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1. Some Useful Matrix Decompositions

This short summary of orthogonal matrices, eigenvalues and singular values is re-
stricted to square real matrices A of dimension N x N, as used in our book.

Orthogonal Matrices and Projections

A real, square matrix U € RV*¥ is orthogonal if its inverse equals its transpose,

U~! = UT. Consequently we have the two relations
U'U=1 and UU"=1

The columns of U are orthonormal, i.e., they are orthogonal and the 2-norm of
each column is one. To see this, let u; denote the ith column of U so that U =
[uj uy ... uy]. Then the relation UTU = I implies that

W — 6 — 1 ifi=j
v J 0 otherwise.

An orthogonal matrix is perfectly well conditioned; its condition number (in any
norm) is one. Moreover, any operation with its inverse merely involves a matrix
product with its transpose.

An orthogonal transformation is accomplished by multiplication with an or-
thogonal matrix. Such a transformation leaves the 2-norm unchanged, because

U2 = (Ux)T(Ux))"? = (x"%)"2 = [x])>.

An orthogonal transformation can be considered as a change of basis between the
“canonical” basis ej,es,...,exy in RV (where e; is the ith column of the iden-
tity matrix) and the basis uj, ua, ..., uy given by the orthonormal columns of U.
Specifically, for an arbitrary vector x € R™ we can find scalars z1, ..., 2z, so that

T

N N
X = : :E xiei:E zu, =Uz
i=1 i=1

TN

and it follows immediately that the coordinates z; in the new basis are the elements
of the vector
z="UTx.

Because they do not distort the size of vectors, orthogonal transformations are
valuable tools in numerical computations.

For any k less than N the vectors uy,...,u; span a k-dimension subspace
Si C RM. The orthogonal projection x; € RN of an arbitrary vector x € RV onto
this subspace is the unique vector in S which is closest to x in the 2-norm, and it
is computed as

xk.:Ukax, with U =[u;uy ... ug].

The matrix Uy, UZ, which is N x N and has rank k, is called an orthogonal projector.



The Spectral Decomposition

A real, symmetric matrix A = AT always has an eigenvalue decomposition (or
spectral decomposition) of the form

A=UAUT,

where U is orthogonal, and A = diag(A1, A2, ..., Anx) is a diagonal matrix whose
diagonal elements \; are the eigenvalues of A. A real symmetric matrix always has
real eigenvalues. The columns u; of U are the eigenvectors of A, and the eigenpairs
(A\i, ;) satisfy

Aui:)\iui, iZl,...,N.

The matrix A represents a linear mapping from R onto itself, and the geomet-
ric interpretation of the eigenvalue decomposition is that U represents a new, or-
thonormal basis in which this mapping is the diagonal matrix A. In particular,
each basis vector u; is mapped to a vector in the same direction, namely, the vector
A u; = )\z u;.

A real square matrix is normal if it satisfies A AT = AT A. Important exam-
ples of normal matrices are symmetric, circulant and Hankel matrices. A normal
matrix has a spectral decomposition of the form

A=UAU",
where the complex matrix U is unitary, i.e.,
U~! = U* = conj(U)7,

and A = diag(A1, A2, ..., An) is a diagonal matrix containing the (possibly complex)
eigenvalues of A. (Note that orthogonal matrices are included in the set of unitary
matrices.) If A is real and normal, then its eigenvalues are either real or appear in
complex conjugate pairs. The columns 1; of U are the eigenvectors of A. We note
that a unitary matrix U has orthonormal columns: @fu; = conj(u;)Tu; = §;;. Also
note that multiplication with U leaves the 2-norm unchanged: [|[Ux]y = [|x||2.

The Singular Value Decomposition (SVD)

A real matrix which is not normal CANNOT be diagonalized by an orthogonal or
unitary matrix. It takes two orthogonal matrices U and V to diagonalize such a
matrix, by means of the singular value decomposition,

N
A=USVT=> "uo;v/,
i=1

where 3 = diag(oy,09,...,0y) is a real diagonal matrix whose diagonal elements
o; are the singular values of A, while the singular vectors u; and v; are the columns
of the orthogonal matrices U and V. The singular values are nonnegative and are
typically written in nonincreasing order:

o1 >09>...20Nn > 0.



We note that if A is normal, then its singular values are equal to the absolute values
of its eigenvalues.

The geometric interpretation of the SVD is that it provides two sets of orthog-
onal basis vectors — the columns of U and V — such that the mapping represented
by A becomes a diagonal matrix when expressed in these bases. Specifically, we
have

AVi:O'iui, iZL...,N.

That is, 0; is the “magnification” when mapping v; onto u;. Any vector x € RN

can be written as x = Zﬁil(viTX) v;, and it follows that its image is given by

N N

Ax= Z (vIx)Av; = Z o (vIx)u,.

i=1 i=1
If A has an inverse, then the mapping of the inverse also defines a diagonal matrix:

-1 -1
A7y, =0, vy,

so that o, !is the “magnification” when mapping u; back onto v;. Similarly, any
vector b € RV can be written as x = Zi]\il(uin) u;, and it follows that the vector
A~!Db is given by

N N
1y T 1. _ U-z'Tb _
A7'b=> (u/b)A Ty =) ——v,

i=1 i=1 v

Similar relations can easily be derived for the spectral decompositions.

Rank, Conditioning, and Truncated SVD

The rank of a matrix is equal to the number of nonzero singular values: r = rank(A)
means that
o >0, ory1 = 0.

The matrix A has full rank (and, therefore, an inverse) only if all of its singular
values are nonzero. If A is rank deficient then the system A x = b may not be
compatible; in other words, there may be no vector x that solves the problem. The
columns of U, = [u; uz ... u,] form an orthonormal basis for the range of A,
and the system Ax = b, with b, = U, Ufb is the closest compatible system.
This compatible system has infinitely many solutions, and the solution of minimum

2-norm is
I

u’'b
Xy = E o V.
i=1 v

Consider now a perturbed version A X = b of the original system A x = b, in
which the perturbed right-hand side is given by b = b + e. If A has full rank then
the perturbed solution is given by x = A~!'b = x + A~ 'e, and we need an upper

bound for the relative perturbation ||x — X||2/||x||2. The worst-case situation arises



when b is in the direction of the left singular vector u; while the perturbation e is
solely in the direction of uy, and it follows that the perturbation bound is given by

% — x|l

o
%12 '

lellz where cond(A) =

A
ond(A) 151, ox

The quantity cond(A) is the condition number of A. The larger the condition
number, the more sensitive the system is to perturbations of the right-hand side.

The smallest singular value o measures how “close” A is to a singular matrix
(and oy = 0 when A is singular). A perturbation of A with a matrix E, whose
elements are of the order oy, can make A rank deficient. The existence of one
or more small singular values (small compared to the largest singular value oq)
therefore indicates that A is “almost” singular.

In this case, it is often recommended to replace the ill-conditioned matrix A
with a nearby but exactly rank-deficient matrix A whose rank k cannot be reduced
by small perturbations. The typical choice of Ay is the truncated SVD (TSVD)

matrix
k

Ay :UkUgA: Zuiaiv?.
i=1
The rank k of Ay is chosen such that o — which measures how “close” A} is to
a singular matrix — is larger than the perturbations (the errors) in the original

matrix A. The minimum-norm solution to the corresponding compatible system
A x = by with by, = Uy Ug b is called the TSVD solution, and it is given by

k
XkZUkngzz

i=1

ulb

i

V.



2. The DFT and Smoothing Norms

The following is a derivation of equation (7.9) in Section 7.3 for the efficient compu-
tation of the Tikhonov solution with a smoothing norm ||Dx||s that involves partial
derivatives. We consider the case of periodic boundary conditions where the DFT
matrix F = F, ® F. diagonalizes the matrix A, i.e.,

A =F*AAF,

in which the diagonal matrix A o contains the eigenvalues A; of A. These eigenvalues
are computed as described in section 4.2.

For periodic boundary conditions, the one-dimensional DFT matrix F. diag-
onalizes the first and second derivative matrices D1, (7.7) and Ds,, (7.6), i.e.,

Dym =FiAp,,, Fe, q=12,

q,m

where the diagonal matrix Ap_,, contains the eigenvalues Ay of Dg . These
eigenvalues can be pre-computed by the following expressions

\ exp(2kni/m) —1, ¢=1
k =
! 2cos(2km/m) —2, q=2
in which 1 = v/—1 denotes the imaginary unit. It follows that several choices of the
matrix D have simple expressions in terms of Kronecker products; for example
L, ®Dgm = (F: Fr) ® (F: ADq‘m, FC)
= (F: ® F:) (In ® ADq,m> (Fr ® FC)
= F* (ITL ® ADq,m) F.

Similarly, we obtain
D‘]vn ® Im = F*(ADq,n ® Im) F

L, ® D2,m + D2,n QL = F*(In & ADq,m + Aqu 0y Im)F

smi]-[5 2l

D,,®L,| |0 F*||Ap,, ®L,

We can use the above relations to derive a simple expression for the Tikhonov
solution to (7.3). We need the following result:

AT — A*
= F*conj(Aa)F
=F*conj(Aa) Aa AL'F
=F*|Aa|?A,'F
where |Aa|? denotes a diagonal matrix whose elements are |\;|?. It follows imme-

diately that
ATA = F*conj(As) Aa F = F*|A4|°F.



A similar result holds for the matrix D, depending on its form. For example, if
D=1,®Dg., =F(I,®Ap,,,)F then

D" =D* =F* (I, ® conj(Ap, ,,)) F
and hence

D'D = F* (I, ® conj(Ap,,,)) (I, ® Ap, ) F
=F* (In ® conj(ADq‘m)Aqum) F
=F*(I,®|Ap,,.[°) F.

q,m

Putting the above relations together, we arrive at the following expression for the
Tikhonov solution

Xop = (ATA +a*D'D)'ATD
=F(|Aal (1Aal* +0* (I, @ [Ap, . [%) ") AL Fb.

There are similar expressions for the other choices of the matrix D. If D =
Dy, ®1, =F*(Ap,, ®1,)F then it follows immediately that

D'D =F* (|Ap

*®1I,)F,

a,n

and if we use a sum of squared norm, represented by

D— In®Dq7m . F* 0 In®ADq,m F
" |Dg.®L,| T |0 F||Ap,, &L, "

then we obtain
DTD =F" (In ® |lxDq)m|2 + |1XD(1)7,,|2 X Im) F.

Finally if D =1, ® Da,, + D2, ® I, = F*(I, ® Ap, ,, + Ap, , ® L,,) F (approxi-
mating the Laplacian) then we obtain

D'D =F" (1,9 A},  +Ab, ©1,+2Ap,, @ Ap,, )F.

The absolute value is not necessary here because the eigenvalues are real.
We can summarize these results in the expression (7.9) for the Tikhonov so-
lution

xap = F*(|Aa? (|Aa? + 02 A) 7 ) AL Fb,

where the diagonal matrix A takes one of the four forms shown in the last column
of Table 7.2. Note that the filtering matrix |Aa|? (|Aa|? + a? A)~! is diagonal.



