indexed CTL∗K.

Definition 3.13. (Syntax of indexed CTL∗K) State and path formulae of indexed CTL∗K over a set

of templates T , the sets AP1 , . . . ,AP |T | of atomic propositions, and the sets VARi , . . . ,VAR|T |

of variable symbols are inductively defined as follows.

S1. every atomic proposition (p, v) (p ∈ AP i, Ti ∈ T , v ∈ VARi) is a state formula;

S2. if ϕ and ψ are state formulas, then ¬ϕ, ϕ ∨ ψ and Kv
i φ (Ti ∈ T , v ∈ VARi) are state

formulas;

S3. if ϕ is a path formula, then E(ϕ) is a state formula;

P1. any state formula ϕ is also a path formula;

P2. if ϕ and ψ are path formulas, then ¬ϕ and ϕ ∨ ψ are path formulas;

P3. if ϕ and ψ are path formulas, then so are Xϕ and ϕUψ.

Therefore, the state and path formulae of indexed CTL∗K are defined as the state and path

formulae of CTL∗K, but with each atomic proposition p ∈ AP i and epistemic modality Ki

indexed by a variable v ∈ VARi. The domain of a variable v ∈ VARi appearing in a formula

φ is defined by the concrete system on which φ is evaluated: if φ is evaluated on S(n), then

the potential set of values for v is {1, . . . , n.i}. That is, the domain of v is the set of identities

for the concrete agents performing role i. We write φ(v), where v = (V1, . . . , Vk) is a k-tuple

of sets of variables, to indicate that each of the variables in Vi ⊆ VARi appears in an atomic

proposition or epistemic modality in φ. We say that φ(v) is an m-indexed CTL∗K formula,

where m is k-tuple of natural numbers, if |Vi| = m.i, for all 1 ≤ i ≤ k. The properties we use

3.3. Specifications for unbounded multiagent systems 61

in the verification of UMAS are constructed in compliance with the following formula schema:

∀v1 . . . ∀vm.1 . . . ∀u1 . . . ∀um.k

 ∧
1≤i≤m.1,1≤j≤m.1,i 6=j

¬(vi = vj) ∧ . . .∧

∧
1≤i≤m.k,1≤j≤m.k,i6=j

¬(ui = uj)

→ φ(v)

where {v1, . . . , vm.1} = V1, . . . , {u1, . . . , um.k} = Vk. We denote such a formula by ∀vφ(v).

Using the above schema we may now express properties independently of the number of agents

as the following examples illustrate.

Example 3.1. In section 3.2.1 we encoded the robot foraging scenario as a PIIS composed of

an agent template TR representing the robots and an agent template TFS representing the food

sources. TFS was built from two states expressing whether or not a food source has been found

by a robot. Having modelled the scenario as a PIIS we are interested in checking the property:

“whenever a food source is found, every robot knows that the source is found”. This property can

be expressed by the following (1, 1)-indexed formula:

φRFS = ∀({u},{x})AG ((f, x)→ Ku
TR(f, x))

where u is a variable of TR, x is a variable of TFS , and the atomic proposition f holds in the

template state in which the template food source is “found”.

Example 3.2. In section 3.2.1 we encoded the train-gate-controller as a PIIS composed of an agent

template PT representing prioritised trains, an agent template representing NT representing nor-

mal trains, and a template environment representing the controller. A commonly used benchmark

concerns assessing the correctness of the train-gate-controller against the property “whenever a

train is in the tunnel, it knows that no other train is in the tunnel at the same time”. This

property can be expressed in indexed ACTL∗K\X by the following (2, 2)-indexed formula:

φTGC = ∀({u,v},{x,y})AG (((pt , u)→ Ku
PT (¬(pt , v) ∧ ¬(nt , x)))

∧ ((nt , x)→ Kx
NT (¬(nt , y) ∧ ¬(pt , u))))

where u, v are variables of PT , x, y are variables of NT , the atomic proposition pt holds in the

62 Chapter 3. Formalisms for unbounded multiagent systems

template states in which the template prioritised train is in the tunnel, and the atomic proposition

nt holds in the template states in which the template normal train is in the tunnel.

Example 3.3. In section 3.2.1 we encoded the autonomous robot example as a PIIS composed

of an agent template TR1 representing robots with access to a sensor, an agent template TR2

representing robots with no access to a sensor, and an environment template representing the

environment moving the robots forward along the track. According to the scenario, the goal of the

robots is to halt in the goal region {2, 3, 4} of the track. A solution to the problem in the single-

robot case is for the robot to do nothing while the value of its sensor is less than 3 and to halt once

the value of its sensor is greater than or equal to 3. We are interested to show the correctness of

the autonomous robot solution in the unbounded case, i.e, whenever the robots halt, they know

that they are in the goal region. This is expressed by the following (1, 1)-indexed formula:

φAR = ∀({v},{x})AG((h_1 , v)→ Kv
TR1 ((gr_1 , v)) ∧ (h_2, u)→ Ku

TR2 ((gr_2 , u)))

where v is a variable of TR1 , u is a variable of TR2 , the atomic proposition gr_1 (gr_2 , respec-

tively) holds in the template states where the value of the position component of template robot 1

(template robot 2, respectively) is in {2, 3, 4}, and the atomic proposition h_1 (h_2, respectively)

holds in the template states where the template robot 1 (template robot 2, respectively) has halted.

Several subsets of indexed CTL∗K can be defined in a similar manner to Definition 2.8. Chap-

ter 4 studies the verification of PIS against specifications expressed in indexed ACTLK. Chap-

ter 5 analyses the verification of PIIS against specifications expressed in indexed ACTL∗K\X.

3.3.2 Satisfaction of indexed CTL∗K

When evaluated on a concrete system, an m-indexed formula ∀vφ(v) denotes a specific CTL∗K

formula corresponding to the conjunction of all ground instantiations of ∀vφ(v). Given a con-

crete system S(n) with n.1 ≥ m.1, . . . , n.k ≥ m.k, and a set of injective functions

{ξi : Vi → {1, . . . , n.i} : 1 ≤ i ≤ k} ,

3.3. Specifications for unbounded multiagent systems 63

a ground instantiation of ∀vφ(v) is the CTL∗K formula obtained from φ(v) by assigning to each

variable v ∈ Vi the value ξi(v), for all 1 ≤ i ≤ k.

Definition 3.14 (Satisfaction of indexed CTL∗K). Given an m-indexed CTL∗K formula ∀vφ(v)

and a model S(n) of k roles, the satisfaction relation |= is defined as follows:

S(n) |= ∀vφ(v) iff S(n) |=
∧
ξ

φ[ξ],

where
∧
ξ denotes the conjunction of all ground instantiations of ∀vφ(v), and n.1 ≥ m.1, . . . , n.k ≥

m.k.

For example, when evaluated on a concrete system with 2 robots and 2 food sources the

formula

φRFS = ∀({u},{x})AG ((f, x)→ Ku
TR(f, x))

is a shorthand for the ACTL∗K\X formula

AG((f, 1)→ K1
TR(f, 1)) ∧AG((f, 1)→ K2

TR(f, 1))∧

AG((f, 2)→ K1
TR(f, 2)) ∧AG((f, 2)→ K2

TR(f, 2))

Note that since an m-indexed formula refers to m.i-tuples of distinct agents, for each role i, the

satisfaction relation above is well defined only if n.1 ≥ m.1, . . . , n.k ≥ m.l. We write n ≥ m to

express this.

3.3.3 Symmetry reduction

Consider an m-indexed formula ∀vφ(v). As noted above, the evaluation of the formula on

a concrete system S(n) corresponds to the evaluation of the conjunction of all its ground

instantiations. But the conjuncts are identical up to re-indexing of the agents’ indices. Thus,

the symmetric nature of ∀vφ(v) suggests that its evaluation on a concrete system is equivalent

to checking only one of its ground instantiations. The following Lemmas, adapted from [ES96],

64 Chapter 3. Formalisms for unbounded multiagent systems

show precisely this by taking (for simplicity) the aforementioned ground formula to be the

trivial instantiation. The trivial instantiation of ∀vφ(v), written φ[trivial], is the ground formula

resulting from assigning the values {1, . . . ,m(i)} to the variables appearing in each set of

variables Vi; i.e; for an assignment ξi defined as ξi(v1) = 1, . . . , ξi(|Vi|) = |Vi| for each agent

template i, φ[trivial] is the ACTL∗K\X formula obtained from ∀vφ(v) by assigning to each

variable v ∈ Vi the value ξi(v).

Example 3.4. The following formulae are the trivial instantiations of φRFS , φTGC and φAR,

respectively.

φRFC [trivial] = AG((f, 1)→ K1
TR(f, 1))

φTGC [trivial] = AG(((pt , 1)→ K1
PT (¬(pt , 2) ∧ ¬(nt , 1))) ∧ ((nt , 1)→ K1

NT (¬(nt , 2) ∧ ¬(pt , 1))))

φAR[trivial] = AG((h_1, 1)→ K1
TR1 ((gr_1 , 1)) ∧ (h_2 , 1)→ K 1

TR2 ((gr_2 , 1)))

Lemma 3.1 (Symmetry reduction for PIIS). Let S be a PIIS composed of k roles, CTL∗K be an

m-indexed formula ∀vφ(v), and n ≥ m. Then, S(n) |= ∀vφ(v) iff S(n) |= φ[trivial].

Proof. For the left to right direction, suppose that S(n) |= ∀vφ(v). As ∀vφ(v) expresses the

conjunction of all its instantiations we have that S(n) |= φ[ξ] for any k-tuple of assignments ξ.

Therefore, S(n) |= φ[trivial].

For the right to left direction, suppose that S(n) |= φ[trivial]. So, for each 1 ≤ i ≤ k, the

variables v1, . . . , vm.i in v.i are mapped into the concrete agents (i, 1), . . . , (i,m.i), respectively.

Let ξ = (ξ1, . . . , ξk) be an arbitrary assignment.

For each 1 ≤ i ≤ k, consider ζi to be either a bijective mapping from natural numbers to natural

numbers, or a bijective mapping from global states to global states, or a bijective mapping from

actions to actions, or a bijective mapping from CTL∗K formulae to CTL∗K formulae, the exact

mapping depending on the context.

In the first case, define ζi : {1, . . . , n.i} → {1, . . . , n.i} to be an arbitrary mapping that satisfies

ζi(j) = ξi(vj) for each 1 ≤ j ≤ m.i.

For the second case, recall that for a global state g, lsji (g) returns the concrete local state

3.3. Specifications for unbounded multiagent systems 65

of agent (i, j) in g, and tlsji (g) returns the template local state of agent (i, j) in g. Then

define ζi : G(n) → G(n) by ζi(g) = g′ iff tlsji (g
′) = tls

ζ−1
i (j)
i (g), for each 1 ≤ j ≤ n.i, and

lsE(g′) = lsE(g). For example, if k = 1, n.1 = 3, and ζi : {1, 2, 3} → {1, 2, 3} is given by

{(1, 1) 7→ (1, 3), (1, 2) 7→ (1, 1), (1, 3) 7→ (1, 2)}, then the state ((s, 1), (t, 2), (u, 3), lE) is mapped

to the state ((t, 1), (u, 2), (s, 3), lE)).

Next, define ζi :
(
Act1i ∪ . . . ∪Actn.ii

)
→
(
Act1i ∪ . . . ∪Actn.ii

)
as follows:

• if (a, j) ∈ Aji ∪ AE j
i is an asynchronous action or an agent-environment action of agent

(i, j), then ζi((a, j))→ (a, ζi(j));

• if a ∈ RS i ∪GS is a role-synchronous or a global-synchronous action of agent (i, j), then

ζi(a)→ a;

• if (a, {(i, j), (q, r)}) ∈ MRi,q is a multi-role action of agent (i, j) that is shared with an

agent (q, r), then ζi ((a, {(i, j), (q, r)}))→ (a, {(i, ζi(j)), (q, ζq(r))});

In the latter case, define ζi to map CTL∗K formulae to CTL∗K formulae by ζi(φ) = φ′ iff φ′ is

the formula obtained from φ by replacing each atomic proposition (p, j) ∈ AP i × {1, . . . , n.i}

with (p, ζi(j)), and each epistemic modality Kj
i with Kζi(j)

i .

Now consider ζ = ζ1 ◦ . . . ◦ ζk to be the composition of ζ1, . . . , ζk. Then, in compliance

with the interleaved semantics, we have that g →a g′ iff ζ(g) →ζ(a) ζ(g′) and Kji (g, g′) iff

Kζi(j)i (ζ(g), ζ(g′)). Therefore, by assumption we obtain (S(n), ζ(ι(n))) |= ζ(φ[trivial]). Hence,

(S(n), ζ(ι(n))) |= φ[ξ]. But, as all concrete agents share a unique template local state in ι(n),

it follows that ζ(ι(n)) = ι(n). Consequently, (S(n), ι(n)) |= φ[ξ]. As ξ was arbitrary, the latter

concludes S(n) |= ∀vφ(v).

Lemma 3.2 (Symmetry reduction for PIS). Let S be a PIS composed of k roles, CTL∗K be an

m-indexed formula ∀vφ(v), and n ≥ m. Then, S(n) |= ∀vφ(v) iff S(n) |= φ[trivial].

Proof sketch. The proof is along the same lines as the proof of Lemma 3.1.

66 Chapter 3. Formalisms for unbounded multiagent systems

3.4 Equivalences

Section 2.3 discussed notions of simulations between temporal-epistemic models that preserve

the satisfaction of temporal-epistemic formulae. This section adapts these simulation ideas in

the context of concrete systems generated by parameterised (interleaved) interpreted systems.

By means of the results here discussed, the truth of a specification on an arbitrarily big concrete

system can be assessed by checking it on a smaller, similar system. In the case of PIIS, a

specification is given in indexed ACTL∗K\X. In the case of PIS, a specification is given in

indexed ACTLK.

3.4.1 Equivalences preserving indexed ACTL∗K\X

We define a variant of the notion of stuttering simulation between concrete systems. We show

that similar systems preserve indexed ACTL∗K\X specifications.

Consider a PIIS S of k roles. Let S(n) =
(
G(n), ι(n), R(n), (Kji)(i,j)∈A(n), V (n)

)
and S(n′) =(

G(n′), ι(n′), R(n′), (K′ji)(i,j)∈A(n′), V (n′)
)

be two concrete instantiations of S. By Lemma 3.1,

either concrete system satisfies a given m-indexed formula iff the system satisfies the trivial

instantiation of the formula. The atomic propositions and the epistemic modalities appearing

in the trivial instantiation refer only to agents in {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ m.i}. Therefore,

the notion of stuttering simulation can be relaxed to refer only to these agents as follows.

Definition 3.15 (m-stuttering simulation). An m-stuttering simulation is a relation ∼mss⊆

G(n) × G(n′) between S(n) and S(n′) if ι(n) ∼mss ι(n′) and whenever g ∼mss g′ the following

conditions hold:

(i) V (n)(g) ∩X = V (n′)(g′) ∩X, where X =
⋃

1≤i≤k {(p, j) : p ∈ AP i ∧ 1 ≤ j ≤ m.i};

(ii) If Kji (g, g1), for (i, j) ∈ A(m), then K′ji (g′, g′1) for some g′1 such that g1 ∼mss g′1.

(iii) For every path π ∈ Π(g), there is a path π′ ∈ Π(g′), a partition B1, B2, . . . of the states in

π, and a partition B′1, B
′
2, . . . of the states in π′ such that for each j ≥ 1, Bj and B′j are

nonempty and finite, and every state in Bj is related by ∼mss to every state in B′j .

3.4. Equivalences 67

We say that a concrete system S(n′) m-stuttering simulates a concrete system S(n), denoted

S(n) ≤mss S(n′), if there is an m-stuttering-simulation relation between S(n) and S(n′). In-

dexed ACTL∗K\X formulae are preserved under m-stuttering simulation.

Theorem 3.1. Let ∀vφ(v) be an m-indexed formula and S(n) ≤mss S(n′). Then, S(n′) |= ∀vφ(v)

implies S(n) |= ∀vφ(v).

Proof. By Lemma 3.1, it suffices to show that S(n′) |= φ[trivial] implies S(n) |= φ[trivial].

Suppose that S(n′) |= φ[trivial]. By Theorem 2.5, S(n) |= φ[trivial].

The result above enables us to access the truth of a specification on an arbitrarily big system

by checking it on a smaller system. To do this, however, only conditions (i) and (iii) of Def-

inition 3.15 have to be considered. Indeed, as the following shows, in the context of PIIS,

the notion of stuttering simulation preserving temporal formulae [BCG88] is equivalent to the

notion of stuttering simulation preserving temporal-epistemic formulae [LPQ10].

Proposition 3.1. Let ∼x⊆ G(n)×G(n′) be a relation between S(n) and S(n′) that satisfies con-

ditions (i) and (iii) of m-stuttering simulation. Then, ∼x is an m-stuttering simulation between

S(n) and S(n′).

Proof. By assumption on ∼x, we only have to show simulation requirement (ii). So, let g ∼x

g′ and Kji (g, g1) for some agent (i, j) ∈ A(m). We show that there is a g′1 ∈ G(n′) with

K′ji (g′, g′1) and g1 ∼x g′1. Consider a path π ∈ Π(ι(n)) such that π(z) = g1 for some z ≥ 1. As

ι(n) ∼x ι(n′), there is a path π′ ∈ Π(ι(n′)) satisfying condition (iii) of m-stuttering simulation.

Thus, π(z) ∼x π′(z′) for some z′ ≥ 1. Therefore, lsji (π(z)) = lsji (π
′(z′)), since ∼x satisfies

condition (i) of m-stuttering simulation. Consequently, K′ji (g′, π′(z′)). So, g′1 = π′(z′) is as

required. Since (g, g′) was arbitrary, we obtain S(n) ≤mss S(n′).

3.4.2 Equivalences preserving indexed ACTLK up to a level of depth

We begin with the definition of the temporal depth for an indexed CTLK formula by count-

ing the temporal operators nested in the formula. We then define a simulation relation that

preserves CTLK formulas up to a level of depth. In the following, we fix a PIS S of k roles,

68 Chapter 3. Formalisms for unbounded multiagent systems

a concrete instantiation S(n) =
(
G(n), ι(n), R(n), (Kji)(i,j)∈A(n), V (n)

)
of S, and a concrete

instantiation S(n′) =
(
G(n′), ι(n′), R(n′), (K′ji)(i,j)∈A(n′), V (n′)

)
of S.

Definition 3.16 (Temporal depth). The temporal depth td(φ) of an m-indexed CTLK formula φ

is inductively defined as follows.

td(φ) , 0 if φ = (p, v);

td(φ) , td(ψ) if φ = ¬ψ;

td(φ) , max(td(ψ1), td(ψ2)) if φ = ψ1 ∧ ψ2;

td(φ) , td(ψ) if φ = Kv
i ψ;

td(φ) , td(ψ) + 1 if φ = EXψ;

td(φ) , td(ψ) + 1 if φ = EGψ;

td(φ) , max(td(ψ1), td(ψ2)) if φ = E(ψ1Uψ2).

The notion of temporal depth finds a correspondence in the cycle-stuttering simulation equiva-

lence that we now introduce. Intuitively, S(n) and S(n′) are cycle-stuttering simulation equiv-

alent if they are behaviourally identical modulo stuttering of cyclic behaviours. To formally

define this equivalence, we first introduce some preliminary definitions.

A substring δ = π(i), . . . , π(j) of a concrete path π in S(n) is said to be a cycle if V (n)(π(i)) =

V (n)(π(j)). A cycle δ′ in π corresponds to the x-th repetition of δ if δ′ = δx, e.g., δ′ =

abababa = (aba)3. A cyclic-decomposition of π is an inductive partition of π into a sequence

of non-cyclic and cyclic blocks. Each non-cyclic block is a finite sequence of states in π without

repetitions. Each cyclic block corresponds to a (possibly infinite) repetition of a cycle in π

and it can be further partitioned into cyclic and non-cyclic blocks. For example, consider the

path π = abcbcbdabcbcbda. The partition [[a][bcb]2[da]]2 is a cyclic decomposition of π, where

[[a][bcb]2[da]]2 is a cyclic block, [a], [da] are non-cyclic blocks, and [bcb]2 is a cyclic block. The

partition [a][bcb]2[da][bcb]2[da] is also a cyclic decomposition of π. Given a non-cyclic block C,

we write C(i) for the i-th state in C, and |C| for the sequence’s length. For a cyclic block Cx, we

write Cx[i] for the sequence of states corresponding to the i-th repetition of the cycle associated

with Cx. If Cx cannot be decomposed further, then we treat each Cx[i] as a non-cyclic block,

otherwise we treat it as a cyclic decomposition.

3.4. Equivalences 69

Definition 3.17. We define the sequence of relations ≈0,≈1,≈2 on pairs of states in G(n)×G(n′)

and the relations ∼=0,∼=1,∼=2, . . . on pairs of paths in S(n)× S(n′).

We start by defining two states g and g′ to be ≈0-related whenever the following hold:

• V (n)(g) = V (n′)(g′);

• if Kji (g, g1), for (i, j) ∈ A(m), then K′ji (g′, g′1) for some g′1 with g1 ≈0 g
′1.

Then, for all d ≥ 0, we define ∼=d as follows. Two paths π and π′ (either both finite or

both infinite) are ∼=d-related if there is a cyclic decomposition B1B2B3 . . . of π and a cyclic

decomposition B′1B
′
2B
′
3 . . . of π′ such that for all i ≥ 1, we have that Bi ∝d B′i, where Bi ∝d B′i

if:

• Bi and B′i are blocks of the same type;

• If Bi and B′i are two non-cyclic blocks Ci and C ′i, respectively, then: (i) |Ci| = |C ′i|; (ii)

for each 1 ≤ j ≤ |Ci|, we have that Ci(j) ≈d C ′i(j);

• If Bi and B′i are two cyclic blocks Cxii and C′
x′i
i , respectively, then: (i) either xi = x′i or

xi > d, x′i > d; (ii) for every pair Cxii [z],C′
x′i
i [z′] of repetitions of Cxii and C′

x′i
i , we have the

following:

– if xi − z = x′i − z′, then Cxii [z] ∝d C′
x′i
i [z′];

– if xi − z 6= x′i − z′, then Cxii [z] ∝d′ C′
x′i
i [z′], where d′ = min(d, xi − z, x′i − z′).

So, for two non-cyclic blocks Ci and C ′i, Ci ∝d C ′i if: (i) the blocks have the same length; and

(ii) each pair (Ci(j), C
′
i(j)) of states is ≈d-related. For two cyclic blocks Cxii and C′

x′i
i , Cxii ∝d

C′
x′i
i if: (i) the blocks agree up to d on the number of repetitions of their associated cycles;

and (ii) each pair of repetitions (Cxii [z],C′
x′i
i [z′]) is ∝d-related if they agree on the number

of repetitions they can “see” ahead in their blocks; otherwise it is ∝d′-related, where d′ is

the greatest number of repetitions in {1, . . . , d} such that Cxii [z] and C′
x′i
i [z′] can both “see” d′

repetitions ahead in their blocks. Figure 3.9 exemplifies the relations between two cyclic blocks

with 5 and 3 repetitions, respectively, and for d = 2.

70 Chapter 3. Formalisms for unbounded multiagent systems

Cxii [1] Cxii [2] Cxii [3] Cxii [4] Cxii [5]

C′
x′i
i [1] C′

x′i
i [2] C′

x′i
i [3]

∼=0
∼=1
∼=2

Figure 3.9: Cycle-stuttering relations between cyclic blocks for a temporal depth of 2.

Finally, we define ≈d+1 as follows. Two states g and g′ are ≈d+1-related if for every path

π ∈ Π(g) there is a path π′ ∈ Π(g′) such that π ∼=d π
′;

Definition 3.18 (Cycle-stuttering simulation). A concrete system S(n′) cycle stuttering simulates

up to degree d a concrete system S(n′), denoted by S(n) ≤d.css S(n′), if ι ≈d ι′ for every pair (ι, ι′)

of initial states in I(n)× I(n′).

Indexed ACTLK formulas with temporal nesting up to d are preserved by cycle-stuttering sim-

ulation of degree d+ 1. To prove this, we first show the following.

Proposition 3.2. Let π ∼=d π
′. Then, the following hold:

1. for each state π(i), there is a state π′(i′) such that π(i) ≈d π′(i′);

2. if π(i) ≈d π′(i′), then for each state π(j) in π(1), . . . , π(i), there is a state π′(j′) in

π′(1), . . . , π′(i′) such that π(j) ≈d π′(j′).

Proof. Let C1,C
x1
1 , . . ., C

′
1,C
′x′1
1 , . . . be the associated cyclic decompositions of π and π′, respec-

tively. By definition of ∼=d, it suffices to show the following:

1. each repetition Cxii [z] of a cyclic block Cxii is ∝d-related to a repetition C′
x′i
i [z′] of the cyclic

block C′
x′i
i ;

2. if Cxii [z] ∝d C′
x′i
i [z′], then for each j with 1 ≤ j ≤ z, there is a j′ with 1 ≤ j′ ≤ z′ and

Cxii [j] ∝d C′
x′i
i [j′].

Assume, without loss of generality, that xi ≤ x′i. Then, each repetition Cxii [1], . . . ,Cxii [xi] of Cxii

is ∝d-related to the repetition C′
x′i
i [x′i − xi + 1], . . . ,C′

x′i
i [x′i], respectively, of C′x

′
i
i . And each rep-

3.4. Equivalences 71

etition C′
x′i
i [1], . . . ,C′

x′i
i [x′i−xi] of C′x

′
i
i is ∝d-related to the repetition Cxii [1] of Cxii (as illustrated

in Figure 3.9).

Theorem 3.2. Let ∀vφ(v) be anm-indexed ACTLK formula with td(∀vφ(v)) ≤ d. Let S(n) ≤(d+1).css

S(n′). Then, S(n′) |= ∀vφ(v) implies S(n) |= ∀vφ(v).

Proof. Let (g, g′) ∈ G(n) × G(n′). We show that if g ≈d+1 g′, then g′ |= ∀vφ(v) implies

g |= ∀vφ(v), for any m-indexed ACTLK formula ∀vφ(v) with td(∀vφ(v)) ≤ d. To do this, by

Lemma 3.1, it suffices to prove that if g ≈d+1 g
′, then g′ |= φ[trivial] implies g |= φ[trivial].

The proof is by induction on d in which each case is shown by structural induction on φ[trivial].

For the base step, we have d = 0 and g ≈1 g′. Then, g ≈0 g′. The case of φ[trivial] ∈

AP i × {1 , . . . ,m.i} follows directly from the definition of ≈0. The cases of ¬ and ∧ are

straightforward.

Consider φ[trivial] = K j
i ψ, and assume that g′ |= φ[trivial]. So, g′1 |= ψ for every g′1 with

K′ji (g′, g′1). Assume g1 ∈ G(n) with Kji (g, g1). We have to show that g1 |= ψ. By definition

of ≈0, there is a g′1 ∈ G(n′) with K′ji (g′, g′1) and g1 ≈0 g′1. Since g′1 |= ψ, the inductive

hypothesis gives g1 |= ψ. As g1 was arbitrary, it follows that g |= Kj
i ψ.

For the inductive step, assume that whenever g ≈d g′, g′ |= φ[trivial] implies g |= φ[trivial], for

any m-indexed ACTLK formula φ(v) with td(φ(v)) ≤ d−1. Suppose that g ≈d+1 g
′. We have to

show that g′ |= φ[trivial] implies g |= φ[trivial], for any m-indexed ACTLK formula φ(v) with

td(φ(v)) ≤ d. For φ[trivial] ∈ AP i × {1 , . . . ,m.i}, and for the cases of ¬,∧, the thesis follows

along the lines of the main base step.

Consider φ[trivial] = AXψ. Then, there is a path π′ ∈ Π(g′) with π′(2) |= ψ. By the definition

of ≈d+1, there is a path π ∈ Π(g) such that π ∼=d π
′. Hence, π(2) ≈d π′(2). So, by the inductive

hypothesis, π(2) |= ψ. Thus, g |= EXψ.

Assume φ[trivial] = E (ψ1 Uψ2) and g′ |= E(ψ1Uψ2). Then, there is a path π′ ∈ Π(g′) and

an i′ ≥ 1 such that π′(i′) |= ψ2 and π′(j′) |= ψ1 for all 1 ≤ j′ < i′. By the definition of

≈d+1, there is a path π ∈ Π(g) with π ∼=d π
′. By Proposition 3.2, there is a state π(i) in π

with π(i) ≈d π′(i′); further, for every state π(j) with 1 ≤ j < i, there is a state π′(j′) with

72 Chapter 3. Formalisms for unbounded multiagent systems

1 ≤ j′ < i′ and π(j) ≈d π′(j′). Thus, by the inductive hypothesis, π(i) |= ψ2, and π(j) |= ψ1 for

all 1 ≤ j < i. So, g |= E(ψ1Uψ2).

Finally, for the case of φ[trivial] = K j
i ψ1 , assume that g′ |= Kj

i ψ1. Thus, g′1 |= ψ for every

g′1 with K′ji (g′, g′1). Let g1 ∈ G(n) with Kji (g, g1). We have to show that g1 |= ψ. As every

pair of initial states in G(n)×G(n′) are ≈d+1-related, every pair of paths originating from the

initial states of the two models are ∼=d-related. Therefore, by Proposition 3.2, there is a state

g′2 ∈ G(n′) with g1 ≈d g′2. Hence, g1 ≈0 g
′2, and hence lsji (g

1) = lsji (g
′2), as the states satisfy

the same atomic propositions. Therefore, K′ji (g′, g′2), and therefore g′2 |= ψ. By the inductive

hypothesis, g1 |= ψ. As g1 was arbitrary, it follows that g |= Kj
i ψ.

We call two concrete systems S(n) and S(n′) cycle-stuttering simulation equivalent up to de-

gree d if S(n) ≤(d+1).css S(n′) and S(n′) ≤(d+1).css S(n). The following theorem relates in-

dexed ACTLK with cycle-stuttering simulation equivalence.

Theorem 3.3. Let φ(v) be an m-indexed ACTLK formula with td(φ(v)) ≤ d. Let S(n) ≤(d+1).css

S(n′) and S(n′) ≤(d+1).css S(n). Then, S(n) |= φ(v) iff S(n′) |= φ(v).

Proof. The theorem follows from Theorem 3.2.

3.5 Summary

This chapter introduced parameterised interpreted systems and parameterised interleaved in-

terpreted systems.

A parameterised interpreted system PIS of k roles gives a concise description of an unbounded

collection
{

PIS (n) : n ∈ Nk
}

of concrete interpreted systems. Each system is built from n.i

identical agents, for each role i, and from the concrete environment corresponding to the

n’th instantiation of the environment template. Differently from the standard treatment of

interpreted systems, the evolution function of a concrete agent does not depend on which

agent performed which action (i.e., the joint action), but it depends on the set of actions

performed by all the agents.

3.5. Summary 73

Similarly, a parameterised interleaved interpreted system PIIS of k roles gives a concise de-

scription of an unbounded collection
{

PIIS (n) : n ∈ Nk
}

of concrete interleaved interpreted

systems. Each system is built from n.i identical agents, for each role i, and from the con-

crete environment corresponding to the n’th instantiation of the environment template. The

concrete agents may evolve asynchronously, communicate with the environment via agent-

environment actions, synchronise with the agents of the same role via role-synchronous ac-

tions, synchronise with all the agents in the system via global-synchronous actions, and com-

municate with an agent performing another role via multi-role actions.

Further, this chapter introduced the specification language indexed CTL∗K. The logic extends

CTL∗K by introducing indexed atomic propositions and indexed epistemic modalities. This

allows for properties to be expressed independently of the number of agents in a UMAS.

Finally, the notions of m-stuttering simulation and cycle-stuttering simulation were defined on

PIIS and PIS, respectively. The former simulation was shown to preserve indexed ACTL∗K\X

formulae. The latter simulation was shown to preserve indexed ACTLK formulae up to a level

of temporal depth.

Chapter 4

Verifying parameterised interpreted

systems

This chapter develops a parameterised model checking procedure for the verification of un-

bounded multiagent systems represented in the formalism of parameterised interpreted sys-

tems. Section 4.1 gives a formal definition of the parameterised model checking problem and

of the notion of cutoffs for parameterised interpreted systems. Section 4.2 introduces the PIS

procedure. The procedure identifies a cutoff for a given system and a given specification. A

cutoff expresses the number of agents that is sufficient to consider when evaluating a given

specification. Following the cutoff identification, the procedure solves the parameterised model

checking problem by checking all concrete systems up to the cutoff. Finally, Section 4.3 applies

the procedure to the autonomous robot example and the Beta swarm aggregation algorithm.

4.1 Parameterised model checking problem

We outline parameterised interpreted systems as presented in Section 3.1. We then define the

parameterised model checking problem for PIS. Finally, we define the notion of cutoffs in the

context of PIS.

74

4.1. Parameterised model checking problem 75

A PIS is a tuple

PIS = (T , E , I,V)

where T = {T1, . . . , Tk} = {(L1, Act1, P1, t1), . . . , (Lk, Actk, Pk, tk)} is a set of k ≥ 1 agent

templates and E = (LE , ActE , PE , tE) is an environment template. An agent template is as-

sociated with a set Li of template states, a set Acti of template actions, a template protocol

Pi : Li → P(Acti), and a template transition function ti : Li×Acti×P(
⋃
Ti Acti)×ActE → Li.

The environment template is similarly associated with a set LE of template states, a set ActE of

template actions, a template protocol PE : LE → P(ActE), and a template transition function

tE : LE × ActE × P(
⋃
Ti Acti) → LE . The definition of a PIS concludes with the description of

a set I = I1 × . . . Ik × IE of initial states for the templates, and a set of valuation functions on

the template states V = {Vi : Li → P(APi) : 1 ≤ i ≤ k}.

Given a value n = (n1, . . . , nk) of the system’s parameter, the concrete system PIS (n) is the

interpreted system

PIS (n) =
(

(Lj
i ,Act j

i ,P
j
i , t

j
i)(i ,j)A(n), (LE ,ActE ,PE , tE), I ,V

)
.

PIS (n) results from the composition of n.i instantiations {(i, 1), . . . , (i, n.i)} of each agent tem-

plate Ti and an instantiation of the environment template. Given x ≤ n, we write A(x) for the

setA(x) = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ x.i} of concrete agents. For each concrete system PIS(n)

we can associate a temporal-epistemic model SPIS(n) =
(
G(n), I(n), R(n), (Kji)(i,j)∈A(n), V (n)

)
as standard (see Section 2.1.1). When PIS (n) is clear from the context we simply write S(n)

for SPIS(n). We assume that the transition relation for each concrete system is serial 1.

We now proceed to state the parameterised model checking problem for PIS.

Definition 4.1 (Parameterised model checking problem for PIS). Given a PIS S and an m-

indexed ACTLK formula ∀vφ(v), the parameterised model checking problem concerns establishing

whether or not the following holds:

∀n ≥ m.S(n) |= ∀vφ(v)

1A serial transition relation can be enforced by the templates’ descriptions by assuming a null action that is
enabled at each local state for each of the templates. Upon performing the null action, an agent remains in its
current state irrespective of the other agents’ actions.

76 Chapter 4. Verifying parameterised interpreted systems

If the above holds, then ∀vφ(v) is said to be satisfied by S. This is denoted by S |= ∀vφ(v).

In other words, differently from the standard model checking problem, the parameterised

model checking problem involves establishing whether a specification is satisfied on an un-

bounded number of systems resulting from the instantiations of the agent templates. This is

a task that in principle involves an unbounded state space which is intractable for traditional

model checking techniques. Cutoffs have been studied in the context of reactive systems to cir-

cumvent this difficulty by reducing the number of systems to consider [EK00, EN95, HBR09,

KKW10]. A cutoff for a system is the number of components that is sufficient to consider when

evaluating a given specification.

Definition 4.2 (MAS cutoff). Given a PIS S composed of k roles and an m-indexed ACTLK

formula ∀vφ(v), a k-tuple c ∈ Nk is said to be a MAS cutoff if the following holds:

∀m ≤ x ≤ c.S(x) |= ∀vφ(v) if and only if ∀n ≥ m.S(n) |= ∀vφ(v)

We say that S admits a cutoff for ∀vφ(v) and we call S(c) the cutoff system.

By definition, given a cutoff for a system, the parameterised model checking problem can be

reduced to model checking all concrete systems up to the cutoff system. The aim of this chapter

is to develop a sound and complete procedure that takes as input a PIS S and an m-indexed

formula ∀vφ(v), and returns a cutoff for S and ∀vφ(v).

4.2 The PIS procedure

This section introduces the PIS procedure. The procedure tackles the verification of parame-

terised interpreted systems against indexed ACTLK formulae.

4.2.1 Overview

Given a PIS S and an m-indexed ACTLK formula ∀vφ(v), the procedure identifies a cutoff c for

S and ∀vφ(v). Following this, the procedure checks every concrete system up to S(c) against

4.2. The PIS procedure 77

∀vφ(v). If the formula is satisfied on each of the systems checked, then the procedure concludes

that the formula is satisfied on every concrete system. The cutoff identification is performed

by means of the following three steps:

1. In the first step, an abstract model is built. The model can simulate any concrete system

from S of arbitrary size. Therefore, the satisfaction of ∀vφ(v) on the abstract model

entails the satisfaction of ∀vφ(v) on every concrete system. However, if ∀vφ(v) is not

satisfied by the abstract model, then it does not necessarily follow that there is a concrete

system falsifying the formula. This is because the abstract model may contain spurious

paths, i.e., paths that do not correspond to any concrete behaviour. Spurious paths

correspond to cycles that are repeated infinitely often. Although a concrete system can

perform these cycles, it can do so only for a finite number of repetitions, the exact number

depending on the size of the system.

2. Following step 1, in step 2, a pruned computation tree of the abstract model is built.

The tree contains all and only the abstract paths that do not contain a cycle repeated

for more than td(∀vφ(v)) + 1 times, where td(∀vφ(v)) is the temporal depth of ∀vφ(v).

Intuitively, for any d > td(∀vφ(v)), d′ > td(∀vφ(v)), ∀vφ(v) cannot distinguish between d

and d′ repetitions of a given cycle (see Section 3.4 for a detailed discussion).

3. In step 3, the number of agents that enable a concrete system to simulate the tree con-

structed in step 2 is computed. Intuitively, any concrete system that can simulate the

tree admits all possible behaviour that may alter the satisfaction status of ∀vφ(v). The

number computed in this step is the cutoff.

In the following sections we give a detailed description of the above steps.

4.2.2 Step 1: abstraction

Given a PIS S and an m-indexed formula ∀vφ(v), the abstract model is generated by counter

abstraction principles with a threshold equal to 1. An abstract state is built from a concrete

component and an abstract component for each agent template. The concrete component

78 Chapter 4. Verifying parameterised interpreted systems

consists of the local states of the concrete agents in A(m). The abstract component of each

agent template Ti consists of a set of template states representing the projection of the tuple

of local states of all the agents performing role i other than the ones in A(m) into a set. Note

that the agents A(m) are not abstracted. This is because the atomic propositions and the

epistemic modalities appearing in the trivial instantiation of ∀vφ(v) refer to all and only these

agents. Transitions from an abstract state represent transitions enabled from any concrete state

that is represented by said abstract state. Each abstract transition is labelled by the template

transitions taking place.

Example 4.1. Figure 4.1 exemplifies these ideas on a 2-indexed formula, and on a global transi-

tion of a concrete system of 1 template and with ten participants. The figure uses different styles of

rectangles to indicate different template local states. The concrete global state shown at the top left

corner consists of three agents in the local state represented by the gray rectangle, two agents in

the local state represented by the white rectangle with solid borders, four agents in the local state

represented by the white rectangle with dotted borders, and one agent in the local state represented

by the black rectangle. The state is counter abstracted to the abstract state shown in the bottom

left corner. The concrete component for the state is the tuple of local states for the first two agents.

The abstract component for the state is the set of local states for the agents 3,. . . ,10; i.e., the set

containing the template local state represented by the gray rectangle, the template local state rep-

resented by the white rectangle with solid borders, the template local state represented by the white

rectangle with dotted borders, and the template local state represented by the black rectangle. The

concrete global state in the top right corner, which is reachable in one step from the state in the

top left corner, is similarly abstracted to the abstract state in the bottom right corner. Finally,

note the abstract transition representing the concrete one is labelled by the template transitions

taking place in the concrete global transition; i.e., there is an agent in {3, . . . , 10}, namely 3, in

the local state represented by the gray rectangle that moves to the local state represented by the

white rectangle with solid borders, and there is an agent, namely 4, in the local state represented

by the white rectangle with solid borders that remains in the same state, and so forth.

We now formally define the abstract model.

Definition 4.3 (Abstract model). Given a PIS S of k roles and m ∈ Nk, the abstract model Ŝ(m)

is defined as a tuple Ŝ(m) =
(
Ĝ(m), Î(m), R̂(m)

)
, where

4.2. The PIS procedure 79

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

111121 1 2 1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

Figure 4.1: Abstraction realised by the PIS procedure.

• Ĝ(m) ⊆
(
L1

1 × . . .× Lm.kk × LE
)
× ((P(L1) \ {∅})× . . .× (P(Lk) \ {∅})) is the set of ab-

stract states.

• Î(m) is the set of initial abstract states. We have that ((l11, . . . , l
m.k
k , lE), (X1, . . . , Xk)) ∈

Î(m) iff

– l11 ∈ I1 × {1} , . . . , lm.kk ∈ Ik × {m.k}.

– lE ∈ IE .

– X1 ⊆ I1 \ {∅} , . . . , Xk ⊆ Ik \ {∅}.

• R̂(m) ⊆ Ĝ(m) × Λ1 × . . . × Λk × Ĝ(m) is the abstract transition relation for the sets of

labels

Λ1 = P(L1 ×Act1 × P(All_Act)× L1) \ {∅} , . . . ,

Λk = P(Lk ×Actk × P(All_Act)× Lk) \ {∅} ,

where All_Act =
⋃

1≤i≤k Acti is the set of all actions for the agent templates.

An abstract state γ = ((l11, . . . , l
m.k
k , lE), (X1, . . . , Xk)) consists of a concrete component γ.c =

(l11, . . . , l
m.k
k , lE) and an abstract component γ.â = (X1, . . . , Xk). γ represents any global state

g in any concrete system S(n) (with n > m) in which:

• the environment is at local state lE;

• the agents (1, 1), . . . , (k,m.k) are at local states l11, . . . , l
m.k
k , respectively;

80 Chapter 4. Verifying parameterised interpreted systems

• Xi =
{
tlsji (g) : j ∈ {m.i+ 1, . . . , n.i}

}
is the projection of the tuple of template local

states for the agents (i,m.i+ 1), . . . , (i, n.i) into a set.

Thus γ.c encodes the atomic propositions on which an m-indexed formula is built, and γ.â

encodes how an arbitrary number of agents may interfere with the state of γ.c. To see this,

consider a transition (γ,Ξ1, . . . ,Ξk, γ
′) ∈ R̂(m), representing a set of transitions between the

concrete states represented by γ and γ′. Each set of labels Ξi indicates the template transitions

enabling the agents performing role i to participate in a global transition. In other words, a

tuple (l, a, A, l′) ∈ Ξi indicates that in a global transition at least one agent of role i is at state

l; this agent performs action a, all agents in the system jointly perform the actions in the set A

of actions, and the agent moves to state l′.

Given an abstract state γ, we write lsji (γ.c) for the local state of agent (i, j) in γ. By tlsji (γ.c),

we express the template local state of agent (i, j) in γ. We use γ.â.i to denote the abstract com-

ponent of agent template i in γ.â. For a set Ξi ⊆ Λi, let Act(Ξi) = {a : ∃l, l′, A. (l, a, A, l′) ∈ Ξi}

be the set of actions performed by Ξi. The construction of the abstract model concludes with

the definition of the abstract transition relation.

Definition 4.4 (Abstract transition relation). The construction of Ŝ(m) is completed by defining

R̂(m) as follows: (γ,Ξ1, . . . ,Ξk, γ
′) ∈ R̂(m) iff there is a joint action a ∈ Act11 × . . . × Actm.kk ×

ActE such that:

1. A cocnrete transition represented by (γ,Ξ1, . . . ,Ξk, γ
′) is valid for the environment:

• laE(a) ∈ PE(lsE(γ.c));

• tE(lsE(γ.c), laE(a), A) = lsE(γ′.c), where

A = Act(Ξ1) ∪ . . . ∪Act(Ξk) ∪
{
laji (a) : (i, j) ∈ A(m)

}
.

2. A concrete transition represented by (γ,Ξ1, . . . ,Ξk, γ
′) is valid for each concrete agent: for

all (i, j) ∈ A(m), we have that:

• laji (a) ∈ Pi(tlsji (γ.c));

4.2. The PIS procedure 81

• ti(tlsji (γ.c), la
j
i (a), A, laE(a)) = tlsji (γ

′.c), where

A = Act(Ξ1) ∪ . . . ∪Act(Ξk) ∪
{
laji (a) : (i, j) ∈ A(m)

}
.

3. A concrete transition represented by (γ,Ξ1, . . . ,Ξk, γ
′) is valid for the agents represented by

each abstract component γ.â.i: for all (l, a, A, l′) ∈ Ξi, we have that:

• l ∈ γ.â;

• l′ ∈ γ′.â;

• a ∈ Pi(l);

• ti(l, a, A, laE(a)) = l′, where

A = Act(Ξ1) ∪ . . . ∪Act(Ξk) ∪
{
laji (a) : (i, j) ∈ A(m)

}
.

4. For every 1 ≤ i ≤ k and every l ∈ γ.â.i, there is a transition label in Ξi to a state l′ ∈ γ′.â.i,

and for every l′ ∈ γ′.â.i, there is a transition label in Ξi from a state l ∈ γ.â.i.

A path in Ŝ(m) is a sequence γ1(Ξ1
1, . . . ,Ξ

1
k)γ

2, (Ξ2
1, . . . ,Ξ

2
k), γ

3, . . . with (γi,Ξi1, . . . ,Ξ
i
k, γ

i+1) ∈

R̂(m), for every i ≥ 1.

Example 4.2. In Section 3.1.1 we represented the autonomous robots scenario in the formalism

of parameterised interpreted systems. We encoded a robot by means of an agent template defined

on local states of the form (p, s, h), where p represents the position of the robot, s represents its

sensor reading, and h represents whether it has halted (h = >) or not (h = ⊥). The agent

template may perform one of the actions s=, s+, s− at each time step. The actions determine the

value of the sensor at the next time step. The sensor will have the correct value whenever s= is

performed; one value higher than the correct value whenever s+ is performed; one value lower

than the correct value whenever s− is performed. Additionally, the agent template admits the halt

action. The action is performed whenever the value of its sensor is equal to or greater than 3.

A fragment of the concrete system with two robots was given in Figure 3.3. Figure 4.2 gives a

fragment of the abstract model for 1-indexed formulae. A state of the abstract model is a triple

denoting the concrete local state of agent 1, the set of template local states for all the other agents,

82 Chapter 4. Verifying parameterised interpreted systems

(00⊥)1, {(00⊥)} ,0

(10⊥)1, {(11⊥), (12⊥)} ,1 (11⊥)1, {(10⊥), (11⊥), (12⊥)} ,1

(22⊥)1, {(21⊥), (22⊥)} ,2 (23⊥)1, {(23⊥)} ,2 (23⊥)1, {(22⊥), (23⊥)} ,2

(34⊥)1, {(32⊥), (33⊥), (34⊥)} ,3 (23>)1, {(23>)} ,3 (33>)1, {(34⊥), (33⊥), (23>)} ,3

n−,move,Ξ1 n=,move,Ξ2

n=,move,Ξ3

n+,move,Ξ4

n+,move,Ξ5

n+,move,Ξ6

n+,move,Ξ7 halt,move,Ξ8 n=,move,Ξ9

Figure 4.2: Fragment of the abstract model for the parameterised interpreted system of the
autonomous robot scenario.

and the local state of the environment. Each transition in the figure is labelled with a triple

indicating the action of agent 1, the action of the environment, and the set of labels of the abstract

transition, respectively. Let X ⊆ {null+, null−, null+, , null, halt} denote an arbitrary subset of

the set of actions admitted by the agent template. The sets of labels are as follows:

• Ξ1 = {((00⊥), n=, X, (11⊥)) , ((00⊥), n+, X, (12⊥))};

• Ξ2 = {((00⊥), n−, X, (10⊥)) , ((00⊥), n=, X, (11⊥)) , ((00⊥), n+, X, (12⊥))};

• Ξ3 = {((11⊥), n−, X, (21⊥)) , ((12⊥), n=, X, (22⊥))};

• Ξ4 = {((11⊥), n+, X, (23⊥)) , ((12⊥), n+, X, (23⊥))};

• Ξ5 = {((10⊥), n+, X, (23⊥)) , ((11⊥), n+, X, (23⊥)) , ((12⊥), n+, X, (23⊥))};

• Ξ6 = {((10⊥), n=, X, (22⊥)) , ((11⊥), n+, X, (23⊥)) , ((12⊥), n+, X, (23⊥))};

• Ξ7 = {((21,⊥), n−, X, (32,⊥)) , ((21⊥), n=, X, (33⊥)) , ((22⊥), n+, X, (34⊥))};

• Ξ8 = {((23⊥), halt,X, (23>))};

• Ξ9 = {((22,⊥), n+, X, (34⊥)) , ((22⊥), n=, X, (33⊥)) , ((23⊥), halt,X, (23>))}.

For instance, the abstract state γ =
(
(00⊥)1, {(00⊥)}, 0

)
represents any concrete state in which

agent 1 is in local state (00⊥), the environment is in local state 0, and all the other agents

4.2. The PIS procedure 83

are in local state (00⊥). The abstract state γ′ =
(
(1, 0,⊥)1, {(11⊥), (12⊥)}, 1

)
represents any

concrete state in which agent 1 is in local state (00⊥), the environment is in local state 1, and

the template local states for all the other agents are (11⊥) and (12⊥). The abstract transition

(γ, (n−,move,Ξ1), γ′) represents any concrete transition from a state represented by γ to a state

represented by γ′, where agent 1 performs the action n−, the environment performs the action

move, and the actions for all the other agents are n= and n+.

Correspondence between a concrete system and the abstract model

We now establish a correspondence between a concrete system S(n) with n > m and Ŝ(m) as

follows. Define δn : G(n)→ Ĝ(m) to map concrete states from S(n) to abstract states in Ŝ(m):

δn(g) = ((δn(g)).c, (δn(g)).â) ,

where

(δn(g)).c =
(
ls1

1(g), . . . , lsm.kk (g), lsE(g)
)

is the concrete component and

δn(g)).â =
({
tlsj1(g) : j ∈ {m.1 + 1, . . . , n.1}

}
, . . . ,

{
tlsjk(g) : j ∈ {m.k + 1, . . . , n.k}

})

is the abstract component. Assume a concrete transition (g, a, g′) from state g to state g′ by

means of the joint action a. For each agent template Ti, consider ζn.i to map (g, a, g′) to a set

of labels from Λi as follows: (l, a, A, l′) ∈ ζn.i(g, a, g′) iff the following hold:

• there is a j ∈ {m.i+ 1, . . . , n.i} such that tlsji (g) = l, laji (a) = a, and tlsji (g
′) = l′;

• A =
{
laji′(a) : (i′, j) ∈ A(n)

}
.

Finally, define θn to map paths in S(n) to paths in Ŝ(m) by

θn(g1a1g2 . . .) = δn(g1)
(
ζn.1(g1, a1, g2), . . . , ζn.k(g1, a1, g2)

)
δn(g2)

84 Chapter 4. Verifying parameterised interpreted systems

By means of the above mappings we obtain the following simulation relation between S(n)

and Ŝ(m).

Lemma 4.1. Let S(n) be a concrete system with n > m. Assume the relation ∼̂s = {(g, γ) : δn(g) = γ}

between S(n) and Ŝ(m). Then, the following hold:

1. for every concrete initial state g ∈ I(n), there is an initial abstract state γ ∈ Î(m) with

(g, γ) ∈ ∼̂s.

2. if (g, γ) ∈ ∼̂s and (g, g′) ∈ R(n), then (γ,Ξ1, . . . ,Ξk, γ
′) ∈ R̂(m) for some labels Ξ1, . . . ,Ξk

and some abstract state γ′ with (g′, γ′) ∈ ∼̂s.

Proof.

1. δn(g) ∈ Î(m);

2. Assume (g, g′) by means of a joint action a. Then,

(
δn(g),

(
ζn.1(g, a, g′), . . . , ζn.k(g, a, g′)

)
, δn(g′)

)
∈ R̂(m).

The above gives the correspondence between Ŝ(m) and a concrete system S(n): every be-

haviour admitted by S(n) is representable by Ŝ(m). This means that the satisfaction of a

formula on the abstract model entails the satisfaction of the formula on every concrete system.

However, it is not generally the case that every behaviour admitted by Ŝ(m) has a concrete

counterpart. This means that if a formula is not satisfied on the abstract model, then no con-

clusions can be drawn on the existence of a concrete system falsifying the formula. Indeed,

Ŝ(m) may contain spurious paths that correspond to the infinite repetition of certain cycles.

Although a concrete system can perform these cycles, it can do so only for a finite number of

repetitions. The exact number of repetitions depends on the size of the system. The following

gives an example of a spurious path.

Example 4.3. Consider the PIS S = ((L,Act, P, t), I,V) built from one agent template, where

4.2. The PIS procedure 85

• L = {ι, l, l′};

• Act = {a, b};

• P (ι) = {a, b}, P (l) = {b}, P (l′) = {a};

• t(ι, a, {a, b}) = l, t(ι, b, {a, b}) = l′, t(l, b, {a, b}) = l, t(l′, a, {a, b}) = ι;

• I = {ι};

• The definition of V is irrelevant for the purpose of this example.

S is depicted in Figure 4.3a. A fragment of its abstract model Ŝ(1) is depicted in Figure 4.3b.

Observe the infinite abstract path

((
l′,
{
l, l′
})

Ξ1 (ι, {ι, l}) Ξ2(l′,
{
l, l′
}

)
)ω

where:

Ξ1 =
{

(l′, a, {a, b} , ι), (l, b, {a, b} , l)
}

;

Ξ2 =
{

(ι, a, {a, b} , l), (ι, b, {a, b} , l′), (l, b, {a, b} , b)
}
.

The above path represents a situation in which concrete agent 1 goes through the cycle of states

(l′, ι, l′) infinitely often. However, for each repetition of the cycle, agent 1 may transition from

state ι to state l′ (by performing the action b) only if there is another agent that performs the

action a at that round. If so, then the latter agent goes from state ι to state l in which it forever

remains. At state l, the agent is not permitted by its protocol to perform the a action. It follows

that agent 1 can only go through the cycle of states (ι, l′, ι) a finite number of times. This number

depends on the number of agents in the system.

4.2.3 Step 2: pruning

We now proceed to “eliminate” the spurious paths of the abstract model. We do this by building

the computation forest of Ŝ(m). The forest includes all and only the paths of Ŝ(m) that do

86 Chapter 4. Verifying parameterised interpreted systems

ι

l l′

(ι, a, {a, b} , l) (ι, b, {a, b} , l′)

(l, b, {a, b} , l)

(l′, a, {a, b} , ι)

(a) Agent template.

(ι1, {ι})

(l′1, {l, l′})

(ι1, {ι, l})

(l1, {l, l′})

(l1, {ι, l})

(ι, a, {a, b} , l)
(ι, b, {a, b} , l′)

(l′, a, {a, b} , ι)
(l, b, {a, b} , l)

(ι, a, {a, b} , l)
(ι, b, {a, b} , l′)

(l′, a, {a, b} , ι)
(l, b, {a, b} , l)

(ι, a, {a, b} , l)
(ι, b, {a, b} , l′)
(l, b, {a, b} , b)

(ι, a, {a, b} , l)
(ι, b, {a, b} , l′)
(l, b, {a, b} , b)

(b) Fragment of the abstract model.

Figure 4.3: The abstraction of a PIS may contain spurious paths.

4.2. The PIS procedure 87

not contain a cycle with more than td(∀vφ(v)) + 1 repetitions. Roughly speaking, following

the discussion in Section 3.4, the forest contains all finite repetitions of a given cycle that may

alter the satisfaction status of the formula to check. Note, however, that the forest cannot be

used to verify the formula since it eliminates all infinite paths of Ŝ(m); some of them might

not be spurious. Nevertheless, the forest can be used to compute a cutoff, as we describe in

the next section.

The computation forest of Ŝ(m) is the disjoint union of the computation trees generated for

each initial state in Ŝ(m). For a state γ ∈ Ĝ(m) and d ≥ 1, we associate a labelled computation

tree T(γ, d) rooted at γ̇2 that is inductively defined as follows.

Definition 4.5 (Computation tree). Given an abstract state γ in Ŝ(m) and d ≥ 1, the labelled

computation tree T(γ, d) rooted at γ̇ is inductively defined as follows.

• T0(γ, d) consists of exactly the node γ̇.

• Tn+1(γ, d) consists of root node γ̇, and for every transition (γ,Ξ1, . . . ,Ξk, γ
′) ∈ R̂(m), γ̇ has

a subtree Tn(γ′, d) with edge label Ξ1, . . . ,Ξk iff there is no path in Tn+1(γ, d) containing a

cyclic repetition for more than d times.

It is easy to see that there is a q ∈ N such that Tq(γ, d) is isomorphic to every Tq
′
(γ, d) with

q′ ≥ q. We write T(γ, d) to denote this tree. Note that T(γ, d) is finite. A path b in T(γ, d) is

a sequence γ̇1(Ξ1
1, . . . ,Ξ

1
k) . . . (Ξ

x−1
1 , . . . ,Ξx−1

k)γ̇x such that γ̇1 is the root, γ̇x is a leaf, and for

every 1 ≤ i ≤ x − 1, (Ξi1, . . . ,Ξ
i
k) is the label for the edge between γ̇i and γ̇i+1. We write b(i)

for the i-th node in b, b(i,Λj) for the j-th component of the i-th label in b, b[i] for the suffix

γ̇i(Ξi1, . . . ,Ξ
i
k) . . . of b, and |b| for the number of nodes in b.

We can now define the computation forest of Ŝ(m) with respect to d ≥ 1.

Definition 4.6 (Computation forest). Given d ≥ 1, the computation forest Ṡ(m, d) of Ŝ(m) is

the disjoint union Ṡ(m, d) = qγ∈Î(m)T(γ, d) of the computation trees generated for each initial

state in Ŝ(m).

2We use γ̇ to indicate the node γ̇ in the computation tree that corresponds to the abstract state γ.

88 Chapter 4. Verifying parameterised interpreted systems

4.2.4 Step 3: counting

In the final step, the PIS procedure identifies a cutoff for S and ∀vφ(v). The cutoff is iden-

tified by computing the sufficient number of agents in a concrete system so that the sys-

tem can simulate Ṡ(m, td(∀vφ(v)) + 1). Roughly speaking, if a concrete system simulates

Ṡ(m, td(∀vφ(v)) + 1), it then admits all finite repetitions of a given cycle that may alter the

satisfaction status of ∀vφ(v). Additionally, differently from Ṡ(m, td(∀vφ(v)) + 1), the concrete

system admits all infinite paths of any bigger system. Thus, formally speaking, if a concrete

system simulates Ṡ(m, td(∀vφ(v)) + 1), then the concrete system is cycle-stuttering simulation

equivalent up to degree td(∀vφ(v)) + 1 to every bigger system. We prove this in section 4.2.6

where we show that said concrete system is a cutoff system. In this section, we show that

cutoffs always exist.

We begin by considering a path b in the computation tree T(γ, d), for an abstract state γ and

d ≥ 1. We define b(i,Λj) = ∅ whenever b(i) is a leaf node. Then, given a template state l ∈ Lj

of agent template Tj , we define

outj(b(i), l) =
∣∣{a : (l, a, A, l′) ∈ b(i,Λj)

}∣∣ .
In any concrete transition (g, g′) that corresponds to (b(i−1), (Ξ1, . . . ,Ξk), b(i)), outj(b(i−1), l)

is the sufficient number of concrete agents from Tj that need to be in l in g for the transition to

be enabled. For any concrete path π that corresponds to b, we let cutoff j(b, l) be the sufficient

number of concrete agents from Tj that need to be in l in π(1) for the concrete path to be

performed. cutoff j(b, l) is defined as follows:

cutoff j(b, l) = outj(b(1), l) +
∑

(l′:(l,a,A,l′)∈b(1,Λj))

cutoff j(b[1], l′).

For any concrete state g that corresponds to a node γ̇ in Ṡ(m, d), we consider cutoff j(γ, l) to be

the sufficient number of concrete agents from Tj that need to be in l in g so that any concrete

path originating from g and corresponding to a path in Π(γ̇) can be performed. cutoff j(γ, l) is

4.2. The PIS procedure 89

defined as follows:

cutoff j(γ̇, l) = max(cutoff j (b, l) | b is a path originating from γ̇) .

We now define the sufficient number cutoff j(γ̇) of concrete agents from Tj that need to be in

g so that any concrete path originating from g and corresponding to a path in Π(γ̇) can be

performed.

cutoff j(γ̇) =
∑
l∈Lj

cutoff j(γ̇, l)

Finally, we let cutoff j(Ṡ(m, d)) be the sufficient number of concrete agents from Tj so that a

concrete system can simulate every path in Ṡ(m, d). cutoff j(Ṡ(m, d)) is given by the following:

cutoff j(Ṡ(m, d)) = max(cutoff j(γ̇) | γ̇ is a root node) +m.j

We can now define the cutoff function cutoff (S,m, d). The function takes as input a PIS S of k

roles, m ∈ Nk, d ≥ 1, and returns the cutoff for S and all m-indexed formulae with temporal

depth less than d.

Definition 4.7 (Cutoff function). Given a PIS S of k roles, m ∈ Nk, and d ≥ 1, the cutoff

function cutoff (S,m, d) is defined as follows:

cutoff (S,m, d) =
(

cutoff 1(Ṡ(m, d)), . . . , cutoff k(Ṡ(m, d))
)

The cutoff system S(cutoff (S,m, d)) is related to Ṡ(m, d) by means of the following simulation

relation.

Lemma 4.2. Let c = cutoff (S,m, d). Consider ∼̇s to be a relation between the nodes in Ṡ(m, d)

and the states in S(c) that is defined as follows: (γ̇, g) ∈ ∼̇s iff

• δc(g) = γ;

• for each agent template Ti and for each template state l ∈ Li, we have that

∣∣∣{(i, j) : j ∈ {m.i+ 1, . . . , c.i} and tlsji (g) = l
}∣∣∣ ≥ cutoff i(γ̇, l).

90 Chapter 4. Verifying parameterised interpreted systems

Then, the following hold:

1. for every root node γ̇ in Ṡ(m, d), there is an initial concrete state g ∈ I(c) with (γ̇, g) ∈ ∼̇s;

2. if (γ̇, g) ∈ ∼̇s and γ̇′ is a child of γ̇, then (γ̇′, g′) ∈ ∼̇s for some g′ ∈ G(c) with (g, g′) ∈ R(c).

Proof.

1. By the definition of cutoff (S,m, d).

2. Suppose that (γ̇, g) ∈ ∼̇s. Let γ̇′ be a child of γ̇. Let (Ξ1, . . . ,Ξk) be the label for the edge

between γ̇ and γ̇′, and assume an arbitrary template state l of agent template Ti. From

(γ̇, g) ∈ ∼̇s and by the definition of cutoff i(γ, l), the following holds:

∣∣∣{(i, j) : j ∈ {m.i+ 1, . . . , c.i} and tlsji (g) = l
}∣∣∣ ≥ ∑

(l′:(l,a,A,l′)∈Ξi)

cutoff i(γ, l
′).

Therefore, there is a sufficient number of agents in each template state l in g to appro-

priately populate each template state l′ that results from l in a template transition. It

follows that there is a global state g′ with (g, g′) ∈ R(c) and (γ̇′, g′) ∈ ∼̇s.

We write Ṡ(m, d) ≤̇s S(c) to indicate that S(c) simulates Ṡ(m, d) by means of the above rela-

tion.

4.2.5 Summary

The PIS procedure is given by Algorithm 1. Given a PIS S an m-indexed ACTLK formula

∀vφ(v), the procedure constructs the abstract model Ŝ(m). It then builds the computation for-

est Ṡ(m, td(φ)+1) of Ŝ(m). Ṡ(m, td(φ)+1) admits all paths in Ŝ(m) that do not contain a cycle

with more than td(φ) + 1 repetitions. With the construction of Ṡ(m, td(φ) + 1), the procedure

iteratively checks for a concrete system S(c) such that S(c) simulates Ṡ(m, td(φ) + 1). S(c) is

the cutoff system. Following the cutoff identification, PIS checks the set {S(x) : m ≤ x ≤ c} of

4.2. The PIS procedure 91

Algorithm 1 Parameterised model checking procedure for parameterised interpreted systems.
1: procedure PIS(S,∀v̄φ(v̄))
2: build Ŝ(m)
3: build Ṡ(m, td(∀vφ(v)) + 1)
4: c̄← m̄
5: do
6: increase c̄ in a breadth-first manner
7: until Ṡ(m, d) ≤̇s S(c)
8: for all x̄ with m̄ ≤ x̄ ≤ c̄ do
9: if S(x̄) 6|= φ[trivial] then

10: return false;
11: end if
12: end for
13: return true;
14: end procedure

concrete systems against the trivial instantiation φ[trivial] of ∀vφ(v). If φ[trivial] is not satisfied

by at least one system, then the procedure returns false, otherwise it returns true.

This concludes the description of the PIS procedure. Algorithm 1 provides a methodology for

solving the parameterised model checking problem by checking all systems up to the cutoff

system. Note that, by Lemma 4.2, a cutoff system can always be identified. Therefore, PIS is

a complete procedure. We assess the soundness of PIS in the next section.

4.2.6 Proof of soundness

Theorem 4.1. Let S be a parameterised interpreted system and ∀vφ(v) be an m-indexed ACTLK

formula. Then, PIS(S,∀vφ(v)) returns true iff S |= ∀vφ(v).

It suffices to show that if Ṡ(m, td(∀vφ(v))+1) ≤̇ S(c), then S(c) is a cutoff system. The proof is

given in two parts. In the first part, we show that S(c) cycle-stuttering simulates up to degree

td(∀vφ(v)) + 1 every bigger system. By Theorem 3.2, we then get the following:

S(c) |= ∀vφ(v) implies S(n) |= ∀vφ(v), for any n ≥ c (1)

In the second part, we show that every bigger system cycle-stuttering simulates S(c) up to

92 Chapter 4. Verifying parameterised interpreted systems

degree td(∀vφ(v)) + 1. By Theorem 3.2, we then obtain the following:

S(n) |= ∀vφ(v) implies S(c) |= ∀vφ(v), for any n ≥ c (2)

From (1) and (2) it follows that

∀m ≤ x ≤ c.S(x) |= ∀vφ(v) iff ∀n ≥ c.S(n) |= ∀vφ(v)

Therefore, S(c) is a cutoff system.

Part A: the cutoff system cycle-stuttering simulates every bigger system

Lemma 4.3. Let S be a parameterised interpreted system and ∀vφ(v) be an m-indexed ACTLK

formula. Then, S(n) ≤(td(∀vφ(v))+1).css S(c), where Ṡ(m, td(∀vφ(v)) + 1) ≤̇ S(c) and n ≥ c.

For ease of explanation and for brevity of the proof, we introduce the following operation on a

given path.

Definition 4.8. Let σ = C1C
x1
1 . . . CzC

xz
z be a cyclic decomposition of a path. Given a natural

number d, the d-destuttering d.ds(σ) = d.ds(C1)d.ds(Cx11) . . . d.ds(Cz)d.ds(C
xz
z) of σ is defined

as follows:

• d.ds(Ci) = Ci for a non-cyclic block Ci;

• d.ds(Cxii) = (d.ds(Ci))
x′i , where x′i = min(d, xi), for a cyclic block Cxii .

In other words, d.ds(σ) includes up to d the repetitions of each cyclic block in σ.

Proof. Let td(∀vφ(v)) + 1 = d and fix n ≥ c. We show that S(n) ≤d.css S(c). We define the

relations Q0, Q1, . . . , Qd between S(n) and S(c). We then show that Qd is a cycle-stuttering

simulation relation of degree d between S(n) and S(c).

We start by defining the relations Z0, Z1, . . . , Zd between the states in S(n) and the nodes

in Ṡ(m, d + 1). A state g ∈ G(n) and a node γ̇ in Ṡ(m, d) are Z0-related if δn(g) = γ. For

4.2. The PIS procedure 93

any 0 < i ≤ d, a state g ∈ G(n) and a node γ̇ in Ṡ(m, d) are Zi-related if for every finite path

π ∈ Π(g) there is a path b ∈ Π(γ̇), a cyclic decomposition σ of θn(π) and a cyclic decomposition

σ′ of b such that σ′ = (i− 1).ds(σ).

Finally, for all 0 ≤ i ≤ d, we define two states g and g′ in G(n) and G(c), respectively, to be

Qi-related if there is a node γ̇ in Ṡ(m, d) such that (g, γ̇) ∈ Zi and (γ̇, g′) ∈ ∼̇s.

We show that Qd is a cycle-stuttering simulation of degree d between S(n) and S(c). We do

this by induction on d.

For the base step, we have that d = 0. Assume an initial state g ∈ I(n). We have to show that

there is an initial state g′ ∈ I(c) with (g, g′) ∈ Q0. Let δn(g) = γ. We have that γ̇ is a root

node in Ṡ(m, d). Therefore, (g, γ̇) ∈ Z0. By Lemma 4.2, there is an initial state g′ ∈ I(c) with

(γ̇, g′) ∈ ∼̇s. Hence, (g, g′) ∈ Q0. Let (g, g′) ∈ Q0 be an arbitrary pair of states. We have to

show the following:

1. V (n)(g) = V (c)(g′).

Since (γ̇, g′) ∈ ∼̇s, δc(g′) = γ = δn(g). As the concrete component in γ is built from the

local states of the agents A(m), it follows that V (n)(g) = V (c)(g′).

2. if Kji (g, g1), for (i, j) ∈ A(m), then K′ji (g′, g′1) for some g′1 with (g1, g′1) ∈ Q0.

Assume that Kji (g, g1), for some agent (i, j) ∈ A(m). By construction of Ṡ(m, d) there is

a node γ̇ with δn(g1) = γ. By Lemma 4.2, there is a state g′1 ∈ G(c) with δc(g
′1) = γ.

Therefore, K′ji (g′, g′1) and (g1, g′1) ∈ Q0.

So, the claim is true for d = 0. Assume that for all 1 ≤ x < d, Qx is a cycle-stuttering simulation

of degree x between S(n) and S(c). We show that this is the case for x = d.

Assume an initial state g ∈ I(n). We have to show that there is an initial state g′ ∈ I(c) with

(g, g′) ∈ Qx. Let δn(g) = γ. We have that γ̇ is a root node in Ṡ(m,x). By Lemma 4.2, there is

an initial state g′ ∈ I(c) with (γ̇, g′) ∈ ∼̇s. We prove that (g, g′) ∈ Qx. That is, we prove the

following:

1. (g, γ̇) ∈ Zx.

94 Chapter 4. Verifying parameterised interpreted systems

Let π ∈ Π(g) be a finite path. By Lemma 4.1, θn(π) ∈ Π(γ). By construction of Ṡ(m,x),

Π(γ̇) contains all paths in Π(γ) that do not have a cyclic repetition for more than x times.

It follows that there is a path b ∈ Π(γ̇), a cyclic decomposition σ of θn(π) and a cyclic

decomposition σ′ of b such that σ′ = (x− 1).ds(σ). Thus, (g, γ̇) ∈ Zx.

2. (γ̇, g′) ∈ ∼̇s.

Given above.

Let (g, g′) ∈ Qx be an arbitrary pair of states. We have to show that for every path π ∈ Π(g),

there is a path π′ ∈ Π(g′), a cyclic decomposition B1B2 . . . Bz of π, and a cyclic decomposition

B′1B
′
2 . . . B

′
z of π′ such that for all i ≥ 1, Bi ∝x−1 B

′
i.

Let π ∈ Π(g). Since the transition relation of S(n) is serial, we have that π is an infinite path.

That is, π is of the form ρbω, where ρ is a finite prefix of π and b is a cycle on states. We

construct a path π′′ ∈ Π(g′) as required. By definition of Qx, there is a node γ̇ in Ṡ(m,x) with

(g, γ̇) ∈ Zx and (γ̇, g′) ∈ ∼̇s. By (g, γ̇) ∈ Zx, there is a path b ∈ Π(γ̇), a cyclic decomposition

σ of θn(ρb1), and a cyclic decomposition σ′ of b such that σ′ = (x − 1).ds(σ). By (γ̇, g′) ∈ ∼̇s,

there is a path π′ ∈ Π(g′) such that (b(i), π(i)) ∈ ∼̇s for every 1 ≤ i ≤ |b|. Therefore π′ is of

the form ρ′b′, where b′ is a cycle with θc(b′) = θn(b). Let π′′ = ρ′b′ω. It should be clear that π′′

is a valid path in S(c). We show that π′′ is as required by cycle-stuttering simulation.

Consider ψ to be the cyclic decomposition σ, but with each abstract state (θn(π))(i) appearing

in σ replaced by the corresponding concrete state π(i); in other words, σ′ expresses the ap-

plication of σ to π. Consider ψ′ to be the cyclic decomposition σ′, but with each node (b)(i)

appearing in σ′ replaced by the corresponding concrete state π′(i). Now define ψ1 = ψB and

ψ′1 = ψ′B′, where B = bω and B′ = b′ω are cyclic blocks.

We prove that ψ1, ψ′1 are the required cyclic decompositions of π, π′′, respectively, of cycle-

stuttering simulation. Since ψ′ = (x − 1).ds(ψ), it suffices to show that for each pair C,C ′ of

corresponding non-cyclic blocks appearing in ψ1, ψ′1, respectively, we have that (C(j), C ′(j)) ∈

Qx
′
, for each 1 ≤ j ≤ |C|, where x′ is the maximum number in {1, . . . , x− 1} such that both

blocks can “see” ahead x′ repetitions of every cyclic block they are composed into. To show

this, let j ≥ 1 and β̇ be the j-th node appearing in the corresponding block of C in σ′. We have

4.2. The PIS procedure 95

that (β̇, C ′(j)) ∈ ∼̇s. Also, by construction of Ṡ(m,x) and the definition of x′, Π(β̇) contains

all abstract paths in Π(β) that do not contain a cyclic repetition for more than x′ times. As

δn(C(j)) = β, the latter gives (C(j), β̇) ∈ Zx′ . Hence, (C(j), C ′(j)) ∈ Qx′ . By the inductive

hypothesis, Qx
′

is a cycle stuttering simulation between S(n) and S(c) of degree x′.

We have thus proven that for every path π ∈ Π(g), there is a path π′ ∈ Π(g′), a cyclic decom-

position B1B2 . . . Bz of π, and a cyclic decomposition B′1B
′
2 . . . B

′
z of π′ such that for all i ≥ 1,

Bi ∝d−1 B
′
i. As (g, g′) was arbitrary, we have shown that Qd is a cycle-stuttering simulation

relation between S(n) and S(c). That is, we have demonstrated that S(n) ≤(td(∀vφ(v))+1).css

S(c).

Part B: every bigger system cycle-stuttering simulates the cutoff system

Lemma 4.4. Let S be a parameterised interpreted system and ∀vφ(v) be an m-indexed ACTLK

formula. Then, S(c) ≤(td(∀vφ(v))+1).css S(n), where Ṡ(m, td(∀vφ(v)) + 1) ≤̇ S(c) and n ≥ c.

Proof. We prove a stronger result, i.e., that for every n ≥ c, we have that S(n) simulates S(c)

(see Section 2.3 for the properties of a simulation relation).

We start by defining the relation Q ⊆ G(c) × G(n) between the states in S(c) and the states

in S(n). Two states g, g′ are Q-related if: (i) the states are projected into the same abstract

state in Ŝ(m); (ii) for each agent template Ti, the agents (i, c.i + 1), . . . , (i, n) are at the same

template local state with agent (i, 1) in g′. Formally, (g, g′) ∈ Q if the following holds:

δc(g) = δn(g′) and for each template role i and c.i+ 1 ≤ j ≤ n.i, tlsji (g
′) = tls1

i (g
′).

We show that Q is a simulation relation between S(c) and S(n). It should be clear that for

every initial state g ∈ I(c), there is an initial state g′ ∈ I(n) with (g, g′) ∈ Q. Let (g, g′) ∈ Q be

an arbitrary pair of states. We have to show the following.

(i) V (n)(g) = V (c)(g′);

The requirement follows from δn(g) = δc(g
′).

96 Chapter 4. Verifying parameterised interpreted systems

(ii) if Kji (g, g1), for some agent (i, j) ∈ A(m), then K′ji (g′, g′1) for some g′1 with (g1, g′1) ∈ Q.

Assume that Kji (g, g1), for some (i, j) ∈ A(m). Consider a path ιa1 . . . ax−1gx with ι being

an initial state and gx = g1. For each c-tuple of actions aj , define the extension of aj to

an n-tuple exn(aj) of actions as follows:

• for each template role r and for each 1 ≤ q ≤ c.r, laqr(exn(aj)) = laqr(aj);

• for each template role r and for each c.r + 1 ≤ q ≤ n.r, laqr(exn(aj)) = la1
r(a

j).

In other words, exn(aj) extends aj to an n-tuple by copying the action of concrete

agent (i, 1), for each agent template i, in aj for n.i− c.i times. Let ι′ ∈ G(n) be such that

(ι, ι′) ∈ Q. Consider the path

ι′exn(a1) . . . exn(ax−1)g′1

in S(n) obtained by performing the sequence of actions exn(a1), . . . , exn(ax−1). It should

be clear that this is a valid path in S(n). We have that K′ji (g′, g′1) and δn(g′1) = δc(g
1).

Therefore, (g1, g′1) ∈ Q.

(iii) if (g, g1) ∈ R(c) for some g1 ∈ G(c), then there is a g′1 ∈ G(n) such that (g′, g′1) ∈ R(n)

and (g1, g′1) ∈ Q;

Assume (g, g1) ∈ R(c) by means of a joint action a. Then, the action exn(a) is enabled at

g′ resulting at a global state g′1 with (g1, g′1) ∈ Q.

As (g, g′) was arbitrary, we have shown that Q is a simulation relation between S(c) and S(n).

It follows that that S(c) ≤(td(∀vφ(v))+1).css S(n).

4.3. Applications 97

4.3 Applications

4.3.1 Autonomous robot

In Section 3.1.1 we represented the autonomous robots scenario as a parameterised interpreted

system SAR. We now consider the indexed ACTLK formula

φAR = ∀{v,u}AG ((halted, v)→ Kv
robot (AXAX(halted, u)))

expressing “for every robot v, whenever v is halted, it knows that in the next two time steps

every other robot is halted”.

We analyse this property using the PIS procedure. We first observe that φAR is a 2-indexed

formula and has a temporal depth of 3. Therefore, in step 1, we build the abstract model

ŜAR(2). A fragment of ŜAR(1) is depicted in Figure 4.2; ŜAR(2) is similarly obtained by con-

sidering a concrete component with two agents. In step 2, we build the pruned computation

forest ṠAR(2, 4). The forest does not include repetitions of a cycle for more than 4 times. In

step 3, we find a concrete system that simulates ṠAR(2, 4). From the description of SAR, we

have that every robot halts whenever the value of its sensor is greater than or equal to 3. As

a sensor reading may differ at most 1 position from the actual position of a robot, every robot

halts by position 4. Therefore, if an abstract state γ represents position 4 for all the robots,

then the abstract component γ.â of γ never changes in an abstract transition. From Figure 4.2,

we can observe that for any position that is less than 4, each template state (x, y,⊥) (express-

ing position x, sensor value y, and that the robot has not halted) in γ.c may be updated in an

abstract transition to either: the template states (x+ 1, x,⊥), (x+ 1, x+ 1,⊥), (x+ 1, x+ 2,⊥)

if y < 3; or to the template state (x, y,>) if y ≥ 3. Therefore, for each round prior to round 4,

at most 4 concrete agents can perform every template transition indicated by the abstract tran-

sition relation at the round. It follows that the concrete system built from 4× 4 + 2 agents can

simulate ṠAR(2, 4).

We can thus assess the correctness of SAR by checking each concrete system SAR(2), . . . ,SAR(18)

against the trivial instantiation AG
(
(halted, 1)→ K1

robot (AXAX(halted, 2))
)

of φAR. The lat-

ter queries can be put to any epistemic model checker, which would return true, thereby

98 Chapter 4. Verifying parameterised interpreted systems

establishing the correctness of SAR irrespectively of the number of robots present.

4.3.2 The Beta swarm aggregation algorithm

Swarm robotics concerns the coordination and analysis of an unbounded collection of be-

haviourally simple and identical robotic agents [BDT99, Şah05, ŞW08]. The interaction be-

tween the agents and their environment is designed to exhibit a collective, emergent behaviour

often inspired by biological systems, e.g., ants [Eng06]. As justified in [Şah05], despite the

lack of centralised coordination, biological swarm-based systems can still be robust, scalable,

and flexible. It is therefore of interest to design swarm robotic systems that they can be shown

to be in compliance with their specifications. To do this, we need to analyse the properties of

a swarm irrespectively of the number of robots in the system.

This section applies the PIS procedure to the Beta aggregation algorithm [Nem05], a protocol

used to aggregate robots somewhere on a grid. In line with common theoretical assump-

tions made in the literature [Şah05, BFBD13] we here assume that each agent operates on a

two-dimensional arena and communicates with its peers and the environment by means of a

wireless sensor of limited range. A robot is said to be in another robot’s neighbourhood if the

position of the former is in the range of the latter’s sensor. We consider the arena to be finite

and we allow it to wrap around, i.e., for an α × α arena, the cell (1, 1) is one position to the

right of the cell (1, α). We also assume that the robots update their state with high frequency;

so we can model them by assuming synchronicity even if at any instance some robots may be

idle [DWFZ12].

To begin, given a robot i, define a lost robot j to be a robot that was in the neighbourhood of i

in the previous step but it is not in the current step. Each robot i obeys two simple rules. The

first rule concerns the number of i’s neighbours that can observe each of i’s lost robots in their

neighbourhoods. If this number is less than a predefined threshold β for at least one lost robot,

then robot i performs a 180◦ turn. The second rule concerns the number of i’s neighbours. If

the first rule does not apply and the number of i’s neighbours increases during a time step,

then the robot performs a random 90◦ turn. If neither rule can be applied, the robot moves

forward one cell.

4.3. Applications 99

Fix a 5 × 5 arena, assume a communication range of 1, and let β = 0. We now encode the

Beta algorithm as a PIS Sβ consisting of an agent template Rβ that reflects the rules above

for the action selection and state evolution. Figure 4.4 depicts a fragment of Rβ. A state

((x, y), X, Y, Z,Q, d, p) encodes the following:

1. the position (x, y) of the robot in the arena;

2. the set X of occupied neighbouring cells;

3. the set Y of occupied neighbouring cells in the previous step;

4. the set Z of occupied cells in the robot’s neighbours’ neighbourhoods;

5. the set Q of cells occupied in the current step by a neighbour of the previous step;

6. the direction d ∈ {North,East, South,West} of movement;

7. the phase p ∈ {U1, U2,M} of the encoding.

Define c1 := (Q \ X) \ Z 6= ∅ and c2 := |X| > |Y | to be two boolean conditions that may

hold on a state. The condition c1 holds on states enabling the first rule above, whereas c2

holds on states enabling the second rule. To update the sets defining the conditions, the

modelling assumes three alternating phases p = U1, p = U2, p = M for each time step.

The update for each phase is accomplished by appropriately associating actions with cells

and sets of cells. The set of actions is given by Act = Loc ∪ (Loc × P(Loc)), where Loc =

{(x, y) : 1 ≤ x ≤ 5, 1 ≤ y ≤ 5} is the set of cells in the arena. The Loc actions are used to update

the X sets in phase U1 with every robot signaling its position, whereas the P(Loc) actions are

used to update the Z sets in phase U2 with every robot signaling its set X of neighbours.

In phase M , each robot moves to a cell (x, y), resulting from which rule is applicable in the

step, by performing the action (x, y). In this phase, the Y and Q sets are also updated. More

precisely, the protocol for a state s = ((x, y), (X,Y, Z,Q, d, p)) is defined as follows.

• For (x′, y′) ∈ Loc and p = U1, we have (x′, y′) ∈ P (s) iff (x′, y′) = (x, y);

• For X ′ ∈ P(Loc), we have X ′ ∈ P (s) iff X ′ = X and p = U2.

100 Chapter 4. Verifying parameterised interpreted systems

((3,3), (∅, ∅, ∅, ∅,N,U1))

((3,3), (X, ∅, ∅, ∅,N,U2))

((3,3), (X, ∅,
⋃

W∈N(A) W, ∅,N,M))

((2,3), (∅,X, ∅,N(Q),N,U1)) ((4,3), (∅,X, ∅,N(Q),S,U1)) ((3,2), (∅,X, ∅,N(Q),W,U1)) ((3,4), (∅,X, ∅,N(Q),E,U1))

((4,3), (X′,X, ∅,N(Q),S,U2))(2,3), (X′,X, ∅,N(Q),N,U2)) ((3,2), (X′,X, ∅,N(Q),W,U2)) ((3,4), (X′,X, ∅,N(Q),E,U2))

(3, 3), X

X,A

(2, 3), Q
(¬c1 ∧ ¬c2 holds)

(4, 3), Q
(c1 holds)

(3, 2), Q
(¬c1 ∧ c2 holds)

(3, 4), Q
(¬c1 ∧ c2 holds)

(2, 3), X ′ (3, 2), X ′ (3, 4), X ′(4, 3), X ′

Figure 4.4: A fragment of the agent template for the Beta swarm aggregation algorithm.

4.3. Applications 101

{((3,3), ∅, ∅, ∅, ∅,N,U1), ((3,3), ∅, ∅, ∅, ∅,S,U1)}

{((3,3), {(3,3)} , ∅, ∅, ∅,N,U2), ((3,3), {(3,3)} , ∅, ∅, ∅,S,U2)}

{((3,3), {(3,3)} , ∅, {(3,3)} , ∅,N,M), ((3,3), {(3,3)} , ∅, {(3,3)} , ∅,S,M)}

{((2,3), ∅, {(3,3)} , ∅, {(2,3), (4,3)} ,N,U1), ((4,3), ∅, {(3,3)} , ∅, {(2,3), (4,3)} ,S,U1)}

{((2,3), {(2,3)} , {(3,3)} , ∅, {(2,3), (4,3)} ,N,U2), ((4,3), {(4,3)} , {(3,3)} , ∅, {(2,3), (4,3)} ,S,U2)}

{((2,3), {(2,3)} , {(3,3)} , {(2,3)} , {(2,3), (4,3)} ,N,M), ((4,3), {(4,3)} , {(3,3)} , {(4,3)} , {(2,3), (4,3)} ,S,M)}

{((3,3), ∅, {(2,3)} , ∅, {(3,3)} ,S,U1), ((3,3), ∅, {(4,3)} , ∅, {(3,3)} ,N,U1)}

{((3, 3), {(3, 3)}), ((3, 3), {(3, 3)})}

{({(3, 3)} , {{(3, 3)}}), ({(3, 3)} , {{(3, 3)}})}

{((2, 3), {(2, 3), (4, 3)}), ((4, 3), {(2, 3), (4, 3)})}
¬c1 ∧ ¬c2 holds for both template states

{((2, 3), {(2, 3)}), ((4, 3), {(4, 3)})}

{({(2, 3)} , {{(2, 3)}}), ({(4, 3)} , {{(4, 3)}})}

{((3, 3), {(3, 3)}), ((3, 3), {(3, 3)})}
c1 holds for both template states

Figure 4.5: A fragment of the abstract model for the Beta swarm aggregation algorithm.

102 Chapter 4. Verifying parameterised interpreted systems

• For (x′, y′) ∈ Loc and p = M , we have (x′, y′) ∈ P (s) iff either one of the following holds:

– c1 holds on s (there is at least one neighbour that has in its neighbourhood a lost

robot) and (x′, y′) is one cell to the opposite direction of d from (x, y);

– ¬c1∧ c2 holds on s (the number of neighbouring occupied cells is greater than said

number in the previous step) and (x′, y′) is one cell to direction d′ from cell (x, y),

where d′ is either 90◦ to the left or 90◦ to the right of d.

– ¬c1 ∧ ¬c2 holds on s and (x′, y′) is one cell to direction d from (x, y).

We now define the transition function t : L×Act×P(Act)→ L. Let s = ((x, y), (X,Y, Z,Q, d, p))

and s′ = ((x′, y′), (X ′, Y ′, Z ′, Q′, d′, p′)) be two states. For a set A of actions, let N(A) denote

the set of actions in A performed by agents occupying cells in the neighbourhood of (x, y);

intuitively, the transition function of a robot depends only on the actions performed by robots

in its neighbourhood. We have

t(((x, y), (X,Y, Z,Q, d, p)), a, A) = ((x′, y′), (X ′, Y ′, Z ′, Q′, d′, p′))

iff one of the following holds:

• p = U1, (x′, y′) = (x, y), X ′ = N(A), Y ′ = Y,Z ′ = Z,Q′ = Q, d′ = d, and p′ = U2;

• p = U2, (x′, y′) = (x, y), X ′ = X,Y ′ = Y, Z ′ =
⋃
W∈N(A)W,Q

′ = Q, d′ = d, and p′ = M ;

• p = M , (x′, y′) = a, X ′ = ∅, Y ′ = X, Z ′ = ∅, Q′ = N(A), d′ is the direction from (x, y) to

a, and p′ = U1.

Finally, we assume a unique initial position (3, 3) in the arena and a set

I = {((3, 3), (∅, ∅, ∅, ∅, d, U1)) : d ∈ {North,East, South,West}}

of initial states; thus, a robot has no initial information regarding its neighbours.

Having encoded the Beta algorithm as a PIS, we can now express properties in indexed ACTLK.

We say that a robot i is connected to a robot j if j is in the transitive closure of i’s neighbours.

4.3. Applications 103

Note that, given the size of the arena and the communication range, i and j are connected in

a global state iff they agree on the sets Z of cells encoded in their local state. We associate a

fresh atomic proposition w for each set W of cells, and we assign w to each template state with

W = Z. We consider the formula

φ = ∀{v,u}Kv
Rβ
AFAG

∨
W

((w, v) ∧ (w, u))

expressing “every robot knows that eventually it will be forever connected to every other

robot”. This means that not only will the whole swarm be connected in a single cluster, but

everyone will know to be connected. We are interested to check whether φ emerges in Sβ as

the number of robots increases in the system.

Following the PIS procedure, we can compute a cutoff of 16. This is done as follows. We

first observe that φ is a 2-indexed formula. Therefore, in step 1, we build the abstract model

Ŝβ(2). A fragment of Ŝβ(2) for the initial state in which the robots’ direction of movement

is to the north and south is depicted in Figure 4.5. For ease of presentation, in the fig-

ure the concrete component of each abstract state is omitted. For each abstract transition

({s, s′} , {(a,A), (a′, A′)} ,
{
s1, s′1

}
), the transition labels (a,A) and (a′, A′) are a shortcut for

(s, a,A, s1) and (s′, a′, A′, s′1), respectively. In step 2, we build the pruned computation for-

est of Ŝβ(2) to not include repetitions of a cycle for more than 3 times. Finally, in step 3,

we search for a concrete system that simulates the forest. It can be established that the

concrete system of 16 robots is as required. Thus, we conclude that φ is satisfied in Sβ iff

Sβ(2) |= φ, . . . ,Sβ(16) |= φ. The latter queries can be put to any epistemic model checker,

which would return false, thereby establishing that φ is not satisfied in Sβ, but also that φ is

not satisfied by any concrete system with more than 16 robots. It follows that the robots will

not eventually congregate into a stable cluster.

We conclude that the property above is not satisfied by the Beta protocol. We emphasise that

the above result cannot be obtained with traditional model checking nor simulation techniques

since an unbounded number of systems would have to be considered.

Chapter 5

Verifying parameterised interleaved

interpreted systems

This chapter develops a parameterised model checking procedure for the verification of un-

bounded multiagent systems represented in the formalism of parameterised interleaved inter-

preted systems. Section 5.1 gives a formal definition of the parameterised model checking

problem and of the notion of cutoffs for parameterised interleaved interpreted systems. Sec-

tion 5.2 introduces the PIIS procedure. The procedure identifies a cutoff for a given system

and a given specification. A cutoff expresses the number of agents that is sufficient to con-

sider when evaluating a given specification. Following the cutoff identification, the procedure

solves the parameterised model checking problem by checking all concrete systems up to the

cutoff. Finally, section ?? applies the procedure to the Train-Gate-Controller model and the

Alpha swarm aggregation algorithm.

5.1 Parameterised model checking problem

We outline parameterised interleaved interpreted systems as presented in Section 3.2. We

then define the parameterised model checking problem for PIIS. Finally, we define the notion

of cutoffs in the context of PIIS.

104

5.1. Parameterised model checking problem 105

A PIIS is a tuple

PIIS = (T , E ,V) ,

where T = {T1, . . . , Tk} = {(L1, ι1, Act1, P1, t1), . . . , (Lk, ιk, Actk, Pk, tk)} is a set of k ≥ 1

agent templates and E = (LE , ιE , ActE , PE , tE) is an environment template. An agent template

is associated with a set Li of template states, an initial template state ιi ∈ Li, a set Acti of

template actions, a template protocol Pi : Li → P(Acti), and a template transition function ti :

Li×Acti → Li. Each template Ti distinguishes between five types of actions: (i) asynchronous

Ai actions; (ii) agent-environment AE i actions; (iii) role-synchronous RS i actions; (iv) global-

synchronous GS actions; (v) multi-role MRi actions. Specifically, the concrete agents from

template Ti may evolve asynchronously via Ai actions, communicate with the environment via

AE i actions, synchronise with the agents of the same role via RS i actions, synchronise with

all the agents in the system via GS actions, and communicate with an agent performing a

different role via MRi actions. The environment template is similarly associated with a set LE

of template states, an initial template state ιE ∈ LE , the set ActE =
⋃
Ti(AE i∪RS i∪MRi)∪GS

of template actions, a template protocol PE : LE → P(ActE), and a template transition function

tE : LE×ActE → LE . The definition of a PIIS concludes with the description of a set of valuation

functions on the template states V = {Vi : Li → P(APi) : 1 ≤ i ≤ k}.

Given a value n = (n1, . . . , nk) of the system’s parameter, the concrete system PIIS (n) is the

interleaved interpreted system

PIIS(n) =
(

(Lji , ι
j
i , Act

j
i , P

j
i , t

j
i)(i,j)A(n), (LE , ιE , ActE , PE , tE), ι, V

)
.

PIIS (n) results from the composition of n.i instantiations {(i, 1), . . . , (i, n.i)} of each agent

template Ti and an instantiation of the environment template. Given x ≤ n, we write A(x)

for the set A(x) = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ x.i} of concrete agents. For each concrete system

PIIS (n) generated from the templates we can associate a temporal-epistemic model SPIIS(n) =(
G(n), ι(n), R(n), (Kji)(i,j)∈A(n), V (n)

)
as standard (see Section 2.1.1). When PIIS (n) is clear

from the context we simply write S(n) for SPIIS(n). We assume that the joint null action is

always enabled in a concrete system. Therefore, the concrete transition relations are serial.

We now proceed to state the parameterised model checking problem for PIIS.

106 Chapter 5. Verifying parameterised interleaved interpreted systems

Definition 5.1 (Parameterised model checking problem for PIIS). Given a PIIS S and an m-

indexed ACTL∗K\X formula ∀vφ(v), the parameterised model checking problem concerns estab-

lishing whether or not the following holds:

∀n ≥ m.S(n) |= ∀vφ(v)

If the above holds, then ∀vφ(v) is said to be satisfied by S. This is denoted by S |= ∀vφ(v).

A cutoff for a given PIIS S and an m-indexed formula ∀vφ(v) is the number of components

that is sufficient to consider when solving the parameterised model checking problem for S

and ∀vφ(v).

Definition 5.2 (MAS cutoff). Given a PIIS S composed of k roles and an m-indexed ACTL∗K\X

formula ∀vφ(v), a k-tuple c ∈ Nk is said to be a MAS cutoff if the following holds:

∀m ≤ x ≤ c.S(c) |= ∀vφ(v) if and only if ∀n ≥ c.S(n) |= ∀vφ(v)

We say that S admits a cutoff for ∀vφ(v) and we call S(c) the cutoff system.

The aim of this chapter is to develop a sound procedure that takes as input a PIIS S and an

m-indexed formula ∀vφ(v), and returns a cutoff for S and ∀vφ(v).

5.2 The PIIS procedure

This section introduces the PIIS procedure. The procedure tackles the verification of param-

eterised interleaved interpreted systems against indexed ACTL∗K\X formulae.

5.2.1 Overview

Given a PIIS S and an m-indexed ACTL∗K\X formula ∀vφ(v), the procedure identifies a cutoff

c for S and ∀vφ(v). Following this, the procedure checks every concrete system up to S(c)

against ∀vφ(v). If the formula is satisfied on each of the systems checked, then the procedure

5.2. The PIIS procedure 107

concludes that the formula is satisfied on every concrete system. The cutoff identification is

performed by means of the following two steps.

1. In step 1, PIIS builds an abstract interleaved interpreted system. The abstraction gener-

ates abstract states that reflect the set of template states that arbitrarily many participants

may be in in a concrete global state. Similarly to the abstract model introduced for PIS,

the abstract system can simulate any concrete system from S of arbitrary size. Follow-

ing this, the satisfiability of ∀vφ(v) on the abstract system implies the satisfiability of

∀vφ(v) on every concrete system. However, the abstract system may contain spurious

paths. Therefore, if ∀vφ(v) is not satisfied by the abstract system, then it does not nec-

essarily follow that there is a concrete system not satisfying ∀vφ(v). Differently from the

abstract model for PIS, however, spurious paths in the abstract interleaved interpreted

system cannot be characterised. In fact, the parameterised model checking problem for

PIIS is undecidable. This is because PIIS can simulate broadcast protocols for which the

parameterised model checking problem for liveness properties was shown to be undecid-

able [EFM99]. Thus, the procedure checks whether the abstract system satisfies ∀vφ(v).

If so, it then terminates. Otherwise, it realises step 2.

2. In step 2, PIIS iteratively checks whether there is an x ≥ m such that the concrete

system S(x) gs-simulates the abstract system. Roughly speaking, the existence of a gs-

simulation between the abstract system and a concrete system suggests that every agent

in every concrete system can always succeed in globally synchronising. In other words, if

an agent can perform a global-synchronous or a role-synchronous action at a round, then

every other agent can eventually move to a state in which the action can be performed. If

this property is admitted by S, then said concrete system exists and is the cutoff system.

In the following sections we give a detailed description of the above steps.

5.2.2 Step 1: abstraction

The abstract model corresponds to the application of the abstraction ideas discussed in Sec-

tion 4.2 to PIISs. Given a PIIS S and an m-indexed formula ∀vφ(v), the abstract model is

108 Chapter 5. Verifying parameterised interleaved interpreted systems

an interleaved interpreted system composed of A(m) concrete agents of S, and an abstract

agent for each agent template. An abstract state is made of a concrete component and an ab-

stract component. The concrete component consists of the local states of the agents in A(m),

whereas the abstract component consists of the local states of the abstract agents. A local state

of the abstract agent for template Ti consists of a set of template local states that is the projec-

tion of the tuple of local states of all the concrete agents from Ti other than the ones in A(m)

into a set. Actions of an abstract agent enabled at an abstract state represent concrete actions

enabled at any concrete state represented by said abstract state.

We first define the abstract agents. Then, we define the abstract system.

Definition 5.3 (Abstract agent). Given a PIIS S of k roles and m ∈ Nk, the abstract agent

âi =
(
L̂i, ι̂i, ˆActi, P̂i, t̂i

)
of agent template Ti is defined as follows.

• L̂i = P(Li) \ ∅ is the set of abstract local states.

• ι̂i = {ιi} is the initial abstract local state.

• ˆActi = Âi ∪ ˆAE i ∪ ˆRS i ∪ ĜS ∪ M̂Ri ∪ {ε̂i} is the set of abstract actions, where:

– Âi = Ai × (Li × {↓, ↑});

– ˆAE i = AE i × (Li × {↓, ↑});

– R̂S i = RSi;

– ĜS = GS;

– M̂Ri =
⋃

1≤j≤k
ˆMRconcrete
i,j ∪ ˆMRabstract

i,j , where

∗ ˆMRconcrete
i,j = MRi ,j × (Li × {↓, ↑})× {(j , 1), . . . , (j ,m.j)};

∗ ˆMRabstract
i,j = MRi ,j × {{(l , x), (l ′, y)} : l ∈ Li , l

′ ∈ Lj , x , y ∈ {↓, ↑}} ;

– ε̂i is the abstract null action.

• P̂i : L̂i → P(ˆActi) is the abstract protocol defined as

Pi(l̂) =
{
a : aτ ∈ Pi(l) for some l ∈ l̂

}
,

where aτ denotes the corresponding template action from which a was obtained.

5.2. The PIIS procedure 109

• t̂i : L̂i × ˆActi → L̂i is the abstract evolution function defined as follows: t̂i(l̂, a) = l̂′ iff

a ∈ P̂i(l̂) and one of the following holds:

1. if a is an asynchronous action, an agent-environment action, or a multi-role action

that is indexed by (l, ↓) ∈ Li × {↓}, then l̂′ = (l̂ \ {l}) ∪ {ti(l, a)};

2. if x is an asynchronous action, an agent-environment action, or a multi-role action

that is indexed by (l, ↑) ∈ Li × {↑}, then l̂′ = l̂ ∪ {ti(l, a)};

3. if a is a role-synchronous action or a global-synchronous action, then l̂′ = {l′ ∈ Li :

∃l ∈ l̂.ti(l, a) = l′}.

A local state l̂ of an abstract agent âi represents any global state g in any concrete system S(n)

(with n ≥ m) in which l̂ =
{
tlsji (g) : j ∈ {m.i+ 1, . . . , n.i}

}
is the projection of the tuple of

the template local states for the agents (i,m.i+ 1), . . . , (i, n.i) into a set.

The actions of an abstract agent are made of the template actions of the corresponding agent

template. They represent all of their concrete instantiations that the agents m.i + 1, . . . , n.i

may perform at a global state.

Assume a concrete asynchronous action or a concrete agent-environment action (a, j) of agent

(i, j). To respect the encoding of the abstract states, two cases have to be considered when

representing a global transition by means of a: (i) there is exactly one concrete agent from Ti

in template state l at which a is performed; (ii) there are at least two agents. The former case

is represented by the action (a, l, ↓), whereas the latter is represented by the action (a, l, ↑).

The former action causes the abstract state to “shrink” (↓) and not include l, whereas the latter

action causes the abstract state to “grow” (↑) and include the template state l′ as specified by

the template transition ti(l, a) = l′.

Now assume a concrete multi-role action (a, {(i, j), (r, q)}) shared between the agents (i, j)

and (r, q). Suppose that (i, j) is at template state l and (r, q) is at template state l′. To re-

spect the encoding of the abstract states, 6 cases have to be considered when representing

a global transition by means of a. The first two cases occur whenever one of the concrete

agents, say agent (i, j), is an agent in A(m) and the other is not in A(m). For the abstract

system to simulate the global transition, the concrete agent (i, j) and the abstract agent âr

110 Chapter 5. Verifying parameterised interleaved interpreted systems

have to update their states accordingly. To do this, they synchronise on the ˆMRconcrete
r,i action

(a, (l′, ↓), (i, j)) or the ˆMRconcrete
r,i action (a, (l′, ↑), (i, j)), depending on whether the state of

abstract agent r should shrink or grow; as we show below, these actions are shared precisely

between the agent (i, j), the abstract agent âr, and the environment. The other four cases

occur whenever both (i, j) and (r, q) are not in A(m). For the abstract system to simulate the

global transition, the abstract agent âi and the abstract agent âr have to update their states

accordingly. To do this, they synchronise on either one of the ˆMRabstract
i,r = ˆMRabstract

r,i ac-

tions (a, {(l, ↓), (l′, ↓)}), (a, {(l, ↓), (l′, ↑)}), (a, {(l, ↑), (l′, ↓)}), (a, {(l, ↑), (l′, ↑)}), depending on

whether their states should shrink or grow.

We now define the abstract system. The system is composed of A(m) concrete agents of S,

and an abstract agent for each agent template. For ease of the definition, we first define the

extension of the concrete system S(m) to include the abstract actions mentioned above. These

actions enable the synchronisation between the concrete agents inA(m), the concrete environ-

ment, and the abstract agents. In particular, the extended system extends the agents in S(m)

to include the abstract multi-role actions. Additionally, the system extends the environment to

include the abstract agent-environment actions and the abstract multi-role actions.

Intuitively, as mentioned above, an abstract agent â.i represents all possible synchronisation

patterns involving the agents (i,m.i+ 1), . . . , (i, n.i). These agents may communicate with an

agent (r, q) ∈ A(m) via a multi-role action. By extending the agent (r, q) with the abstract

actions, this can be represented in the abstract system with the abstract agent and the agent

(r, q) performing the corresponding abstract action. Similarly, whenever one of the agents

(i,m.i+ 1), . . . , (i, n.i) performs an agent-environment action or a multi-role action, the envi-

ronment participates in the global transition. By extending the environment with the abstract

actions, the participation of the environment in the global transition can be represented in the

abstract system. The abstract system can then be defined as the composition of the extended

system and the abstract agents.

Definition 5.4 (Extended concrete system). Given a PIIS S and m ∈ Nk, consider the concrete

system

S(m) =
(

(Lji , ι
j
i , Act

j
i , P

j
i , t

j
i)(i,j)A(m), (LE , ιE , ActE , PE , tE), ι, V

)
.

5.2. The PIIS procedure 111

The extended concrete system S̃(m) is the interleaved interpreted system

S̃(m) =
(

(L′ji , ι
′j
i , Act

′j
i , P

′j
i , t

′j
i)(i,j)A(m), (L

′
E , ι
′
E , Act

′
E , P

′
E , t
′
E), ι, V

)
,

where each agent (i, j) = (L′ji , ι
′j
i , Act

′j
i , P

′j
i , t

′j
i) is defined as follows:

• L′ji = Lji ;

• ι′ji = ιji ;

• Act′ji extends Actji by including all abstract actions that are indexed with agent (i, j);

• The protocol P ′ji is as P ji , but defined on the abstract actions as follows: a ∈ P ′ji (l) iff

aτ ∈ Pi(l) (where aτ is the template action from which a was obtained);

• The evolution function t′ji is as tji , but defined on the abstract actions as follows: t′ji (l, a) = l′

iff ti(l, aτ) = l′.

The environment E′ = (L′E , ι
′
E , Act

′
E , P

′
E , t
′
E) is given by the following:

• L′E = LE;

• ι′E = ιE;

• Act′E extendsActE by including all agent-environment and all multi-role actions of the every

abstract agent;

• The abstract protocol P ′E is as PE , but defined on the abstract actions as follows: a ∈ P ′E(l)

iff aτ ∈ PE(l);

• The abstract evolution function t′E is as tE , but defined on the abstract actions as follows:

t′E(lE , a) = l′E iff tE(lE , aτ) = l′E;

We now have all the necessary ingredients to define the abstract system.

Definition 5.5 (Abstract interleaved interpreted system). Given a PIIS S of k roles and m ∈ Nk,

the abstract system is the interleaved interpreted system

Ŝ(m) =
(
Ĝ(m), ι̂(m), R̂(m), (K̂ji)(i,j)∈A(m), V̂ (m)

)

112 Chapter 5. Verifying parameterised interleaved interpreted systems

composed of the agents in the extended system S̃(m) and the abstract agents â1, . . . , âk. The

abstract valuation function V̂ (m) is given by

p ∈ V̂ (m)
((
l11, . . . , l

m.k
k , l̂1, . . . , l̂k

))
iff p ∈ V (m)

((
l11, . . . , l

m.k
k

))
,

where V (m) is the valuation function for S(m).

Given an abstract state γ, we write lsji (γ) for the local state of agent (i, j) in γ. We denote the

local state of abstract agent âi in γ by lsî(γ).

Example 5.1. In Section 3.2.1 we represented the Train-Gate-Controller in the formalism of pa-

rameterised interleaved interpreted systems. We encoded the scenario by means of an agent tem-

plate representing prioritised trains, an agent template representing normal trains, and the envi-

ronment representing the controller. A fragment of the concrete system with two prioritised trains

and two normal trains was given in Figure 3.7. Figure 5.1 gives a fragment of the abstract system

for (1, 1)-indexed formulae. In the figure an abstract state is of the form (l,X, e, l′, X ′), where l

is the local state of the concrete prioritised train, X is the local state of the abstract prioritised

agent, e is the local state of the environment, l′ is the local state of the concrete normal train,

and X ′ is the local state abstract normal train; W stands for WAIT , PG for P_GREEN , L for

TUNNEL_LOCKED , T for TUNNEL, R for RED , A for AWAY , and NG for N _GREEN .

Correspondence between a concrete system and the abstract system

Assume a PIIS S of k roles andm ∈ Nk. We now establish a correspondence between a concrete

system S(n) with n ≥ m and Ŝ(m). Define δn : G(n) → Ĝ(m) to map concrete states in S(n)

to abstract states in Ŝ(m):

δn(g) =
(
ls1

1(g), . . . , lsm.kk (g), lsE(g), l̂1, . . . , l̂k

)
,

where

l̂1 =
{
tlsj1(g) : j ∈ {m.1 + 1, . . . , n.1}

}
, . . . , l̂k =

{
tlsjk(g) : j ∈

{
k.1 + 1, . . . , n.k

}}
.

5.2. The PIIS procedure 113

W1, {W} ,PG,L1, {L}

W1, {W,T} ,R,L1, {L} T1, {W} ,R,L1, {L}

W1, {W,A} ,PG,L1, {L} A1, {W} ,PG,L1, {L}

W1, {W,T,A} ,R,L1, {L} A1, {T} ,R,L1, {L}

A1, {A} ,PG,L1, {L}L1, {L} ,NG,A1, {A}

(p_enter ,W , ↑) p_enter1

(p_exit , T, ↓) p_exit1

(p_enter ,W, ↑) (p_enter ,W, ↓)

(p_exit , T, ↓)
(p_approach, A, ↑)

n_lock

p_lock

scriptsize(p_exit , T, ↓)

scriptsize(p_approach, A, ↓)

Figure 5.1: Fragment of the abstract system for the parameterised interleaved interpreted
system of the Train-Gate-Controller.

Assume a concrete transition (g, a, g′) from state g to state g′ by means of action a. Consider

ζn to map (g, a, g′) to an action in Ŝ(m) as follows.

• if a = (x, j) is an asynchronous action or an agent-environment action performed at

template state l by the agent (i, j), then:

– if (i, j) ∈ A(m), then ζn(g, a, g′) = a;

– otherwise, if (i, j) /∈ A(m), then:

∗ if none of the agents (i,m.i + 1), . . . , (i, n.i) is at template state l in g′, then

ζn(a) = (x, l, ↓).

∗ if at least one of the agents (i,m.i + 1), . . . , (i, n.i) is at template state l in g′,

then ζn(a) = (x, l, ↑).

• if a is a role-synchronous action or a global-synchronous action, then ζn(g, a, g′) = a.

• if a = (x, {(i, j), (r, q)}) is a multi-role action performed at template state l by the agent

(i, j) and at template state l′ by the agent (r, q), then:

114 Chapter 5. Verifying parameterised interleaved interpreted systems

– if (i, j) ∈ A(m), (r, q) ∈ A(m), then ζn(g, a, g′) = a.

– if (i, j) ∈ A(m), (r, q) /∈ A(m), then:

∗ if none of the agents (r,m.r + 1), . . . , (r, n.r) is at template state l′ in g′, then

ζn(g, a, g′) = (a, (l′, ↓), (i, j)).

∗ if at least one of the agents (r,m.r + 1), . . . , (r, n.r) is at template state l′ in g′,

then: ζn(g, a, g′) = (a, (l′, ↑), (i, j)).

– the case where (i, j) /∈ A(m), (r, q) ∈ A(m) is similar to the above case.

– if (i, j) /∈ A(m), (r, q) /∈ A(m), then:

∗ if none of the agents (i,m.i + 1), . . . , (i, n.i) is at template state l in g′, and

none of the agents (r,m.r + 1), . . . , (r, n.r) is at template state l′ in g′, then

ζn(g, a, g′) = (a, {(l, ↓), (l′, ↓)});

∗ if none of the agents (i,m.i + 1), . . . , (i, n.i) is at template state l in g′, and at

least one of the agents (r,m.r + 1), . . . , (r, n.r) is at template state l′ in g′, then

ζn(g, a, g′) = (a, {(l, ↓), (l′, ↑)}).

∗ if at least one of the agents (i,m.i + 1), . . . , (i, n.i) is at template state l in g′,

and none of the agents (r,m.r+ 1), . . . , (r, n.r) is at template state l′ in g′, then

ζn(g, a, g′) = (a, {(l, ↑), (l′, ↓)});

∗ if at least one of the agents (i,m.i + 1), . . . , (i, n.i) is at template state l in g′,

and at least one of the agents (r,m.r + 1), . . . , (r, n.r) is at template state l′ in

g′, then ζn(g, a, g′) = (a, {(l, ↑), (l′, ↑)}).

By means of the above mappings Ŝ(m) can simulate S(n), as the following shows.

Lemma 5.1. Let S(n) be a concrete system with n ≥ m. Then, S(n) ≤s Ŝ(m).

Proof. Define the relation ∼s= {(g, γ) : δn(g) = γ} between S(n) and Ŝ(m). We show that

∼s is a simulation relation between S(n) and Ŝ(m). It should be clear that (ι(n), ι̂(m)) ∈∼s,

where ι(n), ι̂(m) are the initial states of S(n) and Ŝ(m), respectively. Let (g, γ) ∈∼s be an

arbitrary pair of states. We have to show the following:

(i) V (n)(g) = V̂ (m)(γ).

5.2. The PIIS procedure 115

The requirement follows from δn(g) = γ.

(ii) if Kji (g, g′), for some agent (i, j) ∈ A(m), then K̂ji (γ, γ′) for some γ′ with (g′, γ′) ∈∼s.

Assume that Kji (g, g′), for some (i, j) ∈ A(m). Assume a path g1a1 . . . ax−1gx with g1 =

ι(n) and gx = g′. Consider the path δn(g1)ζn(g1, a1, g2) . . . ζn(gx−1, ax−1, gx)δn(gx) in

Ŝ(m) obtained by performing the sequence of actions ζn(g1, a1, g2) . . . ζn(gx−1, ax−1, gx).

It should be clear that this is a valid path in Ŝ(m). We have that K̂ji (γ, δn(gx)) and

(g′, δn(gx)) ∈∼s.

(iii) if (g, g′) ∈ R(n) for some g′ ∈ G(n), then there is a γ′ ∈ Ĝ(m) such that (γ, γ′) ∈ R̂(m)

and (g′, γ′) ∈∼s.

Assume (g, g′) ∈ R(n) by means of action a. Then, ζn(g, a, g′) is enabled at γ resulting at

an abstract state γ′ = δn(g′) with (γ, γ′) ∈∼s.

Following the above result, given a PIIS S and an m-indexed ACTL∗K\X formula ∀vφ(v), the

PIIS procedure checks whether ∀vφ(v) is satisfied by Ŝ(m). If so, the procedure concludes that

∀vφ(v) is satisfied in the general case and terminates. Otherwise, if ∀vφ(v) is not satisfied by

Ŝ(m), then PIIS cannot draw any conclusions on the parameterised model checking problem.

It thus proceeds to step 2 where it attempts to identify a cutoff.

5.2.3 Step 2: simulation check

With the falsification of a givenm-indexed formula on the abstract system, the PIIS procedure

iteratively checks whether there is a c ≥ m such that the concrete system S(c) gs-simulates the

abstract system. If S(c) exists, then c is a cutoff. The existence of a gs-simulation between the

abstract system and a concrete system exists whenever: (i) the concrete system can simulate

the actions of the agents in A(m) in Ŝ(m); (ii) every agent can always succeed in globally syn-

chronising. Informally, the latter condition is expressed as follows: for every role-synchronous

or global-synchronous action performed in Ŝ(m), an agent can reach a template state enabling

the action via a sequence of asynchronous and agent-environment actions and without forcing

116 Chapter 5. Verifying parameterised interleaved interpreted systems

the state of the environment to change. This property not only ensures that an agent can up-

date its state to enable the action, but as the agent communicates only with the environment

without forcing the environment’s state to change, it also ensures that the agent does not block

another agent from global synchronisation.

Given a state l of an agent template, a state lE of the environment template, and a role-

synchronous or a global-synchronous action a, we write (l, lE) ;a l′ to mean that: (i) l′

is reachable from l via a sequence σ of asynchronous and agent-environment actions; (ii) a is

enabled at l′; and (iii) lE is reachable from itself via the sequence of agent-environment actions

appearing in σ. For two abstract states γ, γ′, we write γ ; γ′ to denote that γ′ is reachable

from γ in zero or more steps via a sequence of actions in which each action is not admitted by

an agent in A(m). For an action a, we write γ →a γ
′ to mean that γ′ is reachable from γ in

one step by means of action a. g ; g′ and g →a g
′ are defined for two concrete states g, g′ in

the same way. We now define the gs-simulation.

Definition 5.6 (gs-simulation). Given a PIIS S of k roles and m ∈ Nk, a concrete system

S(c) with c ≥ m is said to gs-simulate Ŝ(m), denoted Ŝ(m) ≤gs S(c), if there is a relation

∼gs⊆ Ĝ(m) × (L1 × . . .× Lk) × G(c) such that (ι̂(m), (ι1, . . . , ιk), ι(c)) ∈∼gs and whenever

(γ, (l1, . . . , lk), g) ∈∼gs we have the following:

1. lsji (γ) = lsji (g), for each agent (i, j) ∈ A(m).

2. If γ ; γ1 →a γ
2, where a is admitted by an agent in A(m), then g ; g1 →b g

2 and the

following hold:

(a) if a is an asynchronous action or an agent-environment action, then:

• a = b;

• (γ2, (l1, . . . , lk), g
2) ∈∼gs.

(b) if a is a role-synchronous action from agent template Ti, then:

• a = b;

• (li, lsE(g1)) ;a l
′
i, for some template state l′i;

• (γ2, (l1, . . . , l
′′
i , . . . , lk), g

2) ∈∼gs, where l′′i = ti(l
′
i, a).

5.2. The PIIS procedure 117

(c) if a is a global-synchronous action, then:

• a = b;

• (l1, lsE(g1)) ;a l
′
1, . . . , (lk, lsE(g1)) ;a l

′
k, for some template states l′1, . . . , l

′
k;

• (γ2, (l′′1 , . . . , l
′′
k), g2) ∈∼gs, where l′′1 = t1(l′1, a), . . ., l′′k = tk(l

′
k, a).

(d) if a is a multi-role action performed by two agents in A(m), then:

• a = b;

• (γ2, (l1, . . . , lk), g
2) ∈∼gs.

(e) if a = (x, (l, ∗), (i, j)) is a multi-role action performed by an agent (i, j) ∈ A(m) and

an abstract agent âr, then:

• b is the instantiation of x shared between the agent (i, j) and any of the agents

(r,m.r + 1), . . . , (r, c.r);

• (γ2, (l1, . . . , lk), g
2) ∈∼gs.

Condition 1 insists on the equality of the local states of the agents in A(m). Conditions 2(a),

2(b), and 2(e) require the simulation of the actions performed by the agents in A(m): when-

ever the abstract system can reach a state enabling an action admitted by an agent in A(m),

the concrete system can reach a state enabling the same action for the agent. Additionally,

conditions 2(c) and 2(d) require that whenever said action is a role-synchronous or a global-

synchronous action, then a concrete agent can move to a state enabling the action by means

of asynchronous and agent-environment actions and without altering the state of the environ-

ment.

5.2.4 Summary

The PIIS procedure is given by Algorithm 2. Given a PIIS S an m-indexed ACTL∗K\X formula

∀vφ(v), the procedure constructs the abstract model Ŝ(m). It then checks Ŝ(m) against the triv-

ial instantiation φ[trivial] of ∀vφ(v). If Ŝ(m) |= φ[trivial], then PIIS returns true. Otherwise,

PIIS iteratively checks for a concrete system S(c) such that S(c) gs-simulates Ŝ(m). S(c) is

not generally guaranteed to exist. If it does exist, then S(c) is the cutoff system. Following the

cutoff identification, PIIS checks the set {S(x) : m ≤ x ≤ c} of concrete systems against the

118 Chapter 5. Verifying parameterised interleaved interpreted systems

Algorithm 2 Parameterised model checking procedure for parameterised interleaved inter-
preted systems.

1: procedure PIIS(S,∀v̄φ(v̄))
2: build Ŝ(m)
3: if Ŝ(m) |= φ[trivial] then
4: return true;
5: end if
6: c̄← m̄
7: do
8: increase c̄ in a breadth-first manner
9: until Ŝ(m) ≤gs S(c)

10: for all x̄ such that m̄ ≤ x̄ ≤ c̄ do
11: if S(x̄) 6|= φ[trivial] then
12: return false;
13: end if
14: end for
15: return true;
16: end procedure

trivial instantiation φ[trivial] of ∀vφ(v). If φ[trivial] is not satisfied by at least one system, then

the procedure returns false, otherwise it returns true.

This concludes the description of the PIIS procedure. Algorithm 1 provides a methodology

for solving the parameterised model checking problem by giving the conditions under which

the problem can be solved by checking each concrete system up to the cutoff system. We assess

the soundness of PIIS in the next section.

5.2.5 Proof of soundness

Theorem 5.1. Let S be a parameterised interleaved interpreted system and ∀vφ(v) an m-indexed

ACTL∗K\X formula. Then, the following hold:

1. If PIIS(S,∀vφ(v)) returns true, then S |= ∀vφ(v).

2. If PIIS(S,∀vφ(v)) returns false, then S 6|= ∀vφ(v).

The second clause follows trivially from the definition of PIIS. For the first clause assume

that PIIS(S,∀vφ(v)) returns true. Then it is either the case that: (a) Ŝ(m) |= ∀vφ(v); or (b)

∀m ≤ x ≤ c.S(x) |= ∀vφ(v), where c ≥ m with Ŝ(m) ≤gs S(c).

5.2. The PIIS procedure 119

Consider the case (a). By Lemma 5.1, Ŝ(m) simulates every concrete system S(n) with n ≥ m.

Therefore, by Theorem 2.1, we have that S(n) |= ∀vφ(v) for every concrete system S(n) with

n ≥ m. It follows that if Ŝ(m) |= ∀vφ(v), then S |= ∀vφ(v).

Consider the case (b). It suffices to show that if Ŝ(m) ≤gs S(c), then S(c) is a cutoff system.

The proof is given in two parts. In the first part, we show that S(c) m-stuttering simulates

every bigger system. By Theorem 3.1, we then get the following:

S(c) |= ∀vφ(v) implies S(n) |= ∀vφ(v), for any n ≥ c (1)

In the second part, we show that every bigger system m-stuttering simulates S(c). By Theo-

rem 3.1, we then obtain the following:

S(n) |= ∀vφ(v) implies S(c) |= ∀vφ(v), for any n ≥ c (2)

From (1) and (2) it follows that

∀m ≤ x ≤ c.S(x) |= ∀vφ(v) iff ∀n ≥ c.S(n) |= ∀vφ(v)

Therefore, S(c) is a cutoff system.

Lemma 5.2 concludes part 1 of the proof and Lemma 5.3 establishes part 2 of the proof.

Lemma 5.2. Let S be a parameterised interleaved interpreted system and ∀vφ(v) an m-indexed

ACTL∗K\X formula. Then, S(n) ≤mss S(c), where Ŝ(m) ≤gs S(c) and n ≥ c.

Proof. By Lemma 5.1, Ŝ(m) simulates every system S(n) with n ≥ m. Since simulation is

stronger than m-stuttering simulation, Ŝ(m) m-stuttering simulates every system S(n) with

n ≥ m. By assumption, S(c) gs-simulates Ŝ(m). Since gs-simulation is stronger than m-

stuttering simulation, S(c) m-stuttering simulates Ŝ(m). From the transitivity of m-stuttering

simulation, S(c) m-stuttering simulates every concrete system S(n) with n ≥ c.

Lemma 5.3. Let S be a parameterised interleaved interpreted system of k roles and ∀vφ(v) an

m-indexed ACTL∗K\X formula. Then, S(c) ≤mss S(n), where Ŝ(m) ≤gs S(c) and n ≥ c.

120 Chapter 5. Verifying parameterised interleaved interpreted systems

Proof. We prove a stronger result, i.e., that for every n ≥ c, S(n) gs-simulates Ŝ(m). Since

gs-simulation is stronger than m-stuttering simulation, it then follows that S(n) m-stuttering

simulates Ŝ(m). From Lemma 5.1, Ŝ(m) simulates S(c). Since simulation is stronger than

m-stuttering simulation, Ŝ(m) m-stuttering simulates S(c). Therefore, from the transitivity of

m-stuttering simulation, if S(n) gs-simulates Ŝ(m), then S(n) m-stuttering simulates S(c).

Let n ≥ c. We now show that S(n) gs-simulates Ŝ(m). Let Qc be the gs-simulation between

Ŝ(m) and S(c). We start by defining the relation Qn ⊆ Ĝ(m)× (L1× . . .×Lk)×G(n) between

the abstract states in Ŝ(m), the Cartesian product of the sets of template states for the agent

templates, and the concrete states in S(n). A tuple (γ, (l1, . . . , lk), g) is in Qn if the tuple

resulting from collapsing g to the local components of the agents in A(c) is in Qc:

(γ, (l1, . . . , lk), g) ∈ Qn if
(
γ, (l1, . . . , lk) ,

(
ls1

1(g), . . . , lsc.kk (g)
))
∈ Qc.

We show that Qn is a gs-simulation relation between Ŝ(m) and S(n). It should be clear

that (ι̂(m), (ι1, . . . , ιk), ι(n)) ∈ Qn, where ι̂(m), ι(n) are the initial states of Ŝ(m) and S(n),

respectively. Let (γ, (l1, . . . , lk), g) ∈ Qn be arbitrary. We have to show that the gs-simulation

requirements 1 and 2(a)-2(e) are satisfied.

1. lsji (γ) = lsji (g), for each (i, j) ∈ A(m).

Simulation requirement 1 follows trivially from the definition of Qn.

2. If γ ; γ1 →a γ
2, where a is admitted by an agent in A(m), then g ; g1 →b g

2 and the

following hold:

(a) if a is an asynchronous action or an agent-environment action, then a = b and

(γ2, (l1, . . . , lk), g
2) ∈∼gs.

Assume that γ ; γ1 →a γ
2, where a is admitted by an agent in A(m). Let g′ =(

ls1
1(g), . . . , lsc.kk (g)

)
. Since (γ, (l1, . . . , lk) , g

′) ∈ Qc, we have that g′ ; g′1 →a g
′2

and (γ2, (l1, . . . , lk), g
′2) ∈ Qc. Assume σ to be the sequence of actions performed

in the path from g′ to g′1. As σ does not contain any role-synchronous or global-

synchronous actions, we have that g ; g1 →a g
2 by means of the sequence σ, and

(γ2, (l1, . . . , lk), g
2) ∈ Qn.

5.2. The PIIS procedure 121

(b) if a is a role-synchronous action from agent template Ti, then a = b, (li, lsE(g1)) ;a

l′i for some template state l′i, and (γ2, (l1, . . . , l
′′
i , . . . , lk), g

2) ∈∼gs, where l′′i = ti(l
′
i, a).

Assume that γ ; γ1 →a γ
2, where a is a role-synchronous action from agent tem-

plate i. Let g′ =
(
ls1

1(g), . . . , lsc.kk (g)
)
. Since (γ, (l1, . . . , lk) , g

′) ∈ Qc, the following

hold: (i) g′ ; g′1 →a g
′2; (ii) (li, lsE(g′1))) ;a l

′
i for some template state l′i; and

(iii) (γ2, (l1, . . . , l
′′
i , . . . , lk), g

′2) ∈ Qc, where l′′i = ti(l
′
i, a).

Assume σ to be the sequence of actions performed in the path from g′ to g′1. Con-

sider a1 . . . ax to be the sequence of template asynchronous and template agent-

environment actions appearing in the template path from li to l′i. Extend σ to the

sequence of actions σ′ = σ ◦ (a1)1
i . . . (ax)1

i . . . (a1)n.ii . . . (ax)n.ii , where the actions

(a1)ji . . . (ax)ji are the concrete instantiations of (a1 . . . ax), respectively, for agent

template (i, j). It follows that g ; g1 →a g
2 by means of the sequence σ′. Addition-

ally, it should be clear that (li, lsE(g1))) ;a l
′
i and (γ2, (l1, . . . , l

′′
i , . . . , lk), g

2) ∈ Qn,

where l′′i = ti(l
′
i, a).

(c) if a is a global-synchronous action, then a = b, (l1, lsE(g1)) ;a l
′
1, . . . , (lk, lsE(g1)) ;a

l′k for some template states l′1, . . . , l
′
k, and (γ2, (l′′1 , . . . , l

′′
k), g2) ∈∼gs, where l′′1 =

t1(l′1, a), . . . , l′′k = tk(l
′
k, a).

Simulation requirement 2(c) is similarly proven to simulation requirement 2(b) by

extending σ for each agent template.

(d) if a is a multi-role action performed by two agents in A(m), then a = b, and

(γ2, (l1, . . . , lk), g
2) ∈∼gs.

The proof is identical to the proof given for 2(a).

(e) if a = (x, (l, ∗), (i, j)) is a multi-role action performed by an agent (i, j) ∈ A(m) and

an abstract agent âr, then: (i) b is the instantiation of x shared between the agent

(i, j) and any of the agents (r,m.r+1), . . . , (r, c.r); and (ii) (γ2, (l1, . . . , lk), g
2) ∈∼gs.

The proof is identical to the proof given for 2(a).

We have thus proven that the gs-simulation requirements are satisfied for an arbitrary tuple

(γ, (l1, . . . , lk), g) in Qn. Therefore, Qn is a gs-simulation between Ŝ(m) and S(n). Hence, S(n)

m-stuttering simulates S(c).

122 Chapter 5. Verifying parameterised interleaved interpreted systems

5.3 Applications

5.3.1 Train-Gate-Controller

In section 3.2.1 we represented the prioritised variant of the Train-Gate-Controller as a param-

eterised interleaved interpreted system STGC composed of an agent template PT representing

prioritised trains, an agent template NT representing normal trains, and an environment tem-

plate representing the controller. In section 3.3 we encoded the property “whenever a train is

in the tunnel, it knows that no other train is in the tunnel at the same time” in the following

indexed ACTL∗K\X formula:

φTGC = ∀({u,v},{x,y})AG (((pt , u)→ Ku
PT (¬(pt , v) ∧ ¬(nt , x)))

∧ ((nt , x)→ Kx
NT (¬(nt , y) ∧ ¬(pt , u)))) ,

where u, v are variables of PT , x, y are variables of NT , the atomic proposition pt holds in

the template states in which the template prioritised train is in the tunnel, and the atomic

proposition nt holds in the template states in which the template normal train is in the tunnel.

We now analyse the above formula using the PIIS procedure. We first observe that φTGC is

a (2, 2)-indexed formula. Therefore, in step 1, we build the abstract model ŜTGC ((2, 2)). A

fragment of ŜTGC ((1, 1)) is depicted in Figure 5.1; ŜTGC ((2, 2)) is similarly obtained by con-

sidering two concrete agents for each type of train. In step 2, we search for a concrete system

that gs-simulates ŜTGC ((2, 2)). It can be established (see Chapter 7) that ŜTGC ((2, 2)) ≤gs

S ((3, 3)). We can thus assess the correctness of STGC by checking the systems STGC ((2, 2)),

STGC ((3, 2)), STGC ((2, 3)), and STGC ((3, 3)). These checks can be performed by any epis-

temic model checker, which would return true, thereby establishing the correctness of STGC

irrespectively of the number of trains in the system.

5.3.2 The Alpha swarm aggregation algorithm

This section analyses the Alpha swarm aggregation algorithm [WLNM08] which is a simpler

protocol than the Beta algorithm discussed in section 4.3.2. The analysis is built on the set-

5.3. Applications 123

ting discussed in this section 4.3.2. In particular, we assume that each robot operates on a

two-dimensional arena and communicates with its peers and the environment by means of a

wireless sensor of limited range. A robot is said to be in another robot’s neighbourhood if the

position of the former is in the range of the latter’s sensor. The arena is assumed to be finite

and to wrap around. We assume that the robots update their state with high frequency and

model them by assuming synchronicity.

According to the Alpha algorithm, each robot i follows the following protocol. Through local

communication the robot observes the number N(i) of neighbouring robots. The robot is said

to be connected if its neighbourhood is composed of at least α robots, for a threshold α; i.e.,

N(i) ≥ α. The behaviour of each robot is characterised by its connectivity status and by

whether it is in forward (motion) mode or in coherence (motion) mode. More specifically, we

have the following:

• if a robot is in forward mode and connected, then it moves forward;

• if it is in forward mode, but not connected, then it performs a 180◦ turn and changes its

motion mode to ‘coherence’;

• if it is in coherence mode, but not connected, then it moves forward;

• if it is in coherence mode and connected, then it performs a random 90◦ turn and changes

its motion mode to ‘forward’.

We can encode the Alpha algorithm as a PIIS Sα consisting of an agent template Rα and an

environment template E . Figure 5.2 depicts a fragment of the encoding for a 2 × 2 arena and

a wireless range of 1.

The states of the agent template are given as tuples of five components: (i) the position on

the grid; (ii) the direction of movement (North,East ,South,West); (iii) the motion mode

(Forward ,Coherence); (iv) the connectivity status (Connected ,¬Connected); (v) the phase

(p1, p2, p3a, p3b) of the encoding. The encoding is in terms of three phases. For each phase

p1, p2, p3a, p3b an action is performed by each of the robots. The actions that can be performed

in each of the phases are described below. All the actions update the phase component of a

124 Chapter 5. Verifying parameterised interleaved interpreted systems

robot to either s1, s2, s3, or s3b, depending on whether the robot is currently in phase p1, p2,

p3, or p3b, respectively. In each of the s1, s2, s3, s3b phases only the global synchronous action

syn is enabled for each of the robots. The action updates the phase component of each of the

robots to the next phase in a round-robin fashion; in other words, the syn action simulates

synchronisity in the agents’ actions. Initially, the robots are in square (1, 1), they do not have a

direction of movement, they are connected, and they are in phase p1.

• In phase p1, each robot performs one of the asynchronous actions north, east, south, west,

thereby choosing an initial random direction.

• In phase p2, each robot moves forward one step by performing the asynchronous action

move.

• Phase p3 is responsible for updating the connectivity status of each of the robots. This is

done in 2 steps:

1. In phase p3a, each robot performs the agent-environment action (x, y), where (x, y)

is the location of the robot. A template environment’s state has a component

((x, y), z), where z ∈ {1, . . . , α+ 1}, for each square (x, y) in the grid. The envi-

ronment increases z, up to α+ 1, each time an (x, y) action is performed. Following

this, the environment can deduce whether or not a robot in (x, y) is connected.

2. In phase p3b, for each location (x, y), the environment’s protocol enables the agent-

environment action con_(x, y) if the sum of z’s in the range of (x, y) is at least α+1,

otherwise it enables the agent-environment action ¬con_(x, y). Thus, each robot

can update its connectivity status by synchronising with the environment through

the con actions. This happens for all robots in a sequence of steps before the sys-

tem may move to the next phase; upon each synchronisation, the corresponding

agent updates its direction and motion mode as described above. Then, the system

goes back to phase p2 where the counters in the environment are reset to zero in

repeating the cycle.

We now use the PIIS procedure to analyse an instance of the Alpha algorithm where the

sensor range is equal to 1, the alpha parameter is equal to 2, and the arena is of size 5×5. This

5.3. Applications 125

instance is of particular interest given its failure to satisfy the connectedness property when 3

robots constitute the swarm [DWFZ12]. The property is given by the following 1-indexed

formula

φα = ∀{v}KvGF (con, v)

expressing “each robot knows that it will be infinitely often connected”. Given the nature of

swarms, however, an emergent behaviour may be exhibited when additional agents are present

and may continue to be exhibited in any bigger system. Thus, we proceed to investigate

whether the connectedness property is satisfied in the presence of additional agents.

We first establish (see Chapter 7) that the abstract system Ŝα(1) does not satisfy φα. By

Lemma 5.1, Ŝα is able to simulate the concrete system of 3 agents, where, as described

in [DWFZ12], 2 agents may initially go East and the remaining agent may initially go West.

In this case the pair of agents initially going East are afterwards always connected, in forward

mode, and moving East, whereas the agent initially going West is afterwards never connected,

in coherence mode, and moving East. Following the falsification of φα on the abstract model,

it can be established that the concrete system with 3 agents gs-simulates the abstract system.

Therefore, Sα(3) is a cutoff. Using any epistemic model checker, it can be established that

Sα(3) 6|= φα. This allows us to conclude that the connectedness property is not satisfied by the

alpha algorithm irrespective of the number of robots in the swarm.

126 Chapter 5. Verifying parameterised interleaved interpreted systems

[1
1
,−
,F
,C
,p

1
]

[1
1
,N

,F
,C
,s1

]
[1

1
,N

,F
,C
,p

2
]

[1
2
,N

,F
,C
,s2

]
[1

2
,N

,F
,C
,p

3
a

]

[1
2
,N

,F
,C
,s3

a
]

[1
2
,N

,F
,C
,p

3
b

]
[1

2
,S
,C
,¬

C
,s3

b
]

[1
2
,S
,C
,¬

C
,p

2
]

n
orth

sy
n

m
ov
e

sy
n

1
2

sy
n

¬
con_

1
2

sy
n

sou
th
,ea

st
w
est

con_
1
2

(a)
Fragm

ent
ofthe

agent
tem

plate
ofthe

A
lpha

algorithm
.

[1
1
0
,1

2
0
,2

1
0
,2

2
0
,p

1
]

[1
1
0
,1

2
0
,2

1
0
,2

2
0
,p

2
]

[1
1
0
,1

2
0
,2

1
0
,2

2
0
,p

3
a

]
[1

1
0
,1

2
1
,2

1
0
,2

2
0
,p

3
a

]

[1
1
0
,1

2
1
,2

1
1
,2

2
0
,p

3
a

]
[1

1
0
,1

2
1
,2

1
2
,2

2
0
,p

3
a

]
[1

1
0
,1

2
1
,2

1
2
,2

2
0
,p

3
b

]

sy
n

sy
n

1
2

2
1

2
1

sy
n

1
1
,2

1
,2

2
,sy

n

¬
con_

1
1,¬

con_
12
,con_

2
1
,¬
con_

22
1
1
,1

2
,2

2
1
1,1

2
,2

2,sy
n

21

1
1,1

2
,2

2,sy
n

sy
n

(b)
Fragm

ent
ofthe

environm
ent

tem
plate

ofthe
A

lpha
algorithm

.

Figure
5.2:

Fragm
ent

ofthe
param

eterised
interleaved

interpreted
system

ofthe
A

lpha
algotithm

.

Chapter 6

The SMR,SGS and SFE classes of PIIS

Because of their importance with respect to their amenability to verification, this chapter iden-

tifies three noteworthy classes of PIIS. The classes correspond to different combinations of

template actions. For each of the classes a parameterised model checking procedure is pre-

sented. The procedures are used to verify examples from the MAS literature in a parametric

setting, including the robot foraging scenario [Liu07], the Train-Gate-Controller [HW02b], and

the autonomous robot example [FHMV95]. Their crucial difference from the PIIS procedure

is a polynomial cutoff identification methodology instead of an exponential one. Section 6.1

fixes the notation and introduces the classes. Sections 6.2, 6.3, and 6.4 study these classes in

detail.

6.1 Introduction

We outline parameterised interleaved interpreted systems as presented in Section 3.2, we fix

the chapter’s notation, and we define the SMR, SGS, and SFE classes of PIIS.

A parameterised interleaved interpreted system is a tuple

PIIS = (T , E ,V) ,

where T = {Ti = (Li, ιi, Acti, Pi, ti) : 1 ≤ i ≤ k} is a set of k ≥ 1 agent templates, E =

127

128 Chapter 6. The SMR, SGS and SFE classes of PIIS

(LE , ιE , ActE , PE , tE) is an environment template, and V = {Vi : Li → P(APi) : 1 ≤ i ≤ k} is a

set of valuation functions on the template states.

Agents from template Ti may evolve asynchronously via asynchronous Ai actions, communi-

cate with the environment via agent-environment AE i actions, synchronise with the agents of

the same role via role-synchronous RS i actions, synchronise with all the agents in the system

via global-synchronous GS actions, and communicate with an agent performing another role

via multi-role MRi actions. We write l 99Ka l′ to mean that ti(l, a) = l′. Given a set of template

actions X ⊆ Acti we let l 99KX l′ denote that l 99Ka l′ for some a ∈ X. The reflexive and

transitive closure of 99KX is denoted by 99KX∗.

Given a concrete value n = (n1, . . . , nk) of the system’s parameter, the concrete system PIIS (n)

is the interleaved interpreted system

PIIS (n) =
(

(Lj
i , ι

j
i ,Act j

i ,P
j
i , t

j
i)(i ,j)A(n), (LE , ιE ,ActE ,PE , tE), ι,V

)
.

PIIS (n) results from the composition of n.i instantiations {(i, 1), . . . , (i, n.i)} of each agent

template i and an instantiation of the environment template. For each concrete system PIIS (n)

we associate a temporal-epistemic model

SPIIS(n) =
(
G(n), ι(n), R(n), (Kji)(i,j)∈A(n), V (n)

)

that can be used to interpret temporal-epistemic formulae. When PIIS (n) is clear from the

context we simply write S(n) for SPIIS(n). We assume that the joint null action is always

enabled in a concrete system. Therefore, the concrete transition relations are serial.

Given a global state g, we write lsgi (g) to denote the local state of agent (i, j) in g. By tlsji (g), we

express the template state from which the local state of agent (i, j) in g has been instantiated.

We write g →a g
′ to denote that (g, g′) ∈ R(n) by means of action a. For any set of concrete

actions X, g →X g′ expresses that g →a g
′ for an action a ∈ X. The reflexive and transitive

closure of→X is denoted by→X∗.

A path π is a sequence π = g1a1g2a2g3 . . . such that gi →ai g
i+1, for every i ≥ 1. Given a path

π, we write π(i) (π(i, Act), respectively) for the i-th state (action, respectively) in π. If π is

6.1. Introduction 129

finite, then we write π[] for the last state in π. By π[i], we denote the suffix giaigi+1 . . . of π,

and by [i]π we denote its prefix g1a1 . . . gi. The set of all paths originating from a state g is

denoted by Π(g). Since the global transition relation is deterministic we sometimes (uniquely)

denote a path g1a1g2a2 . . . by the sequence g1a1a2

We now define the SMR, SGS, and SFE classes.

1. SMR =
{
S : S is a PIIS composed of k ≥ 1 roles such that

⋃
1≤i≤k RS i ∪GS = ∅

}
.

SMR is the class of PIIS generated from agent templates defined only on asynchronous,

agent-environment, and guarded multi-role actions. A multi-role action is said to be

guarded for an agent template Ti if the template transition of the template is such that

it returns the same template state at which the action is performed. A concrete multi-

role action is said to be guarded by a concrete agent (i, r) if the action is instantiated

from an action that is guarded by Ti. In a similar manner to the model of disjunctive

guards [EK00], whenever a concrete multi-role action that is guarded by a concrete

agent is performed in a global transition, said agent remains in its current local state.

We have thus far considered a set MRi ,j = MRj ,i of template multi-role actions shared

between the templates Ti and Tj , for each pair Ti,Tj of agent templates. For the SMR

class of systems we insist on each multi-role action to be guarded by precisely one of the

two templates sharing the action. We write MRi ,j for the set of multi-role actions that

are shared between templates Ti, Tj , and guarded by Tj; by MRj ,i , we mean the set of

multi-role actions that are shared between templates Ti, Tj , and guarded by Ti. We write

(a, (i, r), (j,q)) to denote the instantiation of a template multi-role action a ∈ MRi ,r that

is shared between the agents (i, j), (r, q), and guarded by (j, q). By MRj
i , we denote the

set of concrete multi-role actions of agent (i, j) that are not guarded by (i, j).

Decentralised systems and security protocols may be encoded in SMR using the machin-

ery of multi-role actions, whereas centralised systems can be represented in SMR using

the communication primitive of agent-environment actions. As a result, the SMR class

is particularly suitable for modelling swarm robotics, which are naturally decentralised

systems, but interacting with their environment [BDT99].

2. SGS =
{
S : S is a PIIS composed of k ≥ 1 roles such that

⋃
1≤i≤k(RS i ∪MRi) = ∅

}
.

130 Chapter 6. The SMR, SGS and SFE classes of PIIS

SGS is the class of PIIS generated from agent templates defined only on asynchronous,

agent-environment, and global-synchronous actions. This class can represent broadcast

protocols, cache coherence protocols, swarm aggregation algorithms in a grid environ-

ment, and several scenarios where synchronous handshaking is required.

3. SFE =
{
S : S is a PIIS composed of k ≥ 1 roles such that

⋃
1≤i≤k(AE i ∪MRi) = ∅

}
.

SFE is the class of PIIS generated from agent templates defined only on asynchronous,

role-synchronous, and global-synchronous actions. The absence of agent-environment

and multi-role actions implies that all the agents evolve in the same way following syn-

chronisation with the environment. Differently from the SMR and SGS classes, the pa-

rameterised model checking problem for this class is, as we will show, decidable. This

gives clear advantages when protocols can be expressed by SFE.

An example of an SMR system is the robot foraging scenario discussed in section 3.2.1, an

example of an SGS system is the Train-Gate-Controller described in section 3.2.1, an example

of an SFE system is the autonomous robot example given in section 3.2.1. We study the SMR,

SGS, and SFE classes in detail in sections 6.2, 6.3, and 6.4, respectively.

6.2 Verifying SMR systems

We begin with the SMR class of systems defined on asynchronous, agent-environment and

guarded multi-role actions. We identify a notion of simulation and show that the existence

of this simulation between the agent and environment templates guarantees a cutoff, which

we show how to calculate given a PIIS and a specification. This will enable us to define a

model checking procedure which we will exemplify on the robot foraging scenario following a

discussion on its applicability.

6.2.1 Agent-environment simulation

We fix a PIIS S = (T , E ,V) composed of k agent templates and an environment template.

To simplify our analysis, in the following we assume, without loss of generality, that for each

6.2. Verifying SMR systems 131

li l′i l′′i

lE l′E

Ai∗ a ∈ AE i ∪MRi ∪GS

a

∼aes ∼aes

Figure 6.1: Agent-environment simulation between Ti and E .

action a ∈ ActE we have that |{l ∈ LE : a ∈ PE(l)}| = 1; i.e., an environment’s action is enabled

at exactly one template state. Note that any PIIS can be translated into a PIIS for which each

action of the environment is enabled at exactly one template state. The translation is given in

two steps.

1. Replace each template transition lE 99Ka l′E of the environment template with lE 99K(lE ,a)

l′E , where (lE , a) is a fresh action of the same type with a.

2. Replace each template transition l 99Ka l′ of an agent template with the set of transitions

X =
{
l 99K(lE ,a) l

′ : (lE , a) is an action introduced in step 1
}

iff X 6= ∅.

It is easy to see that a PIIS S and its translation S ′ are equivalent in that every concrete system

S(n) can simulate S ′(n) and vice versa. S ′ is bigger than S by a polynomial factor in the

number of transitions of the environment template.

We now introduce a notion of agent-environment simulation between the agent templates and

the environment template. Intuitively, the existence of an agent-environment simulation be-

tween the agent and environment templates restricts the environment to one of shared re-

sources, where each resource is accessible by exactly one agent at a given time. Formally, there

is an agent-environment simulation between agent template Ti and E if E can simulate Ti only

by means of the template states in which an action shared with the environment is enabled

(see Figure 6.1) 1.

Definition 6.1 (Agent-environment simulation). A relation∼aes⊆ Li×LE is an agent-environment

simulation between Ti and E if ιi ∼aes ιE and whenever li ∼aes lE the following condition holds:

1Recall that SMR systems do not support GS actions. However the definition of agent-environment simulation
includes GS actions as the definition will be reused for the analysis of SGS systems.

132 Chapter 6. The SMR, SGS and SFE classes of PIIS

if li 99KAi∗ l
′
i 99Ka l′′i , for some a ∈ AE i ∪ MRi ∪ GS , then there is l′E with lE 99Ka l′E and

l′′i ∼aes l′E .

We write Ti ≤aes E to denote that there is an agent-environment simulation between Ti and E .

We write T ≤aes E if Ti ≤aes E for all Ti ∈ T . Intuitively, if T ≤aes E , then an agent can always

take the lock on a resource by synchronising with the environment via an agent-environment

or a multi-role action. As we show below, following this synchronisation, said agent is the only

agent that may synchronise with the environment. The agent releases the resources whenever

the environment performs a loop in which case the other agents can synchronise with the

environment.

Definition 6.2 (Environment loop). A subsequence giai . . . gj , j > i > 0, of a path g1a1 . . . in

S(n) is an environment loop if lsE(gi) = lsE(gj).

So, if T ≤aes E , then the concrete environment conforms to a certain looping behaviour when-

ever it synchronises between different agents. As we show below, an environment loop occurs

whenever the environment synchronises between two different agents in successive synchro-

nisations. If g is a global state occurring in a path from the first synchronisation to the latter,

then we say that g has the environment loop condition.

Definition 6.3 (Environment loop condition). A global state π(d) in a path π in S(n) has the

environment loop condition, denoted ELC(π(d)), if there is a pair of agents (i, r) and (j, q) with

(i, r) 6= (j, q) such that the following hold:

(i) π(e)→X π(e+ 1)→Y ∗ π(d), where X = AE r
i ∪MRr

i and Y =
⋃

(x,y)∈A(n)A
y
x;

(ii) π(d)→X′ π(d+ 1), where X ′ = AE q
j ∪MRq

j ∪GS .

In other words, a global state g in a path π has the environment loop condition if: (i) there is an

agent who lastly synchronised with the environment earlier in the path; (ii) there is a different

agent who firstly synchronised with the environment later in the path (see Figure 6.2).

Example 6.1. Consider the following path of the concrete Train-Gate-Controller with two priori-

6.2. Verifying SMR systems 133

ι(n̄) g g′

ELC(g′)

AE r
i ∪MRr

i

⋃
(x,y)∈A(n)A

y
x∗ AE q

j ∪MRq
j ∪GS

Environment Loop
lsE(g) = lsE(g′)

Figure 6.2: Looping behaviour of a concrete environment in a path.

tised trains and two normal trains (Figure 3.7).

(W 1,W 2, PG,L1, L2)→p_enter1 (T 1,W 2, R, L1, L2)→p_exit1 (A1,W 2, PG,L1, L2)→p_enter2

(A1, T 2, R, L1, L2)→p_exit2 (A1, A2, PG,L1, L2)→n_lock (L1, L2, NG,A1, A2)

The states (A1,W 2, PG,L1, L2) and (A1, A2, PG,L1, L2) have the environment loop condition,

whereas the other states do not.

We now show that the environment loop condition is a sufficient condition for the occurrence

of an environment loop. Specifically, we show that whenever ELC(g) holds, the environment’s

local state in g is equal to its initial local state. Thus, intuitively, whenever ELC(g) holds, an

agent releases the lock on a shared resource to a different agent.

Lemma 6.1. Consider a PIIS S = (T , E ,V) ∈ SMR with T ≤aes E and a path π in S(n). If

ELC(π(d)) for some d > 1, then [d]π is an environment loop.

Proof. Assume that ELC(π(d)) for some d > 1. This means that there is a pair of agents

(i, i′), (j, j′) with (i, i′) 6= (j, j′) such that agent (i, i′) is the last agent to synchronise with the

environment in the prefix [d]π of π, and agent (j, j′) is the first agent to synchronise with the

environment in the suffix π[d] of π. We show that lsE(π(1)) = lsE(π(d)) by induction on d.

Suppose d = 2. Consider the template action a from which the concrete action performed

in the first syncrhonisation of (j, j′) with the environemnt in [2]π has been instantiated. We

have that tlsj
′

j (π(1)) 99KAj∗ tls
j′

j (π(d′ − 1)) 99Ka tls
j′

j (π(d′)) for some d′ ≥ 2. As Tj ≤aes E ,

the latter gives lsE(π(1)) 99Ka l′E for a template state l′E with tlsj
′

j (π(d′)) ∼aes l′E . Since the

set {l ∈ LE : a ∈ PE(l)} is singleton, it follows that lsE(π(1)) = lsE(π(d′ − 1)). Additionally,

lsE(π(2)) = lsE(π(d′− 1)), as the subsequence π(2), . . . , π(d′− 1) of π does not contain agent-

134 Chapter 6. The SMR, SGS and SFE classes of PIIS

environment or multi-role actions. Therefore, lsE(π(1)) = lsE(π(2)). So, the claim is true of

paths with two states. Suppose that the claim is true for all paths with at most x − 1 states

for x ≥ 3. Let π be a path with x states. We show that lsE(π(1)) = lsE(π(x)) in terms of two

cases.

Case 1: [x]π does not contain any AE j′

j action or any MRj′

j action. In this case we can proceed

with the same argument used in the base step and conclude that lsE(π(1)) = lsE(π(x)).

Case 2: [d]π contains an AE j′

j action or an MRj′

j action. Let q be the greatest integer in

{1, . . . , x} with π(q − 1, Act) ∈ AE j′

j ∪MRj′

j . From Tj ≤aes E we obtain that there is template

state lE with tlsj
′

j (π(q)) ∼aes lE . Also, lE = lsE(π(q)), since π(q − 1, Act) is enabled by the

environment’s protocol at exactly one template state. Therefore, tlsj
′

j (π(q)) ∼aes lsE(π(q)).

From the latter observation and the observation that tlsj
′

j (π(q)) 99KAj∗ tls
j′

j (π(d′ − 1)) for

some d′ ≥ x, the base step’s argument applies to conclude that lsE(π(q)) = lsE(π(x)). It is

left to prove that [q]π is an environment loop, thereby proving that [x]π is an environment

loop. To show this, note that there is an agent (r, r′) 6= (j, j′) which performs either an agent-

environment action or a multi-role action in the path sequence π(q), . . . , π(x). Therefore,

ELC(π(q)). So, lsE(π(1)) = lsE(π(q)) holds by the inductive hypothesis.

The above lemma reports a key consequence of the agent-environment simulation assump-

tion. This will be central to the behavioural equivalence results shown in the next section.

Lemma 6.1 can be interpreted as stating that the environment implements a mutual exclusion

controller governing the access to shared resources.

6.2.2 Model checking procedure for SMR systems

The model checking procedure SMR for SMR systems is defined by Algorithm 3. Given a

PIIS S ∈ SMR and an m-indexed ACTL∗K\X formula ∀vφ(v), the procedure first establishes

whether or not T ≤aes E . Upon a successful simulation test, the procedure calculates the cutoff

for the given system and specification.

The cutoff function cutoff _SMR maps a PIIS S of k roles and a k-tuple m of natural numbers

into a k-tuple c of natural numbers that corresponds to the cutoff for m-indexed formulae.

6.2. Verifying SMR systems 135

Algorithm 3 Parameterised model checking procedure for SMR systems.
1: procedure SMR(S,∀v̄φ(v̄))
2: if T ≤aes E then
3: c̄ = cutoff _SMR(S, m̄);
4: for all x̄ such that m̄ ≤ x̄ ≤ c̄ do
5: if S(x̄) 6|= φ[trivial] then
6: return false;
7: end if
8: end for
9: return true;

10: end if
11: end procedure

Informally, to calculate a cutoff, we require that each agent in the cutoff system, that is referred

to by the atomic propositions and epistemic modalities in the trivial instantiation of an m-

indexed formula, is able to make any transition that the agent can make in any bigger system.

This will enable us to establish that the cutoff system m-stuttering simulates every bigger

system. By Theorem 3.1, we can then conclude that the satisfaction of a formula on the cutoff

system implies the satisfaction of the formula on every bigger system.

Consider an agent (i, j) indexing an atomic proposition or an epistemic modality in the trivial

instantiation of an m-indexed formula, and a transition by means of a multi-role action of

agent (i, j) that is guarded by agent (r, q). As discussed in section 3.2, the enabling of the

action depends on whether or not the action is enabled by the protocols at the current local

states of the agents and the environment. If the action is enabled, then the agent (i, j) may

update its state upon performing the action, whereas the agent (r, q) remains in its current

local state. Obviously, agent (r, q) may not be present in cutoff system, as the index q can be

arbitrarily large. Still, we can simulate the transition in the cutoff system by insisting on the

presence of an agent, say (r, q′), in the local state of agent (r, q). Then, the instantiation of the

multi-role action that is shared between the agents (i, j) and (r, q′) is enabled, and so the agent

(i, j) is able to simulate the transition of the bigger system by performing said instantiation. To

simulate any multi-role action performed by agent (i, j), we insist on the presence of an agent

in every local state enabling a multi-role action. In other words, for each agent template, in

addition to the number of agents that need to be simulated, we require that the cutoff system

composes as many agents as the cardinality of the set of template states that enable a multi-role

action guarded by the template. We call this set the action dependency set of the template.

136 Chapter 6. The SMR, SGS and SFE classes of PIIS

Definition 6.4 (Action dependency set). Given a PIIS S = (T , E ,V) ∈ SMR, the action depen-

dency set Di ⊆ Li of agent template Ti is a subset of Ti’s states that is defined as follows:

Di = {l ∈ Li : there are 1 ≤ j ≤ k, a ∈ MRj,i such that a ∈ Pi(l)} .

So, each action dependency set Di reflects the states of template Ti that guard at least one

multi-role action. The cutoff function is defined in terms of m and the action dependency sets

for the agent templates.

Definition 6.5 (Cutoff function for SMR systems). The cutoff function cutoff _SMR is defined

for SMR systems as follows:

cutoff _SMR(S,m) = (max(1 ,m(1) + |D1 |), . . . ,max(1 ,m(k) + |Dk |)) ,

for any S ∈ SMR with k ≥ 1 roles and any m ∈ Nk.

Following the cutoff calculation, SMR checks the set {S(x) : m ≤ x ≤ c} of concrete systems

against the trivial instantiation φ[trivial] of ∀vφ(v). If φ[trivial] is not satisfied by at least one

system, then the procedure returns false, otherwise it returns true. We assess the soundness

of the SMR procedure in section 6.2.4. First, we exemplify it by means of the robot foraging

scenario.

6.2.3 Verifying the robot foraging scenario

In section 3.2.1 we represented the robot foraging scenario as a PIIS SRFS composed of an

agent template TR encoding the robots and an agent template TFS encoding the food sources.

For the encoding we used the multi-role actions observe, reached , deposit , and scan. Observe

that observe is guarded by TFS , reached is guarded by TR, deposit is guarded by TFS , and

scan is guarded by TFS ; thus, SRFS ∈ SMR. In section 3.3 we expressed the property “when-

ever a food source is found, every robot knows that the source is found” in the following

(1, 1)-indexed formula:

φRFS = ∀({u},{x})AG ((f, x)→ Ku
TR(f, x)) ,

6.2. Verifying SMR systems 137

where u is variable of TR, x is a variable of TFS and the atomic proposition f holds in the

template state in which the template food source is “found”.

We now show how SRFS can be verified using the SMR procedure. Clearly, SRFS satisfies the

agent-environment simulation assumption as the system does not specify an environment tem-

plate. Therefore, we may proceed to compute the cutoff function cutoff _SMR(SRFS , (1, 1)).

To do this, we first calculate the action dependency sets. We have that DTR = {MF} and

DTFS = {N_F, F} for TR and TFS , respectively. Hence,

c = cutoff _SMR(SRFS , (1 , 1)) = (1 + 1 , 1 + 2) = (2 , 3)

Thus, we need to check whether or not SRFS(x) |= φRFS [trivial], for (1, 1) ≤ x ≤ (2, 3). These

checks can be performed on a standard model checker; the result is true thereby establishing

the correctness of the protocol irrespectively of the number of robots and the number of food

sources.

6.2.4 Proof of soundness

Theorem 6.1. Let S = (T , E ,V) ∈ SMR be a PIIS and ∀vφ(v) be an m-indexed formula. If

T ≤aes E , then SMR(S,∀vφ(v)) returns true iff S |= ∀vφ(v).

To prove this result we need to establish some intermediate steps. Firstly observe that by the

definition of the PMCP and Theorem 3.1, it suffices to show that if T ≤aes E , then: (i) the cutoff

system S(c) m-stuttering simulates every bigger system; (ii) every bigger system m-stuttering

simulates S(c). As related states in each of the simulations need only to agree on the atomic

propositions indexed by the agents in A(m), we only have to simulate transitions taken by the

agents in A(m). We first show the former.

Part A: The cutoff system m-stuttering simulates every bigger system

Consider an arbitrarily big system S(n) with n ≥ c, where S(c) is the cutoff system. To simulate

S(n), S(c) first executes the action dependency path. The path results in an agent to be in every

138 Chapter 6. The SMR, SGS and SFE classes of PIIS

local state guarding a multi-role action. Following the execution of the action dependency

path, S(c) can simulate the multi-role transitions of S(n) in the way described earlier. More

specifically, the action dependency path associates the concrete agents in A(c) \ A(m) with

the action dependency sets as follows. Let λi : Di → {(i,m(i) + 1), . . . , (i, c(i))} be a bijective

mapping from the set Di of template states to the set {(i,m(i) + 1), . . . , (i, c(i))} of concrete

agents. Given l ∈ Di, λi(l) denotes the concrete agent of role i which moves to template state l

via the execution of the action dependency path. Then, each agent (i, j) ∈ A(c)\A(m) remains

forever in its corresponding state λ−1
i ((i, j)). Thus, S(c) can mimic the multi-role transitions of

the agents in A(m) in S(n) as follows: for each multi-role action (b, (i, r), (j,q)) shared by the

agents (i, r) ∈ A(m), (j, q) ∈ A(n), guarded by (j, q), and performed at a global state g in S(n),

the multi-role action (b, (i, r), (j,q′)) shared by the agents (i, r), (j, q′), where q′ = λj

(
tlsqj(g)

)
,

and guarded by (j, q′) is performed in S(c).

We now give a formal definition of the action dependency path. The path is inductively defined

so that at each step an agent (i, j) ∈ A(c) \ A(m) moves to its associated state λ−1
i ((i, j)).

Following Lemma 6.1, however, the definition insists on the occurrence of an environment

loop at each step. If an agent cannot move to its associated state while the environment

performs an environment loop, then said agent remains in its initial state. This is because the

environment is locked on synchronising with exactly one agent unless an environment loop

occurs.

Definition 6.6 (Action dependency path). Let S = (T , E ,V) ∈ SMR be a PIIS of k roles.

Consider D = D1 ∪ . . . ∪Dk to be the union of the action-dependency sets. For a global state g,

assume D(g) = {l ∈ D : there is an agent (i, r) with tlsri (g) = l} to be the set of template states

in D that appear in g. Then, for m ∈ Nk and c = cutoff _SMR(S,m), the action dependency

path p in S(c) is inductively defined as follows.

• p0 = ι(c).

• Let X ⊆ Π(pi[]) be a set of finite paths such that π ∈ X if and only if π satisfies the following

conditions:

i. π is an environment loop;

6.2. Verifying SMR systems 139

ii. D(π[]) = D(pi[]) ∪ {l} for some l ∈ D \D(pi[]);

iii. Every action occurring in π is in Aqj ∪AE q
j ∪MRq

j , where (j, q) is the agent associated

with l.

If X = ∅, then pi+1 = pi. Otherwise, pi+1 = pi ◦ π for an arbitrary π ∈ X.

Example 6.2. Consider the robot foraging scenario discussed in Section 6.2.3, where the action de-

pendency sets were calculated to be DTR = {MF} for the template robot, and DTFS = {N_F, F}

for the template food source. The cutoff was shown to be c = (2, 3) for (1, 1)-indexed formulae.

We now construct the action dependency path. To do this, we first associate the concrete agents

with the action dependency sets by the following mappings:

λTR = {(TR, 2)→ MF}

λTFS = {(TFS , 2)→ N _F , (TFS , 3)→ F} .

So, the concrete robot 2 is associated with the state MF , the concrete food source 2 is associated

with the state N _F , and the concrete food source 3 is associated with the state F . For the base

step, we have that p0 = ι(c), where ι(c) = ((R, 1), (R, 2), (N_F, 1), (N_F, 2), (N_F, 3)) is the

initial global state composed of the local states (R, 1), (R, 2) of concrete robots 1 and 2, and the

local states (N_F, 1), (N_F, 2), (N_F, 3) of concrete food sources 1,2, and 3. Clearly, the agent

(TFS , 2) is already in its associated state N_F in ι(c). Now consider the path

π =((R, 1), (R, 2), (N_F, 1), (N_F, 2), (N_F, 3))→(search,2)

((R, 1), (RW , 2), (N _F , 1), (N _F , 2), (N _F , 3))→(observe,(TR,2),(TFS,2))

((R, 1), (MF , 2), (N _F , 1), (N _F , 2), (N _F , 3)).

We have that π is an environment loop. Also, D(π[]) = D(p0[])∪{MF}, where MF ∈ D \D(p0 []).

Additionally, every action in π is in A2
TR ∪ AE 2

TR ∪MR2
TR. Thus, π satisfies all three conditions

of Definition 6.6. So, p1 = π. For the next step, consider the path

π′ = ((R, 1), (MF , 2), (N _F , 1), (N _F , 2), (N _F , 3)→(reached ,(TFS ,3),(TR,2))

((R, 1), (MF , 2), (N _F , 1), (N _F , 2), (F , 3))

140 Chapter 6. The SMR, SGS and SFE classes of PIIS

Obviously, π′ is an environment loop. Also, D(π′[]) = D(p1[]) ∪ {F}, where F ∈ D \ D(p1[]).

Additionally, every action in π′ is in A3
TFS∪AE 3

TR∪MR3
TR. Therefore, p2 is equal to the following:

p2 =((R, 1), (R, 2), (N_F, 1), (N_F, 2), (N_F, 3))→(search,2)

((R, 1), (RW , 2), (N _F , 1), (N _F , 2), (N _F , 3))→(observe,(TR,2),(TFS,2))

((R, 1), (MF , 2), (N _F , 1), (N _F , 2), (N _F , 3))→(reached ,(TFS ,3),(TR,2))

((R, 1), (MF , 2), (N _F , 1), (N _F , 2), (F , 3)).

As D(p2) = D, p2 is the required action dependency path.

In other words, every template state in D that can be reached by an agent via an environment

loop is a local state for an agent in p[]. Moreover, there is no global state g in any bigger

system satisfying the environment loop condition and also satisfying D(g) \ D(p[]) 6= ∅. So,

S(c) can simulate the multi-role transitions of the agents in A(m) in S(n) with the execution

of the action dependency path. Other types of actions are simulated as follows. For an agent-

environment action or an asynchronous action performed by the agents in A(m) in S(n), S(c)

performs the same action. Finally, for any type of action performed by an agent not in A(m)

in S(n), S(c) performs the null action. This implies that the state of the environment in S(n)

may change, whereas the state of the environment in S(c) remains the same. However, the

environment in S(c) is not blocked from synchronising with an agent in A(m) at a later point.

For example, assume the path g1a1g2 . . . ax−1gx in S(n), where a1, ax−1 ∈
⋃

(i,j)∈A(m)AE
j
i

and a2, . . . , ax−2 /∈
⋃

(i,j)∈A(m)A
j
i ∪ AE j

i ∪MRj
i . Clearly, the state of the environment in S(n)

may be updated after the environment synchronises on the a2, . . . , ax−2 actions. Even so, the

environment in S(c) may still synchronise on the ax−1 action after performing the null actions.

This is because both g2 and gx−1 satisfy the environment loop condition. Therefore, the state

of the environment in g2 is the same to its state in gx−1. Intuitively, whenever an agent not in

A(m) in S(n) takes the lock on a resource via synchronising with the environment, it has to

release the resource, i.e., an environment loop occurs, before another agent in A(m) can take

the lock on a resource.

Lemma 6.2. Let S = (T , E ,V) ∈ SMR be a PIIS of k roles with T ≤aes E . Let m ∈ Nk. Then,

S(n) ≤mss S(c) for all n ≥ c, where c = cutoff _SMR(S,m).

6.2. Verifying SMR systems 141

g ∈ G(n̄)

g′ ∈ G(c̄)

∼m̄ss ∼m̄ss

a /∈
⋃

(i,r)∈A(m)

Actri

ε

(a) Simulation of an action performed by an agent not in A(m).

g

g′

∼m̄ss ∼m̄ss

a ∈
⋃

(i,r)∈A(m)

Ari ∪AE r
i

a

(b) Simulation of an asynchronous action or an agent-
environment action performed by an agent in A(m).

g

g′

∼m̄ss ∼m̄ss

(a, (r, q)) ∈ MRr ,q
i ,j

(i, r) ∈ A(m), (j, q) ∈ A(n)

(
a,
(
r, λj

(
tlsqj(g)

)))
(c) Simulation of a multi-role action performed by an
agent in A(m).

Figure 6.3: The m-stuttering simulation of a bigger system S(n) by the cutoff system S(c).

142 Chapter 6. The SMR, SGS and SFE classes of PIIS

Proof. Let n ≥ c be arbitrary. We show that S(n) ≤mss S(c). The simulation relation we define

follows Figure 6.3. It ensures that whenever an action is performed by an agent in S(n) that

is required to satisfy condition (i) of m-stuttering simulation, the agent can also perform the

action in S(c). In line with this, the state of the environment is defined to allow the actions to

be performed. The simulation relation ∼mss= (R1 ∩R2 ∩R3)∪R4 ⊆ G(n)×G(c) is defined as

follows.

(g, g′) ∈ R1 iff lsri (g) = lsri (g
′), for (i, r) ∈ A(m)

The above ensures that the local states of the agents in A(m) are the same in related global

states of S(n) and S(c). The following ensures that the agents in A(c) \ A(m) in S(c) are in

their associated local states as per the action dependency path.

(g, g′) ∈ R2 iff lsri (p[]) = lsri (g
′), for (i, r) /∈ A(m)

(R1 ∩ R2)-related states must also agree on the state of the environment. Assume (g, g′) ∈

G(n)× G(c). Suppose that there is a state g1 reachable from g at which an agent-environment

action or a multi-role action of the agents in A(m) is enabled. Clearly, for the action to be

enabled, the environment is in a local state at which the environment’s protocol enables the

action. Further assume that g1 can be reached by asynchronous actions and by actions of agents

not inA(m). As previously discussed, S(c) simulates these actions by performing asynchronous

and null actions. These do not change the state of the environment in S(c). So, we define R3

to insist on the equality of the environment’s states in g′ and g1.

(g, g′) ∈ R3 iff g →X∗ g
1 →a g

2 implies that lsE(g′) = lsE(g1), where

a ∈
⋃

(i,r)∈A(m)

AE r
i ∪MRr

i and X =
⋃

(i,r)∈A(m)

Ari ∪
⋃

(i,r)/∈A(m)

Actri

Finally, to simulate the multi-role actions in S(n), S(c) first executes the action dependency

path. R4 suggests exactly this.

(ι(n), g) ∈ R4 iff g appears in p

We show that ∼mss is an m-stuttering simulation between S(n) and S(c). As ι(c) = p(1),

6.2. Verifying SMR systems 143

we have that (ι(n), ι(c)) ∈ R4, therefore ι(n) ∼mss ι(c). Now assume that g ∼mss g′ for an

arbitrary pair of global states in G(n)×G(c). We show the simulation requirements (i) and (iii)

of m-stuttering simulation (see Definition 3.15; from Theorem 3.1, we only have to show

simulation requirements (i) and (iii)). We have that (g, g′) ∈ R1 ∩R2 ∩R3 or (g, g′) ∈ R4. The

first simulation requirement follows trivially by the definition of R1 and by observing that each

agent in A(m) remains in its initial local state in p.

To show the simulation requirement (iii), let π ∈ Π(g). We inductively construct a path π′ ∈

Π(g′) as required by the m-stuttering-simulation.

For the base step, we have two cases:

• (g, g′) ∈ R4. Then, there is a q ≥ 1 such that g′ = p(q). Consider π′ = p[q]. Define the

first blocks B1, B
′
1 by B1 = g and B′1 = p(q), p(q + 1), . . . , p[]. B1, B

′
1 are as required: for

each x in B′1, g ∼mss x, since (g, x) ∈ R4.

• (g, g′) /∈ R4. In this case, define π′ = g′, B1 = g, and B′1 = g′.

For the inductive step, assume that we have already constructed a prefix [x]π, a prefix [x′]π′,

and a partition of the states in [x]π and [x′]π′ into corresponding blocks. We now define

[x′ + 1]π′ and the next blocks Bx+1 and B′x+1 by considering cases on the type of the action

π(x,Act).

• if π(x,Act) ∈ Ari ∪ AE r
i ∪ MRr ,q

i ,j for (i, r) ∈ A(m), (j, q) ∈ A(m), then π′(x′, Act) =

π(x,Act).

• if π(x,Act) = (a, (i, r), (j,q)) ∈ MRr,q
i,j for (i, r) ∈ A(m), (j, q) ∈ A(n) \ A(m), then

π′(x′, Act) = (a, (i, r), ((j,q′)), where q′ = λj(tls
q
j(π(x)));

• Otherwise, π′(x′, Act) = ε.

Let Bx+1 = π(x+ 1) and B′x+1 = π′(x′ + 1). We have to show that π′(x′)→π′(x′,Act) π
′(x′ + 1)

is a valid transition. The case follows trivially when π′(x′, Act) is an asynchronous action or

the joint null action. If π′(x′, Act) is an agent-environment action, then we have to show that

144 Chapter 6. The SMR, SGS and SFE classes of PIIS

the state of the environment enables the action in π′(x′). If π′(x′, Act) is a multi-role action,

say π′(x′, Act) = (a, (i, r), ((j,q′)) ∈ MRr,q′

i,j , then we additionally have to show that the state

of the agent (j, q′) enables the action as well. So, it suffices to show the case for multi-role

actions. That is, we need to show: (i) a ∈ PE(lE), where lE = lsE(π′(x′)); (ii) a ∈ Pj(l), where

l = tlsq
′

j (π′(x′)). We show (i) by means of two cases.

1. There is a y with 1 ≤ y ≤ x − 1 such that π(y,Act) ∈
⋃

(i,r)∈A(m) AE r
i ∪MRr

i . Let z be

the greatest integer with 1 ≤ z ≤ x− 1 that satisfies π(z,Act) ∈
⋃

(i,r)∈A(m) AE r
i ∪MRr

i .

By construction of π′, there is a greatest z′ with 1 ≤ z′ ≤ x′− 1 that satisfies π′(z′, Act) ∈⋃
(i,r)∈A(m) AE r

i ∪ MRr
i . Since π(z,Act) = π′(z′, Act), it follows that lsE(π(z + 1)) =

lsE(π′(z′ + 1)). By construction of π′, the path π′(z′ + 1), . . . , π′(x′) does not contain

agent-environment actions or multi-role actions. Hence, lsE(π′(z′ + 1)) = lsE(π′(x′)).

The latter gives lsE(π(z + 1)) = lsE(π′(x′)).

We now show that lsE(π(z + 1)) = lsE(π(x)). If the path π(z + 1), . . . , π(x) does not

contain an agent-environment action or a multi-role action, then the environment does

not change its state in π(z + 1) . . . π(x); therefore, the claim follows trivially. Otherwise,

if there is at least one agent-environment action or at least one multi-role action in π(z+

1), . . . , π(x), then ELC(π(z + 1)) and ELC(π(x)). Therefore, Lemma 6.1 gives that

[z + 1]π and [x]π are environment loops. It follows that lsE(π(z + 1)) = lsE(π(x)).

From the above two observations we deduce lsE(π(x)) = lsE(π′(x′)). As a ∈ PE(lsE(π(x))),

we obtain a ∈ PE(lE).

2. For all y with 1 ≤ y ≤ x− 1 we have that π(y,Act) /∈
⋃

(i,r)∈A(m) AE r
i ∪MRr

i . There are

two cases.

(a) (g, g′) ∈ R3. As g →X∗ π(x) →a π(x + 1), we obtain lsE(g′) = lsE(π(x)). By

construction of π′, lsE(g′) = lsE(π′(x′)), therefore lsE(π(x)) = lsE(π′(x′)), and

therefore a ∈ PE(lE).

(b) (g, g′) /∈ R3. Then, it must be the case that (g, g′) ∈ R4. So, lsE(g) = ιE . By

construction of π′, lsE(π′(x′)) = ιE . We show that lsE(π(x)) = ιE is also the case.

If there is no agent-environment action or multi-role action in [x]π, then the case

6.2. Verifying SMR systems 145

follows trivially. Otherwise, we have ELC(π(x)), hence [x]π is an environment

loop. Therefore, lsE(π(x)) = ιE . Thus, lsE(π(x)) = lsE(π′(x′)). Hence, a ∈ PE(lE).

To show (ii), let ρ in S(n) be a finite path of length len such that ρ(len) = g, and con-

sider the concatenation γ = ρ ◦ π of ρ and π. If there is a y with 1 ≤ y ≤ x + len and

ELC(γ(y)), then let z be the greatest integer with ELC(γ(z)); otherwise, let z = 1. As there

is no state in γ(z + 1), . . . , γ(len + x) that satisfies the environment loop condition, and as

γ(len + x,Act) = (a, (i, r), ((j,q)) ∈ MRr,q
i,j for some (j, q) ∈ A(n) \ A(m), it follows that only

agent (i, r) (possibly) synchronises with the environment in the path γ(z), . . . , γ(len + x). By

construction of p, D(γ(z)) ⊆ D(p[]). Therefore, (D(γ(len+ x)) \ {tlsri (γ(len+ x))}) ⊆ D(p[]).

That is, (D(π(x)) \ {tlsri (π(x))}) ⊆ D(p[]) ⊆ D(π′(x′)). This means that the template state of

agent (j, q) in π(x) that enables the action a is in D(π(x′)). Therefore, by construction of p,

lsqj(π(x)) = lsq
′

j (π′(x′)). It follows that a ∈ Pj(l).

We have thus shown that π′(x′)→π′(x′,Act) π
′(x′+ 1) is a valid transition. It is left to show that

π(x+1) ∼mss π′(x′+1). To do this, we show that (π(x+1), π′(x′+1)) ∈ R1∩R2∩R3. The case

of (π(x+1), π′(x′+1)) ∈ R1∩R2 follows trivially. Consider the case of (π(x+1), π′(x′+1)) ∈ R3.

Suppose that π(x+1)→X∗ π(x+d)→a π(x+d+1), for some d ≥ 1, a ∈
⋃

(i,r)∈A(m) AE r
i ∪MRr

i ,

andX =
⋃

(i,r)∈A(m)A
r
i∪
⋃

(i,r)/∈A(m)Act
r
i . We need to show that lsE(π′(x′+1)) = lsE(π(x+d)).

If the path π(x + 1) . . . π(x + d) consists only of asynchronous actions, then the case follows

trivially. If not, then we obtain ELC(π(x+1)) and ELC(π(x+d)). Therefore, lsE(π′(x′+1)) =

lsE(π(x+ d)). Consequently, (π(x+ 1), π′(x′ + 1)) ∈ R3.

It follows that simulation requirement (iii) is satisfied. As (g, g′) was arbitrary, S(n) ≤mss

S(c).

Lemma 6.2 concludes part A of the proof for Theorem 6.1: the cutoff system m-stuttering

simulates every bigger system. The following constitutes part B of the proof: every bigger

system m-stuttering simulates the cutoff system.

146 Chapter 6. The SMR, SGS and SFE classes of PIIS

g ∈ G(c̄)

g′ ∈ G(n̄)

∼m̄ss ∼m̄ss

a ∈
⋃

(i,r)∈A(c)

Actri

a

Figure 6.4: The m-stuttering simulation of the cutoff system S(c) by a bigger system S(n).

Part B: Every bigger system m-stuttering simulates the cutoff system

Figure 6.4 shows the m-stuttering simulation between S(c) and S(n). S(n) performs precisely

every action performed by S(c) while it lets the agents not in A(c) stutter at their initial states.

Lemma 6.3. Let S = (T , E ,V) ∈ SMR be a PIIS of k roles with T ≤aes E . Let m ∈ Nk. Then,

S(c) ≤mss S(n) for all n ≥ c, where c = cutoff _SMR(S,m).

Proof. Choose an arbitrary n ≥ c. We show that S(c) ≤mss S(n). We do this by letting each

additional agent in S(n) stutter at its initial state. Then, S(n) can simulate S(c) by performing

the same actions performed in S(c).

Define R1, R2, R3 ⊆ G(c)× G(n) as follows.

(g, g′) ∈ R1 iff lsri (g
′) = lsri (g), for (i, r) ∈ A(c)

(g, g′) ∈ R2 iff tlsri (g
′) = ι, for (i, r) /∈ A(c)

(g, g′) ∈ R3 iff lsE(g) = lsE(g′)

Let ∼mss= R1∩R2∩R3; the information encoded in a state in S(c) is present in a related state

in S(n) by R1; the additional agents in S(n) are left stuttering at their initial states by R2; the

environment’s states are equal in every pair of related states by R3.

We show that∼mss is anm-stuttering simulation between S(c) and S(n). It should be clear that

ι(c) ∼mss ι(n). To show the simulation requirements (i) and (iii), assume that g ∼mss g′ for an

arbitrary pair of global states in G(c) × G(n). Requirement (i) follows by definition of R1. To

show the requirement (iii), let π ∈ Π(g). Define a path π′ by g′π(1, Act), π(2, Act), Clearly,

6.3. Verifying SGS systems 147

π′ ∈ Π(g′) and π(j) ∼mss π′(j), for all j ≥ 1. Thus, define B1, B2, . . . and B′1, B
′
2, . . . to be a

partition of π and π′, respectively, into singleton blocks. It follows that S(c) ≤mss S(n).

Corollary 6.1. Let S = (T , E ,V) ∈ SMR be a PIIS with T ≤aes E . Let ∀vφ(v) be an m-indexed

formula. Then, S(c) |= ∀vφ(v) iff ∀n ≥ c.S(n) |= ∀vφ(v), where c = cutofff _SMR(S ,m).

Proof. Let n ≥ c be arbitrary. By Theorem 3.1 it suffices to show that S(n) ≤mss S(c) and

S(c) ≤mss S(n). The former is given by Lemma 6.2, and the latter is given by Lemma 6.3.

This concludes the proof of Theorem 6.1. Corollary 6.1 provides a constructive methodology

for solving the PMCP by giving the conditions under which the problem can be solved by

checking each concrete system up to the cutoff system.

6.3 Verifying SGS systems

We now investigate the SGS class of systems. The class is generated from agent templates de-

fined on asynchronous, agent-environment and global-synchronous actions. We show that the

existence of an agent-environment simulation between the agent and environment templates

guarantees a cutoff. We show how to calculate the cutoff under these conditions.

We begin with an analysis of the agent-environment simulation for SGS systems. We then

define the model checking procedure, and we exemplify it on the Train-Gate-Controller. Finally,

we prove its soundness. As with the analysis of the SMR class, we assume, without loss of

generality, that for each action a ∈ ActE we have that |{l ∈ LE : a ∈ PE(l)}| = 1; i.e., an

environment’s action is enabled at exactly one template state.

6.3.1 Agent-environment simulation

Similarly to the SMR class, the concrete environment for the SGS class implements a mutual

exclusion controller governing the access to shared resources. This is modelled by means of the

environment’s looping behaviour as per Lemma 6.1. As we show below, an analogous lemma

holds for the SGS class. However, an environment loop is guaranteed to occur only in path

148 Chapter 6. The SMR, SGS and SFE classes of PIIS

sections that do not contain global-synchronous actions. A subsequence of a path π that does

not contain GS actions is said to be a GS -free section of π. A GS -free section π(i), . . . , π(j) is

said to be maximal if π(i− 1, Act) ∈ GS whenever i > 1, and π(j, Act) ∈ GS .

Lemma 6.4. Let S = (T , E ,V) ∈ SGS be a PIIS with T ≤aes E . Let π be a maximal GS -free

section in S(n). If ELC(π(d)) for some d > 1, then [d]π is an environment loop.

Proof. Assume ELC(π(d)) for some d > 1. Given π is a maximal GS -free section, it follows

that: (i) π does not contain GS actions; (ii) tlsji (π(1)) ∼aes lsE(π(1)) for each (i, j) ∈ A(n).

Therefore, Lemma 6.1 applies to π, and therefore [d]π is an environment loop.

Intuitively, a global-synchronous action determines a subclass of the shared resources the

agents can access. Upon performing a global-synchronous action, the system enters a GS -

free section in which the agents can access the shared resources associated with said action in

the same way described for SMR systems.

6.3.2 The SGS procedure

The model checking procedure SGS for SGS systems is defined by Algorithm 4. Given a PIIS

S ∈ SGS and an m-indexed formula ∀vφ(v), the procedure first establishes whether or not

T ≤aes E . Upon a successful simulation test, the procedure calculates the cutoff for the given

system and specification.

Algorithm 4 Parameterised model checking procedure for SGS systems.
1: procedure SGS(S,∀v̄φ(v̄))
2: if T ≤aes E then
3: c̄ = cutoff _SGS (S, m̄);
4: if S(c̄) |= φ[trivial] then
5: return true;
6: else
7: return false;
8: end if
9: end if

10: end procedure

The cutoff function cutoff _SGS maps a PIIS S and tuple m of natural numbers into a tuple

c of natural numbers that corresponds to the cutoff for m-indexed formulae. The function is

6.3. Verifying SGS systems 149

defined in terms of m.

Definition 6.7 (Cutoff function for SGS systems). The cutoff function cutoff _SGS is defined for

SGS systems as follows:

cutoff _SGS (S,m) = (max(1 ,m(1)), . . . ,max(1 ,m(k))) ,

for any S ∈ SGS with k ≥ 1 roles and any m ∈ Nk.

Note that differently from cutoff _SMR, cutoff _SGS depends on the given system only in terms

of the number of roles specified for the system. Following the cutoff calculation, the model

checking procedure checks the concrete system S(c) against the trivial instantiation φ[trivial] of

∀v(φ(v)). If φ[trivial] is satisfied by S(c), then the procedure returns true, otherwise it returns

false. We assess the soundness of the SGS procedure in Section 6.3.4. First, we exemplify it on

the Train-Gate-Controller.

6.3.3 Verifying the Train-Gate-Controller

In section 3.2.1 we represented the Train-Gate-Controller as a PIIS STGC composed of an agent

template PT encoding prioritised trains, an agent template NT encoding normal trains, and

an environment template E encoding the controller. In section 3.3 we expressed the property

“whenever a train is in the tunnel, it knows that no other train is in the tunnel at the same

time” in the following (2, 2)-indexed formula:

φTGC = ∀({u,v},{x,y})AG (((pt , u)→ Ku
PT (¬(pt , v) ∧ ¬(nt , x)))

∧ ((nt , x)→ Kx
NT (¬(nt , y) ∧ ¬(pt , u)))) ,

where u, v are variables of PT , x, y are variables of NT , the atomic proposition pt holds in

the template states in which the template prioritised train is in the tunnel, and the atomic

proposition nt holds in the template states in which the template normal train is in the tunnel.

We now use the SMR procedure to establish whether or not the train-gate-controller meets the

above specification. To do this, we first observe that PT ≤aes E and NT ≤aes E . Thus, we can

150 Chapter 6. The SMR, SGS and SFE classes of PIIS

g ∈ G(n̄)

g′ ∈ G(c̄)

∼m̄ss ∼m̄ss

a ∈
⋃

(i,r)∈A(c)

Actri

a

(a) Simulation of an action performed by an agent inA(c).

g

g′

∼m̄ss ∼m̄ss

a /∈
⋃

(i,r)∈A(c)

Actri

ε

(b) Simulation of an action performed by an agent
not in A(c).

Figure 6.5: The m-stuttering simulation of a bigger system S(n) by the cutoff system S(c).

use the cutoff function to calculate a cutoff:

c = cutoff _SGS (STGC , (2 , 2)) = (2 , 2).

Therefore, we need to check whether or not STGC ((2, 2)) |= φTGC [trivial]. This check, if

mechanised on a standard checker, would return true thereby establishing the correctness of

the protocol irrespectively of the number of agents present.

Note that the cutoff identified by SMR is smaller than the one identified by PIIS. Generally,

PIIS makes no guarantees on the size of the cutoff, whereas SMR is bound to consider the

minimal cutoff.

6.3.4 Proof of soundness

Theorem 6.2. Let S = (T , E ,V) ∈ SGS be a PIIS. Let ∀vφ(v) be an m-indexed formula. If

T ≤aes E , then SGS(S,∀vφ(v)) returns true iff S |= ∀vφ(v).

To prove this result we firstly observe that by the definition of the PMCP and Theorem 3.1, it

suffices to show that if T ≤aes E , then : (i) the cutoff system S(c) m-stuttering simulates every

bigger system; (ii) every bigger system m-stuttering simulates S(c). We first show the former.

6.3. Verifying SGS systems 151

Part A: The cutoff system m-stuttering simulates every bigger system

Consider an arbitrarily big system S(n) with n ≥ c, where S(c) is the cutoff system. To simulate

an action performed by the agents in A(c) in S(n), S(c) performs the same action. To simulate

an action performed by an agent not in A(c) in S(n), S(c) performs the null action. Similarly

to the simulation defined in Lemma 6.2 for SMR systems, the latter does not block potential

synchronisations of the environment with the agents in A(c) at a later a point. To see this,

note that a sequence of actions that are not admitted in the repertoire of the agents in A(c)

happens only in a GS -free section. Thus, if, for example, g1a1g2 . . . ax−1gx is a GS-free section

in S(n), where a1, ax−1 ∈
⋃

(i,j)∈A(c)AE
j
i and a2, . . . , ax−2 /∈

⋃
(i,j)∈A(c)Act

j
i , then both g2 and

gx−1 satisfy the environment loop condition. Therefore, the state of the environment in g2 is

the same as its state in gx−1. Intuitively, whenever an agent not in A(c) in S(n) takes the lock

on a resource via synchronising with the environment, it has to release the resource via the

occurrence of an environment loop before an agent in A(c) can take the lock on a resource.

Figure 6.5 shows the m-stuttering simulation between S(n) and S(c).

Lemma 6.5. Let S = (T , E ,V) ∈ SGS be a PIIS of k roles with T ≤aes E . Let m ∈ Nk. Then,

S(n) ≤mss S(c) for all n ≥ c, where c = cutoff _SGS (S,m).

Proof. Let n ≥ c be arbitrary. We show that S(n) ≤mss S(c). Define ∼mss= R1 ∩ R2 ⊆

G(n)× G(c) as follows:

(g, g′) ∈ R1 iff lsri (g) = lsri (g
′), for (i, r) ∈ A(c)

(g, g′) ∈ R2 iff g →X∗ g
1 →a g

2 implies that lsE(g1) = lsE(g′), where

a ∈
⋃

(i,r)∈A(c)

AE r
i ∪GS and X =

⋃
(i ,r)∈A(c)

Ar
i ∪

⋃
(i ,r)/∈A(c)

Actr
i

We show that ∼mss is an m-stuttering simulation relation between S(n) and S(c).

Clearly, (ι(n), ι(c)) ∈ R1. To show that (ι(n), ι(c)) ∈ R2, suppose that ι(n) →X∗ g
1 →a g

2,

where a ∈
⋃

(i,r)∈A(c) AE r
i ∪ GS and X =

⋃
(i,r)∈A(c)A

r
i ∪

⋃
(i,r)/∈A(c)Act

r
i . We have to show

that lsE(g1) = lsE(ι(c)). If the path ι(n), . . . , g1 consists only of asynchronous actions, then the

case follows trivially. Otherwise, there must be an agent-environment action in ι(n), . . . , g1.

152 Chapter 6. The SMR, SGS and SFE classes of PIIS

In this case, we have ELC(g1). By Lemma 6.4, ι(n), . . . , g1 is an environment loop. So,

as lsE(ι(n)) = lsE(ι(c)), lsE(g1) = lsE(ι(c)). Therefore, (ι(n), ι(c)) ∈ R2, and therefore,

ι(n) ∼mss ι(c).

Let g ∼mss g′ for an arbitrary pair of global states in G(n) × G(c). We show the simulation

requirements (i) and (iii). Requirement (i) follows by the definition of R1. To show require-

ment (iii), let π ∈ Π(g). Define a path π′ ∈ Π(g′) as π′ = π′(1)π′(1, Act)π′(2, Act) . . ., where

π′(x,Act) is defined for each x ≥ 1 as follows:

• π′(x,Act) = π(x,Act) if π(x,Act) ∈
⋃

(i,r)∈A(c)Act
r
i ;

• otherwise, π′(x,Act) = ε.

Partition π and π′ into singleton blocks. We use induction on the length of π to show that: (i)

π′ is a valid path; (ii) π(y) ∼mss π′(y) for each y ≥ 1. The base step for π of length 1 follows

trivially. For the inductive step, assume that [x − 1]π′ ∈ Π(g′) and π(y) ∼mss π′(y) for each y

with 1 ≤ y ≤ x− 1. We show that [x]π′ ∈ Π(g′) and π(x) ∼mss π′(x). The latter follows by the

same argument used to show earlier that ι(n) ∼mss ι(c). To establish the former, we consider

cases on the type of the action π′(x− 1, Act). The case where π′(x− 1, Act) is the ε action, or

an asynchronous action follows trivially. Assume that π′(x − 1, Act) ∈
⋃

(i,r)∈A(c) AE r
i ∪ GS .

We have to show that the action is enabled by the protocol of the agents and the protocol of

the environment. The former is clear by the definition of R1. In the following we show the

latter.

Define an integer d as follows. If there is no global-synchronous action in [x− 1]π, then d = 1.

Otherwise, d = d′ + 1, where d′ is the largest integer with 1 ≤ d′ ≤ x − 1 that satisfies

π(d′, Act) ∈ GS . By definition of d, π(d), . . . , π(x− 1) is a GS -free section. We have two cases.

1. π(d), . . . , π(x− 1) contains an action in
⋃

(i,r)∈A(c) AE r
i . In this case, let z be the greatest

integer with d ≤ z < x−1 such that π(z,Act) ∈
⋃

(i,r)∈A(c) AE r
i . We show that lsE(π(z+

1)) = lsE(π(x − 1)). The claim follows trivially when π(z + 1), . . . , π(x − 1) does not

contain an agent-environment action. For the case where π(z + 1), . . . , π(x− 1) contains

an agent-environment action, we have that ELC(π(x − 1)). Thus, by Lemma 6.4, we

6.3. Verifying SGS systems 153

g ∈ G(c̄)

g′ ∈ G(n̄)

∼m̄ss ∼m̄ss

a ∈
⋃

(i,r)∈A(c)

Ari ∪AE r
i

a

(a) Simulation of asynchronous and agent-environment actions.

g ∈ G(c̄)

g′ ∈ G(n̄)

w′

tls
c̄(1)+1
1 (w′) = tls1

1(g)

z′

tls
n̄(k)
k (z′) = tls1

k(g)

∼m̄ss

a ∈ GS

(
A
c̄(1)+1
1 ∪AE

c̄(1)+1
1

)
∗

(
A
n̄(k)
k ∪AE

n̄(k)
k

)
∗

∼m̄ss ∼m̄ss
∼m̄ss

a

∼m̄ss

∼m̄ss

(b) Simulation of global-synchronous actions.

Figure 6.6: the m-stuttering simulation of the cutoff system S(c) by a bigger system S(n).

obtain lsE(π(z+1)) = lsE(π(x−1)). By consrtuction of π′, lsE(π(z+1)) = lsE(π′(z+1))

and lsE(π′(z + 1)) = lsE(π′(x − 1)). Therefore, lsE(π′(x − 1)) = lsE(π(x − 1)). Hence,

π′(x− 1, Act) ∈ PE(π′(x− 1)).

2. π(d), . . . , π(x − 1) does not contain an action in
⋃

(i,r)∈A(c) AE r
i . By the inductive hy-

pothesis, (π(d), π′(d)) ∈ R2. Therefore, π(d) →X∗ π(x − 1) →a π(x) for some a ∈⋃
(i,r)∈A(c) AE r

i ∪GS . Consequently, lsE(π(x− 1)) = lsE(π′(d)). Therefore, by construc-

tion of π′, lsE(π(x− 1)) = lsE(π′(x− 1)). It follows that π(x− 1, Act) ∈ PE(π′(x− 1)).

Consequently, π′ is a valid path, and π(y) ∼mss π′(y) for each y ≥ 1. Therefore, ∼mss satisfies

simulation requirement (iii). As (g, g′) was arbitrary, S(n) ≤mss S(c) as required.

We have thus shown that the cutoff system m-stuttering simulates every bigger system. We

conclude the proof for Theorem 6.2 by showing that every bigger systemm-stuttering simulates

the cutoff system.

Part B: Every bigger system m-stuttering simulates the cutoff system

Figure 6.6 shows the m-stuttering simulation between the cutoff system S(c) and a bigger

system S(n). To simulate an asynchronous or an agent-environment action of S(c), S(n)

154 Chapter 6. The SMR, SGS and SFE classes of PIIS

performs the same action. Consider a global-synchronous action performed in S(c). Clearly,

every agent in S(c) is at a state enabling the global-synchronous action. S(n) simulates a

global-synchronous action as follows. One by one, every agent (i, j) ∈ A(n) \ A(c) in S(n)

mimicks agent (i, 1) by performing the same sequence of actions, thereby reaching the local

state of agent (i, 1) in which the global-synchronous action is enabled. Then, S(n) performs the

global-synchronous action. The following lemma formally defines this simulation and shows it

to be an m-stuttering simulation.

Lemma 6.6. Let S = (T , E ,V) ∈ SGS be a PIIS of k roles with T ≤aes E . Let m ∈ Nk. Then,

S(c) ≤mss S(n) for all n ≥ c, where c = cutoff _SGS (S,m).

Proof. Let n ≥ c. Assume an integer i with 1 ≤ i ≤ k. Define n′ to be a k-tuple of integers

such that: n′(i) = n(i) + 1; n′(j) = n(j) for all j with 1 ≤ j ≤ k and j 6= i. We show that

S(n) ≤mss S(n′). That is, we prove that the system obtained by adding one concrete agent

(from an arbitrary template) to S(n) m-stuttering simulates S(n). The inductive application of

the latter shows the main claim of the lemma.

Let r = n′(i). The simulation relation ∼mss= R1 ∩ R2 ∩ R3 ⊆ G(n) × G(n′) is defined by the

following.

(g, g′) ∈ R1 iff lsqj(g) = lsqj(g
′) for (j, q) ∈ A(n)

The above ensures that the local state of each agent in S(n) is equal to its local state in a related

global state in S(n′). The relations R2 and R3 specify the local state of the environment and

the local state of agent (i, r) in related global states. Specifically, R2 and R3 are defined to

induce a mimicking behaviour on agent (i, r) in S(n′) w.r.t agent (i, 1) in S(n).

(g, g′) ∈ R2 iff g →X∗ g
1 →GS g

2 implies that g′ →Y ∗ g
′1,where

X =
⋃

(j,q)∈A(n)

Aqj ∪AE q
j ,Y = Ar

i ∪AE r
i , tls

r
i (g ′1) = tls1

i (g1), and lsE (g ′1) = lsE (g1)

If (g, g′) ∈ R2 and a state g1 is reachable from g at which a GS action is enabled, then agent

(i, r) in S(n′) is able to change its local state to the local state of agent (i, 1) in S(n) via

asynchronous and agent-environment transitions. Thus, whenever a GS-transition is taken in

S(n), agent (i, r) is able to move to a local state at which the GS action is enabled. Note

6.3. Verifying SGS systems 155

that (R1 ∩ R2)-related states may disagree on the environment’s local state. Because of this,

given an arbitrary pair of (R1 ∩R2)-related states, S(n′) may not be able to simulate S(n). To

circumvent this, we define R3 to ensure that whenever (R1∩R2)-related states disagree on the

environment’s state, agent (i, r) can cause the environment to appropriately change its state.

(g, g′) ∈ R3 iff lsE(g) 6= lsE(g′) implies that g′ →Y ∗ g
′1,where

Y = Ari ∪AE r
i , tls

r
i (g ′1) = tls1

i (g), and lsE (g ′1) = lsE (g)

We show that ∼mss is an m-stuttering simulation relation between S(n) and S(n′). To do this,

we first show that (ι(n), ι(n′)) ∈∼mss. It is obvious that (ι(n), ι(n′)) ∈ R1 ∩ R3. To show that

(ι(n), ι(n′)) ∈ R2, suppose that ι(n) →X∗ g
1 →GS g2. We have to show that ι(n′) →Y ∗ g

′1,

where tlsri (g
′1) = tls1

i (g
1) and lsE(g′1) = lsE(g1). Let θ be the sequence of actions of agent

(i, 1) in the path π = ι(n), . . . , g1. Define θ′ to be the sequence θ, but with each action indexed

with r instead of 1. Let π′ = ι(n′)◦θ′ be a path in S(n′). It should be clear that π′ is a valid path

if it consists only of asynchronous actions. If this is not the case, then observe that for every two

successive synchronisations, say in states π(d) and π(d′), of agent (i, 1) with the environment

in π, if there is a different agent that synchronises with the environment in the path from π(d)

to π(d′), then the local state of the environment is the same in π(d) and π(d′). This follows

by Lemma 6.4 which gives ELC(π(d)) and ELC(π(d′)). So, the environment allows for the

actions in θ′ to be performed. It follows that ι(n′) →Y ∗ π
′[], where tlsri (π

′[]) = tls1
i (g

1) and

lsE(π′[]) = lsE(g1).

Now assume an arbitrary pair (g, g′) ∈ G(n) × G(n′) of global states such that g ∼mss g′. We

show the simulation requirements (i) and (iii). Requirement (i) follows by the definition of R1.

Consider requirement (iii) and a path π ∈ Π(g). We construct a path π′ ∈ Π(g′) as required by

the m-stuttering-simulation. The construction is inductive on the length of π. Assume that, for

a prefix [x − 1]π, we have already constructed a prefix [x′ − 1]π′, a partition B1, . . . , By−1 of

the states in [x− 1]π, and a partition B′1, . . . , B
′
y−1 of the states in [x′− 1]π′ into corresponding

blocks. Let π(d), . . . , π(x − 1) be the maximal GS -free section that is a suffix of [x − 1]π. We

now define the next blocks By and B′y. We have two cases depending on the equality of the

environment’s local state in π(x− 1) and π′(x′ − 1).

156 Chapter 6. The SMR, SGS and SFE classes of PIIS

1. lsE(π(x − 1)) = lsE(π′(x′ − 1)). If π(x − 1, Act) ∈ X, then define By = π(x) and

B′y = π′(x′), where π′(x′ − 1) →π(x−1,Act) π
′(x′). It is obvious that the latter is a valid

transition and that π(x) ∼mss π′(x′).

Otherwise, assume that π(x − 1, Act) ∈ GS . By (π(x − 1), π′(x′ − 1)) ∈ R2, we have

that π′(x′ − 1) →Y ∗ π
′(x′ + d), where d ≥ 0, tlsri (π

′(x′ + d)) = tls1
i (π(x − 1)) and

lsE(π′(x′ + d)) = lsE(π(x− 1)). Therefore, π(x− 1, Act) is enabled at π′(x′ + d). Extend

B′y−1 to B′y−1 ◦ π′(x′), . . . , π′(x′ + d). Define By = π(x) and B′y = π′(x′ + d + 1), where

π′(x′+d)→π(x−1,Act) π
′(x′+d+ 1). We get that π(x−1) is ∼mss-related to every state in

B′y−1. Additionally, (π(x), π′(x′+d+ 1)) ∈ R1∩R3. Moreover, the argument used earlier

to show that (ι(n), ι(n′)) ∈ R2 can be used here to show that (π(x), π′(x′ + d+ 1)) ∈ R2.

Hence, π(x) ∼mss π′(x′ + d+ 1).

2. lsE(π(x− 1)) 6= lsE(π′(x′ − 1)). In this case, from (π(x− 1), π′(x′ − 1)) ∈ R3, it follows

that π′(x′ − 1) →Y ∗ π
′(x′ + d), where d ≥ 0, tlsri (π

′(x′ + d)) = tls1
i (π(x − 1)) and

lsE(π′(x′ + d)) = lsE(π(x− 1)). Therefore, π(x− 1, Act) is enabled in π′(x′ + d). Extend

B′y−1 to B′y−1 ◦ π(x′), . . . , π′(x′ + d). Define By = π(x) and B′y = π′(x′ + d + 1), where

π′(x′+d)→π(x−1,Act) π
′(x′+d+ 1). We get that π(x−1) is ∼mss-related to every state in

B′y−1. Additionally, (π(x), π′(x′+d+ 1)) ∈ R1∩R3. Moreover, the argument used earlier

to show that (ι(n), ι(n′)) ∈ R2 can be used here to show that (π(x), π′(x′ + d+ 1)) ∈ R2.

Hence, π(x) ∼mss π′(x′ + d+ 1).

Having shown simulation requirements (i) and (iii) for an arbitrary pair of global states, it

follows that S(n) ≤mss S(n′). By the inductive application of the latter and by transitivity of

≤mss, S(c) ≤mss S(n).

Corollary 6.2. Let S = (T , E ,V) ∈ SGS be a PIIS of k roles with T ≤aes E . Let ∀vφ(v)

be an m-indexed formula . Then, S(c) |= ∀vφ(v) iff ∀n ≥ c.S(n) |= ∀vφ(v), where c =

cutofff _SGS (S,m).

Proof. Let n ≥ c be arbitrary. By Theorem 3.1 it suffices to show that S(n) ≤mss S(c) and

S(c) ≤mss S(n). The former is given by Lemma 6.5. The latter is given by Lemma 6.6.

6.4. Verifying SFE Systems 157

This concludes the proof of Theorem 6.2. In contrast with the SMR class where cutoffs depend

on the cardinality of the action dependency sets, Corollary 6.2 provides a methodology for

solving the PMCP by giving the conditions under which the problem can be solved by checking

only the cutoff system. This clearly has considerable advantages in applications as section 6.3.3

demonstrates.

6.4 Verifying SFE Systems

We finally study the SFE class of systems defined on asynchronous, role-synchronous, and

global-synchronous actions. In contrast with SMR and SGS, the existence of cutoffs in the

SFE class does not depend on the existence of an agent-environment simulation between the

agent and environment templates. In particular, we show that a cutoff exists for any given

system and any given specification. This enables us to define a sound and complete model

checking procedure. We begin with the definition of the model checking procedure which we

exemplify it on the autonomous robot scenario. We then show it to be sound.

6.4.1 The SFE procedure

Algorithm 5 Parameterised model checking procedure for SFE systems.
1: procedure SFE(S,∀v̄φ(v̄))
2: c̄ = cutoff _SFE (S, m̄);
3: if S(c̄) |= φ[trivial] then
4: return true;
5: else
6: return false;
7: end if
8: end procedure

The model checking procedure for SFE systems is defined by Algorithm 5. Given a PIIS

S ∈ SFE and an m-indexed formula ∀vφ(v), the procedure calculates the cutoff for the given

system and specification. The cutoff function cutoff _SFE maps a PIIS S and a tuple m of nat-

ural numbers into a tuple c of natural numbers that corresponds to the cutoff for m-indexed

formulae. Identically to cutoff _SGS and differently from cutoff _SMR, cutoff _SFE depends

on the system under analysis only in terms of m.

158 Chapter 6. The SMR, SGS and SFE classes of PIIS

Definition 6.8 (Cutoff function for SFE systems). The cutoff function cutoff _SFE is defined for

SFE systems as follows.

cutoff _SFE (S,m) = (max(1 ,m(1)), . . . ,max(1 ,m(k))) ,

for any S ∈ SFE with k ≥ 1 roles and any m ∈ Nk.

Following the cutoff calculation, the model checking procedure checks the concrete system

S(c) against the trivial instantiation φ[trivial] of ∀v(φ(v)). If φ[trivial] is satisfied by S(c),

then the procedure returns true, otherwise it returns false. Note that, differently from the

model checking procedures for SMR and SGS systems, the model checking procedure for SFE

systems always produces an output. We show that this output is always correct in section 6.4.3.

First, we compute its value for the autonomous robot example.

6.4.2 Verifying the autonomous robot example

In section 3.2.1 we encoded the autonomous robot example as a PIIS SAR composed of an

agent template TR1 representing robots with access to a sensor, an agent template TR2 rep-

resenting robots with no access to a sensor, and an environment template E representing the

environment. In section 3.3 we expressed the property “whenever a robot halts, it knows that

it is in the goal region" in the following (1, 1)-indexed formula:

φAR = ∀({v},{u})AG((h_1 , v)→ Kv
TR1 ((gr_1 , v)) ∧ (h_2, u)→ Ku

TR2 ((gr_2 , u)))

where v is a variable of TR1 , u is a variable of TR2 , the atomic proposition gr_1 (gr_2 ,

respectively) holds in the template states where the value of the position component of tem-

plate robot 1 (template robot 2, respectively) is in {2, 3, 4}, and the atomic proposition h_1

(h_2, respectively) holds in the template states where the template robot 1 (template robot 2,

respectively) has halted.

We now use the SFE procedure to establish whether or not the autonomous robot meets the

6.4. Verifying SFE Systems 159

above specification. We have that

c = cutoff _SFE (SAR, (1 , 1)) = (1 , 1).

Thus, we need to check whether or not SAR ((1, 1)) |= φAR[trivial]. The latter query can be

tested with a standard model checker; this will return true thereby establishing the correctness

of the protocol irrespectively of the number of robots present.

6.4.3 Proof of soundness

Theorem 6.3. Let S = (T , E ,V) ∈ SFE be a PIIS. Let ∀vφ(v) be an m-indexed formula. Then,

SFE(S,∀vφ(v)) returns true iff S |= ∀vφ(v).

We prove this result by showing that: (i) the cutoff system S(c) m-stuttering simulates ev-

ery bigger system; (ii) every bigger system m-stuttering simulates S(c). Differently from the

corresponding results for the SMR and SGS classes, the absence of agent-environment and

multi-role actions in the SFE class removes the necessity to simulate synchronisations of the

environment on actions that are not admitted by the agents in A(m). Indeed, whenever an

agent not inA(m) synchronises with the environment, all agents of the same role (or all agents

in the system depending on the type of the action) synchronise the environment.

Part A: The cutoff system m-stuttering simulates every bigger system

Consider an arbitrarily big system S(n) with n ≥ c, where S(c) is the cutoff system. Figure 6.7

shows the m-stuttering simulation between S(n) and S(c). To simulate an action performed

by the agents in A(c) in S(n), S(c) performs the same action. Any action performed in S(n)

that is not admitted by an agent in A(c) is bound to be an asynchronous action. As only the

state of the agent performing the action is updated, S(c) simulates these actions by performing

the null action.

Lemma 6.7. Let S = (T , E ,V) ∈ SFE be a PIIS of k roles. Let m ≥ Nk. Then, S(n) ≤mss S(c)

for all n ≥ c, where c = cutoff _SFE (S,m).

160 Chapter 6. The SMR, SGS and SFE classes of PIIS

g ∈ G(n̄)

g′ ∈ G(c̄)

∼m̄ss ∼m̄ss

a ∈
⋃

(i,r)∈A(c)

Actri

a

(a) Simulation of an action performed by an agent inA(c).

g

g′

∼m̄ss ∼m̄ss

a /∈
⋃

(i,r)∈A(c)

Actri

ε

(b) Simulation of an action performed by an agent
not in A(c).

Figure 6.7: The m-stuttering simulation of a bigger system S(n) by the cutoff system S(c).

Proof. Choose an arbitrary n ≥ c. We show that S(n) ≤mss S(c). Define the simulation relation

∼mss⊆ G(n)× G(c) as follows:

(g, g′) ∈∼mss iff lsri (g) = lsri (g
′), for (i, r) ∈ A(c)

We show that ∼mss is an m-stuttering simulation between S(n) and S(c). It is clear that

ι(n) ∼mss ι(c). Let g ∼mss g′ for an arbitrary pair of global states in G(n)× G(c). We show the

simulation requirements (i) and (iii). Requirement (i) follows by the definition of ∼mss. For

simulation requirement (iii), let π ∈ Π(g). Construct a path π′ ∈ Π(g′) as follows: for each

j ≥ 1, π′(j, Act) = π(j, Act) if π(j, Act) ∈
⋃

(i,r)∈A(c)Act
r
i ; otherwise, π′(j, Act) = ε. It can be

checked that π′ is a valid path, and that π(j) ∼mss π′(j), for each j ≥ 1. Thus, partition π and

π′ into singleton blocks. It follows that S(n) ≤mss S(c).

Part B: Every bigger system m-stuttering simulates the cutoff system

Figure 6.8 shows the m-stuttering simulation between S(c) and S(n). An asynchronous action

a of template Ti is simulated by S(c) by means of two cases. If a is not admitted in the

repertoire of agent (i, 1), then S(n) simply performs a. If a is admitted in the repertoire of

agent (i, 1), then, one by one, the agents (i, 1), (i, c(i) + 1), . . . , (i, n(i)) perform a. Thus, for

each role i, every agent in {c(i) + 1, . . . , n(i)}mimics agent (i, 1). S(n) may then simulate role-

synchronous actions and global-synchronous actions by performing the action in question.

Lemma 6.8. Let S = (T , E ,V) ∈ SFE be a PIIS of k role. Let m ∈ Nk. Then, S(c) ≤mss S(n),

where c = cutoff _SFE (S,m).

6.4. Verifying SFE Systems 161

g ∈ G(c̄)

g′ ∈ G(n̄)

∼m̄ss ∼m̄ss

a ∈
⋃

1≤i≤k,2≤r≤c̄(i)
Ari

a

(a) Simulation of asynchronous actions of agents with in-
dex different than 1.

g

g′

∼m̄ss ∼m̄ss

a ∈
⋃

1≤i≤k
RS i ∪GS

a

(b) Simulation of role-synchronous and global-
synchronous actions.

g

g′

∼m̄ss

(a, 1) ∈ A1
i (1 ≤ i ≤ k)

(a, c̄(i) + 1) (a, n̄(i))

∼m̄ss

(c) Simulation of asynchronous actions of agents with index equal to 1.

Figure 6.8: The m-stuttering simulation of the cutoff system S(c) by a bigger system S(n).

Proof. Let n ≥ c. Assume an integer i with 1 ≤ i ≤ k. Define n′ to be a k-tuple of integers

such that: n′(i) = n(i) + 1; n′(j) = n(j) for all j with 1 ≤ j ≤ k and j 6= i. We show that

S(n) ≤mss S(n′). That is, we prove that the system obtained by adding one concrete agent

(from an arbitrary template) to S(n) m-stuttering simulates S(n). The inductive application of

the latter shows the main claim of the lemma.

Assume r = n′(i). Define the simulation relation ∼mss⊆ G(n)× G(n′) as follows:

g ∼mss g′ iff lsqj(g) = lsqj(g
′) for (j, q) ∈ A(n), lsE(g) = lsE(g′), and

g′ →Ari ∗ g
′1, where tlsri (g

′1) = tls1
i (g
′)

If g ∼mss g′, then the local states of the agents in A(n) and the local state of the environment

are the same in g and g′. Additionally, the agent (i, r) in S(n′) is able to change its local state

to the local state of agent (i, 1) in S(n′) via asynchronous transitions. We show that ∼mss is an

m-stuttering simulation between S(n) and S(n′).

The case of ι(n) ∼mss ι(n′) follows trivially. Suppose that g ∼mss g′ for an arbitrary pair of

global states in G(n) × G(n′). We show the simulation requirements (i) and (iii). The former

requirement follows by the definition of ∼mss. For the latter requirement, let π ∈ Π(g). By

162 Chapter 6. The SMR, SGS and SFE classes of PIIS

induction on the length of π, we construct a path π′ ∈ Π(g′) such that: (i) π′ is as required by

the m-stuttering simulation; (ii) tlsri (π
′[]) = tls1

i (π
′[]).

For the base step, g ∼mss g′ gives g′ →Ari ∗ g
′1, where tlsri (g

′1) = tls1
i (g
′). Let π′ be the path

from g′ to g′1. The first blocks B1, B
′
1 are defined as follows: B1 = g, and B′1 is the sequence

of states in π′. Clearly, g is ∼mss-related to every state in π′.

For the inductive step, assume that for a prefix [x − 1]π we have already constructed a prefix

[x′ − 1]π′ such that tlsri (π
′(x′ − 1)) = tls1

i (π
′(x′ − 1)), and a partition of the states in [x − 1]π

and [x′ − 1]π′ into corresponding blocks. We now define the next blocks Bx and B′x. There are

two cases.

1. π(x−1, Act) /∈ A1
i . DefineBx = π(x) andB′x = π′(x′), where π′(x′−1)→π(x−1,Act) π

′(x′).

The inductive hypothesis gives π(x−1) ∼mss π′(x′−1) and tlsri (π
′(x′−1)) = tls1

i (π
′(x′−

1)). Therefore, π′(x′ − 1) →π(x−1,Act) π
′(x′) is a valid transition, π(x) ∼mss π′(x′), and

tlsri (π
′(x′)) = tls1

i (π(x)).

2. π(x − 1, Act) ∈ A1
i . Let a be the template action from which π(x − 1, Act) has been

instantiated. Define Bx = π(x) and B′x = π′(x′)π′(x′ + 1), where π′(x′ − 1) →(a,1)

π′(x′) →(a,r) π
′(x′ + 1). The inductive hypothesis gives π(x − 1) ∼mss π′(x′ − 1) and

tlsri (π
′(x′ − 1)) = tls1

i (π
′(x′ − 1)). Therefore, π′(x′ − 1) →(a,1) π

′(x′) →(a,r) π
′(x′ + 1)

are valid transitions, π(x) ∼mss π′(x′), π(x) ∼mss π′(x′ + 1), and tlsri (π
′(x′ + 1)) =

tls1
i (π
′(x′)).

Simulation requirement (iii) is therefore satisfied. It follows that S(n) ≤mss S(n′). By the

inductive application of the latter and by transitivity of ≤mss, we obtain that S(c) ≤mss S(n).

Corollary 6.3. Let S = (T , E ,V) ∈ SFE be a PIIS of k roles. Let ∀vφ(v) be an m-indexed formula.

Then, S(c) |= ∀vφ(v) iff ∀n ≥ c.S(n) |= ∀vφ(v) , where c = cutoff _SFE (S,m).

Proof. Let n ≥ c be arbitrary. By Theorem 3.1 it suffices to show that S(n) ≤mss S(c) and

S(c) ≤mss S(n). The former is given by by Lemma 6.7. The latter is given by Lemma 6.8.

6.5. Conclusions 163

Semantics ∼aes Cutoff Soundness Completeness #Systems to check

SMR Yes (max(1, m̄.i+ |Di|))1≤i≤|T | Yes No
∏

1≤i≤k (c̄(i)− m̄(i) + 1)

SGS Yes (max(1, m̄.i))1≤i≤|T | Yes No 1
SFE No (max(1, m̄.i))1≤i≤|T | Yes Yes 1

Table 6.1: Comparison of the SMR, SGS, and SFE classes.

This concludes the proof of Theorem 6.3. Corollary 6.3 gives a methodology for solving the

PMCP by model checking the cutoff system. Differently from Corollary 6.1 and Corollary 6.2,

where certain conditions are assumed, by means of Corollary 6.3 we always solve the PMCP

for any given system and specification. In other words, while SMR and SGS do not provide an

answer to the PMCP in the absence of an agent-environment simulation, SFE always provides

a solution. Therefore, the PMCP for the SFE class of PIIS is decidable.

Corollary 6.4. The parameterised model checking problem for the SFE class of PIIS is decidable.

6.5 Conclusions

In this chapter we developed a methodology to solve the parameterised model checking prob-

lem for a number of noteworthy classes of PIIS. As we showed, when a cutoff can be deter-

mined, the parameterised model checking problem can be solved via standard model checking

by verifying all system instances up to the cutoff.

Table 6.1 summarises the theoretical results obtained. Since the parameterised model checking

problem is in general undecidable, no complete results can be established in general. In sec-

tion 6.2 we presented an incomplete technique for the SMR class. In section 6.3 we analysed

an incomplete technique for the SGS class. In section 6.4 we studied a complete technique for

the SFE class. Incompleteness for the SMR and the SGS classes follows in the absence of an

agent-environment simulation between the templates. By contrast, we can always assess the

correctness of a specification on SFE systems. However, this comes with considerable limita-

tions to the range of systems the technique can be applied to. For instance, the result cannot

be applied to any scenario where the agents evolve in any other way other than lock-step

evolution. Other systems may be modelled as SMR or SGS systems. SMR is suitable for sce-

narios requiring refined interactions between agents of different roles, whereas SGS is suitable

164 Chapter 6. The SMR, SGS and SFE classes of PIIS

for simulating synchronous semantics. In general, the technique for the former class returns

larger cutoffs than those for the latter class. Both techniques are limited by the requirement of

an agent-environment simulation between the agent and environment templates. This makes

it difficult to model certain applications of interest, such as cache coherence protocols [BM04].

Chapter 7

MCMAS-P: A model checker for the

verification of unbounded multiagent

systems

In this chapter we introduce MCMAS-P, an experimental model checking toolkit that imple-

ments the techniques presented in chapters 5 and 6. MCMAS-P is implemented in C++ and

relies on the BDD-based checker MCMAS [LQR09, LQR15] for any check on the concrete mod-

els. In its current version, MCMAS-P supports indexed ACTLK\X formulae.

7.1 Implementation details

MCMAS-P takes PISPL descriptions as input. PISLP extends ISPL, the MCMAS input language,

by closely following the framework of PIIS described in section 3.2. In particular, a PISPL

file provides the agent and environment templates, their local states, their asynchronous,

agent-environment, role-synchronous, global synchronous, and multi-role actions, their pro-

tocols, and their evolution functions. Figure 7.1 shows the PISPL encoding of the Train-Gate-

Controller.

Figure 7.2 presents the key steps carried out by the checker. Given a PIIS S = (T , E ,V)

165

166Chapter 7. MCMAS-P: A model checker for the verification of unbounded multiagent systems

Template Environment
Vars :

s t a t e : {PG ,NG,R} ;
end Vars
I n i t S t a t e

s t a t e = PG;
end I n i t S t a t e
Pro toco l :

s t a t e = PG : { n_lock , p_enter } ;
s t a t e = NG : { p_lock , n_enter } ;
s t a t e = R : { p_ex i t , n_ex i t } ;

end Pro toco l
Evo lut ion :

s t a t e = PG i f Act ion = p_lock
or Act ion = p_ex i t ;

s t a t e = NG i f Act ion = n_lock
or Act ion = n_ex i t ;

s t a t e = R i f Act ion = p_enter
or Act ion = n_enter ;

end Evolut ion
end Template

Template PTrain
Vars :

s t a t e : {W, T , A , TL } ;
end Vars
I n i t S t a t e

s t a t e = W;
end I n i t S t a t e
Ac t ions

Asynchronous = {p_approach } ;
AgentEnvironment = { p_enter , p_ex i t } ;

GlobalSynchronous = { p_lock , n_lock } ;
end Act ions
Pro toco l :

s t a t e = W : { p_enter } ;
s t a t e = T : { p_ex i t } ;

s t a t e = A : {p_approach , n_lock } ;
s t a t e = TL : { p_lock } ;

end Pro toco l
Evo lut ion

s t a t e = W i f Act ion = p_approach ;
s t a t e = T i f Act ion = p_enter ;
s t a t e = A i f Act ion = p_ex i t

or Act ion = p_lock ;
s t a t e = TL i f Act ion = n_lock ;

end Evolut ion
end Template

Template NTrain . . . end Template

Eva luat ion
pt i f PTrain . s t a t e = T ;
nt i f NTrain . s t a t e = T ;

end Eva luat ion

Formulae
(PTrain :{ u , v } , Train :{ x , y })
AG(
pt (u) −> K(PTrain (u) , ! pt (v) and ! nt (x))
and
nt (x) −> K(NTrain (x) , ! nt (y) and ! pt (u))
) ;

end Formulae

Figure 7.1: The PISPL encoding of the Train-Gate-Controller.

specified in PISPL and a set Λ of m-indexed ACTLK\X formulae, the steps 2-6 are performed

automatically by the checker. In the following, we describe these steps.

• In step 2, the PISPL input file is parsed. The declarations of the agent templates and

the environment template are stored in temporary structures to be used in the following

steps.

• In step 3, the checker determines the appropriate procedure to be invoked. The SFE pro-

cedure is used to verify the subclass SFE of PIIS, generated by agent templates defined

only on asynchronous and global-synchronous actions. The SGS procedure is used to ver-

ify the subclass SGS of PIIS, generated by agent templates defined only on asynchronous,

agent-environment, and global-synchronous actions. The SMR procedure is used to verify

the subclass SMR of PIIS, generated by agent templates defined only on asynchronous,

agent-environment, and multi-role actions. Finally, the PIIS procedure can be used to

verify the subclass of PIIS that can always succeed in globally synchronising, as described

7.1. Implementation details 167

1. Specify a PIIS in PISPL

2. Parse the input

3. Determine procedure

4. Compute the cutoff

5. Build concrete system

6. Verify formulas

False in the PIIS True in the PIIS

Repeat up to c̄

Figure 7.2: MCMAS-P architecture.

in chapter 5.

While the SFE procedure implements a complete cutoff technique, the other procedures

implement incomplete cutoff techniques, since they insist on the compliance of certain

conditions by the given PIIS. The condition of agent-environment simulation enforced by

the SGS and SMR techniques is strictly stronger than the condition of gs-simulation en-

forced by the PIIS technique, i.e, every detectable cutoff by the SGS and SMR techniques

is detectable by the PIIS technique. However, the SGS and SMR procedures terminate

after performing a polynomial test whereas the PIIS procedure may never terminate.

Therefore, the checker first invokes the SFE procedure if S ∈ SFE. Otherwise, it per-

forms the agent-environment simulation test if S ∈ SGS or S ∈ SMR. With a successful

simulation test, the SGS and SMR procedures are called, respectively, for the cutoff cal-

culation. Otherwise, if either the agent-environment simulation test is not successful or

S /∈ SGS ∪ SMR, the PIIS procedure is initiated.

• In step 4, MCMAS-P calculates the cutoff c as in Algorithms 2, 3, 4, and 5. In the case

of PIIS, the cutoff is identified by searching for a gs-simulation between a concrete

system and the abstract system. The SMR procedure computes the cutoff from the action

168Chapter 7. MCMAS-P: A model checker for the verification of unbounded multiagent systems

dependency sets and the cardinality of the sets of variables in the specifications to check.

The SGS and SFE techniques calculate the cutoff only in terms of the latter.

• In step 5, the concrete system S(m) is built and encoded symbolically using the structures

obtained in step 2. In step 6, the specification formulae Λ are reduced to their trivial

instantiations Λ[trivial] as in Lemma 3.1. MCMAS is then called to verify S(m) against

Λ[trivial]. These steps are repeated for each concrete system up to the cutoff system S(c).

Following the above calculations the user can conclude whether or not a specification holds

for any number of agents in the system. In the former case, all systems up to the cutoff system

satisfy the specification and MCMAS-P returns true. In the latter case, at least one system up to

the cutoff system does not satisfy the specification and MCMAS-P returns false.

7.1.1 Agent-environment simulation test

Instead of explicitly traversing the template transition relations, the agent-environment simu-

lation test is more efficiently performed by utilising the OBDD representation of the templates.

In particular, the test for an agent-environment simulation between the agent template Ti and

the environment template is performed by checking the system composed of the two templates

against a set of formulae expressing that whenever an AE i action, or a GS action, or an MRi

action is enabled for the agent, the action is also enabled for the environment. This section

describes this procedure.

The procedure is based on the assumption that the agent-environment actions, the global-

synchronous actions, and the multi-role actions are enabled at exactly one state for the envi-

ronment template. This allows us to check for an agent-environment simulation between an

agent template Ti = (Li, ιi, Acti, Pi, ti) and the environment template E = (LE , ιE , ActE , PE , tE)

by model checking the interleaved interpreted system Si against the set of formulae ∆i, where

Si and ∆i are defined as follows.

• Si = (Ti, E , Vi) is the interleaved interpreted system composed of the agent template Ti

and the environment template E . The global states Gi ⊆ Li × LE in Si are assigned

7.1. Implementation details 169

atomic propositions by the valuation function Vi : Li × LE → P(AP), where AP =

{ai, aE | a ∈ AE i∪GS ∪MRi}, defined as ai ∈ Vi((l, lE)) iff a ∈ Pi(l) and aE ∈ Vi((l, lE))

iff a ∈ PE(lE). In other words, a global state g ∈ Gi is labelled with ai (aE , respectively)

if the action a is enabled for the agent template (the environment template, respectively)

at g.

• ∆i = {AG(ai → aE) : a ∈ AE i ∪GS ∪MRi}.

Si satisfies the formulae in ∆i iff there is an agent-environment simulation between Ti and E .

Lemma 7.1. Ti ≤aes E iff ∀δ ∈ ∆i.Si |= δ.

Proof.

⇒ Suppose that Ti ≤aes E . We show that ∀δ ∈ ∆i.Si |= δ. Let δ ∈ ∆i. So, δ = AG(ai →

aE) for some a ∈ AE i ∪ GS ∪ MRi . Let π be an arbitrary path in Si. Suppose that

π(i) |= ai for some i ≥ 1. Since Ti ≤aes E , there is an i′ ≤ i with π(i′) →Ai∗ π(i)

and lsi(π(i′)) ∼aes lsE(π(i′)). Therefore, a ∈ PE(π(i′)), as otherwise we would have

lsi(π(i′)) �aes lsE(π(i′)). So, π(i′) |= aE , and therefore, π(i) |= aE . As i was arbitrary,

π |= AG(ai → aE) follows. As π was arbitrary, Si |= δ. Therefore, ∀δ ∈ ∆i.Si |= δ.

⇐ Suppose that ∀δ ∈ ∆i.Si |= δ. We show that Ti ≤aes E . Let ∼aes= Gi. We show

that ∼aes is an agent-environment simulation between Ti and E . Clearly, ιi ∼aes ιE .

Let g = (l, lE) ∈∼aes be arbitrary and suppose that l 99KAi∗ l
1 99Ka l2 for some a ∈

AE i∪GS∪MRi . We need to show that lE 99Ka l1E for some l1E with (l2, l1E) ∈∼aes. As l1 is

reachable from l through asynchronous actions, there is a global state g1 reachable from

g with lsi(g1) = l1 and lsE(g1) = lE . Since a ∈ P (l1) and Si |= AG(ai → aE), a ∈ PE(lE)

follows. As the action a is enabled at g1, we obtain (l2, l1E) ∈∼aes for l1E = tE(lE , a).

Therefore, Ti ≤aes E as required.

So, T ∼aes E iff Si satisfies the formulae in ∆i, for every agent template Ti. This has consider-

able advantages in applications in terms of efficiency as the following section demonstrates.

170Chapter 7. MCMAS-P: A model checker for the verification of unbounded multiagent systems

Scenario Procedure Cutoff Cutoff (s) Reachable states ACTLK\X(s)

Train-Gate-Controller SGS (2,2) 0 64 0
Alpha algorithm PIIS 3 507 177243 532
Robot foraging SMR (2,3) 0 648 0
Autonomous robot SFE (2,2) 0 15 0
MSI PIIS N/A N/A 108 1
MESI PIIS N/A N/A 173 2
MOESI PIIS N/A N/A 216 6

Table 7.1: Verification results for parameterised model checking.

7.2 Experimental Results

This section reports experimental results obtained on the Train-Gate-Controller (section 3.2.1),

the Alpha algorithm (section 5.3.2), the robot foraging scenario (section 3.2.1), the autonomous

robots example (section 3.2.1), and the MSI, MESI, and MOESI cache coherence protocols [BM04].

The experiments were run on an Intel Core i7 CPU 3.4GHz with 8 GB RAM running Linux ker-

nel version 3.19.4. The results are reported in Table 7.1 when verifying said scenarios against

the following specifications, respectively.

φTGC = ∀({u,v},{x,y})AG
(
(pt , u)→ Ku

ptrain (¬(pt , v) ∧ ¬(nt , x))
)
∧

AG ((nt , x)→ Kx
ntrain (¬(nt , y) ∧ ¬(pt , u)))

φAA = ∀{v}KvGF (con, v))

φRFS = ∀({u},{x})AG ((f, x)→ Ku
TR(f, x))

φAR = ∀({v},{x})AG((h_1 , v)→ Kv
TR1(gr_1 , v) ∧ (h_2, x)→ Kx

TR2(gr_2 , x))

φcache = ∀{i,j}AG((modified , i)→ Ki(invalid , j))

The cutoff detection time is reported in the fourth column, the number of reachable states of

the cutoff model is shown in the fifth column, and the overall time required for the verification

follows in the last column. For each scenario not reporting a cutoff, the corresponding specifi-

cation was satisfied by the abstract model; thus the cutoff identification procedure did not take

place. In these cases, the fifth column indicates the number of reachable states of the abstract

model.

7.2. Experimental Results 171

#Trains #States Time (s) Memory (KiB)

(1,1) 16 0 8774
(10,10) 1.15× 1027 3 10005
(20,20) 2.30× 1013 128 47792
(30,30) 3.57× 1019 1317 60998
(40,40) timeout timeout timeout

Table 7.2: Verification results for traditional model checking.

From the table, we can observe the time required by the PIIS procedure for the cutoff detec-

tion. This almost equals the time required for the whole verification process. This is generally

expected since PIIS identifies a cutoff by building the abstract system which is of exponential

size in the number of variables encoding the templates. In comparison, the table exemplifies

the efficiency of the model checking procedures for the SMR, SGS, and SFE classes. These

experimental results confirm advantages following the theoretical results when protocols can

be expressed by these classes.

Finally, in comparison with the parameterised model checking techniques introduced in this

thesis, Table 7.2 shows the intractability of the problems here considered in traditional model

checking: the time and space requirements grow exponentially in the number of agents to

consider. In our case the base model checker MCMAS could not verify the Train-Gate-Controller

with 80 trains within the timeout of one hour.

Chapter 8

Conclusions

With the deployment of systems based on MAS-architectures there has been a growing interest

in their verification. Considerable progress has been made in model checking MAS against

specifications based on temporal, epistemic, deontic and strategic properties. Open-source

implementations based on efficient symbolic approaches have been put forward and compared.

While this work has proven to be valuable, it is limited to scenarios where the number of

components is known at design time. This is not a realistic assumption in certain MAS where

the number of components cannot be known before deployment. A typical case is robotic

swarms whereby the properties of the swarm need to hold irrespective of how many robots are

present in the system.

8.1 Summary of thesis contributions

In this thesis we developed methodologies to solve the parameterised model checking problem

for MAS in a number of semantical classes. Specifically, we introduced procedures for the

cutoff identification of a given unbounded system. When a cutoff can be determined, the

parameterised model checking problem can be solved by model checking all system instances

up to the cutoff. We showed the procedures to be sound.

Table 8.1 summarises the theoretical results obtained.

172

8.1. Summary of thesis contributions 173

Semantics Cutoff Soundness Completeness #Systems to check

PIS Ṡ(m, td(∀vφ(v) + 1))≤̇sS(c) Yes Yes N/A
PIIS Ŝ(m) ≤gs S(c) Yes No N/A
SMR (max(1,m.i+ |Di|))1≤i≤|T | Yes No

∏
1≤i≤k (c(i)−m(i) + 1)

SGS (max(1,m.i)1≤i≤|T | Yes No 1
SFE (max(1,m.i))1≤i≤|T | Yes Yes 1

Table 8.1: Summary of theoretical results.

In chapter 4 we presented a sound and complete technique for parameterised interpreted

systems. The cutoff detection procedure was based on the identification of a concrete system

that can simulate the pruned computation forest of the abstract model. Soundness of the

technique was assessed by means of cycle-stuttering simulations preserving the satisfaction of

formulae up to a level of temporal depth. Upper bounds on the size of cutoffs were given from

which the completeness of the procedure followed. The applicability of the procedure was

theoretically showcased on the Beta swarm aggregation algorithm.

In chapter 5 we analysed a sound but incomplete technique for parameterised interleaved

interpreted systems. Since the parameterised model checking problem for PIIS is in general

undecidable, no complete results can be established in general. The cutoff detection procedure

put forward relied on the existence of a gs-simulation between a concrete system and the

abstract system. Intuitively, the condition of a gs-simulation expresses that all the agents

can always succeed to globally synchronise. The application of the procedure on the Alpha

algorithm and on cache coherence protocols illustrated that concrete scenarios often adhere to

this condition.

Given the above procedure is in exponential space, in chapter 6 we identified the SMR, SGS,

and SFE classes of PIIS for which we devised polynomial cutoff detection techniques. In sec-

tion 6.2 we presented an incomplete technique for the SMR class. In section 6.3 we analysed

an incomplete technique for the SGS class. In section 6.4 we studied a complete technique

for the SFE class. Incompleteness for the SMR and the SGS classes follows in the absence

of an agent-environment simulation between the templates, since in this case the techniques

cannot assess the correctness of a given specification. By contrast, we can always assess the

correctness of a specification on SFE systems. This level of confidence, which follows from

the decidability result of Corollary 6.4, comes with considerable limitations to the range of sys-

174 Chapter 8. Conclusions

tems the technique can be applied to. For instance, the result cannot be applied to any scenario

where the agents evolve in any other way other than lock-step evolution. Other systems may be

modelled as SMR or SGS systems. SMR is suitable for scenarios requiring refined interactions

between agents of different roles, whereas SGS is suitable for simulating synchronous seman-

tics. In general, the technique for the former class generally returns larger cutoffs than those

for the latter class. Both techniques are limited by the requirement of an agent-environment

simulation between the agent and environment templates. This makes it difficult to model

certain applications of interest, such as cache coherence protocols.

The experiments obtained on the experimental model checker MCMAS-P that we introduced in

chapter 7 confirm the correctness and attractiveness of the approach taken in this thesis.

8.2 Comparison with related work

We are not aware of previous work addressing parameterised verification for MAS. Traditional

research in the verification of MAS involves the application of model checking techniques to

systems with a well-defined number of participants. Therefore, these techniques can be used

to verify certain instances of a given UMAS. However, since their time and space requirements

are exponential in the number of agents, systems over a certain size are intractable to model

check. As a result, no conclusions can be drawn on the correctness of the UMAS. Several

existing approaches in model checking MAS were discussed in section 2.4.

Closer to the contribution presented in this thesis are studies on the parameterised verifica-

tion of reactive systems. These were discussed in section 2.5. Differently from these works,

where formalisms for reactive systems are considered, this thesis targeted the parameterised

model checking problem for interpreted systems. As a result, the semantics presented in this

thesis lead in general to different expressivity from the ones put forward for reactive sys-

tems. Still, combinations of the synchronisation primitives we introduced can simulate systems

with broadcast labels [EN98], pairwise rendezvous labels [GS92], conjunctive and disjunctive

guards [EK00]. However, even these cited research lines cater for temporal logics and no

attempt is made to verify epistemic specifications.

8.3. Future work 175

Lastly, we note that the methodologies developed in this thesis are based on cutoffs. Existing

cutoff techniques are not easily transferable to the context of this thesis. This is because of the

branching nature of the knowledge modality that requires stronger notions of simulations than

the ones used in reactive systems. Some notions of stuttering simulations previously defined in

the context of CTL* [EN95, AJKR14] can be extended to epistemic logic. However, even these

cited works cater for particular network topologies only and no attempt is made to identify the

class of systems for which parameterised verification is decidable.

8.3 Future work

The verification of unbounded multiagent systems is an important and timely topic. This

section identifies some possible directions of future work.

8.3.1 Dynamic UMAS and templates over unbounded variables

This thesis was concerned with the parameterised model checking problem defined as the

problem of establishing whether a specification holds on a system comprised of an arbitrary

number of agents. Often, however, in real-world scenarios, e.g., swarm robotics, agents may

dynamically join or leave the system at runtime. This setting can be thought of as an adver-

sarial setting where an adversary can modify the system at any time by adding or removing

agents [NT15]. Clearly, a parameterised model checking technique, assessing the correctness

of a protocol for any number of agents, cannot guarantee the correctness of a dynamic proto-

col. For instance, consider the Train-Gate-Controller (section 3.2.1) and a train that is removed

from the system while the train is in the tunnel. Then, no train can ever enter the tunnel, since

the controller (modelled by the environment) never switches the color of the traffic lights to

green. Ideas from recent research in network protocols could be adapted to tackle this ver-

ification challenge. In particular, [NT15] argues that the coupling between participants in a

dynamic system is likely to be weak, as is the case in the context of PIS and PIIS, since global

invariants should be present irrespective of the adversarial actions. In such settings composi-

176 Chapter 8. Conclusions

tional reasoning 1 has been shown effective, as also illustrated by [NT15] in verifying dynamic

network protocols.

We also believe the techniques put forward in this thesis can serve as an ideal stepping stone

to verify UMAS generated from templates over unbounded variables. While the templates here

considered are finite structures, several protocols of interest, e.g., security [BCL09] and con-

sensus [DLS88] protocols, include variables over unbounded domains. There are, therefore,

two forms of unboundedness in these systems; one is the domain of the variables associated

with each participant; the other is the number of participants. The associated parameterised

model checking problem can be solved in two steps. The first step is the development of data

abstraction techniques (see section 2.4.3), thereby abstracting the unbounded variables, and

therefore obtaining finite-state system participants. The second step is the development of

parameterised model checking techniques on the data abstracted systems.

8.3.2 Parameterised synthesis

Model checking is nowadays a mature approach to verification with increasingly sophisticated

algorithms being applied to industrial settings. In these settings model checking tools are es-

sentially used as debugging tools in that significant resources are already accommodated in

developing a possibly erroneous program before model checking commences. To ameliorate

costs concomitant with erroneous designs, program synthesis has been put forward. The pro-

gram synthesis problem concerns the automatic generation of a program that is guaranteed to

be correct w.r.t. a given specification. The problem is typically distinguished between open

and closed systems. Differently from closed systems, in open systems the program interacts

with the environment; a correct program should be able to handle any sequence of actions

performed by the environment. Program synthesis for open systems is therefore naturally seen

as a two-player game between the program and the environment, where the environment

wins if the specification is violated, whereas the program wins if the specification is satisfied.

The interested reader is referred to [MW84, Var96, VDMV98] and references therein for more

details.
1Compositional reasoning techniques analyse each component of the system in isolation and infer global prop-

erties about the entire system (see [BCC98] and references therein).

8.3. Future work 177

The parameterised synthesis problem is the synthesis problem for parameterised systems. That

is, given a specification, the parameterised synthesis problem concerns the generation of a

parameterised system that is guaranteed to be correct w.r.t. the specification for any number

of participants in the system. The problem is formalised for token rings in [JB12] where it is

reduced to the synthesis problem with a fixed number of participants; the reduction is based

on the cutoff results established for token rings in [EN95]. Then, bounded synthesis is adapted

from [SF07] to solve the synthesis problem with a fixed number of participants. It is argued

that any parameterised result based on static cutoffs (see section 2.5.2) can similarly be used

to solve the parameterised synthesis problem. This is of particular interest in the context of the

SMR, SGS, and SFE classes of PIIS which enjoy static cutoffs. In particular, in future work we

aim to (i) reduce the parameterised synthesis problem for these classes to one of a bounded

number of agents; and (ii) solve the synthesis problem on the cutoff systems.

8.3.3 Fault-tolerant UMAS

With the development of fault-tolerant MAS architectures [MSBG01, GFB05, KC00], which

allow for a system’s resilience to agents’ faults, fault injection methodologies have been put

forward for their verification. These inject faults on systems with correct behaviour and use

model checking to verify a system’s tolerance to the faults [EL09]. In future work we aim

to devise automated methodologies for the verification of fault-tolerant UMAS. In particular,

we will develop and implement a fault injection mechanism. More specifically, the agents’

behavioural templates will be mutated to adhere a number of possible faults. The mutated

templates will then be composed with the correct ones. Following this, the techniques here

presented will be extended to assess a system’s degree (the number, or the percentage, of

faulty agents) of resilience before a property is violated. For instance, a robot operating a

swarm robotics pattern formation protocol and broadcasting incorrect spatial positions may

initiate the violation of the pattern formation the swarm has established. Finally, a taxonomy

of specifications will be introduced, modelling diagnosability and recovery from faults.

Bibliography

[ACJT96] A. Abdulla, K. Cerans, B. Jonsson, and Y-K. Tsay. General decidability theorems

for infinite-state systems. In Proceedings of 11th Annual IEEE Symbosium on Logic

in Computer Science (LICS96), pages 313–321. IEEE, 1996.

[AdAH+00] R. Alur, L. de Alfaro, T. Henzinger, S. Krishnan, F. Mang, S. Qadeer, S. Rajamani,

and S. Tasiran. MOCHA user manual. Technical report, University of California

at Berkeley, 2000.

[ADHR07] P. Abdulla, G. Delzanno, N. Henda, and A. Rezine. Regular model checking with-

out transducers (on efficient verification of parameterized systems). In Tools and

Algorithms for the Construction and Analysis of Systems, volume 4424 of Lecture

Notes in Computer Science, pages 721–736. Springer, 2007.

[AHH13] P. A. Abdulla, F. Haziza, and L. Holík. All for the price of few. In Proceedings of

the 14th International Conference on Verification, Model Checking, and Abstract In-

terpretation (VMCAI13), volume 7737 of Lecture Notes in Computer Science, pages

476–495. Springer, 2013.

[AHK02] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.

Journal of the ACM, 49(5):672–713, 2002.

[AJ99] P. A. Abdulla and B. Jonsson. On the existence of network invariants for verifying

parameterized systems. In Correct System Design, volume 1710 of Lecture Notes in

Computer Science, pages 180–197. Springer, 1999.

[AJKR14] B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking

of token-passing systems. In Proceedings of the 15th International Conference on

178

BIBLIOGRAPHY 179

Verification, Model Checking, and Abstract Interpretation (VMCAI14), volume 8318

of Lecture Notes in Computer Science, pages 262–281. Springer, 2014.

[AJMd02] P. Abdulla, B. Jonsson, P. Mahata, and J. dâĂŹOrso. Regular tree model checking.

In Computer Aided Verification, pages 555–568. Springer, 2002.

[AK86] K.R. Apt and D. C. Kozen. Limits for automatic verification of finite-state concur-

rent systems. Information Processing Letters, 22(6):307–309, 1986.

[AKR+14] B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model

checking of rendezvous systems. In CONCUR 2014–Concurrency Theory, pages

109–124. Springer, 2014.

[APR+01] T. Arons, A. Pnueli, S. Ruah, Y. Xu, and L. Zuck. Parameterized verification with

automatically computed inductive assertions? In Proceedings of the 23rd Interna-

tional Conference on Computer Aided Verification (CAV11), volume 6806 of Lecture

Notes in Computer Science, pages 221–234. Springer, 2001.

[BAPM83] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta

Informatica, 20(3):207–226, 1983.

[BCC98] Sergey Berezin, Sérgio Campos, and Edmund M Clarke. Compositional reasoning

in model checking. Springer, 1998.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In Proceedings of the 5th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS99), volume 1579 of LNCS,

pages 193–207. Springer-Verlag, 1999.

[BCG88] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke struc-

tures in propositional temporal logic. Theoretical Computer Science, 59(12):115–

131, 1988.

[BCK08] P. Baldan, A. Corradini, and B. KÃűnig. A framework for the verification

of infinite-state graph transformation systems. Information and Computation,

206(7):869 – 907, 2008.

180 BIBLIOGRAPHY

[BCL09] I. Boureanu, M. Cohen, and A. Lomuscio. A compilation method for the veri-

fication of temporal-epistemic properties of cryptographic protocols. Journal of

Applied Non-Classical Logics, 19(4):463–487, 2009.

[BDT99] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence. Oxford University

Press, 1999.

[BFBD13] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a review

from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

[BFVW06] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying multi-agent

programs by model checking. Autonomous Agents and Multi-Agent Systems,

12(2):239–256, 2006.

[BJ+00] A. Bouajjani, , B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In

Computer Aided Verification, Lecture Notes in Computer Science, pages 403–418.

Springer, 2000.

[BLS02] K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized verification of a cache coher-

ence protocol: Safety and liveness. In Verification, Model Checking, and Abstract

Interpretation, Lecture Notes in Computer Science, pages 317–330. Springer,

2002.

[BM04] K. Baukus and R. Meyden. A knowledge based analysis of cache coherence. In

Formal Methods and Software Engineering, pages 99–114. Springer, 2004.

[Bry92] R. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys (CSUR), 24(3):293–318, 1992.

[CDLQ09a] M. Cohen, M. Dam, A. Lomuscio, and H. Qu. A data symmetry reduction tech-

nique for temporal-epistemic logic. In Proceedings of the 7th International Sym-

posium on Automated Technology for Verification and Analysis (ATVA 09), volume

5799 of Lecture Notes in Computer Science, pages 69–83. Springer, 2009.

[CDLQ09b] M. Cohen, M. Dam, A. Lomuscio, and H. Qu. A symmetry reduction technique for

model checking temporal-epistemic logic. In Proceedings of the 21st International

BIBLIOGRAPHY 181

Joint Conference on Artificial Intelligence (IJCAI09), pages 721–726, Pasadena,

USA, 2009.

[CDLR09] M. Cohen, M. Dam, A. Lomuscio, and F. Russo. Abstraction in model checking

multi-agent systems. In Proceedings of the 8th International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS09), pages 945–952. IFAAMAS

Press, 2009.

[CE81] E. M. Clarke and E. Emerson. Design and synthesis of synchronization skeletons

for branching-time temporal logic. In Proceedings of Workshop on Logic of Pro-

grams, volume 131 of LNCS, pages 52–71. Springer-Verlag, 1981.

[CG87] E. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal

logic model checking. In Proceedings of the sixth annual ACM Symposium on Prin-

ciples of distributed computing, pages 294–303. ACM, 1987.

[CGB89] E.M. Clarke, O. Grumberg, and M.C. Browne. Reasoning about networks with

many identical finite state processes. Information and Computation, 81(1):13–31,

1989.

[CGL94] E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstractions. ACM

Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,

Cambridge, Massachusetts, 1999.

[CLMM14] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A model

checker for the verification of strategy logic specifications. In Proceedings of the

26th International Conference on Computer Aided Verification (CAV14), volume

8559 of Lecture Notes in Computer Science, pages 525–532. Springer, 2014.

[CLMM15] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano. Verifying and synthesising

multi-agent systems against one-goal strategy logic specifications. In Proceedings

of the 29th AAAI Conference on Artificial Intelligence (AAAI15), pages 2038–2044.

AAAI Press, 2015.

182 BIBLIOGRAPHY

[CTTV04] E. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decompo-

sition. In Proceedings of the 15th International Conference on Concurrency Theory

(CONCUR04), volume 3170 of Lecture Notes in Computer Science, pages 276–291.

Springer, 2004.

[CTV06] E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized

verification. In Proceeding of the 7th International Conference on Verification, Model

Checking, and Abstract Interpretation (VMCAI06), pages 126–141. Springer, 2006.

[CTV08] E.M. Clarke, M. Talupur, and H. Veith. Proving ptolemy right: The environment

abstraction framework for model checking concurrent systems. In Proceedings

of 14th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS08), volume 4963 of Lecture Notes in Computer Science,

pages 33–47. Springer, 2008.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence

of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[DRB02] G. Delzanno, , J. Raskin, and L. Van Begin. Towards the automated verification

of multithreaded java programs. In Tools and Algorithms for the Construction and

Analysis of Systems, Lecture Notes in Computer Science, pages 173–187. Springer,

2002.

[DSZ10] G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad

hoc networks. In Proceedings of the 21’st International Conference on Concurrency

Theory (CONCUR10), volume 6269 of Lecture Notes in Computer Science, pages

313–327. Springer, 2010.

[DSZ11] G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the pa-

rameterized verification of ad hoc networks. In Foundations of Software Science

and Computational Structures, pages 441–455. Springer, 2011.

[DT98] C. Daws and S. Tripakis. Model checking of real-time reachability properties using

abstractions. In Tools and Algorithms for the Construction and Analysis of Systems,

Lecture Notes in Computer Science, pages 313–329. Springer, 1998.

BIBLIOGRAPHY 183

[DWFZ12] Clare Dixon, Alan FT Winfield, Michael Fisher, and Chengxiu Zeng. Towards

temporal verification of swarm robotic systems. Robotics and Autonomous Systems,

60(11):1429–1441, 2012.

[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.

In Proceedings of the 10th International Symposium on Logic in Computer Science

(LICS99), pages 352–359. IEEE, 1999.

[EK00] E. Emerson and V. Kahlon. Reducing model checking of the many to the

few. In Proceedings of the 17th International Conference on Automated Deduction

(CADE00), volume 1831 of Lecture Notes in Computer Science, pages 236–254.

Springer, 2000.

[EK02] E. A. Emerson and V. Kahlon. Model checking large-scale and parameterized re-

source allocation systems. In Proceedings of the 8th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS08), vol-

ume 2280 of Lecture Notes in Computer Science, pages 251–265. Springer, 2002.

[EK03a] A. Emerson and V. Kahlon. Exact and efficient verification of parameterized cache

coherence protocols. In Correct Hardware Design and Verification Methods, pages

247–262. Springer, 2003.

[EK03b] E.A. Emerson and V. Kahlon. Model checking guarded protocols. In Proceedings

of the 14th International Symposium on Logic in Computer Science (LICS03), pages

361–370. IEEE, 2003.

[EK04] A. Emerson and V. Kahlon. Parameterized model checking of ring-based message

passing systems. In Computer Science Logic, pages 325–339. Springer, 2004.

[EL09] J. Ezekiel and A. Lomuscio. Combining fault injection and model checking to ver-

ify fault tolerance in multi-agent systems. In Proceedings of the 8th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS09), pages 113–

120. IFAAMAS Press, 2009.

[ELMV11] J. Ezekiel, A. Lomuscio, L. Molnar, and S. Veres. Verifying fault tolerance and self-

diagnosability of an autonomous underwater vehicle. In Proceedings of the 22nd

184 BIBLIOGRAPHY

International Joint Conference on Artificial Intelligence (IJCAI11), pages 1659–

1664. AAAI Press, 2011.

[Eme90] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer

Science, pages 996–1071. Elsevier Science Publishers, 1990.

[EN95] E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In Proceedings of the

22nd Annual Sigact-Aigplan on Principles of Programming Languages (POPL95),

pages 85–94. Pearson Education, 1995.

[EN96] E. A. Emerson and K. S. Namjoshi. Automatic verification of parameterized syn-

chronous systems. In Proceedings of the 8th International Conference one Computer

Aided Verification (CAV96), volume 1102 of Lecture Notes in Computer Science,

pages 87–98. Springer, 1996.

[EN98] E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic

infinite-state systems. In Proceedings of 13th International Symposium on Logic in

Computer Science (LICS98), pages 70–80. IEEE, 1998.

[Eng06] Andries P Engelbrecht. Fundamentals of computational swarm intelligence. John

Wiley & Sons, 2006.

[ES96] E.A. Emerson and A.P. Sistla. Symmetry and model checking. Formal methods in

system design, 9(1):105–131, 1996.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.

MIT Press, Cambridge, 1995.

[FHV95] R. Fagin, J. Y. Halpern, and M. Vardi. A nonstandard approach to the logical

omniscience problem. Artificial Intelligence, 79, 1995.

[GFB05] Zahia Guessoum, Nora Faci, and Jean-Pierre Briot. Adaptive replication of large-

scale multi-agent systems–towards a fault-tolerant multi-agent platform. In Soft-

ware Engineering for Multi-Agent Systems IV, pages 238–253. Springer, 2005.

[GS92] S. M. German and A. P. Sistla. Reasoning about systems with many processes.

Journal of the ACM, 39(3):675–735, 1992.

BIBLIOGRAPHY 185

[GvdM04] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowl-

edge. In Proceedings of 16th International Conference on Computer Aided Verifica-

tion (CAV04), volume 3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

[HBR09] Y. Hanna, S. Basu, and H. Rajan. Behavioral automata composition for automatic

topology independent verification of parameterized systems. In Proceedings of

the 7th Joing Meeting of the European Software Engineering Conference and the

ACM Sigsoft Symposium on the Foundations of Software Engineering (ESEC/FSE09),

pages 325–334. ACM, 2009.

[HR00] M. R. A. Huth and M. D. Ryan. Logic in Computer Science: Modelling and Reasoning

about Systems. Cambridge University Press, Cambridge, England, 2000.

[HSBR10] Y. Hanna, D. Samuelson, S. Basu, and H. Rajan. Automating cut-off for multi-

parameterized systems. In Proceedings of the 12th International Conference on For-

mal Engineering Methods (ICFEM10), volume 6447 of Lecture Notes in Computer

Science, pages 338–354. Springer, 2010.

[HW02a] W. Hoek and M. Wooldridge. Model checking knowledge and time. In SPIN

2002 – Proceedings of the Ninth International SPIN Workshop on Model Checking of

Software, 2002.

[HW02b] W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic

goals. In Proceedings of the First International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS02), pages 1167–1174. ACM Press, 2002.

[JB12] Swen Jacobs and Roderick Bloem. Parameterized synthesis. In Tools and Al-

gorithms for the Construction and Analysis of Systems, pages 362–376. Springer,

2012.

[KC00] Sanjeev Kumar and Philip R Cohen. Towards a fault-tolerant multi-agent system

architecture. In Proceedings of the fourth international conference on Autonomous

agents, pages 459–466. ACM, 2000.

[KKW10] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in parameter-

ized concurrent programs. In Proceedings of the 22nd International Conference on

186 BIBLIOGRAPHY

Computer Aided Verification (CAV10), volume 6184 of Lecture Notes in Computer

Science, pages 645–659. Springer, 2010.

[KL13a] P. Kouvaros and A. Lomuscio. Automatic verification of parameterised interleaved

multi-agent systems. In Proceedings of the 12th International Conference on Au-

tonomous Agents and Multi-Agent systems (AAMAS13), pages 861–868. IFAAMAS,

2013.

[KL13b] P. Kouvaros and A. Lomuscio. A cutoff technique for the verification of parame-

terised interpreted systems with parameterised environments. In Proceedings of

the 23rd International Joint Conference on Artificial Intelligence (IJCAI13), pages

2013–2019. AAAI Press, 2013.

[KL15a] P. Kouvaros and A. Lomuscio. A counter abstraction technique for the verification

of robot swarms. In Proceedings of the 29th AAAI Conference on Artificial Intelli-

gence (AAAI15), pages 2081–2088. AAAI Press, 2015.

[KL15b] P. Kouvaros and A. Lomuscio. Verifying emergent properties of swarms. In Pro-

ceedings of the 24th International Joint Conference on Artificial Intelligence (IJ-

CAI15), pages 1083–1089. AAAI Press, 2015.

[KL16] P. Kouvaros and A. Lomuscio. Parameterised verification for multi-agent systems.

Artificial Intelligence, 234:152–189, 2016.

[KLN+06] M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi, and

M. Szreter. Comparing BDD and SAT based techniques for model checking

Chaum’s dining cryptographers protocol. Fundamenta Informaticae, 63(2,3):221–

240, 2006.

[KLP04] M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent systems via

unbounded model checking. In Proceedings of the Third International Conference

on Autonomous Agents and Multiagent Systems (AAMAS04), pages 638–645. ACM,

2004.

[KM69] R. Karp and R. Miller. Parallel program schemata. Journal of Computer and system

Sciences, 3(2):147–195, 1969.

BIBLIOGRAPHY 187

[KM89] R. Kurshan and K. McMillan. A structural induction theorem for processes. In

Proceedings of the eighth annual ACM Symposium on Principles of distributed com-

puting, pages 239–247. ACM, 1989.

[KNN+08] M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, M. Szreter,

B. Woźna, and A. Zbrzezny. Verics 2007 - a model checker for knowledge and

real-time. Fundamenta Informaticae, 85(1):313–328, 2008.

[KP04a] M. Kacprzak and W. Penczek. A SAT-based approach to unbounded model check-

ing for alternating-time temporal epistemic logic. Synthese, 142(2):203–227,

2004.

[KP04b] M. Kacprzak and W. Penczek. Unbounded model checking for alternating-time

temporal logic. In Proceedings of the 3rd International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS04), volume II, pages 646–653. ACM,

2004.

[Liu07] Strategies for energy optimisation in a swarm of foraging robots, volume 4433 of

Lecture Notes in Computer Science. Springer, 2007.

[LŁP03] A. Lomuscio, T. Łasica, and W. Penczek. Bounded model checking for interpreted

systems: preliminary experimental results. In Proceedings of the 2nd International

Workshop on Formal Approaches to Agent-Based Systems (FAABS04), volume 2699

of Lecture Notes in Computer Science, pages 115–125. Springer, 2003.

[LPQ10] A. Lomuscio, W. Penczek, and H. Qu. Partial order reduction for model check-

ing interleaved multi-agent systems. Fundamenta Informaticae, 101(1–2):71–90,

2010.

[LPW07] A. Lomuscio, W. Penczek, and B. Woźna. Bounded model checking knowledge

and real time. Artificial Intelligence, 171(16-17):1011–1038, 2007.

[LQR09] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verifica-

tion of multi-agent systems. In Proceedings of the 21th International Conference on

Computer Aided Verification (CAV09), volume 5643 of Lecture Notes in Computer

Science, pages 682–688. Springer, 2009.

188 BIBLIOGRAPHY

[LQR15] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verifi-

cation of multi-agent systems. Software Tools for Technology Transfer, 2015. To

Appear.

[LQS11] A. Lomuscio, H. Qu, and M. Solanki. Towards verifying contract regulated service

composition. Journal of Autonomous Agents and Multi-Agent Systems, 24(3):345–

373, 2011.

[LR06a] A. Lomuscio and F. Raimondi. The complexity of model checking concurrent

programs against CTLK specifications. In DALT, volume 4327 of Lecture Notes in

Computer Science, pages 29–42. Springer, 2006.

[LR06b] A. Lomuscio and F. Raimondi. Model checking knowledge, strategies, and games

in multi-agent systems. In Proceedings of the 5th International Joint Conference on

Autonomous agents and Multi-Agent Systems (AAMAS06), pages 161–168. ACM

Press, 2006.

[LS03] A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–

92, 2003.

[Mai01] M. Maidl. A unifying model checking approach for safety properties of parameter-

ized systems. In Computer Aided Verification, Lecture Notes in Computer Science,

pages 311–323. Springer, 2001.

[McM02] K. L. McMillan. Applying SAT methods in unbounded symbolic model checking.

In Proceedings of the 14th International Conference on Computer Aided Verification

(CAV02), volume 2404 of LNCS, pages 250–264. Springer-Verlag, 2002.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer-

Verlag, 1980.

[MS99] R. van der Meyden and H. Shilov. Model checking knowledge and time in systems

with perfect recall. In Proceedings of the 19th IARCS Annual Conference on Founda-

tions of Software Technology and Theoretical Computer Science (FST&TCS99), vol-

ume 1738 of Lecture Notes in Computer Science, pages 432–445. Springer, 1999.

BIBLIOGRAPHY 189

[MS04] E. M. Maximilien and M. P. Singh. A framework and ontology for dynamic web

services selection. Internet Computing, 8(5):84–93, 2004.

[MSBG01] Olivier Marin, Pierre Sens, Jean-Pierre Briot, and Zahia Guessoum. Towards adap-

tive fault tolerance for distributed multi-agent systems. In Proceedings of ERSADS,

pages 195–201, 2001.

[Mur00] R. R. Murphy. Marsupial and shape-shifting robots for urban search and rescue.

Intelligent Systems and their Applications, 15(2):14–19, 2000.

[MW84] Zohar Manna and Pierre Wolper. Synthesis of communicating processes from

temporal logic specifications. ACM Transactions on Programming Languages and

Systems (TOPLAS), 6(1):68–93, 1984.

[Nem05] J. Nembrini. Minimalist Coherent Swarming of Wireless Networked Autonomous

Mobile Robots. PhD thesis, University of the West of England, 2005.

[NT15] Kedar S Namjoshi and Richard J Trefler. Analysis of dynamic process networks. In

Tools and Algorithms for the Construction and Analysis of Systems, pages 164–178.

Springer, 2015.

[Pel93] D. Peled. All from one, one for all: on model checking using representatives.

In Proceedings of the 5th International Conference on Computer Aided Verifica-

tion (CAV93), volume 697 of Lecture Notes in Computer Science, pages 409–423.

Springer, 1993.

[PL03] W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent sys-

tems via bounded model checking. In Proceedings of the 2nd International Joint

Conference on Autonomous Agents and Multi-agent systems (AAMAS03), pages

209–216. IFAAMAS, 2003.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th International

Symposium Foundations of Computer Science (FOCS77), pages 46–57, 1977.

[PS00] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verification.

In Proceedings of the 12th International Conference on Computer Aided Verifica-

190 BIBLIOGRAPHY

tion (CAV00), volume 1855 of Lecture Notes in Computer Science, pages 328–343.

Springer, 2000.

[PWZ02] W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the univer-

sal fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

[PXZ02] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1,infinity)-counter abstraction.

In Proceedings of the 14th International Conference on Computer Aided Verifica-

tion (CAV02), volume 2404 of Lecture Notes in Computer Science, pages 93–111.

Springer, 2002.

[Rai06] F. Raimondi. Model Checking Multi-Agent Systems. PhD thesis, 2006.

[RL04] F. Raimondi and A. Lomuscio. Automatic verification of deontic interpreted sys-

tems by model checking via OBDDs. In Proceedings of the Sixteenth European

Conference on Artificial Intelligence (ECAI04), pages 53–57. IOS PRESS, 2004.

[RL05] F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by

model checking via OBDDs. Journal of Applied Logic, 5(2):235–251, 2005.

[RZSH+14] A. Rosenfeld, I. Zuckerman, E. Segal-Halevi, O. Drein, and S. Kraus. Negochat:

a chat-based negotiation agent. In Proceedings of the 14th International Confer-

ence on Autonomous Agents and Multi-Agent systems (AAMAS14), pages 525–532.

IFAAMAS, 2014.

[Şah05] Erol Şahin. Swarm robotics: From sources of inspiration to domains of applica-

tion. In Swarm robotics, pages 10–20. Springer, 2005.

[SF07] Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In Automated Technology

for Verification and Analysis, pages 474–488. Springer, 2007.

[SG90] Z. Shtadler and O. Grumberg. Network grammars, communication behaviors and

automatic verification. In Automatic Verification Methods for Finite State Systems,

Lecture Notes in Computer Science, pages 151–165. Springer, 1990.

[SLB08] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-

theoretic, and logical foundations. Cambridge University Press, 2008.

BIBLIOGRAPHY 191

[Som05] F. Somenzi. CUDD: CU decision diagram package - release 2.4.0.

http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.html, 2005.

[ŞW08] Erol Şahin and Alan Winfield. Special issue on swarm robotics. Swarm Intelli-

gence, 2(2):69–72, 2008.

[SWJ08] M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and verifi-

cation of ad hoc routing protocols. In Tools and Algorithms for the Construction

and Analysis of Systems, volume 4963 of Lecture Notes in Computer Science, pages

18–32. Springer, 2008.

[Szy88] B. K. Szymanski. A simple solution to lamport’s concurrent programming problem

with linear wait. In Proceedings of the 2nd International Conference on Supercom-

puting (ICS88), pages 621–626. ACM, 1988.

[Var96] Moshe Y Vardi. An automata-theoretic approach to linear temporal logic. In Logics

for concurrency, pages 238–266. Springer, 1996.

[vdMS04] R. van der Meyden and K. Su. Symbolic model checking the knowledge of the din-

ing cryptographers. In Proceedings of the 17th IEEE Computer Security Foundations

Workshop (CSFW04), pages 280–291. IEEE Computer Society, 2004.

[VDMV98] Ron Van Der Meyden and Moshe Y Vardi. Synthesis from knowledge-based spec-

ifications. In CONCUR’98 Concurrency Theory, pages 34–49. Springer, 1998.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In Proceedings of the 1st Symposium on Logic in Computer Science,

pages 332–344, Cambridge, 1986.

[Wei99] G. Weiss. Multi-agent systems. MIT Press, 1999.

[WL90] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with

network invariants. In Proceedings of the International Workshop on Automatic

Verification Methods for Finite State Systems (AVMFSS89), volume 407 of Lecture

Notes in Computer Science, pages 68–80. Springer, 1990.

192 BIBLIOGRAPHY

[WLNM08] A. Winfield, W. Liu, J. Nembrini, and A. Martinoli. Modelling a wireless connected

swarm of mobile robots. Swarm Intelligence, 2(2-4):241–266, 2008.

[WLP05] B. Wozna, A. Lomuscio, and W. Penczek. Bounded model checking for deontic

interpreted systems. In Proceedings of the 2nd International Workshop on Logic

and communication in Multi-Agent Systems, pages 93–114. Elsevier, 2005.

[Woo09] M. Wooldridge. An introduction to MultiAgent systems. Wiley, second edition

edition, 2009.

[YL10] Q. Yang and M. Li. A cut-off approach for bounded verification of parameterized

systems. In Proceedings of the 32nd International Conference on Software Engineer-

ing (ICSE10), pages 345–354. IEEE, 2010.

[ZP04] L. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized

systems (a survey). Computer Languages, Systems & Structures, 30(3):139–169,

2004.

	Table of Contents
	List of Tables
	List of Algorithms
	List of Figures
	Introduction
	Objectives
	Contributions
	Research output
	Summary of contents

	Background
	Interpreted systems
	Interpreted systems
	Interleaved interpreted systems

	Temporal-epistemic logics
	Equivalences
	Equivalences preserving ACTL*K and CTL*K
	Equivalences preserving ACTL*KX and CTL*KX

	Model checking multiagent systems
	Symbolic model checking
	SAT-based translations
	State space reductions
	Automata-based techniques
	The model checker MCMAS

	Parameterised model checking
	Parameterised modelling languages
	Parameterised model checking techniques

	Formalisms for unbounded multiagent systems
	Parameterised interpreted systems
	Autonomous robot

	Parameterised interleaved interpreted systems
	Examples

	Specifications for unbounded multiagent systems
	Syntax of indexed CTL*K
	Satisfaction of indexed CTL*K
	Symmetry reduction

	Equivalences
	Equivalences preserving indexed ACTL*KX
	Equivalences preserving indexed ACTLK up to a level of depth

	Summary

	Verifying parameterised interpreted systems
	Parameterised model checking problem
	The PIS procedure
	Overview
	Step 1: abstraction
	Step 2: pruning
	Step 3: counting
	Summary
	Proof of soundness

	Applications
	Autonomous robot
	The Beta swarm aggregation algorithm

	Verifying parameterised interleaved interpreted systems
	Parameterised model checking problem
	The PIIS procedure
	Overview
	Step 1: abstraction
	Step 2: simulation check
	Summary
	Proof of soundness

	Applications
	Train-Gate-Controller
	The Alpha swarm aggregation algorithm

	The SMR, SGS and SFE classes of PIIS
	Introduction
	Verifying SMR systems
	Agent-environment simulation
	Model checking procedure for SMR systems
	Verifying the robot foraging scenario
	 Proof of soundness

	Verifying SGS systems
	Agent-environment simulation
	The SGS procedure
	Verifying the Train-Gate-Controller
	Proof of soundness

	Verifying SFE Systems
	The SFE procedure
	Verifying the autonomous robot example
	Proof of soundness

	Conclusions

	MCMAS-P: A model checker for the verification of unbounded multiagent systems
	Implementation details
	Agent-environment simulation test

	Experimental Results

	Conclusions
	Summary of thesis contributions
	Comparison with related work
	Future work
	Dynamic UMAS and templates over unbounded variables
	Parameterised synthesis
	Fault-tolerant UMAS

