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1. Some Useful Matrix Decompositions
This short summary of orthogonal matrices, eigenvalues and singular values is re-
stricted to square real matrices A of dimension N ×N , as used in our book.

Orthogonal Matrices and Projections

A real, square matrix U ∈ RN×N is orthogonal if its inverse equals its transpose,
U−1 = UT . Consequently we have the two relations

UTU = I and U UT = I.

The columns of U are orthonormal, i.e., they are orthogonal and the 2-norm of
each column is one. To see this, let ui denote the ith column of U so that U =
[ u1 u2 . . . uN ]. Then the relation UTU = I implies that

uTi uj = δij =

{
1 if i = j

0 otherwise.

An orthogonal matrix is perfectly well conditioned; its condition number (in any
norm) is one. Moreover, any operation with its inverse merely involves a matrix
product with its transpose.

An orthogonal transformation is accomplished by multiplication with an or-
thogonal matrix. Such a transformation leaves the 2-norm unchanged, because

‖U x‖2 =
(
(U x)T (U x)

)1/2
= (xTx)1/2 = ‖x‖2.

An orthogonal transformation can be considered as a change of basis between the
“canonical” basis e1, e2, . . . , eN in RN (where ei is the ith column of the iden-
tity matrix) and the basis u1,u2, . . . ,uN given by the orthonormal columns of U.
Specifically, for an arbitrary vector x ∈ Rn we can find scalars z1, . . . , zn so that

x =




x1

...
xN


 =

N∑

i=1

xi ei =
N∑

i=1

zi ui = U z

and it follows immediately that the coordinates zi in the new basis are the elements
of the vector

z = UTx.

Because they do not distort the size of vectors, orthogonal transformations are
valuable tools in numerical computations.

For any k less than N the vectors u1, . . . ,uk span a k-dimension subspace
Sk ⊂ RN . The orthogonal projection xk ∈ RN of an arbitrary vector x ∈ RN onto
this subspace is the unique vector in Sk which is closest to x in the 2-norm, and it
is computed as

xk = Uk UT
k x, with Uk = [ u1 u2 . . . uk ] .

The matrix Uk UT
k , which is N×N and has rank k, is called an orthogonal projector.
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The Spectral Decomposition

A real, symmetric matrix A = AT always has an eigenvalue decomposition (or
spectral decomposition) of the form

A = U Λ UT ,

where U is orthogonal, and Λ = diag(λ1, λ2, . . . , λN ) is a diagonal matrix whose
diagonal elements λi are the eigenvalues of A. A real symmetric matrix always has
real eigenvalues. The columns ui of U are the eigenvectors of A, and the eigenpairs
(λi,ui) satisfy

A ui = λi ui, i = 1, . . . , N.

The matrix A represents a linear mapping from RN onto itself, and the geomet-
ric interpretation of the eigenvalue decomposition is that U represents a new, or-
thonormal basis in which this mapping is the diagonal matrix Λ. In particular,
each basis vector ui is mapped to a vector in the same direction, namely, the vector
A ui = λi ui.

A real square matrix is normal if it satisfies A AT = AT A. Important exam-
ples of normal matrices are symmetric, circulant and Hankel matrices. A normal
matrix has a spectral decomposition of the form

A = Ũ Λ Ũ∗,

where the complex matrix Ũ is unitary, i.e.,

Ũ−1 = Ũ∗ = conj(Ũ)T ,

and Λ = diag(λ1, λ2, . . . , λN ) is a diagonal matrix containing the (possibly complex)
eigenvalues of A. (Note that orthogonal matrices are included in the set of unitary
matrices.) If A is real and normal, then its eigenvalues are either real or appear in
complex conjugate pairs. The columns ũi of Ũ are the eigenvectors of A. We note
that a unitary matrix Ũ has orthonormal columns: ũ∗iuj = conj(ui)Tuj = δij . Also
note that multiplication with Ũ leaves the 2-norm unchanged: ‖Ũ x‖2 = ‖x‖2.

The Singular Value Decomposition (SVD)

A real matrix which is not normal cannot be diagonalized by an orthogonal or
unitary matrix. It takes two orthogonal matrices U and V to diagonalize such a
matrix, by means of the singular value decomposition,

A = U Σ VT =
N∑

i=1

ui σi vTi ,

where Σ = diag(σ1, σ2, . . . , σN ) is a real diagonal matrix whose diagonal elements
σi are the singular values of A, while the singular vectors ui and vi are the columns
of the orthogonal matrices U and V. The singular values are nonnegative and are
typically written in nonincreasing order:

σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0.
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We note that if A is normal, then its singular values are equal to the absolute values
of its eigenvalues.

The geometric interpretation of the SVD is that it provides two sets of orthog-
onal basis vectors – the columns of U and V – such that the mapping represented
by A becomes a diagonal matrix when expressed in these bases. Specifically, we
have

A vi = σi ui, i = 1, . . . , N.

That is, σi is the “magnification” when mapping vi onto ui. Any vector x ∈ RN
can be written as x =

∑N
i=1(vTi x) vi, and it follows that its image is given by

A x =
N∑

i=1

(vTi x) A vi =
N∑

i=1

σi (vTi x) ui.

If A has an inverse, then the mapping of the inverse also defines a diagonal matrix:

A−1 ui = σ−1
i vi,

so that σ−1
i is the “magnification” when mapping ui back onto vi. Similarly, any

vector b ∈ RN can be written as x =
∑N
i=1(uTi b) ui, and it follows that the vector

A−1 b is given by

A−1 b =
N∑

i=1

(uTi b) A−1 ui =
N∑

i=1

uTi b
σi

vi.

Similar relations can easily be derived for the spectral decompositions.

Rank, Conditioning, and Truncated SVD

The rank of a matrix is equal to the number of nonzero singular values: r = rank(A)
means that

σr > 0, σr+1 = 0.

The matrix A has full rank (and, therefore, an inverse) only if all of its singular
values are nonzero. If A is rank deficient then the system A x = b may not be
compatible; in other words, there may be no vector x that solves the problem. The
columns of Ur = [ u1 u2 . . . ur ] form an orthonormal basis for the range of A,
and the system A x = br with br = Ur UT

r b is the closest compatible system.
This compatible system has infinitely many solutions, and the solution of minimum
2-norm is

xr =
r∑

i=1

uTi b
σi

vi.

Consider now a perturbed version A x̃ = b̃ of the original system A x = b, in
which the perturbed right-hand side is given by b̃ = b + e. If A has full rank then
the perturbed solution is given by x̃ = A−1b̃ = x + A−1e, and we need an upper
bound for the relative perturbation ‖x− x̃‖2/‖x‖2. The worst-case situation arises
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when b is in the direction of the left singular vector u1 while the perturbation e is
solely in the direction of uN , and it follows that the perturbation bound is given by

‖x− x̃‖2
‖x‖2 ≤ cond(A)

‖e‖2
‖b‖2 , where cond(A) =

σ1

σN
.

The quantity cond(A) is the condition number of A. The larger the condition
number, the more sensitive the system is to perturbations of the right-hand side.

The smallest singular value σN measures how “close” A is to a singular matrix
(and σN = 0 when A is singular). A perturbation of A with a matrix E, whose
elements are of the order σN , can make A rank deficient. The existence of one
or more small singular values (small compared to the largest singular value σ1)
therefore indicates that A is “almost” singular.

In this case, it is often recommended to replace the ill-conditioned matrix A
with a nearby but exactly rank-deficient matrix Ak whose rank k cannot be reduced
by small perturbations. The typical choice of Ak is the truncated SVD (TSVD)
matrix

Ak = Uk UT
k A =

k∑

i=1

ui σi vTi .

The rank k of Ak is chosen such that σk – which measures how “close” Ak is to
a singular matrix – is larger than the perturbations (the errors) in the original
matrix A. The minimum-norm solution to the corresponding compatible system
Ak x = bk with bk = Uk UT

k b is called the TSVD solution, and it is given by

xk = Uk UT
k x =

k∑

i=1

uTi b
σi

vi.
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2. The DFT and Smoothing Norms
The following is a derivation of equation (7.9) in Section 7.3 for the efficient compu-
tation of the Tikhonov solution with a smoothing norm ‖Dx‖2 that involves partial
derivatives. We consider the case of periodic boundary conditions where the DFT
matrix F = Fr ⊗ Fc diagonalizes the matrix A, i.e.,

A = F∗ΛA F,

in which the diagonal matrix ΛA contains the eigenvalues λi of A. These eigenvalues
are computed as described in section 4.2.

For periodic boundary conditions, the one-dimensional DFT matrix Fc diag-
onalizes the first and second derivative matrices D1,m (7.7) and D2,m (7.6), i.e.,

Dq,m = F∗c ΛDq,m
Fc, q = 1, 2,

where the diagonal matrix ΛDq,m
contains the eigenvalues λq,k of Dq,m. These

eigenvalues can be pre-computed by the following expressions

λq,k =

{
exp(2kπı̂/m)− 1, q = 1

2 cos(2kπ/m)− 2, q = 2
for k = 1, . . . ,m

in which ı̂ =
√−1 denotes the imaginary unit. It follows that several choices of the

matrix D have simple expressions in terms of Kronecker products; for example

In ⊗Dq,m = (F∗r Fr)⊗ (F∗c ΛDq,m Fc)
= (F∗r ⊗ F∗c) (In ⊗ΛDq,m) (Fr ⊗ Fc)
= F∗(In ⊗ΛDq,m) F.

Similarly, we obtain

Dq,n ⊗ Im = F∗(ΛDq,n ⊗ Im) F

In ⊗D2,m + D2,n ⊗ Im = F∗(In ⊗ΛDq,m + ΛDq,n ⊗ Im)F
[

In ⊗Dq,m

Dq,n ⊗ Im

]
=
[

F∗ 0
0 F∗

] [
In ⊗ΛDq,m

ΛDq,n ⊗ Im

]
F.

We can use the above relations to derive a simple expression for the Tikhonov
solution to (7.3). We need the following result:

AT = A∗

= F∗conj(ΛA) F

= F∗conj(ΛA) ΛA Λ−1
A F

= F∗|ΛA|2Λ−1
A F

where |ΛA|2 denotes a diagonal matrix whose elements are |λi|2. It follows imme-
diately that

ATA = F∗conj(ΛA) ΛA F = F∗|ΛA|2F.
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A similar result holds for the matrix D, depending on its form. For example, if
D = In ⊗Dq,m = F∗(In ⊗ΛDq,m

) F then

DT = D∗ = F∗
(
In ⊗ conj(ΛDq,m

)
)

F

and hence

DTD = F∗
(
In ⊗ conj(ΛDq,m

)
) (

In ⊗ΛDq,m

)
F

= F∗
(
In ⊗ conj(ΛDq,m)ΛDq,m

)
F

= F∗
(
In ⊗ |ΛDq,m

|2)F.

Putting the above relations together, we arrive at the following expression for the
Tikhonov solution

xα,D = (ATA + α2 DTD)−1ATb

= F∗
(
|ΛA|2

(|ΛA|2 + α2 (In ⊗ |ΛDq,m
|2)
)−1
)

Λ−1
A F b.

There are similar expressions for the other choices of the matrix D. If D =
Dq,n ⊗ Im = F∗(ΛDq,n ⊗ Im) F then it follows immediately that

DTD = F∗
(|ΛDq,n |2 ⊗ Im

)
F,

and if we use a sum of squared norm, represented by

D =
[

In ⊗Dq,m

Dq,n ⊗ Im

]
=
[

F∗ 0
0 F∗

] [
In ⊗ΛDq,m

ΛDq,n ⊗ Im

]
F,

then we obtain

DTD = F∗
(
In ⊗ |ΛDq,m |2 + |ΛDq,n |2 ⊗ Im

)
F.

Finally if D = In ⊗D2,m + D2,n ⊗ Im = F∗(In ⊗ΛD2,m + ΛD2,n ⊗ Im) F (approxi-
mating the Laplacian) then we obtain

DTD = F∗
(
In ⊗Λ2

D2,m
+ Λ2

D2,n
⊗ Im + 2 ΛD2,n ⊗ΛD2,m

)
F.

The absolute value is not necessary here because the eigenvalues are real.
We can summarize these results in the expression (7.9) for the Tikhonov so-

lution
xα,D = F∗

(
|ΛA|2

(|ΛA|2 + α2 ∆
)−1
)

Λ−1
A F b,

where the diagonal matrix ∆ takes one of the four forms shown in the last column
of Table 7.2. Note that the filtering matrix |ΛA|2 (|ΛA|2 + α2 ∆)−1 is diagonal.


