
A Multilevel Proximal Algorithm for Large Scale
Composite Convex Optimization

Panos Parpas · Duy V. N. Luong · Daniel
Rueckert · Berc Rustem

March 23, 2014

Abstract Composite convex optimization models consist of the minimization of
the sum of a smooth convex function and a non-smooth convex function. Such
models arise in many applications where, in addition to the composite nature of
the objective function, a hierarchy of models is readily available. It is common to
take advantage of this hierarchy of models by first solving a low fidelity model and
then using the solution as a starting point to a high fidelity model. We adopt an
optimization point of view and show how to take advantage of the availability of a
hierarchy of models in a consistent manner. We do not use the low fidelity model
just for the computation of promising starting points but also for the computation
of search directions. We establish the convergence and convergence rate of the
proposed algorithm and compare our algorithm with two widely used algorithms
for this class of models (ISTA and FISTA). Our numerical experiments on large
scale image restoration problems suggest that, for certain classes of problems, the
proposed algorithm is significantly faster than both ISTA and FISTA.

Keywords Composite convex optimization · Multigrid · Iterative Shrinkage
Thresholding Algorithm

1 Introduction

It is often possible to exploit the structure of large scale optimization models in
order to develop algorithms with lower computational complexity. A noteworthy
example are composite convex optimization models that consist of the minimiza-
tion of the sum of a smooth convex function and a non-smooth (but simple) convex
function. For a general non–smooth convex function the subgradient algorithm con-
verges at a rate of O(1/

√
k) for function values, where k is the iteration number.

However, if one assumes that the non–smooth component is simple enough such
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that the proximal projection step can be performed in closed form, then the con-
vergence rate can be improved to O(1/k2) [2,24]. Composite convex optimization
models arise often and in a wide range of applications from computer science (e.g.
machine learning), statistics (e.g the lasso problem), and engineering (e.g. signal
processing), to name just a few.

In addition to the composition of the objective function, many of the applica-
tions described above share another common structure. The fidelity in which the
optimization model captures the underlying application can often be controlled.
Typical examples include the discretization of Partial Differential Equations in
computer vision and optimal control [7], the number of features in machine learn-
ing applications [30], the number of states in a Markov Decision Processes [26],
and so on. Indeed anytime a finite dimensional optimization models arises from an
infinite dimensional model it is straightforward to define such a hierarchy of opti-
mization models. In many areas it is common to take advantage of this structure
by solving a low fidelity (coarse) model and then use the solution as a starting
point in the high fidelity (fine) model (see e.g. [13,15] for examples from computer
vision). In this paper we adopt an optimization point of view and show how to
take advantage of the availability of a hierarchy of models in a consistent manner
for composite convex optimization. We do not use the coarse model just for the
computation of promising starting points but also for the computation of search
directions.

The algorithm we propose is similar to the Iterative Shrinkage Thresholding
Algorithm (ISTA) class of algorithms. There is a substantial amount of literature
related to this class of algorithms and we refer the reader to [2] for a review of
recent developments. The main difference between ISTA and the algorithm we
propose is that we use both gradient information and a coarse model in order
to compute a search direction. This modification of ISTA for the computation
of the search direction is akin to multigrid algorithms developed recently by a
number of authors. There exists a considerable number of papers exploring the
idea of using multigrid methods in optimization [7]. However the large majority
of these are concerned with solving the linear system of equations to compute a
search direction using linear multigrid methods (both geometric and algebraic). A
different approach, and the one we adopt in this paper is the class of multigrid
algorithms proposed in [20] and further developed in [19]. The framework proposed
in [20] was used for the design of a first order unconstrained line search algorithm
in [31], and a trust region algorithm in [12]. The trust region framework was
extended to deal with box constraints in [11]. The general equality constrained case
was discussed in [21], but no convergence proof was given. Numerical experiments
with multigrid are encouraging and a number of numerical studies have appeared
so far, see e.g. [10,22]. The algorithm we develop combines elements from ISTA
(gradient proximal steps) and the multigrid framework (coarse correction steps)
developed in [20] and [31]. We call the proposed algorithm Multilevel Iterative
Shrinkage Thresholding Algorithm (MISTA). We prefer the name multilevel to
multigrid since there is no notion of grid in our algorithm.

The literature in multilevel optimization is largely concerned with models
where the underlying dynamics are governed by differential equations and con-
vergence proofs exist only for the smooth case and with simple box or equality
constraints. Our main contribution is the extension of the multigrid framework
for convex but possibly non-smooth problems with certain types of constraints.
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Theoretically the algorithm is valid for any convex constraint but the algorithm is
computationally feasible when the proximal projection step can be performed in
closed form or when it has a low computational cost. Fortunately many problems
in machine learning, computer vision, and statistics do satisfy our assumptions.
Apart from the work in [11] that addresses box constraints, the general constrained
case has not been addressed before. Existing approaches assume that the objective
function is twice continuously differentiable, while the the proximal framework we
develop in this paper allows for a large class of non-smooth optimization models.
In addition, our convergence proof is different from the one given in [20] and [6]
in that we do not assume that the algorithm used in the finest scale performs
one iteration after every coarse correction step. Our proof is based on analyzing
the whole sequence generated by the algorithm and does not rely on asymptotic
results as in previous works [12,31]. We show that the coarse correction step sat-
isfies the contraction property as long as the objective function is convex and the
differentiable part has a Lipschitz continuous gradient. If the differentiable part is
strongly convex, then MISTA has a Q-linear convergence rate [25]. On the other
hand, if the differentiable part is only convex and has Lipschitz continuous gradi-
ents, then MISTA has an R-linear convergence rate. R-linear convergence rate is
a property of ISTA, and is weaker than Q-linear convergence. A variant of ISTA
is the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) proposed in [2],
and has a convergence rate of O(1/k2) for function values. The analysis of FISTA
using the multilevel framework is technically more challenging than the simpler
ISTA scheme. The acceleration of multigrid methods is an open question that is
currently under investigation. Indeed many algorithmic frameworks for large scale
composite convex optimization such as active set methods[18], stochastic methods
[16], Newton type methods [17] as well as block coordinate descent methods [27]
have recently been proposed. In principle all these algorithmic ideas could be com-
bined with the multilevel framework developed in this paper. We chose to study
ISTA because it is simpler to analyze. With the insights provided in this paper
we hope to combine the multilevel framework with more advanced algorithms in
the future. Despite the theoretical differences between the algorithm proposed in
this paper and FISTA, our numerical experiments show that MISTA outperforms
both ISTA and FISTA. In particular we found that for a difficult large scale (over
106 variables) image restoration problem MISTA is ten times faster than ISTA
and more than three times faster than FISTA.

Outline The rest of the paper is structured as follows: in the next section we
introduce our notation and assumptions. We also discuss the role of quadratic ap-
proximations in convex composite optimization models. In Section 3 we discuss the
construction of different coarse models. We also describe the process of transfer-
ring information from a coarse to a fine model and vice versa. The full algorithm is
given in Section 3.3 and the convergence of the algorithm is established in Section
4. We report numerical results in Section 5.

2 Composite Convex Optimization and Quadratic Approximations

The main difference between the proposed algorithm, MISTA, and existing algo-
rithms such as ISTA and FISTA is that we do not use a quadratic approximation
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for all iterations. Instead we use a coarse model approximation for some itera-
tions. In this section we briefly describe the role of quadratic approximations in
composite convex optimization, and introduce our notation.

2.1 Notation and Problem Description

We will assume that the optimization model can be formulated using only two
levels of fidelity, a fine model and a coarse model. We use h and H to indicate
whether a particular quantity/property is related to the fine and coarse model
respectively. It is easy to generalize the algorithm to more levels but with only two
levels the notation is simpler. The fine model is the convex composite optimization
model,

min
xh∈Ωh

{
Fh(x) , fh(xh) + gh(xh)

}
, (1)

where Ωh ⊂ Rh is a closed convex set, fh is a smooth function with a Lipschitz
continuous gradient, and gh : Rh → R is an extended value convex function that is
possibly non-smooth. We use Lh to denote the Lipschitz constant of the gradient
of fh. When gh is a norm then the non-smooth term in (1) is usually multiplied
by a scalar µ ≥ 0. The parameter µ is a regularization parameter, and so the non-
smooth term encourages solutions that are sparse. Sparsity is a desirable property
in many applications. The algorithm we propose does not only apply when gh is
a norm. But if it is a norm, then some variants of our algorithm make use of the
dual norm associated with gh. The incumbent solution at iteration k in resolution
h is denoted by xh,k. We use fh,k and ∇fh,k to denote fh(xh,k) and ∇fh(xh,k)
respectively. Unless otherwise specified we use ‖.‖ to denote ‖.‖2.

2.2 Quadratic Approximations and ISTA

A widely used method to update xh,k is to perform a quadratic approximation
of the smooth component of the objective function, and then solve the proximal
subproblem,

xh,k+1 = arg min
y∈Ωh

fh,k + 〈∇fh,k, y − xh,k〉+
Lh
2
‖xh,k − y‖2 + g(y).

Note that the above can be rewritten as follows,

xh,k+1 = arg min
y∈Ωh

Lh
2

∥∥∥∥y − (xh,k − 1

Lh
∇fh,k

)∥∥∥∥2 + g(y).

When the Lipschitz constant is known, ISTA keeps updating the solution vector by
solving the optimization problem above. Another example is the classical gradient
projection algorithm[5] (with a fixed step-size). In this case the proximal projection
step is given by,

min
y∈Rh

Lh
2

∥∥∥∥y − (xh,k − 1

Lh
∇fh,k

)∥∥∥∥2 + IΩh
(y),
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where IΩh
is the indicator function on Ωh. For later use we define the generalized

proximal operator as follows,

proxh(x) = arg min
y∈Ωh

1

2
‖y − x‖2 + g(y).

Our algorithm uses the step-size differently than ISTA/FISTA and so in proximal
steps the step-size does not appear explicitly in the definition of the proximal
projection problem. Our proximal update step is given by,

xh,k+1 = xh,k − sh,kDh,k (2)

where the gradient mapping Dh,k is defined as follows,

Dh,k ,

[
xh,k − proxh(xh,k −

1

Lh
∇fh,k)

]
. (3)

Updating the incumbent solution in this manner is reminiscent of classical gradient
projection algorithms [5].

In many applications gh is a norm, and it is often necessary to refer explicitly
to the regularization parameter,

min
xh∈Ωh

{
Fh(x) , fh(xh) + µgh(xh)

}
. (4)

For the case where the optimization model is given by (4), we will also make use
of the properties of the dual norm proximal operator defined as follows,

proj?h(x) = arg max
y
− 1

2
‖y − x‖22 − ‖x‖

2

s.t. g?(y) ≤ µ,
(5)

where g? is the dual norm of g. Using Fenchel duality (see Lemma 2.3 in [29]) it
can be shown that,

proxh(x) = x− proj?h(x). (6)

The relationship above is often used to compute the proximal projection step
efficiently.

3 Multilevel Iterative Shrinkage Thresholding Algorithm

Rather than computing a search direction using a quadratic approximation, we
propose to construct an approximation with favorable computational character-
istics for at least some iterations. Favorable computational characteristics in the
context of optimization algorithms may mean reducing the dimensions of the prob-
lem and possibly increasing the smoothness of the model. This approach facilitates
the use of non-linear (but still convex) approximations around the current point.
The motivation behind this class of approximations is that the global nature of
the approximation would reflect global properties of the model that would yield
better search directions.

There are three components to the construction of the proposed algorithm: (a)
specification of the restriction/prolongation operators that transfer information
between different levels; (b) construction of an appropriate hierarchy of models;
(c) specification of the algorithm (smoother) to be used in the coarse model. Below
we address these three components in turn.
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3.1 Information transfer between levels

Multilevel algorithms require information to be transferred between levels. In the
proposed algorithm we need to transfer information concerning the incumbent
solution, proximal projection and gradient around the current point. At the fine
level the design vector xh is a vector in Rh. At the coarse level the design vector
is a vector in RH and H < h. At iteration k, the proposed algorithm projects the
current solution xh,k from the fine level to coarse level to obtain an initial point
for the coarse model denoted by xH,0. This is achieved using a suitably designed
matrix (IHh ) as follows,

xH,0 = IHh xh,k.

The matrix IHh ∈ RH×h, is called a restriction operator and its purpose is to
transfer information from the fine to the coarse model. There are many ways to
define this operator and we will discuss some possibilities for machine learning
problems in Section 4. This is a standard technique in multigrid methods both for
solutions of linear and nonlinear equations and for optimization algorithms [9,20].
In addition to the restriction operator we also need to transfer information from
the coarse model to the fine model. This is done using the prolongation operator
IhH ∈ Rh×H . The standard assumption in multigrid literature [9] is to assume
that IHh = c(IhH)>, where c is some positive scalar. We also assume, with out loss
of generality, that c = 1. We also make the following assumption, that is always
satisfied in practice.

Assumption 1 For a given pair of restriction/prolongation operators, there exist
two constants ω1 and ω2, such that:

‖IHh yh‖ ≤ ω1‖yh‖
‖IhHyH‖ ≤ ω2‖yH‖

for any vectors yh in the fine level, and yH in the coarse level.

3.2 Coarse model construction

The construction of the coarse models in multilevel algorithms is a subtle process.
It is this process that sets apart rigorous multilevel algorithms with performance
guarantees from other approaches (e.g. kriging methods) used in the engineering
literature. A key property of the coarse model is that locally (i.e. at the initial
point of the coarse model, xH,0) the optimality conditions of the two models
match. In the unconstrained case this is achieved by adding a linear term in the
objective function of the coarse model [12,20,31]. In the constrained case the linear
term is used to match the gradient of the Lagrangian [20]. However, the theory for
the constrained case of multilevel algorithms is less developed. Here we propose an
approach that contains the unconstrained approach in [20] and the box-constrained
case [11] as special cases. In addition we are able to deal with the non–smooth
case and through the proximal step we address the constrained case.

In the case where the optimization model is non–smooth there are many ways
to construct a coarse model. We propose three ways to address the non–smooth
part of the problem. All three approaches enjoy the same convergence properties,
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but depending on the application some coarse models may be more appropriate
since they make different assumptions regarding the non–smooth function and the
prolongation/restriction operators. The three approaches are: (a) smoothing the
non–smooth term, (b) a reformulation using dual norm projection, (c) non–smooth
model with a projection using the indicator function. The coarse model in all three
approaches has the following form,

FH(xH) , fH(xH) + gH(xH) + 〈vH , xH〉. (8)

We assume that given the function fh, the construction of fH is easy (e.g. varying
a descritization parameter or the resolution of an image etc.) . We also assume that
fH has a Lipschitz continuous gradient, and denote the Lipschitz constant with
LH . The second term in (8) represents information regarding the non–smooth part
of the original objective function, and the third term ensures the fine and coarse
model are coherent (in the sense of Lemmas 1-3). We will denote the smooth part
of the objective function with,

φH(xH) , fH(xH) + 〈vH , xH〉.

We use LH to denote the Lipschitz constant of the gradient of φH . Apart from
fH , the other two terms in (8) vary depending on which of the three approaches
is adopted. We discuss the three options in decreasing order of generality below.

3.2.1 The smooth coarse model

The approach that requires the least assumptions is to construct a coarse model
by smoothing the non–smooth part of the objective function. In other words, the
second term in (8) is again a reduced order version of gh but is also smooth. In
the application we consider the non-smooth term is usually a norm or an indicator
function. It is therefore easy to construct a reduced order version of gh, and there
exists many methods to smooth a non–smooth function [3]. Our theoretical results
do not depend on the choice of the smoothing method. We construct the last term
in (8) with,

vH = LHI
H
h Dh,k − (∇fH,0 +∇gH,0). (9)

When the coarse model is smooth, then LH corresponds to the Lipschitz constant
of (8). In addition we also assume that any constraints in the form of xH ∈ ΩH
have been incorporated in gH .

Lemma 1 Suppose that fH and gH have Lipschitz continuous gradients, and that
the coarse model associated with (1) is given by,

min
xH

fH(xH) + gH(xH) + 〈vH , xH〉, (10)

where vH is given by (9), then,

DH,0 = IHh Dh,k. (11)
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Proof Using the definitions of the gradient mapping in (3) and the projection
operator (instead of the prox operator) for the smooth objective function of the
coarse level, we obtain:

DH,0 = xH,0 − proxH(xH,0 −
1

LH
∇FH,0)

= xH,0 − arg min
z∈RH

1

2
‖z −

(
xH,0 −

1

LH
∇FH,0

)
)‖2

=
1

LH
∇FH,0

=
1

LH
(∇fH,0 +∇gH,0 + vH)

= IHh Dh,k,

where in the second equality we used the fact that the objective function in (10)
is smooth and so any constraints in the form of xH ∈ ΩH can be incorporated in
gH . ut

The condition in (11) is referred to as the first order coherent condition. It ensures
that at if xh,k is optimal in the fine level, then xH,0 = IHh xh,k is optimal in the
coarse model. This property is crucial in establishing convergence of multilevel
algorithms. The smooth case was discussed in [12,20,31], and the Lemma above
extends the condition to the non-smooth case. Next we discuss a different way to
construct the coarse model (and hence a different vH term) that makes a particular
assumption about the restriction and interpolation operators.

3.2.2 A non-smooth coarse model with dual norm projection

In the coarse construction method described above we imposed a restriction on
the coarse model but allowed arbitrary restriction/prolongation operators. In our
second method for constructing coarse models we allow for arbitrary coarse models
(they can be non-smooth) but make a specific assumption regarding the informa-
tion transfer operators. In particular we assume that,

xH(i) = (IHh xh)i = xh(2i), i = 1, . . . , H.

We refer to this operator as a coordinate wise restriction operator. The reason we
discuss this class of restriction operators is that in the applications we consider
the non-smooth term is usually a norm that satisfies the following,

proj?H(IHh xh) = IHh proj?h(xh), (12)

where proj?h and proj?H denote projection with respect to the dual norm associ-
ated with gh and gH respectively (see the definition in (5)). When the restriction
operator is done coordinate wise then the preceding equation is satisfied for many
frequently encountered norms including the l1, l2 and the l∞ norms. In the multi-
grid literature linear interpolation is the most frequently used restriction operator.
In Figure 1 we compare the linear interpolation operator with the coordinate wise



Multilevel Iterative Shrinkage Thresholding Algorithm 9

(a) Linear interpolation restriction operator

(b) Coordinate wise restriction operator

Fig. 1 (a) The linear interpolation operator widely used in the multigrid literature. (b) The
coordinate wise restriction operator is reminiscent of the techniques used in coordinate descent
algorithms.

operator in terms of the information they transfer from the fine to the coarse model.
In our second coarse construction method the last term in (8) is constructed with,

vH =
LH
Lh

IHh ∇fh,k −∇fH,0. (13)

Lemma 2 Suppose that fH has a Lipschitz continuous gradient, condition (12) is
satified, and that both gh and gH are norms. For the coarse model associated with
(4) given by,

min
xH

fH(xH) + µgH(xH) + 〈vH , xH〉,

where vH is given by (13), then,

DH,0 = IHh Dh,k.

Proof Since gh is a norm, we can compute the proximal term by (6) to obtain,

Dh,k =

[
xh,k − proxh

(
xh,k −

1

Lh
∇fh,k

)]
=

[
xh,k −

(
xh,k −

1

Lh
∇fh,k − proj?h

(
xh,k −

1

Lh
∇fh,k

))]
=

1

Lh
∇fh,k + proj?h

(
xh,k −

1

Lh
∇fh,k

)
.
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Using the same argument for the coarse model and the definition in (13),

DH,0 =
1

LH
(∇fH,0 + vH) + proj?H

(
xH,0 −

1

LH
(∇fH,0 + vH)

)
= IHh

(
1

Lh
∇fh,k

)
+ proj?H

(
IHh

(
xh,k −

1

Lh
∇fh,k

))
= IHh

(
1

Lh
∇fh,k + proj?h(xh,k −

1

Lh
∇fh,k)

)
= IHh Dh,k.

Where in the third equality we used (12). ut

Next we discuss a different way to construct the coarse model (and hence a different
vH term) that makes a particular assumption on the non-smooth component of
the fine model.

3.2.3 A non-smooth coarse model with constraint projection.

When the non-smooth term is a regularization term, the proximal term is compu-
tationally tractable. In this case, the problem can equivalently be formulated using
a constraint as opposed to a penalty term. In this third method for constructing
coarse models we assume that the coarse non-smooth term is given by,

gH(xH) =

{
xH if xH ∈ ΩH ,
∞ otherwise.

With this definition, the coarse model has the same form as in (8) where gH is
an indicator function on ΩH , and the final term is constructed using the following
definition for vH ,

vH = LHxH,0 −
(
∇fH,0 + LHI

H
h proxh

(
xh,k −

1

Lh
∇fh,k

))
. (14)

We also make the following assumption regarding the relationship between coarse
and fine feasible sets,

projH(IHh xh) = IHh xh, ∀xh ∈ Ωh. (15)

The condition above is satisfied for many situations of interest, for example when
Ωh = Rh+ and ΩH = RH+ . It also holds for box constraints and simple linear or
convex quadratic constraints. If the condition above is not possible to verify then
the other two methods described in this section can still be used. Note that we
only make this assumption regarding the coarse model, i.e. we do not require such
a condition to hold when we prolong feasible coarse solutions to the fine model.

Lemma 3 Suppose that that condition (15) is satisfied, fH has a Lipschitz con-
tinuous gradient and that gH is an indicator function on ΩH ⊂ RH . Assume that
the coarse model associated with (1) is given by,

min
xH

fH(xH) + gH(xH) + 〈vH , xH〉,
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where vH is given by (14), then

DH,0 = IHh Dh,k.

Proof Using the fact that the proximal step in the coarse model reduces to an
orthogonal projection on ΩH we obtain,

DH,0 = xH,0 − projH(xH,0 −
1

LH
(∇fH,0 + vH))

= xH,0 − projH(IHh proxh(xh,k −
1

Lh
∇fh,k))

= IHh

[
xx,k − proxh(xh,k −

1

Lh
∇fh,k)

]
= IHh Dh,k,

where in the third equality we used assumption (15). ut

3.3 Algorithm Description

In the previous section we described ways to construct a coarse model, and specified
the information transfer operators. Given these two components we are now in a
position to describe the algorithm in full. It does not matter how the coarse model
or the information transfer operators were constructed. The only requirement is
that the first order coherence condition is satisfied. It is important to satisfy the
first order coherent condition in order to establish the convergence of the algorithm.
However, it does not matter how this condition is imposed in the coarse model.
The prolongation/restriction operators are also satisfy assumed to IHh = c(IhH)>

for some constant c > 0 (with out loss of generality we assume that c = 1). The
latter assumption is standard in the literature of multigrid methods.

Given an initial point xH,0, the coarse model is solved in order to obtain a so
called error correction term. The error correction term is the vector that needs to
be added to the initial point of the coarse model in order to obtain an optimal
solution xH,? in (8),

eH,? = xH,0 − xH,?.

In practice the error correction term is only approximately computed, and instead
of eH,? we will use eH,m, i.e. the error correction term after m iterations. After
the coarse error correction term is computed, it is projected to the fine level using
the prolongation operator,

dh,k = IhHeH,m , IhH

m−1∑
i=0

sH,iDH,i.

The current solution, at the fine level, is updated as follows,

xh,k+1 = xh,k − sh,k(xh,k − x+h ),

where,
x+h = proxh(xh,k − τdh,k).
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Algorithm 1: Multilevel Iterative Shrinkage Thresholding Algorithm

if Condition to compute search direction in the coarse model is satisfied at xh,k then
Set xH,0 = IHh xh,k;
Compute m iterations of the coarse level

xH,m = xH,0 +

m∑
i=0

sH,iDH,i

Set dh,k = IhH(xH,0 − xH,m);
Find a suitable τ and compute:

x+ = proxh(xh,k − τdh,k) (16)

Choose a step-size sh,k ∈ (0, 1] and update:

xh,k+1 = xh,k − sh,k(xh,k − x+h ) (17)

end
else

Compute gradient mapping:

Dh,k = xh,k − proxh(xh,k −
1

Lh
dh,k)

Choose a step-size sh,k ∈ (0, 1] to update:

xh,k+1 = xh,k − sh,kDh,k (18)

end

Clearly, if dh,k = ∇fh,k, τ = 1/LH , then the algorithm performs exactly the
same step as ISTA with the proximal update step given in (2). Below we specify
a conceptual version of the algorithm. When the current iterate xh,k is updated
using the error correction term from the coarse model we call the step k + 1 a
coarse correction step.

Based on our own numerical experiments and the results in [12,20,31] we
perform a coarse correction iteration when the following conditions are satisfied,

‖IHh Dh,k‖ >κ‖Dh,k‖

‖xkh − x̃h‖ >η‖x̃h‖,
(19)

where x̃h is the last point to triger a coarse correction iteration. The first condition
in (19) prevents the algorithm from performing coarse iterations when the first
order optimality conditions are almost satisfied. If the current fine level iterate
is close to being optimal the coarse model constructs a correction term that is
nearly zero. Typically, κ is the tolerance on the norm of the first-order optimality
condition of (the fine) level h or alternatively κ ∈ (0,min(1,min ‖IHh ‖)). The
second condition in (19) prevents a coarse correction iteration when the current
point is very close to x̃h. The motivation is that performing a coarse correction at
a point xkh that satisfies both the above conditions will yield a new point close to
the current xkh. In our implementation of MISTA we always use ISTA to perform
iterations in both the coarse level and in the fine level (when a gradient mapping
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is performed). It is possible to obtain better numerical performance by performing
FISTA steps but since this type of steps are not covered by our theory we leave
this enhancement for future work.

4 Global convergence rate analysis

In this section we establish the convergence and convergence rate of MISTA. Our
main result (Theorem 3) shows that a coarse correction step is a contraction on
the optimal solution. To establish our main result we need to assume that both
the fine and coarse model are convex, but not necessarily strongly convex. Our
other main assumption is that the differentiable part of the fine and coarse models
have Lipschitz-continuous gradients. Based on existing results on ISTA it will
then follow that MISTA converges with an R-linear convergence rate when f(x)
is convex. In addition when f(x) is strongly convex, MISTA converges Q-linearly.

For the convergence analysis it does not matter how the coarse model is con-
structed. We only require the first order coherence property to hold,

DH,0 = IHh Dh,k. (20)

Where Dh,k is the gradient mapping defined in (3). Three examples of how this
property can be satisfied are given in Lemmas 1, 2, and 3. If conditions (19) are
satisfied the proposed algorithm performs a coarse correction (17). If (19) are not
satisfied then MISTA performs a gradient (mapping) proximal step(18). In order
to establish the convergence property of MISTA, we will show in Theorem 3 that
if xh,? is the optimal solution for (1), then the coarse correction step is always a
contraction,

‖xh,k+1 − xh,?‖2 ≤ σ‖xh,k − xh,?‖2, (21)

where σ ∈ (0, 1). In addition, the gradient proximal step (18) is non-expansive if
f(x) is convex, and is a contraction if f(x) is strongly convex [28]. Clearly, the
contraction property is stronger than the non-expansive property; therefore, com-
bining this with the contraction property of the coarse correction step, MISTA
converges Q-linearly if f(x) is strongly convex, and R-linearly otherwise. The fol-
lowing theorems follow from [25,28] and establish the convergence properties of
MISTA.

Theorem 1 [28, Theorem 1] Suppose that the coarse correction step satisfies the
contraction property (21), and that f(x) is convex and has Lipschitz-continuous
gradients. Then any MISTA step is at least nonexpansive (coarse correction steps
are contractions and gradient proximal steps are non-expansive),

‖xh,k+1 − xh,?‖2 ≤ ‖xh,k − xh,?‖2,

and the sequence {xh,k} converges R-linearly.

Theorem 2 [28, Theorem 2] Suppose that the coarse correction step satisfies the
contraction property (21), and that f(x) is strongly convex and has Lipschitz-
continuous gradients. Then any MISTA step is always a contraction,

‖xh,k+1 − xh,?‖2 ≤ σ‖xh,k − xh,?‖2,

where σ ∈ (0, 1) and the sequence {xh,k} converges Q-linearly.
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If the coarse correction step is a contraction, the results above establish the linear
convergence rate of MISTA. In the rest of this section we show the contraction
property of the coarse correction step (17).

The first observation is that at the optimum xh,? the gradient mapping, de-
noted by Dh,? is zero. This follows from the optimality conditions of proximal type
algorithms and can be found in [4]. It then follows from the first order coherence
property, DH,? = IHh Dh,? that the coarse correction step is zero when Dh,? is the
gradient mapping at the optimum xh,?. This trivial observation is formalized in
the Lemma below.

Lemma 4 Suppose that xh,? is optimal for (1). Let D?H,i denote the gradient

mapping of the coarse model at iteration i when xH,0 = IHh xh,?. Then for all
iterations i of the coarse model we must have D?H,i = 0.

Convergence proofs for first order algorithms take advantage of the following in-
equality,

〈xh − yh,∇f(x)−∇f(y)〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2. (22)

The proof of the preceding inequality can be found in [23], and it uses the facts
that f is convex and has a Lipschitz continuous gradient. In our proof we will
need to make use of such an inequality. However, the direction the algorithm uses
is not always given by the gradient of the function. For some iterations MISTA
uses a coarse correction step, and we simply cannot replace the gradients in (22)
with the coarse correction term obtained from the coarse model. We are still able
to establish a similar inequality in Lemma 6. In particular the main result in this
section will be obtained using the following bound,

〈xh,k − xh,?, dh,k − dh,?〉 ≥ m̂‖dh,k − dh,?‖, (23)

where m̂ is specified in Lemma 6. Note that if we only perform gradient mapping
steps (see (18)) then dh,k = ∇fh(xk) and dh,? = ∇fh(xh,?) and the preceding
inequality simply follows from (22). However, when we perform coarse correction
steps (see (17)) then dh,k is the sum of m applications of the proximal operator,

dh,k = IhH

m−1∑
i=0

sH,iDH,i.

Obtaining the bound in (23) is not as easy as in the case where gradient steps are
made. The bound in (23) makes use of the following lemma established in [1].

Lemma 5 Suppose that the function φ : Ω → R is convex with a L-lipschitz
continuous gradient. Let Dz denote the gradient mapping defined in (3) at the
point z ∈ Ω i.e.

Dz =

[
z − prox(z − 1

L
∇φ(z))

]
.

Then for any x, y ∈ Ω, we must have,

〈Dx −Dy, x− y〉 ≥
3

4
‖Dx −Dy‖2. (24)

Proof The proof in [1] was given for a different definition of the gradient mapping
but exactly the same proof can be used to establish (24). ut
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Next we use the Lemma above together with properties of the multilevel proximal
mapping to establish the bound in (23).

Lemma 6 Consider two coarse correction terms generated by performing m iter-
ations at the coarse level starting from the points xh,k and xh,?:

dh,k = IhHeH,m = IhH

m−1∑
i=0

sH,iDH,i

dh,? = IhH

m−1∑
i=0

sH,iD
?
H,i = 0

(25)

then the following inequality holds:

〈xh,k − xh,?, dh,k − dh,?〉 ≥ m̂‖dh,k − dh,?‖2

where m̂ = (1 + 2m)/(4mω2
2), and ω2 was defined in Assumption (1).

Proof From Lemma 4, we must have that D?H,i = 0,∀i and therefore,

dh,? = IhH

m−1∑
i=0

sH,iD
?
H,i = 0.

Using the observation above, we obtain the following equality,

〈xh,k − xh,?, dh,k − dh,?〉 =

〈
xh,k − xh,?, IhH

m−1∑
i=0

sH,iDH,i − IhH
m−1∑
i=0

sH,iD
?
H,i

〉

=

〈
xH,0 − x?H,0,

m−1∑
i=0

sH,i(DH,i −D?H,0)

〉
(26)

Consider the ith term of the preceding equation,

sH,i
〈
xH,0 − x?H,0, DH,i −D?H,0

〉
=sH,i〈xH,0 − xH,i + xH,i − x?H,0, DH,i −D?H,0〉

≥sH,i〈xH,0 − xH,i, DH,i〉+
3

4
sH,i‖DH,i −D?H,0‖2

=〈xH,0 − xH,i, xH,i − xH,i+1〉+
3

4sH,i
‖xH,i − xH,i+1‖2

≥〈xH,0 − xH,i, xH,i − xH,i+1〉+
3

4
‖xH,i − xH,i+1‖2.

Where the first inequality follows from Lemma 5 and the fact that D?H,0 = 0. To
obtain the second equality we used the following,

DH,i =
xH,i − xH,i+1

sH,i
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Finally the last inequality above follows from the fact that sH,i ∈ (0, 1]. Substi-
tuting the bound we obtained for the ithabove inequality in (26) yields:

〈xh,k − xh,?, dh,k − dh,?〉 ≥
m−1∑
i=0

〈xH,0 − xH,i, xH,i − xH,i+1〉+
3

4
‖xH,i − xH,i+1‖2

= ∆+

m−1∑
i=2

〈xH,0 − xH,i, xH,i − xH,i+1〉+
3

4
‖xH,i − xH,i+1‖2.

(27)

where,

∆ =
3

4
‖xH,0 − xH,1‖2 + 〈xH,0 − xH,1, xH,1 − xH,2〉+

3

4
‖xH,1 − xH,2‖2.

The quantity ∆ has the form:

3

4
‖a‖2 + 〈a, b〉+

3

4
‖b‖2 =

1

2
‖a+ b‖2 +

1

4
‖a‖2 +

1

4
‖b‖2, (28)

with a = xH,0 − xH,1 and b = xH,1 − xH,2. Utilizing (28) in (27) we obtain:

〈xh,k − xh,?, dh,k − dh,?〉

≥ 1

4
‖xH,0 − xH,1‖2 +

1

4
‖xH,1 − xH,2‖2

+
1

2
‖xH,0 − xH,2‖2 + 〈xH,0 − xH,2, xH,2 − xH,3〉+

1

2
‖xH,2 − xH,3‖2 +

1

4
‖xH,2 − xH,3‖2

+

m−1∑
i=3

〈xH,0 − xH,i, xH,i − xH,i+1〉+
1

2
‖xH,i − xH,i+1‖2 +

1

4
‖xH,i − xH,i+1‖2

Note that,

〈xH,0−xH,i, xH,i−xH,i+1〉+
1

2
‖xH,i−xH,i+1‖2 =

1

2
‖xH,0−xH,i+1‖2−

1

2
‖xH,0−xH,i‖2.

Using the preceding equality and grouping the remaining terms together we obtain,

〈xh,k − xh,?, dh,k − dh,?〉 ≥
1

2
‖xH,0 − xH,m‖2 +

1

4

m−1∑
i=0

‖xH,i − xH,i+1‖2

≥ 1

2
‖xH,0 − xH,m‖2 +

1

4m

(
m−1∑
i=0

‖xH,i − xH,i+1‖

)2

≥ 1

2
‖xH,0 − xH,m‖2 +

1

4m
‖xH,0 − xH,m‖2

=
1 + 2m

4m
‖eH,m‖2

Where to get the second inequality we used the Cauchy-Schwarz inequality, the
third inequality follows from the triangle inequality. In the last equality we used
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the definition of the coarse error correction term. The result now follows by using
Assumption 1,

1 + 2m

4m
‖eH,m‖2 ≥

1 + 2m

4mω2
2

∥∥∥IhHeH,m∥∥∥2 =
1 + 2m

4mω2
2

‖dh,k − dh,?‖2,

as required. ut

Next we show that the coarse correction term satisfies a condition similar to the
Lipschitz continuity of the gradient.

Lemma 7 Suppose that a convergent algorithm with nonexpansive steps is applied
at the coarse level (e.g. ISTA). Then the coarse correction term defined in (25)
satisfies the following bound,

‖dh,k − dh,?‖2 ≤
16

9
m2ω2

1ω
2
2s

2
H,0‖xh,k − xh,?‖2,

where ω1, ω2 are defined in Assumption 1, m is the number of iterations in the
coarse level, and sH,0 is the step size used in the coarse algorithm.

Proof Using the definition of the coarse correction term we obtain,

‖dh,k − dh,?‖2 =

∥∥∥∥∥IhH
m−1∑
i=0

sH,iDH,i − 0

∥∥∥∥∥
2

≤ ω2
2

∥∥∥∥∥
m−1∑
i=0

sH,iDH,i

∥∥∥∥∥
2

≤ ω2
2

(
m−1∑
i=0

sH,i‖DH,i‖

)2

,

(34)

where in the first inequality we used Assumption 1, and in the second inequality
we used the triangle inequality. Since non-expansive steps are used at the coarse
level we must have that,

‖xH,k+1 − xH,k‖ ≤ ‖xH,k − xH,k−1‖,

or equivalently,

sH,k‖DH,k‖ ≤ sH,k−1‖D(xH,k−1)‖.

Using the preceding relationship we obtain,

(
m−1∑
i=0

sH,i‖DH,i‖

)2

≤ m2s2H,0‖DH,0‖2

= m2s2H,0‖DH,0 −D?H,0‖2

= m2s2H,0‖IHh Dh,k − IHh Dh,?‖2

(35)
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where used the fact thatD?H,0 = 0 in the first equality, and the first order coherence
property (20) in the second equality. Using Assumption 1 and Lemma 5 we obtain,

‖IHh Dh,k − IHh Dh,?‖2 ≤ ω2
1‖Dh,k −Dh,?‖2

≤ 4

3
ω2
1〈Dh,k −Dh,?, xh,k − xh,?〉

≤ 16

9
ω2
1‖xh,k − xh,?‖2.

(36)

Using (35) and (36) in (34) we obtain the desired result. ut

We are now in a position to show that the algorithm is a contraction even when
coarse correction steps are used.

Theorem 3 (Contraction for coarse correction update) Suppose that at
iteration k + 1 a coarse correction update is performed using m iterations of the
coarse contraction algorithm.

(a) Let τ denote the step size in (16) and s denote the step size used in (17) then,

‖xh,k+1 − xh,?‖2 ≤ σ(s, τ)‖xh,k − xh,?‖2

where σ(τ, s) = 2 +∆(τ)s2 and,

∆(τ) =
8

9
mω2

1s
2
H,0(4mω2

2τ
2 − 2τ(1 + 2m)).

(b) Suppose that either of the following is true,
(i) ω ≥ 1 and ω2 ≤ 1.
(ii) The number of iterations in the coarse algorithm is sufficiently large.
Then, there always exists τ > 0 such that,

∆(τ) < −1

and,

1√
−∆(τ)

≤ s ≤ min

{
2√
−∆(τ)

, 1

}
Consequently, we have,

σ(τ, s) < 1.

Proof (a) Let rh,k denote the difference between the optimum and iteration k i.e.
rh,k = xh,k − xh,?. If a coarse correction step is performed at iteration k + 1 we
can bound the norm of rh,k+1 as follows,

‖rh,k+1‖2 =‖(1− s)rh,k + s[proxh(xh,k − τdh,k)− proxh(xh,? − τdh,?)]‖2

≤2(1− s)2‖rh,k‖2 + 2s2‖proxh(xh,k − τdh,k)− proxh(xh,? − τdh,?)‖2

≤2(1− s)2‖rh,k‖2 + 2s2‖(xh,k − τdh,k)− (xh,? − τdh,?)‖2

=(4s2 − 4s+ 2)‖rh,k‖2 + 2s2(τ2‖dh,k − dh,?‖2 − 2τ〈xh,k − xh,?, dh,k − dh,?〉),
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where the first inequality follows from Cauchy-Schwarz inequality and the non-
expansive property of the proximal algorithm [28]. Using the fact that s ∈ (0, 1]
implies that 4s2− 4s ≤ 0, and Lemma 6 in the bound for rh,k+1 above, we obtain

‖rh,k+1‖2 ≤2‖xh,k − xh,?‖2 +
4mω2

2τ
2 − 2τ(1 + 2m)

2mω2
2

s2‖dh,k − dh,?‖2

≤

2 +
8

9
mω2

1s
2
H,0(4mω2

2τ
2 − 2τ(1 + 2m))︸ ︷︷ ︸

∆(τ)

.s2

 ‖xh,k − xh,?‖2,
which completes the proof of part (a).

(b) In order to establish the contraction property we need to establish that there
exists s ∈ (0, 1] and τ such that 0 < 2 +∆(τ)s2 < 1, or equivalently

−2 < ∆(τ)s2 < −1.

As s ∈ (0, 1], it is essential that ∆(τ) < −1. It follows from the definition of ∆(τ)
that we need to find a τ that satisfies,

A2τ2 −Bτ + 1 < 0 (37)

where

A2 =
32

9
m2ω2

1ω
2
2s

2
H,0 ⇒ 2A =

8
√

2

3
mω1ω2sH,0

B =
16

9
m(1 + 2m)ω2

1s
2
H,0.

The definition of A implies that 2A = 8
√

2mω1ω2sH,0/3. Therefore inequality (37)
can be written as,

(Aτ − 1)2 − (B − 2A) < 0

The above inequality is always satisfied for B > 2A. Indeed, set τ = 1/A and
use premise (b-i) in the statement of the Theorem then 2A is always less than
B. Alternatively, if (b-i) is not true, but the number of coarse iterations m is
sufficiently large, then we also have B > 2A. Once τ is defined such that ∆(τ) <
−1, we can deduce,

1√
−∆(τ)

≤ s ≤ min

{
2√
−∆(τ)

, 1

}
.

ut

The above theorem combined with the non-expansive/contraction property of gra-
dient (mapping) proximal step and concludes the linear convergence properties of
MISTA as stated in Theorem 1 and Theorem 2.
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Remark. Assumption (b-i) in the statement of Theorem 3 is indeed satisfied by
most common restriction/prolongation operators. For example, consider the two
common restriction operators linear interpolation and coordinate wise restriction.
For the linear interpolation operator IHh , assume that we have a fine vector yh ∈ Rn
and a coarse vector yH ∈ Rn/4. The operator IHh groups 4 fine dimension in one
coarse dimension. In this case, the restriction matrix is given by,

IHh =


1 1 1 1 0 0 0 0 . . . 0 0 0 0
0 0 0 0 1 1 1 1 . . . 0 0 0 0

...
. . .

. . .
...

0 0 0 0 0 0 0 0 . . . 1 1 1 1

 .
The prolongation operator is given by IhH = 1

c (IHh )>, in this example c = 4.
Clearly, we can set:

ω1 = ‖IHh ‖ = max
yh 6=0

‖IHh yh‖
‖yh‖

=
√
c ≥ 1,∀yh 6= 0

as always, c ≥ 1. On the other hand,

ω2 = ‖IhH‖ =
1√
c

max
yH 6=0

‖(IHh )>yH‖
‖yH‖

= 1, ∀yH 6= 0

For the coordinate wise operator (also known as an injection operator), assume
that odd indices are omitted in the coarse vector. So, the restriction operator is
defined as,

IHh =


0 1 0 0 0 . . . 0
0 0 0 1 0 . . . 0
...

. . .
. . .

...
...

0 0 0 0 0 . . . 1

 .
and the prolongation is simply given by IhH = (IHh )>. Then the upper bounds of
ω1, ω2 are:

ω1 = ‖IHh ‖ = max
yh 6=0

‖IHh yh‖
‖yh‖

= 1 when yh(2i+ 1) = 0, i = 0, ..., h

ω2 = ‖IhH‖ = max
yH 6=0

‖(IHh )>yH‖
‖yH‖

= 1,∀yH 6= 0.

In our numerical experiments both assumptions (b-i) and (b-ii) are always satisfied.

5 Numerical experiments

In this section we illustrate the numerical performance of the algorithm using
the image restoration problem. We compare the CPU time required to achieve
convergence of MISTA against ISTA and FISTA. We chose to report CPU times
since the computational complexity of MISTA per iteration can be larger than
ISTA or FISTA. We tested the algorithm on several images, and below we re-
port results on a representative set of six images. All our test images have the
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same size, 1024 × 1024. At this resolution, the optimization model at the fine
scale has more than 106 variables (1048576, to be precise). We implemented the
ISTA and FISTA algorithms with the same parameter settings as [2]. For the fine
model we used the standard backtracking line strategy for ISTA as in [2]. All al-
gorithms were implemented in MATLAB and run on a standard desktop PC. Due
to space limitations, we only report detailed convergence results from the widely
used cameraman image. The images we used, the source code for MISTA, and fur-
ther numerical experiments can be obtained from the web-page of the first author
www.doc.ic.ac.uk/~pp500.

5.1 Computation with the fine model

The image restoration problem consists of the following composite convex opti-
mization model,

min
xh∈Rh

‖Ahxh − bh‖22 + µh‖W (xh)‖1,

where bh is the vectorized version of the input image, Ah is the blurring operator
based on the point spread function (PSF) and reflexive boundary conditions, and
W (xh) is the wavelet transform of the image. The two dimensional version of
the input image and the restored image are denoted by Xh and Bh respectively.
The first term in the objective function aims to find an image that is as close
to the original image as possible, and the second term enforces a relationship
between the pixels and ensures that the recovered image is neither blurred nor
noisy. The regularization parameter µh is used to balance the two objectives. In
our implementation of the fine model we used µh = 10e − 4. Note that the first
term is convex and differentiable, the second term is also convex but non-smooth.
The blurring operator Ah, is computed by utilizing an efficient implementation
provided in the HNO package [14]. In particular, we rewrite the expensive matrix
computation Ahxh − bh in the reduced form,

AchXh(Arh)> −Bh,

where Ach, A
r
h are the row/column blurring operators and Ah = Arh⊗Ach. We illus-

trate the problem of image restoration using the widely used cameraman image.
Figure 2(a) is the corrupted image, and the restored image is shown in Figure 2(b).
The restored image was computed with MISTA. The image restoration problem
fits exactly the framework of convex composite optimization. In addition it is easy
to define a hierarchy of models by varying the resolution of the image. We discuss
the issue of coarse model construction next.

5.2 Construction and computation with the coarse model

We described MISTA as a two level algorithm but it is easy to generalize it to
many levels. In our computations we used the fine model described above and two
coarse models, one with resolution 512×512 and its coarse version i.e. a model with
256×256. Each model on the hierarchy has a quarter of the variables of the model
above it. We used the smoothing approach to construct the coarse models (see

www.doc.ic.ac.uk/~pp500
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(a) Corrupted image with 0.5% noise (b) Restored image

Fig. 2 (a) Corrupted cameraman image used as the input vector b, (b) Restored image.

Section 3.2.1). Following the smoothing approach we used the following objective
function,

min
xH∈ΩH

‖AHxH − bH‖22 + 〈vH , xH〉+ µH
∑
i∈ΩH

√
W (xH)2i + ρ2 − ρ

where ρ = 0.2 is the smoothing parameter, vH was defined in (9), and λH is
the regularizing parameter for the coarse model. Since the coarse model has less
dimensions, the coarse problem is smoother, therefore the regularizing parameter
should be reduced, we used µH = µh/2. The information transfer between levels is
done via a simple linear interpolation technique to group four fine pixels into one
coarse pixel. This is a standard way to construct the restriction and prolongation
operators and we refer the reader to [9] for the details. The input image, and the
current iterate are restricted to the coarse scale as follows,

xH,0 = IHh xh,k , bH = IHh bh.

The standard matrix restriction AH = IHh Ah(IHh )> is not performed explicitly
as we never need to store the large matrix Ah. Instead, only column and row
operators Ach, A

r
h are stored in memory. As a decomposition of the restriction

operator is available for our problem, in particular IHh = R1 ⊗ R2, we can obtain
the coarse blurring matrix by,

AH = ArH ⊗AcH

where AcH = R2A
c
hR
>
1 and ArH = R1A

r
hR
>
2 .

The condition to use the coarse model in MISTA is specified in (19), and we
used the parameters κ = 0.5 and η = 1 in our implementation. Since at the
coarse scale the problem is smooth ISTA reduces to the standard steepest descent
algorithm. In our implementation we used the steepest descent algorithm with an
Armijo line search.
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(a) Function value comparison
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(b) Images blurred with 0.5% noise
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(c) Images blurred with 1% noise

Fig. 3 (a) Comparison of the three algorithms in terms of function value. MISTA clearly
outperforms the other algorithms and converges in essentially 5 iterations, while others have
not converged even after 100 iterations. CPU time required to find a solution within 2% of the
optimum for the three algorithms. (b) Results for blurred images with 0.5% noise (c) Results
for blurred images with 1% noise. Higher levels of noise lead to more ill conditioned problems.
The figures in (b) and (c) compare CPU times and suggest that MISTA is on average ten times
faster than ISTA and three/four times than FISTA.

5.3 Performance comparison

We compare the performance of our methods with FISTA and ISTA using a rep-
resentative set of corrupted images (blurred with 0.5% additive noise). In Figure
3(a) we compare the three algorithms in terms of the progress they make in func-
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tion value reduction. In this case we see that MISTA clearly outperform ISTA.
This result is not surprising since MISTA is a more specialized algorithm with
the same convergence properties. However, what is surprising is that MISTA still
outperforms the theoretically superior FISTA Clearly, MISTA outperforms FISTA
in early iterations and is comparable in latter iterations.

Figure 3 gives some idea of the performance of the algorithm but of course what
matters most is the CPU time required to compute a solution. This is because an
iteration of MISTA requires many iterations in a coarse model, and therefore
comparing the algorithms in terms of the number of iterations is not fair. In order
to level the playing field, we compare the performance of the algorithms in terms of
CPU time required to find a solution that satisfies the optimality conditions within
2%. Two experiments were performed on a set of six images. The first experiment
takes as input a blurred image with 0.5% additive Gaussian noise and the second
experiment uses 1% additive noise. We expect the problems with the 1% additive
noise to be more difficult to solve than the one with 0.5% noise. This is because
the corrupted image is more ill-conditioned. Figure 3(b) shows the performance of
the three algorithms on blurred images with 0.5% noise. We can see that MISTA
outperforms both ISTA and FISTA by some margin. On average MISTA is four
times faster than FISTA and ten times faster than ISTA. In Figure 3(c), we see
an even greater improvement of MISTA over ISTA/FISTA. This is expected since
the problem is more ill-conditioned (with 1% noise as opposed to 0.5% noise in
Figure 3(c)), and so the fine model requires more iterations to converge. Since
ISTA/FISTA perform all their computation with the ill conditioned model, CPU
time increases as the amount of noise in the image increases. On the other hand,
the convergence of MISTA depends less on how ill conditioned the model is since
one of the effects of averaging is to decrease ill conditioning.

6 Conclusions

We developed a multilevel algorithm for composite convex optimization models
(MISTA). The key idea behind MISTA is, for some iterations, to replace the
quadratic approximation with a coarse approximation. The coarse model is used to
compute search directions that are often superior to the search directions obtained
using just gradient information. We showed how to construct coarse models in the
case where the objective function is non-differentiable. We also discussed several
ways to enforce the first order coherency condition for composite optimization
models. We developed the multilevel algorithm based on ISTA and established its
linear rate of convergence. Our initial numerical experiments show that the pro-
posed MISTA algorithm is on average ten times faster than ISTA, and three-four
times faster (on average) than the theoretically superior FISTA algorithm.

The initial numerical results are promising but still the algorithm can be im-
proved in a number of ways. For example, we only considered the most basic
prolongation and restriction operators in approximating the coarse model. The
literature on the construction of these operators is quite large and there exist
more advanced operators that adapt to the problem data and current solution
(e.g. bootstrap AMG [8]). We expect that the numerical performance of the algo-
rithm can be improved if these advanced techniques are used instead of the naive
approach proposed here. We based our algorithm on ISTA due to its simplicity. It
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is of course desirable to develop a multilevel version of FISTA, and in the process
establish a better rate of convergence for MISTA. In the last few years several
algorithmic frameworks for large scale composite convex optimization have been
proposed. Examples include active set methods[18], stochastic methods [16], New-
ton type methods [17] as well as block coordinate descent methods [27]. In principle
all these algorithmic ideas could be combined with the multilevel framework de-
veloped in this paper. Based on the theoretical and numerical results obtained
from the multilevel version of ISTA we are hopeful that the multilevel framework
can improve the numerical performance of many of the recent algorithmic devel-
opments in large scale composite convex optimization.
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