
Noname manuscript No.
(will be inserted by the editor)

Empirical Risk Minimization:
Probabilistic Complexity and Stepsize Strategy

Chin Pang Ho · Panos Parpas

Received: date / Accepted: date

Abstract Empirical risk minimization (ERM) is recognized as a special form
in standard convex optimization. When using a first order method, the Lip-
schitz constant of the empirical risk plays a crucial role in the convergence
analysis and stepsize strategies for these problems. We derive the probabilistic
bounds for such Lipschitz constants using random matrix theory. We show
that, on average, the Lipschitz constant is bounded by the ratio of the di-
mension of the problem to the amount of training data. We use our results
to develop a new stepsize strategy for first order methods. The proposed al-
gorithm, Probabilistic Upper-bound Guided stepsize strategy (PUG), outper-
forms the regular stepsize strategies with strong theoretical guarantee on its
performance.

Keywords Empirical risk minimization · Complexity analysis · Stepsize
strategy

1 Introduction

Empirical risk minimization (ERM) is one of the most powerful tools in applied
statistics, and is regarded as the canonical approach to regression analysis. In
the context of machine learning and big data analytics, various important
problems such as support vector machines, (regularized) linear regression, and
logistics regression can be cast as ERM problems, see for e.g. [17]. In an ERM
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problem, a training set with m instances, {(ai, bi)}mi=1, is given, where ai ∈ Rn
is an input and bi ∈ R is the corresponding output, for i = 1, 2, . . . ,m. The
ERM problem is then defined as the following convex optimization problem,

min
x∈Rn

{
F (x) ,

1

m

m∑
i=1

φi(a
T
i x) + g(x)

}
, (1)

where each loss function φi is convex with a Lipschitz continuous gradient, and
the regularizer g : Rn → R is a continuous convex function which is possibly
nonsmooth. Two common loss functions are

– Quadratic loss function: φi(x) =
1

2
(x− bi)2.

– Logistic loss function: φi(x) = log(1 + exp(−xbi)).

One important example of g is the scaled 1-norm ω‖x‖1 with a scaling factor
ω ∈ R+. This particular case is known as `1 regularization, and it has various
applications in statistics [3], machine learning [18], signal processing [6], etc.
The regularizer g acts as an extra penalty function to regularize the solution of
(1). `1 regularization encourages sparse solutions, i.e. it favors solutions x with
few non-zero elements. This phenomenon can be explained by the fact that the
`1 norm is the tightest convex relaxation of the `0 norm, i.e. the cardinality of
the non-zero elements of x [5].

In general, if the regularizer g is nonsmooth, subgradient methods are
used to solve (1). However, subgradient methods are not advisable if g is
simple enough, and one can achieve higher efficiency by generalizing existing
algorithms for unconstrained differentiable convex programs. Much research
has been undertaken to efficiently solve ERM problems with simple g’s. Instead
of assuming the objective function is smooth and continuously differentiable,
they aim to solve problems of the following form

min
x∈Rn

{F (x) , f(x) + g(x)}, (2)

where f : Rn → R is a convex function with L-Lipschitz continuous gradient,
and g : Rn → R is a continuous convex function which is nonsmooth but
simple. By simple we mean that a proximal projection step can be performed
either in closed form or is at least computationally inexpensive. Norms, and
the `1 norm in particular satisfy this property. A function f is said to have a
L-Lipschitz continuous gradient if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rn. (3)

For the purpose of this paper, we denote the matrix A ∈ Rm×n to be a dataset
such that the ith row of A is aTi , and so in the case of ERM problems,

f(x) =
1

m

m∑
i=1

φi(a
T
i x) =

1

m

m∑
i=1

φi(e
T
i Ax), (4)
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where ei ∈ Rm has 1 on its ith component and 0’s elsewhere. f is called the
empirical risk in ERM. We assume that each φi have a γi-Lipschitz continuous
gradient and

γ , max{γ1, γ2, . . . , γm}.

Many algorithms [1,4,9,13,20] have been developed to solve (1) and (2).
One famous example is the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [1], which is a generalization of the optimal method proposed by
Nesterov [10] for unconstrained differentiable convex programs. FISTA, with
backtracking stepsize strategy, is known to converge according to the following
rate,

F (xk)− F (x?) ≤
2ηL‖x0 − x?‖2

(k + 1)2
, (5)

where x? is a solution of (2), and η is the parameter which is used in the
backtracking stepsize strategy. The convergence result in (5) contains three key
components: the distance between the initial guess and the solution ‖x0−x?‖,
the number of iterations k, and the Lipschitz constant L. While it is clear that
the first two components are important to explain the convergence behavior,
the Lipschitz constant, L, is relatively mysterious.

The appearance of L in (5) is due to algorithm design. In each iteration,
one would have to choose a constant L̃ to compute the stepsize that is pro-
portional to 1/L̃, and L̃ has to be large enough to satisfy the properties of the
Lipschitz constant locally [1,13]. Since the global Lipschitz constant condition
(3) is a more restrictive condition, the Lipschitz constant L always satisfies
the requirement of L̃, and so L is used in convergence analysis. We emphasize
that the above requirement of L̃ is not unique for FISTA. For most first order
methods that solve (2), L also appears in their convergence rates for the same
reason.

Despite L being an important quantity in both convergence analysis and
stepsize strategy, it is usually unknown and the magnitude could be arbitrary
for a general nonlinear function; one could artificially construct a small dimen-
sional function with large Lipschitz constant, and a high dimensional function
with small Lipschitz constant.

Therefore, L is often treated as a constant [10,11] that is independent of
the dimensions of the problem, and so the convergence result shown in (5) is
considered to be “dimension-free” because both ‖x0−x?‖ and k are indepen-
dent of the dimension of the problem. Dimension-free convergence shows that
for certain types of optimization algorithms, the number of iterations required
to achieve a certain accuracy is independent of the dimension of the model.
For large scale optimization models that appear in machine learning and big
data applications, algorithms with dimension-free convergence are extremely
attractive [1,2,16].

On the other hand, since L is considered to be an arbitrary constant,
stepsize strategies for first order methods were developed independent of the
knowledge of L. As we will show later, for adaptive strategies that try to use
small L̃ (large stepsize), extra function evaluations will be needed. If one try
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to eliminate the extra function evaluations, then L̃ has to be sufficiently large,
and thus the stepsize would be small. This trade-off is due to the fact that L
is unknown.

In this paper, we take the first steps to show that knowledge of L can
be obtained in the case of ERM because of its statistical properties. For the
ERM problem, it is known that the Lipschitz constant is highly related to
‖A‖ [1,14], and so understanding the properties of ‖A‖ is the goal of this
paper. If A is arbitrary, then ‖A‖ would also be arbitrary and analyzing ‖A‖
would be impossible. However, for ERM problems that appear in practice, A is
structured. Since A is typically constructed from a dataset then it is natural to
assume that the rows of A are independent samples of some random variables.
This particular structure of A, allows us to consider A as a non-arbitrary but
random matrix. We are therefore justified to apply techniques from random
matrix theory to derive the statistical bounds for the Lipschitz constant.

The contributions of this paper is twofold:

(a) We obtain the average/probabilistic complexity bounds which provide bet-
ter understanding of how the dimension, size of training set, and correlation
affect the computational complexity. In particular, we showed that in the
case of ERM, the complexity is not “dimension-free”.

(b) The derived statistical bounds can be computed/estimated with almost
no cost, which is an attractive benefit for algorithms. We develop a novel
stepsize strategy called Probabilistic Upper-bound Guided stepsize strat-
egy (PUG). We show that PUG may save unnecessary cost of function
evaluations by adaptively choosing L̃ intelligently. Promising numerical re-
sults are provided at the end of this paper.

Many research on bounding extreme singular values using random matrix
theory have been taken in recent years, e.g. see [15,8,19]. However, we would
like to emphasize that developments in random matrix theory is not our ob-
jective. Instead, we would like to consider this topic as a new and important
application of random matrix theory. To the best of our knowledge, no similar
work has been done in understanding how the statistics of the training set
would affect the Lipschitz constant, computational complexity, and stepsize.

2 Preliminaries

This paper studies the Lipschitz constant L of the empirical risk f given in
(4). In order to satisfy condition (3), one could select an arbitrarily large L,
however, this would create a looser bound on the complexity (see for e.g. (5)).
Moreover, L also plays a big role in stepsize strategy for first order algorithms.
In many cases such as FISTA, algorithms use stepsize that is proportional
to 1/L. Therefore, a smaller L is always preferable because it does not only
imply lower computational complexity, but also allows a larger stepsize for
algorithms. While the lowest possible L that satisfies (3) is generally very
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difficult to compute, in this section, we will estimate the upper and lower
bounds of L using the dataset A.

Notice that the Lipschitz constant condition (3) is equivalent to the fol-
lowing condition.

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2, ∀x,y ∈ Rn. (6)

Therefore, a L that satisfies (6) also satisfies (3), and vice versa.

Proposition 1 Suppose f is of the form (4), then L satisfies the Lipschitz
constant condition (6) with

L ≤

∥∥∥∥∥Diag

(√
γ1
m
, · · · ,

√
γm
m

)
A

∥∥∥∥∥
2

≤

∥∥∥∥∥Diag

(√
γ1
m
, · · · ,

√
γm
m

)∥∥∥∥∥
2

‖A‖2 ≤ γ

m
‖A‖2.

Proof See Proposition 2.1 in [14]. ut

Proposition 1 provides an upper bound for L, where γ is the maximum Lips-
chitz constant of loss functions, and it is usually known or easy to compute. For
example, it is known that γ = 1 for quadratic loss functions, and γ = maxi b

2
i /4

for logistics loss functions.
The upper bound of L is tight for the class of ERM problems. We can

prove that by considering the example of least squares, where we have

L =
γ

m
‖A‖2 =

1

m
‖A‖2.

In order to derive the lower bound of L, we need the following assumption.

Assumption 2 There exists a positive constant τ > 0 such that

φi(x) + φ′i(x)(y − x) +
τ

2
|y − x|2 ≤ φi(y), ∀x, y ∈ R,

for i = 1, 2, . . . ,m.

The above assumption requires the strongly-convex loss function φi, which
is not restrictive in practical setting. In particular, quadratic loss function
satisfies Assumption 2, and the logistics loss function satisfies Assumption
2 within a bounded box [−b, b] for any positive b ∈ R+. With the above
assumption, we derive the lower bound of L using A.

Proposition 3 Suppose f is of the form (4) with φi satisfying Assumption 2
for i = 1, 2, . . . ,m, then L satisfies the Lipschitz constant condition (6) with

τλmin(ATA)

m
≤ L.
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Proof By Assumption 2, for i = 1, 2, . . . ,m,

φi(e
T
i Ay) ≥ φi(eTi Ax) + φ′i(e

T
i Ax)(eTi Ay − eTi Ax) +

τ

2
|eTi Ay − eTi Ax|2.

Therefore,

f(y) ≥ 1

m

m∑
i=1

(
φi(e

T
i Ax) + φ′i(e

T
i Ax)(eTi Ay − eTi Ax) +

τ

2
|eTi Ay − eTi Ax|2

)
,

= f(x) +
1

m

m∑
i=1

(
eTi Aφ′i(e

T
i Ax)(y − x) +

τ

2
|eTi Ay − eTi Ax|2

)
,

= f(x) + 〈∇f(x),y − x〉+
τ

2m
‖Ay −Ax‖2,

≥ f(x) + 〈∇f(x),y − x〉+
τλmin(ATA)

2m
‖y − x‖2.

ut

From Proposition 1 and 3, we bound L using the largest and lowest eigenvalues
of ATA. Even though A can be completely different for different dataset, the
statistical properties of A can be obtained via random matrix theory.

3 Complexity Analysis using Random Matrix Theory

In this section, we will study the statistical properties of ‖A‖2 = ‖ATA‖ =
λmax(ATA) as well as λmin(ATA). Recall that A is an m×n matrix contain-
ing m observations, and each observation contains n measurements which are
independent samples from n random variables, i.e. we assume the rows of the
matrix A are samples from a vector of n random variables ξT = (ξ1, ξ2, · · · , ξn)
with covariance matrix Σ = E

[
ξξT

]
. To simplify the analysis, we assume,

without loss of generality, that the observations are normalized, and so all the
random variables have mean zero and unit variance. Therefore, E[ξi] = 0 for
i = 1, 2, · · · , n, and the diagonal elements of Σ are all 1’s. This assumption
is useful and simplifies the arguments and the analysis of this section but it
is not necessary. The results from this section could be generalized without
the above assumption, but it does not give further insights for the purposes
of this section. In particular, this assumption will be dropped for the pro-
posed stepsize strategy PUG, and so PUG is vaild for all the datasets used in
practice.

3.1 Statistical Bounds

We will derive both the upper and lower bounds for the average ‖A‖2, and
show that the average ‖A‖2 increases nearly linearly in both m and n. The
main tools for the proofs below can be found in [19].
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3.1.1 Lower Bounds

The following Lemma follows from Jensen’s inequality and plays a fundamental
role on what is to follow.

Lemma 4 For a sequence {Qk : k = 1, 2, · · · ,m} of random matrices,

λmax

(∑
k

E[Qk]

)
≤ E

[
λmax

(∑
k

Qk

)]
.

Proof For details, see [19].

With Lemma 4, we can derive a lower bound on the expected ‖ATA‖.
We will start by proving the lower bound in the general setting, where the

random variables are correlated with general covariance matrix Σ; then, we
will add assumptions on Σ to derive lower bounds in different cases.

Theorem 5 Let A be an m × n random matrix in which its rows are inde-
pendent samples of some random variables ξT = (ξ1, ξ2, · · · , ξn) with E[ξi] = 0
for i = 1, 2, · · · , n, and covariance matrix Σ. Denote µmax = λmax(Σ) then

mµmax = mλmax (Σ) ≤ E
[
‖A‖2

]
. (7)

In particular, if ξ1, ξ2, · · · , ξn are some random variables with zero mean and
unit variance, then

max{mµmax, n} ≤ E
[
‖A‖2

]
. (8)

Proof We first try to prove (7). Denote aTi as the ith row of A. We can rewrite
ATA as

ATA =

m∑
k=1

aka
T
k ,

where aka
T
k ,’s are independent random matrices with E

[
aka

T
k

]
= Σ. There-

fore,

E
[
λmax

(
ATA

)]
= E

[
λmax

(
m∑
k=1

aka
T
k

)]

≥ λmax

(
m∑
k=1

E
[
aka

T
k

])
= mλmax (Σ) .

In order to prove (8), we use the fact that

E
[
‖A‖2

]
= E

[
‖AT ‖2

]
= E

[
‖AAT ‖

]
≥ ‖E

[
AAT

]
‖,

where the last inequality is obtained by applying Jensen’s inequality. There-
fore, we can write AAT as

AAT =

m∑
i=1

m∑
j=1

aTi ajYi,j ,
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where Yi,j ∈ Rm×m is a matrix such that (Yi,j)p,q = 1 if i = p and j = q, and
otherwise (Yi,j)p,q = 0. By the assumption that each entry of A are random
variable with zero mean and unit variance, we obtain

E
[
aTi ai

]
= E

[
a2i,1 + a2i,2 + · · ·+ a2i,n

]
= E

[
a2i,1
]

+E
[
a2i,2
]

+ · · ·+E
[
a2i,n

]
= n,

for i = 1, 2, · · · ,m, and for i 6= j,

E
[
aTi aj

]
= E [ai,1]E [aj,1] + E [ai,2]E [aj,2] + · · ·+ E [ai,n]E [aj,n] = 0.

Therefore,

E[‖A‖2] ≥

‖E[AAT ]‖ =

∥∥∥∥∥E
 m∑
i=1

m∑
j=1

aTi ajYi,j

∥∥∥∥∥ =

∥∥∥∥∥
m∑
i=1

nYi,i

∥∥∥∥∥ = ‖nIn‖ = n.

ut

Theorem 5 provides a lower bound of the expected ‖ATA‖. The inequality
in (7) is a general result and makes minimal assumptions on the covariance Σ.
Note that the lower bound is independent of n. The reason is that this general
setting covers cases where Σ is not full rank: some ξi’s could be fixed 0’s
instead of having unit variance. In fact, when all ξi’s are 0’s for i = 1, 2, · · · , n,
which implies Σ = 0n×n, the bound (7) is tight because A = 0m×n. For the
setting that we consider in this paper, equation (8) is a tighter bound than (7)
and depends on both m and n. In the case where all variables are independent,
we could simplify the results above into the following.

Corollary 6 Let A be an m×n random matrix in which its rows are indepen-
dent samples of some random variables ξT = (ξ1, ξ2, · · · , ξn) with E[ξi] = 0,
E[ξ2i ] = 1, and ξi’s are independent for i = 1, 2, · · · , n, then

max{m,n} ≤ E
[
‖A‖2

]
. (9)

Proof Since all random variables are independent, Σ = In and so µmax =
λmax(Σ) = 1. ut

3.1.2 Upper Bounds

In order to compute an upper bound of the expected ‖ATA‖, we first compute
its tail bounds. The idea of the proof is to rewrite the ATA as a sum of
independent random matrices, and then use the existing results in random
matrix theory to derive the tail bounds of ‖ATA‖. We then compute the
upper bound of the expected value. Notice that our approach for computing
the tail bounds, in principle, is the same as in [19]. However, we present a tail
bound that is easier to be integrated into the upper bound of the expected
‖ATA‖. That is, the derived bound can be directly used to bound ‖ATA‖
without any numerical constant.

In order to compute the tail bounds, the following two Lemmas will be
used.
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Lemma 7 ([19]) Suppose that Q is a random positive semi-definite matrix
that satisfies λmax(Q) ≤ 1. Then

E
[
eθQ

]
4 I + (eθ − 1)(E [Q]), for θ ∈ R,

where I is the identity matrix in the correct dimension.

Lemma 8 ([19]) Consider a sequence {Qk : k = 1, 2, · · · ,m} of independent,
random, self-adjoint matrices with dimension n. For all t ∈ R,

P

{
λmax

(
m∑
k=1

Qk

)
≥ t

}

≤ n inf
θ>0

exp

(
−θt+m log λmax

(
1

m

m∑
k=1

EeθQk

))
. (10)

Combining the two results from random matrix theory, we can derive the
following theorem for the tail bound of ‖ATA‖.

Theorem 9 Let A be an m × n random matrix in which its rows are in-
dependent samples of some random variables ξT = (ξ1, ξ2, · · · , ξn) for i =
1, 2, · · · , n, and covariance matrix Σ = E

[
ξξT

]
. Denote µmax = λmax(Σ) and

suppose

λmax

[
ξξT

]
≤ R almost surely. (11)

Then, for any θ, t ∈ R+,

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[
−θt+m log

(
1 + (eθR − 1)µmax/R

)]
. (12)

In particular,

P
{
λmax

(
ATA

)
≥ t
}
≤ n

[
µmax(mR− t)
t(R− µmax)

] t
R
[
1 +

t− µmaxm

mR− t

]m
. (13)

Proof Denote aTi as the ith row of A. We can rewrite ATA as

ATA =

m∑
k=1

aka
T
k .

Notice that aka
T
k ’s are independent, random, positive-semidefinite matrices,

and E
[
aka

T
k

]
= Σ, for k = 1, 2, · · · ,m. Also, Using the Lemma 8, for any

θ > 0, we have

P
{
λmax

(
ATA

)
≥ t
}

= P

{
λmax

(
m∑
k=1

aka
T
k

)
≥ t

}
,

≤ n exp

[
−θt+m log λmax

(
1

m

m∑
k=1

Eeθaka
T
k

)]
.
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Notice that λmax(aka
T
k ) ≤ R, by rescaling on Lemma 7, we have,

E
[
eθ̃(1/R)(aka

T
k )
]
4 In + (eθ̃ − 1)

(
E
[
(1/R)

(
aka

T
k

)])
, for any θ̃ ∈ R,

and thus

E
[
eθ(aka

T
k )
]
4 In +

(eθR − 1)

R
E
[
aka

T
k

]
= In +

(eθR − 1)

R
Σ, for any θ ∈ R.

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[
−θt+m log λmax

(
1

m

m∑
k=1

In +
(eθR − 1)

R
Σ

)]
,

= n exp
[
−θt+m log

(
1 + (eθR − 1)λmax(Σ)/R

)]
,

= n exp
[
−θt+m log

(
1 + (eθR − 1)µmax/R

)]
.

Using standard calculus, the upper bound is minimized when

θ? =
1

R
log

[
t(R− µmax)

µmax(mR− t)

]
.

Therefore,

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[
−θ?t+m log

(
1 + (eθ

?R − 1)µmax/R
)]
,

= n

[
µmax(mR− t)
t(R− µmax)

] t
R
[
1 +

t− µmaxm

mR− t

]m
.

ut

For matrices which contain samples from unbounded random variables,
assumption (11) in Theorem 9 might seem to be restrictive; however, in prac-
tice, assumption (11) is mild due to the fact that datasets that are used in the
problem (1) are usually normalized and bounded. Therefore, it is reasonable
to assume that an observation will be discarded if its magnitude is larger than
some constant.

The tail bound (13) is the tightest bound over all possible θ’s in (12), but
it is difficult to interpret the relationships between the variables. The following
corollary takes a less optimal θ in (12), but yields a bound that is easier to
understand.

Corollary 10 In the same setting as Theorem 9, we have

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[
2mµmax − t

R

]
. (14)

In particular, for ε ∈ R+, we have

P
{
λmax

(
ATA

)
≤ 2mµmax −R log

( ε
n

)}
≥ 1− ε. (15)
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Proof Using equation (12), and the fact that log(y) ≤ y − 1, ∀y ∈ R+ , we
have

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[
−θt+

mµmax

R
(eθR − 1)

]
. (16)

The above upper bound is minimized when θ = (1/R) log [t/(mµmax)], and so

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[
− t

R
log

[
t

mµmax

]
+
mµmax

R

(
t

mµmax
− 1

)]
,

= n exp

[
t

R

(
log
[mµmax

t

]
+ 1− mµmax

t

)]
,

= n exp

[
t

R

(
log
[mµmaxe

t

]
− mµmax

t

)]
,

≤ n exp

[
t

R

(mµmaxe

t
− 1− mµmax

t

)]
,

≤ n exp

[
1

R
(mµmax(e− 1)− t)

]
,

≤ n exp

[
1

R
(2mµmax − t)

]
.

Set ε = n exp

[
1

R
(2mµmax − t)

]
, we obtain t = 2mµmax −R log

( ε
n

)
. ut

The bound in (15) follows directly from (14) and shows that with high proba-
bility 1−ε (for small ε), λmax

(
ATA

)
is less than 2mµmax+R log(n)−R log (ε).

Applying the results in Corollary 10 provides the upper bound of the expected
‖ATA‖.

Corollary 11 In the same setting as Theorem 9, we have

E
[
λmax(ATA)

]
≤ 2mµmax +R log (n) +R. (17)

Proof Using the equation (14), and the fact that

1 ≤ n exp

[
2mµmax − t

R

]
when t ≤ 2mµmax −R log

[
1

n

]
,

we have

E
[
λmax(ATA)

]
=

∫ ∞
0

P{λmax(ATA) > t} dt,

≤
∫ 2mµmax−R log[ 1

n ]

0

1 dt

+

∫ ∞
2mµmax−R log[ 1

n ]
n exp

[
2mµmax − t

R

]
dt,

= 2mµmax −R log

[
1

n

]
+R.

ut
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Therefore, for a matrix A which is constructed by a set of normalized data,
we obtain the bound

max{mµmax, n} ≤ E
[
‖A‖2

]
≤ 2mµmax +R log (n) +R. (18)

The result in (18) might look confusing because for small m and large n, the
lower bound is of the order of n while the upper bound is of the order of log(n).
The reason is that we have to take into account the factor of dimensionality
in the constant R. To illustrate this, we prove the following corollary.

Corollary 12 Let A be an m×n random matrix in which its rows are indepen-
dent samples of some random variables ξT = (ξ1, ξ2, · · · , ξn) with E[ξi] = 0 for
i = 1, 2, · · · , n, and covariance matrix Σ = E

[
ξξT

]
. Denote µmax = λmax(Σ)

and suppose |ξi| ≤ c almost surely for i = 1, 2, · · · , n. Then

λmax

[
ξξT

]
≤ c2n almost surely. (19)

and so

max{mµmax, n} ≤ E
[
‖A‖2

]
≤ 2mµmax + c2n log (n) + c2n (20)

Proof Since ξξT is a symmetric rank 1 matrix, we have

λmax(ξξT ) = ‖ξξT ‖ ≤ n‖ξξT ‖max = n max
1≤i,j≤n

{|ξiξj |} ≤ c2n almost surely.

ut

Therefore, R increases linearly in n for bounded ξ. Recall that the lower bound
of the expected ‖A‖2 is linear in both m and n, and the upper bound in (20),
is almost linear in both m and n. Therefore, our results on the bounds for the
expected Lipschitz constant are nearly-optimal up to some constant.

On the other hand, in order to obtain the lower bound of L, we also need
tail bound of λmin(ATA), which is provided in the following theorem.

Theorem 13 Let A be an m × n random matrix in which its rows are in-
dependent samples of some random variables ξT = (ξ1, ξ2, · · · , ξn) for i =
1, 2, · · · , n, and covariance matrix Σ = E

[
ξξT

]
. Denote µmin = λmin(Σ) and

suppose |ξi| ≤ c almost surely for i = 1, 2, . . . , n.
Then, if µmin 6= 0, for any ε ∈

(
n exp

[
−mµmin

2nc2

]
, n
)

P
{
λmin

(
ATA

)
≤ mµmin −

√
2c2nmµmin log

(n
ε

)}
≤ ε.

Proof Suppose |ξi| ≤ c almost surely for i = 1, 2, . . . , n. Then using Corollary
12 we have

λmax

[
ξξT

]
≤ c2n = R almost surely.

Using the Theorem 1.1 from [19], for any θ ∈ (0, 1) we have

P
{
λmin

(
ATA

)
≤ θmµmin

}
≤ n

[
exp[θ − 1]

θθ

]mµmin/R

,

= n exp
[
(−(1− θ)− θ log(θ))

(mµmin

R

)]
.
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Notice that θ > 0 and

2 log(θ) ≥ 2

(
1− 1

θ

)
=

2(θ − 1)

θ
≥ (θ + 1)(θ − 1)

θ
=
θ2 − 1

θ
,

and so

P
{
λmin

(
ATA

)
≤ θmµmin

}
≤ n exp

[
(−(1− θ)− θ log(θ))

(mµmin

R

)]
,

≤ n exp

[(
−(1− θ)− θ θ

2 − 1

2θ

)(mµmin

R

)]
,

= n exp

[
−1

2
(θ − 1)

2
(mµmin

R

)]
.

For µmin 6= 0, we let ε = n exp
[
− (θ − 1)

2 mµmin

2R

]
and so

θ = 1−

√
2R

mµmin
log
(n
ε

)
.

In particular, suppose ε ∈
(
n exp

[
−mµmin

2R

]
, n
)
, then

0 < 1−

√
2R

mµmin
log
(n
ε

)
< 1

Therefore,

P
{
λmin

(
ATA

)
≤ mµmin −

√
2Rmµmin log

(n
ε

)}
≤ ε,

for ε ∈
(
n exp

[
−mµmin

2R

]
, n
)

ut

For the tail bound in Theorem 13 to be meaningful, m has to be sufficiently
large compared to n. In such cases, the smallest eigenvalue λmin

(
ATA

)
is at

least O(m−
√
nm log n) with high probability.

3.2 Complexity Analysis

In this section, we will use the probabilistic bounds of L to study the com-
plexity of solving ERM. We focus only on FISTA for illustrative purpose and
clear presentation of the idea of the proposed approach. But the approach
developed in this section can be applied to other algorithms as well.

By the assumption that A is a random matrix, we also have the solution
x? as a random vector. Notice that the study of randomization of x? is not
covered this paper. In particular, if the statistical properties of x? can be
obtained, existing optimization algorithms might not be needed to solve the
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ERM problem. Therefore, in this paper, we remove this consideration by de-
noting a constant M such that ‖x0 − x?‖2 ≤ M . In such case, we have the
FISTA convergence rate

F (xk)− F (x?) ≤
2ηLM

(k + 1)2
, (21)

where x? is the solution of (1), and η > 1 is the parameter which is used in
the backtracking stepsize strategy.

Using Proposition 1 and Corollary 12, we know

max
{
γµmax,

γn

m

}
≤ γ

m
E
[
‖A‖2

]
≤ 2γµmax +

γ

m
(c2n log (n) + c2n). (22)

Thus, on average,

F (xk)− F (x?) ≤
2ηM

(k + 1)2

(
2γµmax +

γ

m
(c2n log (n) + c2n)

)
. (23)

In (22)-(23), the lower bound of (γ/m)E
[
‖A‖2

]
is linear in n/m, and upper

bound is nearly-linear in n/m. This suggests that the average complexity of
ERM is bounded by the ratio of the dimensions to the amount of data. In
particular, problems with overdetermined systems (m >> n) can be solved
more efficiently than problems with underdetermined systems (m < n).

Another critical factor of the complexity is µmax = λmax(Σ), where Σ is the
covariance matrix of the rows of A. In the ideal situation of regression analysis,
all inputs should be statistically linearly independent. In such cases, since we
assume the diagonal elements of Σ are 1’s, µmax = 1. It is, however, almost
impossible to ensure this situation for practical applications. In practice, since
Σ ∈ Rn×n, µmax = λmax(Σ) = ‖Σ‖ is likely to increase as n increases.

Similarly we can compute the probabilistic lower bound of L in the case
that m is sufficiently larger than n. Using Theorem 13, we can show that L is
bounded above by

O
(
µmin −

√
(n log n)/m

)
.

We emphasize the lower bound of L is not equivalent to the lower bound of
the complexity. However, since the stepsize of first order method algorithms is
proportional to 1/L, this result indicates that the upper bound of the stepsize
which potentially could guarantee convergence.

4 PUG: Probabilistic Upper-bound Guided stepsize strategy

The tail bounds in Section 3, as a by-product of the upper bound in Section
3.1.2, can also be used in algorithms. As mentioned in the introduction, L
is an important quantity in the stepsize strategy since the stepsize is usually
inversely proportional to L. However, in large scale optimization, the compu-
tational cost of evaluating ‖A‖2 is very expensive. One could use backtracking
techniques to avoid the evaluation of the Lipschitz constant; in each iteration,
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we find a large enough constant L̃ such that it satisfies the properties of the
Lipschitz constant locally. In the case of FISTA [1], for the kth iteration with
incumbent xk one has to find a L̃ such that

F (pL̃(xk)) ≤ QL̃ (pL̃(xk),xk) , (24)

where,

QL̃(x,y) , f(y) + 〈x− y,∇f(y)〉+
L̃

2
‖x− y‖2 + g(x),

and pL̃(y) , arg minx{QL̃(x,y) : x ∈ Rn}. Equation (24) is identical to
the Lipschitz constant condition (6) with specifically y = pL̃(xk) and x =
xk. Therefore, (24) is a less restrictive condition compared to the Lipschitz
constant condition (6). This indicates that L̃ could be much smaller than L,
and so it yields to larger stepsize. On the other hand, for L̃ ≥ L, it is guaranteed
that the local Lipschitz constant condition will be satisfied. In both cases, when
computing L is intractable, we would not be able to distinguish the two cases
by just having L̃ that satisfies (24).

As we can see, finding a good L̃ involves a series of function evaluations.
In the next section, we will review the commonly used stepsize strategies.

4.1 Current Stepsize Strategies

To the best of our knowledge, current strategies fall into four categories:

(i). A fixed stepsize from estimation of ‖A‖2.
(ii). Backtracking-type method with initial guess L̃0, and monotonically
increase L̃ = ηpL̃0 when it does not satisfy Lipschitz condition locally
(η > 1, p = 0, 1, . . . ). See [1] for details.
(iii). Adaptive-type method with initial guess L̃0. Suppose L̃k is used for
the kth iteration, then find the smallest p such that L̃k+1 = 2pL̃k satis-
fies Lipschitz condition locally (p = −1, 0, 1, . . . ). See Nesterov’s universal
gradient methods [12] for details.
(iv). Adaptive stepsize strategy for a specific algorithm. See [7] for example.

Theorem 14 Suppose L̃ is used as an initial guess for the kth iteration, and
we select the smallest q ∈ N such that L̃k = ηqL̃ satisfies the local condition,
for η ≥ 1. To guarantee convergence, it requires

q ≥ max

{
1

log η

(
logL− log L̃

)
, 0

}
,

which is also the numbers of function evaluations required. We have

L ≤ L̃k ≤ ηL, if L̃ ≤ L,
L ≤ L̃k = L̃, if L ≤ L̃.
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Proof To guarantee convergence, it requires q such that L̃k = ηqL̃ ≥ L. If
L̃ ≤ L, q should be selected such that ηqL̃ ≤ ηL; otherwise q − 1 will be large
enough to be selected, i.e. L̃k = ηq−1L̃ ≥ L. ut

Theorem 14 covers the setting of choice (i)-(iii), also referred to as the
fixed stepsize strategy, backtracking method, and Nesterov’s adaptive method,
respectively. For fixed stepsize strategies, L̃ ≥ L is selected for all iterations,
which yields q = 0, and thus checking the local condition is not required [1]. For
backtracking method, L̃ = L̃k−1 and η > 1 is a parameter of the strategy. Since
L̃k is monotonically increasing in k, q is monotonically decreasing. Therefore,
q at the kth iteration is equivalent to the total number of (extra) function
evaluations for the rest of the iterations.

On the other hand, for Nesterov’s adaptive method, L̃ = L̃k−1/2 and η = 2.
L̃k is not monotonically increasing in k, and in each iteration, q is the number
of function evaluations in the worst case. Notice that once the worst case
occurs (having q function evaluations) in the kth iterations, q will be smaller
since L̃k is sufficiently large. In Nesterov’s universal gradient methods [12],
Nesterov proved that for k iterations, the number of function evaluations is
bounded by O(2k).

Theorem 14 illustrates the trade-off between three aspects: aggressiveness
of initial guess L̃, recovering rate η, and the convergence rate. Methods with
small (aggressive) initial guess L̃ have the possibility to result in larger stepsize.
However, it will yield a larger q, the number of function evaluations in the
worst case. One could reduce q by setting a larger η, and so L̃ could scale
quickly towards L, but it will generate a slower rate of convergence (ηL). If
one wants to preserve a good convergence rate (small η) with small number of
function evaluations (small q), then L̃ could not be too small. In that case one
has to give up on the opportunity of having large stepsizes. The fixed stepsize
strategy is the extreme case of minimizing q by giving up the opportunity of
having larger stepsizes.

The proposed stepsize strategy PUG tries to reduce L̃ as (iii), but guides L̃
to increase reasonably and quickly when it fails to satisfy the local condition. In
particular, by replacing L with its probabilistic upper bound, aggressive L̃ and
fast recovering rate are allowed without slowing the convergence. This above
feature does not obey the trade-off that constraints choice (i)-(iii). Also, PUG
is flexible compared to (iv). It can be applied to all algorithms that require
L, as well as mini-batch and block-coordinate-type algorithms which require
submatrix of A.

4.2 PUG

In this section, we will use the tail bounds to develop PUG. Using equation
(15), we first define the upper bound at different confidence level,

L ≤ U(ε) , 2γµmax −
γR

m
log
( ε
n

)
, (25)
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Algorithm 1 PUG

Input: L̃k from last iteration
Initialization: Set L̃ = L̃k/2, ε = min{0.1, ε0} (Require: ε0 small enough such that
U(ε) > L̃)

Set ηPUG =
√

U(ε)/L̃

while L̃ does not satisfy Lipschitz constant condition locally do
Set L̃ = ηPUGL̃

end while
Output: Lipschitz constant L̃k+1 = L̃

with probability of at least 1 − ε. We point out that the probabilistic upper
bound (15) does not rely on the assumption that the dataset is normalized with
mean zero and unit variance, and so it is applicable to all types of datasets.
The basic idea of PUG is to use the result in the following Theorem.

Theorem 15 Suppose L̃ is used as an initial guess for the kth iteration, and
we denote

ηPUG,N =

(
U(ε)

L̃

)1/N

,

where U(ε) is defined as in (25). If we select the smallest q ∈ N such that
L̃k = ηqPUG,N L̃ satisfies the local condition, then with probability of at least
1− ε, it requires q = N to guarantee convergence. In particular, we have

L ≤ L̃k ≤ U(ε), if L̃ ≤ L,
L ≤ L̃k = L̃, if L ≤ L̃,

with probability of at least 1− ε.

Proof To guarantee convergence, it requires q such that L̃k = ηqPUG,N L̃ ≥ L.

When q = N , L̃k = U(ε) ≥ L with probability of at least 1− ε. ut

Theorem 15 shows the potential advantage of PUG. With any initial guess L̃,
PUG is able to scale L̃ quickly towards L without interfering with the proba-
bilistic convergence rate. This unique feature allows an aggressive initial guess
L̃ as Nesterov’s adaptive strategy without low recovering rate nor slow conver-
gence rate. Algorithm 1 provided details of PUG with N = 2. In Algorithm 1,
the Lipschitz constant estimation from last iteration, L̃k, is first divided by 2
to be the initial guess L̃, which is the same as the Nesterov’s adaptive method.
We point out that,

U(ε)→∞ as ε→ 0.

Therefore, the convergence of FISTA is guaranteed with PUG, even in the
extreme case that L ≤ U(ε) with ε ≈ 0.

In the case where computing µmax is impractical, it could be bounded by

µmax = λmax(Σ) = ‖Σ 1
2 ‖2 ≤ trace(Σ) =

n∑
i=1

Var(ξi). (26)
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With the assumption that ξi’s have zero mean and unit variance, µmax ≤ n.
For A that does not satisfy these assumptions due to different normalization
process of the data, (26) could be used to bound µmax. For the R in (25), one
could use c2n as in Corollary 12, or a tighter estimation would be

R =

n∑
i=1

max
k

a2i,k, (27)

since λmax

[
ξξT

]
= ‖ξξT ‖ = ξT ξ =

∑n
i=1 ξ

2
i .

4.3 Convergence Bounds: Regular Strategies v.s. PUG

Different stepsize strategies would lead to different convergence rates even for
the same algorithm. Since PUG is based on the probabilistic upper bound U(ε)
in (25), it leads to a probabilistic convergence of FISTA. In particular,

F (xk)− F (x?) ≤
2M

(k + 1)2

(
2γµmax −

γR

m
log
( ε
n

))
, (28)

with probability at least 1 − ε. Equation (28) holds with probability at least
1 − ε because of equation (25), which holds for all iterations in FISTA. In
particular, once the instance (matrix A) is fixed, then we have know L ≤ U(ε),
with probability at least 1−ε. If the probabilistic upper bound holds, then U(ε)
is the worst Lipschitz constant estimation computed by PUG in all iterations,
and so (27) holds. Therefore, the above result could be obtained using the
same argument as in the proof of convergence in [1].

When using regular stepsize strategies, FISTA results in convergence rates
that is in the form of (21) with different η’s (η > 1). For backtracking strategy,
η would be an user-specified parameter. It is clear from (21) that convergence
is better when η is close to 1. However, it would take more iterations and
more function evaluations to find a satisfying stepsize, and these costs are not
captured in (21). In the case of Nesterov’s adaptive strategy [12], η = 2. Using
the same analysis as in Section 3.2, L should be replaced with the upper bound
in (22) for the average case, or U(ε) in (25) for the probabilistic case. For the
probabilistic case, those convergences are in the same order as in the case of
using PUG, as shown in (28).

Therefore, PUG is competitive compared to other stepsize strategies in the
probabilistic case. The strength of PUG comes from the fact that it is adaptive
with strong theoretical guarantee that with high probability, L̃k will quickly
be accepted at each iteration.

4.4 Mini-batch Algorithms and Block-coordinate Algorithms

For mini-batch algorithms, each iteration is performed using only a subset
of the whole training set. Therefore, in each iteration, we consider a matrix
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Fig. 2: Case II, 2m = n
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Fig. 3: Case III, n = 1024

that contains the corresponding subset. This matrix is a submatrix of A with
the same structure, and therefore it is also a random matrix with smaller
size m̄-by-n, where m̄ < m. Using the existing results, we can conclude that
the associated U(ε) in each iteration would be larger than those in full-batch
algorithms. As a result, the guaranteed stepsize for mini-batch algorithms
tends to be smaller than full-batch algorithms.

On the other hand, block-coordinate algorithms do not update all dimen-
sions at once in each iteration. Rather, a subset of dimensions will be selected
to perform the update. In such setting, we only consider the variables (columns
of A) that are associated with the selected coordinates. We should consider
a submatrix that is formed by columns of A. This submatrix itself is also a
random matrix with smaller size m-by-n̄, where n̄ < n. Using the existing
results, the guaranteed stepsize for block-coordinate algorithms tends to be
larger.

Thus, with minor modifications PUG can be applied to mini-batch and
block-coordinate algorithms.

5 Numerical Experiments

In the first part of this section, we will apply the bounds from Section 3 to
illustrate the relationship between different parameters and L. Then, we will
perform the PUG on two regression examples. The datasets used for the two re-
gression examples can be found at https://www.csie.ntu.edu.tw/˜cjlin/libsvm-
tools/datasets.

5.1 Numerical Simulations for Average L

We consider three cases, and in each case we simulate A’s in different dimen-
sion m’s and n’s. Each configuration is simulated with 1000 instances, and we
study the sample average behaviors of L.

In the first case, we consider the most complicated situation and create
random vector such that its entries are not identical nor independent. We
use a mixture of three types of random variables (exponential, uniform, and
multivariate normal) to construct the matrix A ∈ Rm×n. The rows of A are
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Backtracking Nesterov PUG

T 1.00x 0.32x 0.22x

nIter 1.00x 0.22x 0.18x

nFunEva 1.00x 0.29x 0.21x

Avg. L̃ 1.00x 0.16x 0.24x

Table 1: Gisette

independent samples of ξT = (ξ1, ξ2, · · · , ξn). We divide A into three parts
with n1, n2, and n3 columns. Note that n1 = n2 = n3 = n/3 up to rounding
errors. We assign ξ with the elements where

ξj ∼

{
Exp(1)− 1 if j ≤ n1,
U(−
√

3,
√

3) if n1 < j ≤ n1 + n2,
(29)

and (ξn1+n2+1, ξn1+n2+2, · · · , ξn) ∼ N (0n3×1, Σ̂). Σ̂ is a n3 × n3 matrix with
1 on the diagonal and 0.5 otherwise. ξ1, ξ2, · · · , ξn1+n2

are independent.
The scaling factors of the uniform distribution and exponential distribution

are used to normalize the uniform random variables ξj such that E[ξj ] = 0,
and E[ξ2j ] = 1. Some entries of A are normally distributed or exponentially
distributed, and we approximate the upper bound of the entries with c = 3.
From statistics, we know that with very high probability, this approximation
is valid.

In Figure 1, we plot the sample average Lipschitz constant over 1000 in-
stances. As expected, the expected Lipschitz constant is “trapped” between
its lower and upper bound. We can see that the expected L increases when m
and n increases with the ratio n/m is fixed. This phenomenon is due the fact
that µmax = λmax(Σ) increases as n increases.

To further illustrate this, we consider the second case. The setting in this
case is the same as the first case except that we replace Σ̂ with In. So, all the
variables are linearly independent. In the case, µmax = 1 regardless the size of
the A. The ratio n/m = 2 in this example. From Figure 2, the sample average
L does not increase rapidly as the size of A increases. These results match
with the bound (22).

In the last case, we investigate the effect of the ratio n/m. The setting
is same as the first case, but we keep n = 1024 and test with different m’s.
From Figure 3, the sample average L decreases as m increases. This result
suggests that a large dataset is favorable in terms of complexity, especially for
large-scale (large n) ERM problems.

5.2 Regularized Logistics Regression

We implement FISTA with three different stepsize strategies (i) the regular
backtracking stepsize strategy, (ii) the Nesterov’s adaptive stepsize strategy,
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Backtracking Nesterov PUG

T 1.00x 1.02x 0.99x

nIter 1.00x 0.69x 0.68x

nFunEva 1.00x 0.92x 0.90x

Avg. L̃ 1.00x 0.54x 0.52x

Table 2: YearPredictionMSDt

and (iii) the proposed adaptive stepsize strategy PUG. We compare the three
strategies with an example in a `1 regularized logistic regression problem, in
which we solve the convex optimization problem

min
x∈Rn

1

m

m∑
i=1

log(1 + exp(−bixTai)) + ω‖x‖1.

We use the dataset gisette for A and b. Gisette is a handwritten digits dataset
from the NIPS 2003 feature selection challenge. The matrix A is a 6000×5000
dense matrix, and so we have n = 5000 and m = 6000. The parameter ω
is chosen to be the same as [9,21]. We chose L̃0 = 1 for all three stepsize
strategies. For backtracking stepsize strategy, we chose η = 1.5.

We compare our proposed probabilitic bound and the deterministic up-
per bound L̄ using ‖A‖2 ≤ trace(ATA). We estimate µmax = 1289.415 and
R = 4955 using equation (26) and (27), respectively. We thus obtain our prob-
abilistic bound U(0.1) = 646.941, which is less than the deterministic upper
bound L̄ = 1163.345.

Table 1 shows the performances of three stepsize strategies. T is the scaled
computational time, nIter is the scaled number of iterations, nFunEva is the
scaled number of function evaluations, and Avg. L̃ is the average of L̃ used.
This result encourages the two adaptive stepsize strategies as the number of
iterations needed and the computational time are significantly smaller com-
pared to the regular backtracking algorithm. This is due to the fact that L̃
could be a lot smaller than the Lipschitz constant L in this example, and so the
two adaptive strategies provide more efficient update for FISTA. As shown in
Table 1, even though Nesterov’s strategy yields smaller L̃ on average, it leads
to higher number of function evaluations and so it takes more time than PUG.

5.3 Regularized Linear Regression

We also compare the three strategies with an example in a `1 regularized linear
regression problem, a.k.a LASSO, in which we solve the convex optimization
problem

min
x∈Rn

1

2m

m∑
i=1

(xTai − bi)2 + ω‖x‖1.
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We use the dataset YearPredictionMSDt (testing dataset) for A and b. YearPre-
dictionMSDt has matrix A is a 51630×90 dense matrix, and so we have n = 90
and m = 51630. The parameter ω is chosen to be 10−6. We chose L̃0 = 1 for all
three stepsize strategies. For backtracking stepsize strategy, we chose η = 1.5.

We compare our proposed probabilitic bound and the deterministic upper
bound L̄ using ‖A‖2 ≤ trace(ATA). We estimate µmax = 9.603 × 106 and
R = 4.644×109 using equation (26) and (27), respectively. We thus obtain our
probabilistic bound U(0.1) = 1.982× 107, which is less than the deterministic
upper bound L̄ = 2.495× 107.

Table 2 shows the performance of three stepsize strategies, and the struc-
ture is same as Table 1. Unlike Gisette, adaptive strategies failed to provide
small L̃ compared to L. Also, since n is very small, the cost of function eval-
uation is very cheap compared to Gisette. Therefore, both adaptive strategies
do not outperform the backtracking strategy in this example. However, one
can see that both adaptive strategies yielded to reduction in terms of the
number of function evaluations. Therefore, one could expect they outperform
backtracking strategy for larger/difficult instances.

6 Conclusions and Perspectives

The analytical results in this paper show the relationship between the Lips-
chitz constant and the training set of an ERM problem. These results provide
insightful information about the complexity of ERM problems, as well as open-
ing up opportunities for new stepsize strategies for optimization problems.

One interesting extension could be to apply the same approach to different
machine learning models, such as neural networks, deep learning, etc.
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