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Abstract
An open problem in optimization with imperfect
information is the computation of an exact mini-
mizer. Possible solutions include using a decreas-
ing step size, an increasing batch size or variance
reduction techniques. In this work we take a dif-
ferent approach and run replicas of mirror descent
which we allow to interact. In particular, we study
the convergence of interacting stochastic mirror
descent and show that interaction can decrease the
variance. Therefore, interaction is an alternative
to decreasing the learning rate or to increasing
the batch size. We show that in a convex, ill-
conditioned problem interacting mirror descent
results in faster and closer convergence to the op-
timum, and in a nonconvex setting interactions
can help to escape from saddle points. In the
distributed case we also discuss a variant of our
algorithm that uses second-order information in
order to encourage convergence to a solution that
achieves both consensus and optimality.

1. Introduction
Optimization models that arise in artificial intelligence and
statistical learning applications often include noisy estimates
of the function and its gradient. In such a situation it is
known that the optimization algorithm will converge to a
neighborhood of the minimizer, the size of which is propor-
tional to the noise variance and the stepsize used. Several
methods have been proposed for controlling the noise in
stochastic gradient optimization. A standard approach is to
use a vanishing step size e.g. (Mertikopoulos & Staudigl,
2018), in which case the noise is decreased at the expense
of slower convergence. Alternatively, decreasing the noise
variance by increasing the batch size over time has been pro-
posed e.g. (Byrd et al., 2012) but this requires an increase
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in computational cost. In addition to these approaches var-
ious variance reduction methods have been proposed e.g.
(Johnson & Zhang, 2013), (Defazio et al., 2014), (Gorbunov
et al., 2019), (Csiba & Richtárik, 2018).

Another option is to run independent replicas of the algo-
rithm and average the results. We will refer to each of
these runs as a particle. The question we address in this
paper is whether it is beneficial to allow these particles to
interact with each other. We study this question using the
general framework of Stochastic Mirror Descent (SMD)
(Nemirovsky & Yudin, 1983), an efficient method used to
solve both constrained and unconstrained problems. We
derive convergence rates and make explicit the tradeoff be-
tween communication and variance reduction in both a cen-
tralized and a distributed setting. We show that the variance
can be reduced by using more particles and/or a sufficiently
high interaction strength. The interacting algorithm con-
verges faster and closer to the optimizer in ill-conditioned
settings due to the noise reduction property. Furthermore,
we show that interaction helps escape saddle points in non-
convex settings. Lastly, in a distributed setting we show that
increasing the interaction strength allows for the algorithm
to converge to consensus and we show how second-order
information can be used to achieve convergence to consen-
sus and optimality. Interestingly, the use of second-order
information does not require noticeably more storage or
CPU time compared to first-order methods.

The work most closely related to ours is that of (Raginsky
& Bouvrie, 2012) in which the authors show that interaction
leads to variance reduction. Our work also has parallels
with the vast distributed optimization literature from which
we list some indicative recent references: (Duchi et al.,
2011), (Lin et al., 2016), (Shahrampour & Jadbabaie, 2017),
(Koloskova et al., 2019), (De & Goldstein, 2016).

2. The setup
In this paper we will consider generic convex and nonconvex
optimization problems of the form

min
x∈X
{f(x)},

with X ⊂ Rd be a closed convex constraint set. In the
theoretical analysis we are interested in computing x∗ =
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arg minx∈X {f(x)} under the assumptions of smoothness
and (µ-strong) convexity for f . Let Φ : X → Rd be a
µ-strongly convex function w.r.t. a norm || · || and assume
it is continuously differentiable. We will refer to this as a
mirror map used to convert the constrained optimization
problem to an unconstrained one; see for more details e.g.
Assumption 9.3 in (Beck, 2017). Let Φ∗ be the conjugate
of Φ. The Bregman divergence is defined as DΦ(x, y) =
Φ(x)− Φ(y)−∇ΦT (y)(x− y). The Bregman divergence
is meant to quantify how far a point x is from y and Φ
can be thought of as a distance generating function that
adapts to the geometry or structure of X . Let DΦ,X :=

supx∈X ,x′∈Xo

√
2DΦ(x, x′). Let κ be the strong convexity

constant of V , defined as∇V = ∇f ◦ ∇Φ∗.

We are interested in investigating the performance and prop-
erties of the interacting stochastic mirror descent (ISMD)
algorithm for estimating the minimizer x∗, based on the Itô
stochastic differential equation,

dzit = −∇f(xit)dt+ θ

N∑
j=1

Aij(z
j
t − zit)dt+ σdBit,

xit = ∇Φ∗(zit) := arg min
x∈X

DΦ(x, zit),

where each particle i = 1, ..., N is driven by an indepen-
dent Brownian motion Bit and Φ is the mirror map. The
interesting feature here is that particles interact through
A = {Aij}Ni,j=1, which is an N × N doubly-stochastic
matrix representing the interaction weights. This interac-
tion will attract particles towards each other. The matrix A
represents an interaction graph which imposes communi-
cation constraints on the agents: each particle i can com-
municate directly only with its immediate neighbors, i.e.
j ∈ {1, . . . , N} for whomAij 6= 0. In the absence ofA (i.e.
when A = 0) the dynamics would correspond to parallel in-
dependent replicas of SMD. The parameter θ represents the
interaction strength. As we will show, it plays a crucial role
in mitigating the variance of the algorithm and in obtaining
consensus. Without the constraints and with no noise the
setting is that of gradient descent (GD); without constraints
and with noise it is stochastic gradient descent (SGD). We
define the graph Laplacian as L := Diag(A1N ) − A, and
let L := L ⊗ Id, where ⊗ is the Kronecker product. We
assume throughout that the network graph corresponding to
the graph Laplacian L is connected, which in turn implies
(Mesbahi & Egerstedt, 2010) that eigenvalues are nonnega-
tive, λ0 = 0 < λ ≤ λ2 ≤ ... ≤ λdN .

3. Analyzing the convergence properties
We will decompose each particle position as a sum of the
particle average and the fluctuation term, zit := z̄Nt + z̃it,
where we let z̄Nt := 1

N

∑N
i=1 z

i
t and z̃it := zit − z̄Nt . Ob-

serve, dz̄Nt = − 1
N

∑N
i=1∇f(xit)dt+ σ

N

∑N
i=1 dB

i
t , using

the double stochasticity of A.

3.1. A general bound

The following bound to optimality holds.

Proposition 1 (Convergence of ISMD1). Assume that the
function f : Rd → R is a µ-strongly convex function with
respect to Φ. Then it holds,∫ T

0

eµ(t−T )E[(f(xit)− f(x∗))]dt ≤ 1

2
e−µTD2

Φ,X

+
σ2

2Nµ
||∆Φ∗||∞ +

∫ T

0

eµ(t−T )L

µ
E
[
||z̃it||∗

]
dt

+

∫ T

0

eµ(t−T ) 2L+ µ2

µN

N∑
i=1

E
[
||z̃it||∗

]
dt,

where L is the Lipschitz constant of f and || · ||∗ is the dual
norm.

The deviation from the minimum is upper-bounded by four
terms. The first two terms are the standard optimization
errors, where we observe that the noise variance is reduced
by a factor of N . The third and fourth terms are penalties
incurred due to each of the particles having different values.
These two terms measure the deviation of each individual
particle from the particle average. There is thus a tradeoff
between the interaction and the variance. If the interaction
term is bounded and not increasing with N , the more parti-
cles, the smaller the distance to the optimum, as is witnessed
by the term σ2

2N ||∇Φ∗||∞.

3.2. Bounding the fluctuation

To complete the analysis on the distance to optimality of
ISMD we show that the fluctuation term z̃it can be bounded.
Since we are working in the dual space here, we will use
the strong convexity constant κ of V .

Proposition 2 (Bounding the fluctuation term1). For a µ-
strongly convex f , it holds,

E

[
1

N

N∑
i=1

||z̃it||2∗

]
≤ K

N
e−θ(κ+λ)t

N∑
i=1

||z̃i0||22

+
dK

θ(κ+ λ)
σ2 (N − 1)

N

(
1− e−θ(κ+λ)t

)
.

From the above result we remark the following:

• in the setting with noise, for a strongly convex objec-
tive, approximate consensus can be achieved at suffi-
ciently long times t and for a sufficiently large θ(κ+λ);

1For the proof we refer to (Borovykh et al., 2020).
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• in the strongly convex case the fluctuation term con-
verges even if there is no interaction if κ is sufficiently
negative; for the convex case we have κ = 0 and con-
sensus can be achieved only if the interaction strength
θ is sufficiently high;

• for the no-noise setting, i.e. if σ = 0, the fluctuation
term converges to zero as t→∞.

3.3. Noise reduction

ISMD improves the convergence since in the term
1
N σ||∆Φ(zit)||∞ noise is reduced by a factor 1/N . We
remark however that this will only be achieved if the term
||z̃it||∗ is bounded and non-increasing with N . This fluctua-
tion term is controlled by the strong convexity of the objec-
tive or by imposing a sufficiently high interaction strength.
In other words, when θ(κ+ λ) is sufficiently high the fluc-
tuation term is sufficiently small. As long as the decrease
in the value of 1

N σ||∆Φ(zit)||∞ is larger than the increase
in the value of ||z̃it||∗, interaction with N particles achieves
a closer convergence to the optimum. In other words, the
number of particles can be seen as an alternative to a de-
creasing learning rate or vanishing noise variance, where
the latter is achieved by e.g. increasing the batch size.

3.4. Extension to a distributed setting

Assume now that the particles are optimizing f(x) =∑N
i=1 fi(x). We have at our disposal a cluster with N

processors to solve the optimization objective with each
particle having access to fi (and thus ∇fi). The proof of
Proposition 2 exploits the fact that each particle has access
to the same objective function f . When each particle is op-
timizing a different fi, the terms related to the gradient ∇fi
no longer vanish. Assuming the condition for consensus
holds, θ(κ− λ) < 0, we have,

E

[
1

N

N∑
i=1

||z̃it||2∗

]
≤ K

N
e−θ(κ+λ)t

N∑
i=1

||z̃i0||22

+
K

θ(κ+ λ)
+

dK

θ(κ+ λ)
σ2 (N − 1)

N
.

In this case, even in the no-noise case, consensus can no
longer be achieved without imposing a sufficiently high
interaction strength θ. Therefore, the variance reduction
effect will be visible only if we impose a sufficiently strong
interaction between the particles.

However, using a large interaction strength, even in the
strongly convex case, may change the solution computed
by the algorithm. This issue with decentralized first-order
methods is well-known, see (Shi et al., 2015; Yuan et al.,
2016). One possible way to address this issue is to include
second-order information. For the deterministic case we
propose the following dynamics, with∇2 the Hessian,

dxit =

N∑
j=1

Aij(x
j
t − xit)− vi(t) (1)

dvit =

N∑
j=1

Aij(v
j
t − vit) +∇2fi(x

i
t)dx

i
t.

The scheme above can be viewed as the continuous time
equivalent of the algorithm proposed in (Qu & Li, 2017).
Its detailed convergence analysis and extension to the non-
Euclidean and stochastic setting will appear elsewhere. We
note that because the equation for v includes a Hessian
vector product the cost of computing this term is of the
same order as computing the gradient.

4. Numerical experiments
In this section we illustrate the performance of ISMD in
a few test problems. We use the Euler discretization of
the continuous SMD dynamics zit+1 = zit − ηε∇f(xit) +

εθ
∑N
j=1Aij(z

j
t −zit)+σ

√
εN (0, 1), which we run for TN

time steps.

4.1. An ill-conditioned optimization problem

Consider the problem minx∈X ||Wx−b||22, whereX = ∆n,
the unit simplex, W ∈ Rm×d and b ∈ Rm. Unless other-
wise mentioned, we set ε = 0.1 and TN = 2000. We gener-
ate W randomly with a chosen condition number κ = 1000.
We let bi ∼ N (0, 1). We furthermore set Aij = 1

N . We
consider the linear system optimized with ISMD with 1, 10
and 100 particles. We set m = 100 and d = 100, σ = 0.05,
θ = 10 and use a fixed learning rate η = 0.0001. From
Figure 1 we observe that in a setting with a high condition
number – the ill-conditioned setting – the convergence speed
using interaction can be significantly faster than when con-
sidering just a single particle. At the same time the distance
to the optimum is significantly improved.

Figure 1. A comparison between the initial convergence of SMD
and ISMD for the linear system with condition number 1000. We
observe a speedup in convergence using interacting particles.

4.2. Interaction strength in nonconvex optimization

In this section we show that using interaction can result
in a better convergence of ISMD and show it has the
beneficial property of escaping saddle points while attain-
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ing consensus. We will consider the well-known Müller-
Brown (MB) potential which is a standard toy example
for nonconvex optimization and molecular dynamics sim-
ulations (Wales et al., 2003). The MB potential is the
sum of four Gaussians in R2 and is given by f(x, y) =∑4
i=1Ai exp(ai(x−x̄i)2+bi(x−x̄i)(y−ȳi)+ci(y−ȳi)2).

The MB potential has several saddle points and local min-
ima. We consider Aij = 1

N for all i, j, and initialize the
particles to a small area around a saddle point (local mini-
mum with index 1) x0 = [0.212, 0.2930, 0.624]T ; and set
ε = 1. The results for interacting SGD are shown in the top
plot of Figure 2. Regular GD with independent particles
starting near a saddle point are not able to escape this point.
Imposing a sufficiently high interaction strength adds insta-
bility to the system so that the saddle point is no longer a
stable point, and the particles escape it towards a local mini-
mum. An alternative solution for escaping saddle points is
to add noise to the system, see the bottom plot of Figure 2.
In this case particles can diverge into different local minima.
Imposing a high interaction strength is needed to achieve
consensus.

Figure 2. Optimizing the Müller-Brown potential with A =
[−200,−100,−170, 15], a = [−1,−1,−6.5, 0.7],, b =
[0, 0, 11, 0.6], c = [−10,−10,−6.5, 0.7], x̄ = [1, 0,−0.5,−1],
ȳ = [0, 0.5, 1.5, 1] starting from a saddle point with 10 particles
using interacting SGD with a low and high interaction strength.
Interactions help escape saddle points in interacting GD with learn-
ing rate η = 5e − 6 (T) and the interaction strength imposes
consensus in interacting SGD with σ = 0.005 (B).

4.3. Interaction in a distributed setting

In our final experiments we report preliminary numerical ex-
periments using an Euler discretization of the second order
dynamics in (1). Due to space limitations we only report
results for the deterministic case in the Euclidean setting
(i.e φ(x) = ‖x‖22). We used the same setting described in
Section 4.1, except that X = Rn and the objective function
function was changed to minx∈Rn

∑N
i=1 ‖Wix− bi‖22. The

results in Figure 3 clearly show that including second order

information helps the algorithm converge to a consensus
solution that is also optimal for the original model. For this
problem IMD does not reach consensus and the mean of all
the particles is still far away from the solution. As explained
in Section 3.4, increasing the interaction strength can help
with consensus but may not necessarily converge to the
right point. Finally we note that the algorithm only includes
Hessian vector products and can therefore be implemented
at about the same cost of two gradient evaluations using
standard automatic differentiation techniques.

Figure 3. A comparison between the relative error between IMD
SO-IMD for the linear system with condition number 1000. We
observe that the interacting particle system converges to the ex-
act solution only in the case where second order information is
included. As expected adding more particles does not improve the
convergence of IMD.

5. Conclusions and further work
Our analysis showed that by controlling the interaction the
variance of stochastic gradients could be reduced. Extend-
ing such a result to a distributed setting could help deal with
problems of instability in distributed optimization settings
(De & Goldstein, 2016). In such a setting the communica-
tion costs play an important role. In future work the topology
that maximizes the speed of convergence of the distributed
optimization algorithm while keeping the communication
cost low will be analyzed (Kar et al., 2008), (Tsianos et al.,
2012), (Nedić et al., 2018). In this way efficient distributed
algorithms can be developed that still benefit from variance
reduction. Furthermore, the potential of including second-
order information was shown here numerically and will be
adressed with a theoretical analysis in further work.

In an alternative direction, we plan to use tools from the
analysis of SDEs and in particular the rate of convergence
to their invariant distribution. Studying the convergence of
the Law(zt) is a cornerstone in the analysis of sampling
schemes and can also provide valuable insights into the op-
timization problems; see (Raginsky et al., 2017; Shi et al.,
2020; Hsieh et al., 2018) for recent works in this direction.
In the numerical examples we showed the benefits of interac-
tion in the nonconvex case. We will address the theoretical
convergence guarantees in the nonconvex setting in future
work, extending the analysis in e.g. (Raginsky et al., 2017;
Hsieh et al., 2018) to the interacting setting.
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