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Abstract

Building upon multigrid methods, the framework of multilevel optimization methods
was developed to solve structured optimization problems, including problems in optimal
control [13], image processing [29], etc. In this paper, we give a broader view of the
multilevel framework and establish some connections between multilevel algorithms and
the other approaches. An interesting case of the so called Galerkin model is further studied.
By studying three different case studies of the Galerkin model, we take the first step to show
how the structure of optimization problems could improve the convergence of multilevel
algorithms.

1 Introduction
Multigrid methods are considered as the standard approach in solving differential equations
[3, 15, 17, 34, 37, 40]. When solving a differential equation using numerical methods, an
approximation of the solution is obtained on a mesh via discretization. The computational cost
of solving the discretized problem, however, varies and it depends on the choice of the mesh
size used. Therefore, by considering different mesh sizes, a hierarchy of discretized models
can be defined. In general, a more accurate solution can be obtained with a smaller mesh
size chosen, which results in a discretized problem in higher dimensions. We shall follow the
traditional terminologies in the multigrid community and call a fine model to be the discretization
in which its solution is sufficiently close to the solution of the original differential equation;
otherwise we call it coarse model [3]. The main idea of multigrid methods is to make use of
the geometric similarity between different discretizations. In particular, during the iterative
process of computing solution of the fine model, one replaces part of the computations with the
information from coarse models. The advantages of using multigrid methods are twofold. Firstly,
coarse models are in the lower dimensions compared to the fine model, and so the computational
cost is reduced. Secondly and interestingly, the directions generated by coarse model and fine
model are in fact complementary. It has been shown that using the fine model is effective in
reducing the high frequency components of the residual (error) but ineffective in reducing and
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alternating the low frequency components. Those low frequency components, however, will
become high frequency after dimensional reduction. Thus, they could be eliminated effectively
using coarse models [3, 34].

This idea of multigrid was extended to optimization. Nash [27] proposed a multigrid
framework for unconstrained infinite-dimensional convex optimization problems. Examples of
such problems could be found in the area of optimal control. Following the idea of Nash, many
multigrid optimization methods were further developed [27, 28, 25, 24, 22, 39, 14]. In particular,
Wen and Goldfarb [39] provided a line search-based multigrid optimization algorithm under the
framework in [27], and further extended the framework to nonconvex problems. Gratton et al
[14] provided a sophisticated trust-region version of multigrid optimization algorithms, in which
they called it multiscale algorithm, and in the later developments [39], the name multilevel
algorithm is used. In this paper, we will consistently use the name multilevel algorithms for
all these optimization algorithms, but we emphasize that the terms multilevel, multigrid, and
multiscale were used interchangeably in different literatures. On the other hand, we keep the
name multigrid methods for the conventional multigrid methods that solve linear or nonlinear
equations that are discretizations arising from partial differential equations (PDEs).

It is worth mentioning that different multilevel algorithms were developed beyond infinite-
dimensional problems, see for example Markov decision processes [18], image deblurring
[29], and face recognition [19]. The above algorithms all have the same aim: to speed up
the computations by making use of the geometric similarity between different models in the
hierarchy.

The numerical performance of multilevel algorithms has been satisfying. In particular,
both of the line-search based [39] and trust-region based [13] algorithms outperform standard
methods when solving infinite-dimensional problems. Numerical results show that multilevel
algorithms can take the advantage of the geometric similarity between different discretizations
just as the original multigrid methods.

However, to the best of our knowledge, no theoretical result is able to show the advantages of
using multilevel optimization algorithms. For the line-search based algorithm, Wen and Goldfarb
[39] proved a sublinear convergence rate for strongly convex problems and convergence for
nonconvex problems. Gratton et al [14] proved that their trust-region based multilevel algorithm
requires the same order of number of iterations as compared to the gradient method.

Building upon the above developments, in this paper, we aim to address three fundamental
issues with the current multilevel optimization framework. Firstly, under the general framework
of multilevel optimization, could we connect classical optimization algorithms with the recently
developed multilevel optimization algorithms? Secondly, could we extend the current analysis
and explain why multilevel optimization algorithms outperform standard methods for some
classes of problems (e.g. infinite-dimensional problems)? Thirdly, how do we construct a coarse
model when the hierarchy is not obvious?

The contributions of this paper are:

• We provide a more complete view of line search multilevel algorithm, and in particular,
we connect the general framework of the multilevel algorithm with classical optimization
algorithms, such as variable metric methods and block-coordinate type methods. We also
make a connection with the algorithm stochastic variance reduced gradient (SVRG) [20].

• We analyze the multilevel algorithm with the Galerkin model. The key feature of the
Galerkin model is that a coarse model is created from the first and second order information
of the fine model. The name “Galerkin model” is given in [14] since this is related to the
Galerkin approximation in algebraic multigrid methods [35]. We will call this algorithm
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the Galerkin-based Algebraic Multilevel Algorithm (GAMA). A global convergence
analysis of GAMA is provided.

• We propose to use the composite rate for analysis of the local convergence of GAMA. As
we will show later, neither linear convergence nor quadratic convergence is suitable when
studying the local convergence due to the broadness of GAMA.

• We study the composite rate of GAMA in a case study of infinite dimensional optimization
problems. We show that the linear component of the composite rate is inversely propor-
tional to the smoothness of the residual, which agrees with the findings in conventional
multigrid methods.

• We show that GAMA can be set up as Newton’s method in lower dimensions with low
rank approximation to Hessians. This is done by a low rank approximation method called
the navïe Nyström method. We show how the dimensions of the coarse model and the
spectrum of the eigenvalues would affect the composite rate.

• GAMA can also be set up as Newton’s method with block-diagonal approximation of the
Hessians. We define a class of objective functions with weakly-connected Hessians. That
is, the Hessians of the function have the form of a linear combination of a block-diagonal
matrix and a general matrix which its entries are in O(δ), for δ << 1. We show how δ
would vary the composite rate, and at the limit δ → 0, GAMA would achieve the quadratic
rate of convergence.

The rest of this paper is structured as follows: In Section 2 we provide background material
and introduce different variants of multilevel algorithms. We also show that several existing
optimization algorithms are in fact special cases under the general framework of multilevel
algorithm. In Section 3, we study the convergence of GAMA. We first derive the global
convergence rate of GAMA, and then show that GAMA exhibits composite convergence when
the current incumbent is sufficiently close to the optimum. Composite convergence rate is
defined as a linear combination of linear convergence and quadratic convergence, and we denote
r1 and r2 as the coefficient of linear rate and quadratic rate, respectively. Using these results,
in Section 4 we derive the complexity of both GAMA and Newton’s method. When r1 is
sufficiently small, we show that GAMA has less complexity compared to Newton’s method. In
Section 5-7, three special cases of GAMA are considered. We compute r1 in each case and show
the relationship between r1 and the structure of the problem. In Section 5, we study problems
arising from discretizations of one-dimensional PDE problems; in Section 6 we study problems
where low rank approximation of Hessians is sufficiently accurate; in Section 7 we study the
problems where the Hessians of the objective function are nearly block-diagonal. In Section 8
we illustrate the convergence of GAMA using several numerical examples, including variational
optimization problems and machine learning problems.

2 Multilevel Models
In this section a broad view of the general multilevel framework will be provided. We start with
basic settings and the core idea of multilevel algorithms in [14, 24, 39], then we show that the
general multilevel framework covers several optimization algorithms, including the variable
metric methods, block-coordinate descent, and stochastic variance reduced gradient. At the
end of this section we provide the settings and details of the core topic of this paper - Galerkin
model.
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2.1 Basic Settings
In this paper we are interested in solving,

min
xh∈RN

fh(xh), (1)

where xh ∈ RN , and function fh : RN → R is continuous, differentiable, and strongly convex.
We first clarify the use of the subscript h. Throughout this paper, the lower case h represents

that this is associated with the fine (exact) model. To use multilevel methods, one needs to
formulate a hierarchy of models, and models with lower dimensions (resolutions) called the
coarse models. To avoid the unnecessary complications, in this paper we consider only two
models in the hierarchy: fine and coarse. In the same manner of using subscript h, we assign the
upper case H to represent the association with coarse model. We assign N and n (n ≤ N ) to be
the dimensions of fine model and coarse model, respectively. For instance, any vector that is
within the space RN is denoted with subscript h, and similarly, any vector with subscript H is
within the space Rn.

Assumption 1. There exists constants µh, Lh, and Mh such that

µhI 4 ∇2fh(x) 4 LhI, ∀xh ∈ Rn, (2)

and
‖∇2fh(x)−∇2fh(y)‖ ≤Mh‖x− y‖. (3)

Equation (2) implies
‖∇fh(xh)−∇fh(yh)‖ ≤ Lh‖xh − yh‖.

The above assumption of the objective function will be used throughout this paper, and it is
common when studying second order algorithms.

Multilevel methods require mapping information across different dimensions. To this end,
we define a matrix P ∈ RN×n to be the prolongation operator which maps information from
coarse to fine, and we define a matrix R ∈ Rn×N to be the restriction operator which maps
information from fine to coarse. We make the following assumption on P and R.

Assumption 2. The restriction operator R is the transpose of the prolongation operator P up
to a constant c. That is,

P = cRT , c > 0.

Without loss of generality, we take c = 1 throughout this paper to simplify the use of notation
for the analysis. We also assume any useful (non-zero) information in the coarse model will not
become zero after prolongation and make the following assumption.

Assumption 3. The prolongation operator P has full column rank, and so

rank(P) = n.

Notice that Assumption 2 and 3 are standard assumptions for multilevel methods [3, 16, 39].
Since P has full column rank, we define the pseudoinverse and its norm

P+ = (RP)−1R, and ξ = ‖P+‖. (4)
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The coarse model is constructed in the following manner. Suppose in the kth iterations we have
an incumbent solution xh,k and gradient ∇fh,k , ∇fh(xh,k), then the corresponding coarse
model is,

min
xH∈Rn

φH(xH) , fH(xH) + 〈vH ,xH − xH,0〉, (5)

where,

vH , −∇fH,0 + R∇fh,k,

xH,0 = Rxh,k, and fH : Rn → R. Similar to ∇fh,k, we denote ∇2fH,0 , ∇2fh(xH,0) and
∇φH,0 , ∇φH(xH,0) to simplify notation. Similar notation will be used consistently unless it is
specified otherwise. We emphasize the construction of coarse model (5) is common in the line of
multilevel optimization research and it is not original in this paper. See for example [14, 24, 39].
Note that when constructing the coarse model (5), one needs to add an additional linear term on
fH(xH). This linear term ensures the following is satisfied,

∇φH,0 = R∇fh,k. (6)

For infinite-dimensional optimization problems, one can define fh and fH using discretization
with different mesh sizes. In general, fh is the function that is sufficiently close to the original
problem, and that can be achieved using small mesh sizes. Based on geometric similarity
between discretizations with different meshes, fh ≈ fH even though n ≤ N .

However, we want to emphasize fh ≈ fH is not a necessary requirement when using
multilevel methods. In principle, fH(xH) can be any function. Galerkin model, as we will show
later, is a quadratic model where fH is chosen to be an approximation of the Hessian of fh.

2.2 The General Multilevel Algorithm
The main idea of multilevel algorithms is to use the coarse model to compute search directions.
We call such direction the coarse correction step. When using coarse correction step, we
compute the direction by solving the corresponding coarse model (5) and perform the update,

xh,k+1 = xh,k + αh,kd̂h,k,

with
d̂h,k , P(xH,? − xH,0), (7)

where xH,? is the solution of the coarse model, and αh,k ∈ R+ is the stepsize. We clarify that the
“hat” in d̂h,k is used to identify a coarse correction step. The subscript h in d̂h,k is used because
d̂h,k ∈ RN .

We should emphasize that xH,? in (7) can be replaced by xH,r for r = 1, 2, . . . , i.e. the
incumbent solution of the coarse mode (5) after rth iterations. However, for the purpose of this
paper and simplicity, we ignore this case unless there is extra specification, and we let (7) be the
coarse correction step.

It is known that the coarse correction step d̂h,k is a descent direction if fH is convex. The
following lemma states this argument rigorously. Even though the proof is provided in [39], we
provide it with our notation for the completeness of this paper.

Lemma 4 ([39]). If fH is a convex function, then the coarse correction step is a descent direction.
In particular, in the kth iteration,

∇fTh,kd̂h,k ≤ φH,? − φH,0 ≤ 0.
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Proof.

∇fTh,kd̂h,k = ∇fTh,kRT (xH,? − xH,0) ,

= (R∇fh,k)T (xH,? − xH,0) ,

= ∇φTH,0 (xH,? − xH,0) ,

≤ φH,? − φH,0.

as required.

The last inequality holds because φH is a convex function. Even though Lemma 4 states that
d̂h,k is a descent direction, using coarse correction step solely is not sufficient to solve the fine
model (1).

Proposition 5. Suppose∇fh,k 6= 0 and∇fh,k ∈ null(R), then the coarse correction step

d̂h,k = 0.

Proof. From (6), xH,? = xH,0 when R∇fh,k = 0. Thus, d̂h,k = P(xH,? − xH,0) = 0.

Recall that R ∈ Rn×N , and so for n < N , a coarse correction step could be zero and make
no progress even when the first order necessary condition∇fh = 0 has not been satisfied.

2.2.1 Fine Correction Step

Two approaches can be used when coarse correction step is not progressing nor effective. The
first approach is to compute directions using standard optimization methods. We call such step
the fine correction step. As opposed to coarse correction step d̂h,k, we abandon the use of “hat”
for all fine correction steps and denote them as dh,k’s.

Classical examples of dh,k’s are steps that are computed by standard methods such as
gradient descent method, quasi-Newton method, etc. We perform fine correction step when
coarse correction step is not effective. That is,

‖R∇fh,k‖ < κ‖∇fh,k‖ or ‖R∇fh,k‖ < ε, (8)

where κ ∈ (0,min(1, ‖R‖)), and ε ∈ (0, 1). The above criteria prevent using coarse model
when xH,0 ≈ xH,?, i.e. the coarse correction step d̂h,k is close to 0. We point out that these
criteria were also proposed in [39]. We also make the following assumption on the fine correction
step throughout this paper.

Assumption 6. There exists strictly positive constants νh, ζh > 0 such that

‖dh,k‖ ≤ νh‖∇fh,k‖, and −∇fTh,kdh,k ≥ ζh‖∇fh,k‖2,

where dh,k is a fine correction step. As a consequence, there exists a constant Λh > 0 such that

fh,k − fh,k+1 ≥ Λh‖∇fh,k‖2,

where fh,k+1 is updated using a fine correction step.

As we will show later, Assumption 6 is not restrictive, and Λh is known for well-known cases
like gradient descent, Newton method, etc. Using the combination of fine and coarse correction
steps is the standard approach in multilevel methods, especially for PDE-based optimization
problems [14, 24, 39].
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2.2.2 Multiple P’s and R’s

The second approach to overcome issue of ineffective coarse correction step is by creating
multiple coarse models with different P’s and R’s.

Proposition 7. Suppose R1,R2, . . . ,Rp are all restriction operators that satisfy Assumption
2 and 3, where Ri ∈ Rni×N for i = 1, 2, . . . , p. Denote S to be a set that contains the rows of
Ri’s in RN , for i = 1, 2, . . . , p. If

span(S) = RN ,

then for∇fh,k 6= 0 there exists at least one Rj ∈ {Ri}pi=1 such that

d̂h,k 6= 0 and ∇fTh,kd̂h,k < 0,

where d̂h,k is the coarse correction step computed using Rj .

Proof. Since span(S) = RN , then for ∇fh,k 6= 0, there exists one Rj such that Rj∇fh,k 6= 0.
So the corresponding coarse model would have xH,? 6= xH,0, and thus d̂h,kj 6= 0.

Proposition 7 shows that if the rows of restriction operators Ri’s span RN , then at least one
coarse correction step from these restriction operators would be nonzero and thus effective. In
each iteration, one could use the similar idea as in (8) to rule out ineffective coarse models.
However, this checking process could be expensive for large scale problems with large p
(number of restriction operators). To omit this checking process, one could choose the following
alternatives.

i. Cyclical approach: choose R1,R2, . . . ,Rp in order at each iteration, and choose R1

after Rp.

ii. Probabilistic approach: assign a probability mass function with {Ri}pi=1 as a sample
space, and choose the coarse model randomly based on the mass function. The mass
function has to be strictly positive for each Ri’s.

We point out that this idea of using multiple coarse models is related to domain decomposition
methods, which solve (non-)linear equations arising from PDEs. Domain decomposition
methods partition the problem domain into several sub-domains, and thus decompose the
original problem into several smaller problems. We refer the readers to [5] for more details
about domain decomposition methods.

In Section 2.3, we will show that using multiple P’s and R’s is not new in the optimization
research community. Using the above multilevel framework, one can re-generate the block-
coordinate descent.

2.3 Connection with Variable Metric Methods
Using the above multilevel framework, in the rest of this section we will introduce different
versions of multilevel algorithms: variable metric methods, block-coordinate descent, and
stochastic variance reduced gradient. At the end of this section we will introduce the Galerkin
model, which is an interesting case of the multilevel framework.

Recall that for variable metric methods, the direction dh,k is computed by solving

dh,k = arg min
d

1

2
〈d,Qd〉+ 〈∇fh,k,d〉,

= −Q−1∇fh,k. (9)
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where Q ∈ RN×N is a positive definite matrix. When Q = I, dh,k is the steepest descent search
direction. When Q = ∇2fh,k, dh,k is the search direction by Newton’s method. When Q is an
approximation of the Hessian, then dh,k is the quasi-Newton search direction.

To show the connections between multilevel methods and variable metric methods, consider
the following fH .

fH(xH) =
1

2
〈xH − xH,0,QH(xH − xH,0)〉, (10)

where QH ∈ Rn×n, and xH,0 = Rxh,k as defined in (5). Applying the definition of the coarse
model (5), we obtain,

min
xH∈Rn

φH(xH) =
1

2
〈xH − xH,0,QH(xH − xH,0)〉+ 〈R∇fh,k,xH − xH,0〉. (11)

Thus from the definition in (7), the associated coarse correction step is,

d̂h,k = P

arg min
dH∈Rn

1

2
〈dH ,QHdH〉+ 〈R∇fh,k,dH〉︸ ︷︷ ︸

dH=xH−xH,0

 = −PQ−1
H R∇fh,k. (12)

Therefore, with this specific fH in (10), the resulting coarse model (11) is analogous to variable
metric methods. In a naive case where n = N and P = R = I, the corresponding coarse
correction step (12) would be the same as steepest descent direction, Newton direction, and
quasi-Newton direction for QH that is identity matrix, Hessian, and approximation of Hessian,
respectively.

2.4 Connection with Block-coordinate Descent
Interestingly, the coarse model (11) is also related to block-coordinate type methods. Suppose
we have p coarse models with prolongation and restriction operators, {Pi}pi=1 and {Ri}pi=1,
respectively. For each coarse model, we let (10) be the corresponding fH with QH = I, and we
further restrict our setting with the following properties.

1. Pi ∈ RN×ni , ∀i = 1, 2, . . . , p.

2. Pi = RT
i , ∀i = 1, 2, . . . , p.

3. [P1 P2 . . .Pp] = I.

From (12), the above setting results in d̂h,ki = −PiRi∇fh,k, where d̂h,ki is the coarse correction
step for the ith model. Notice that

(PiRi∇fh,k)j =


(∇fh,k)j if

i−1∑
q=1

nq < j ≤
i∑

q=1

nq,

0 otherwise .

Therefore, d̂h,ki is equivalent to a block-coordinate descent update [1]. When ni = 1, for
i = 1, 2, . . . , p, it becomes a coordinate descent method. When 1 < ni < N , for i = 1, 2, . . . , p,
it becomes a block-coordinate descent. When Pi’s and Ri’s are chosen using the cyclical
approach, then it would be a cyclical (block)-coordinate descent. When Pi’s and Ri’s are chosen
using the probabilistic approach, then it would be a randomized (block)-coordinate descent
method.
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2.5 Connection with SVRG
The multilevel framework is also related to the Stochastic Variance Reduced Gradient (SVRG)
and its variants [12, 20, 26], which is a state-of-the-art algorithm for structured machine learning
problems. Suppose the fine model has the following form

min
xh∈RN

fh(xh) =
1

M

M∑
i=1

fi(xh).

We denote a set, SH ⊆ {1, 2, . . . ,M} with |SH | = m, and construct the following coarse model

min
xH∈RN

fH(xH) =
1

m

∑
i∈SH

fi(xH).

In this particular case where xh,xH ∈ RN , no dimension is reduced, and we let P = R = I. In
the kth iteration with incumbent xk, the coarse model is

min
xH∈RN

1

m

∑
i∈SH

fi(xH) +

〈
− 1

m

∑
i∈SH

∇fi(xh,k) +
1

M

M∑
i=1

∇fi(xh,k),xH − xh,k

〉
.

Suppose steepest descent is applied for K steps to solve the above coarse model, then

xH,j = xH,j−1 − αH,j

(
1

m

∑
i∈SH

∇fi(xH,j−1)− 1

m

∑
i∈SH

∇fi(xh,k) +
1

M

M∑
i=1

∇fi(xh,k)

)
,

for j = 1, 2, . . . , K. The above update is the key step in SVRG and its variants. In particular,
when m = Kd = 1, the above setting is the same as the original SVRG in [20] with 1 inner
iteration. Even though the coarse model is in the same dimension as the fine model, the cost of
computing function values and gradients is much cheaper when m << M .

2.6 The Galerkin Model
We end this section with the core topic of this paper - the Galerkin model. The Galerkin coarse
model is a special case of (11) where,

QH = ∇2
Hfh,k , R∇2fh,kP, (13)

and so the Galerkin (coarse) model is,

min
xH∈Rn

φH(xH) =
1

2
〈xH − xH,0,∇2

Hfh,k(xH − xH,0)〉+ 〈R∇fh,k,xH − xH,0〉. (14)

According to (12), the corresponding coarse correction step is

d̂h,k = −P[R∇2fh,kP]−1R∇fh,k = −P[∇2
Hfh,k]

−1R∇fh,k. (15)

The Galerkin model is closely related to algebraic multigrid methods which solve (non-)linear
equations arising from PDEs. Algebraic multigrid methods are used when computation or
implementation of fH is difficult (see e.g. [35]). In the context of multilevel optimization, to the
best of our knowledge, this is first mentioned in [14] by Gratton, Sartenaer, and Toint. In [14] a
trust-region type multilevel method is proposed to solve PDE-based optimization problems, and
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the Galerkin model is described as a “radical strategy”. In a later paper from Gratton et al. [13],
the trust-region type multilevel method is tested numerically, and Galerkin model provides good
numerical results.

It is worth mentioning that the above coarse correction step is equivalent to the solution of
the system of linear equations,

R∇2fh,kPdH = −R∇fh,k. (16)

which is the general case of the Newton’s method in which P = R = I. Using Assumption 3,
we can show that∇2

Hfh,k is positive definite, and so equation (16) has a unique solution.

Proposition 8. R∇2fh(xh)P is positive definite, and in particular,

µhξ
−2I � R∇2fh(xh)P � Lhω

2I

where ω = max{‖P‖, ‖R‖} and ξ = ‖P+‖.

Proof.

xT
(
R∇2fh(xh)P

)
x = (Px)T∇2fh(xh)(Px) ≤ Lh‖Px‖2 ≤ Lhω

2‖x‖2.

Also,

xT
(
R∇2fh(xh)P

)
x = (Px)T∇2fh(xh)(Px) ≥ µh‖Px‖2 ≥ µh

‖P+‖2
‖x‖2 =

µh
ξ2
‖x‖2.

So we obtain the desired result.

3 Convergence of GAMA
In this section we will analyze GAMA that is stated as Algorithm 1. The fine correction

steps in Algorithm 1 are deployed by variable metric methods, and an Armijo rule is used as
stepsize strategy for both fine and coarse correction steps. We emphasize that Algorithm 1 is the
basic version of GAMA, but the general techniques of analysis in this section could be applied to
its variants which we introduced in Section 2. The results in this section will be used in Section
3 to compare the complexity between GAMA and Newton’s method.

We will first show that Algorithm 1 achieves a sublinear rate of convergence. We then
analyze the maximum number of coarse correction steps that would be taken by Algorithm 1,
and the condition that when the coarse correction steps yield quadratic reduction in the gradients
in the subspace. At the end of this section, we will provide the composite convergence rate for
the coarse correction steps.

To provide convergence properties when coarse correction step is used, the following quantity
will be used

χH,k , [(R∇fh,k)T [∇2
Hfh,k]

−1R∇fh,k]1/2.
Notice that χH,k is analogous to the Newton decrement, which is used to study the convergence
of Newton method [2]. In particular, the defined χH,k has the following properties.

1. ∇fTh,kd̂h,k = −χ2
H,k.

2. d̂Th,k∇2fh,kd̂h,k = χ2
H,k.

We omit the proofs of the above properies since these can be done by using direct computation
and the definition of χH,k.
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Algorithm 1 GAMA

Input:κ, ε, ρ1 ∈ (0, 0.5), βls ∈ (0, 1),
P ∈ RN×n and R ∈ RN×n which satisfy Assumption 2 and 3.

Initialization: xh,0 ∈ RN

for k = 0, 1, 2, . . . do
Compute the direction

d =

{
d̂h,k in (15) if ‖R∇fh,k‖ > κ‖∇fh,k‖ and ‖R∇fh,k‖ > ε,

dh,k in (9) otherwise.

Find the smallest q ∈ N such that for stepsize αh,k = βqls,

fh(xh,k + αh,kd) ≤ fh,k + ρ1αh,k∇Tfh,kd.

Update
xh,k+1 , xh,k + αh,kd.

end for

3.1 The worse case O(1/k) Convergence
We will show that Algorithm 1 will achieve a sublinear rate of convergence. We will deploy
the techniques from [1] and [2]. Starting with the following lemma, we state reduction in
function value using coarse correction steps. We would like to clarify that even though GAMA
is considered as a special case in [39], we take advantage of this simplification and specification
to provide analysis with results that are easier to interpret. In particular, the analysis of stepsizes
αh,k’s in [39] relies on the maximum number of iterations taken. This result is unfavourable and
unnecessary for the settings we consider.

Lemma 9. The coarse correction step d̂h,k in Algorithm 1 will lead to reduction in function
value

fh,k − fh(xh,k + αh,kd̂h,k) ≥
ρ1κ

2βlsµh
L2
h

‖∇fh,k‖2,

where ρ1, κ, and βls are user-defined parameters in Algorithm 1. h and µh are defined in
Assumption 1.

Proof. By convexity,

f(xh,k + αd̂h,k) ≤ fh,k + α〈∇fh,k, d̂h,k〉+
Lh
2
α2‖d̂h,k‖2,

≤ fh,k − αχ2
H,k +

Lh
2µh

α2χ2
H,k,

since
µh‖d̂h,k‖2 ≤ d̂Th,k∇2f(xk)d̂h,k = χ2

H,k.

Notice that α̂ = µh/Lh, we have

−α̂ +
Lh
2µh

α̂2 = −α̂ +
Lh
2µh

µh
Lh
α̂ = −1

2
α̂,
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and

f(xh,k + α̂d̂h,k) ≤ fh,k −
α̂

2
χ2
H,k,

≤ fh,k +
α̂

2
∇fTh,kd̂h,k,

< fh,k + ρ1α̂∇fTh,kd̂h,k,

which satisfies the Armijo condition. Therefore, line search will return stepsize αh,k ≥ α̂ =
(βlsµh)/Lh. Using the fact that

1

Lh
‖R∇f(xk)‖2 ≤ (R∇f(xk))

T [∇2
Hf(xk)]

−1R∇f(xk) = χ2
H,k,

we obtain

f(xh,k + αh,kd̂h,k)− fh,k ≤ ρ1αh,k∇fTh,kd̂h,k,
≤ −ρ1α̂χ

2
H,k,

≤ −ρ1
βlsµh
L2
h

‖R∇fh,k‖2,

≤ −ρ1κ
2βlsµh
L2
h

‖∇fh,k‖2,

as required.

Using the result in Lemma 9, we derive the guaranteed reduction in function value in the
following two lemmas.

Lemma 10. Let Λ , min

{
Λh,

ρ1κ
2βlsµh
L2
h

}
, then the step d in Algorithm 1 will lead to

fh,k − fh,k+1 ≥ Λ‖∇fh,k‖2,

where ρ1, κ, and βls are user-defined parameters in Algorithm 1. h and µh are defined in
Assumption 1. Λh is defined in Assumption 6.

Proof. This is a direct result from Lemma 9 and Assumption 6.

Lemma 11. Suppose

R(xh,0) , max
xh∈RN

{‖xh − xh,?‖ : fh(xh) ≤ fh(xh,0)},

the step in Algorithm 1 will guarantee

fh,k − fh,k+1 ≥
Λ

R2(xh,0)
(fh,k − fh,?)2 ,

where Λ is defined in Lemma 10.
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Proof. By convexity, for k = 0, 1, 2, . . . ,

fh,k − fh,? ≤ 〈∇fh,k,xh,k − xh,?〉,
≤ ‖∇fh,k‖ ‖xh,k − xh,?‖,
≤ R(xh,0)‖∇fh,k‖.

Using Lemma 10, we have

fh,k − fh,? ≤ R(xh,0)
√

Λ−1 (fh,k − fh,k+1),(
fh,k − fh,?
R(xh,0)

)2

≤ Λ−1 (fh,k − fh,k+1) ,

Λ

(
fh,k − fh,?
R(xh,0)

)2

≤ fh,k − fh,k+1,

as required.

The constant Λ in Lemma 11 depends on Λh, which is introduced in Assumption 6. This
constant depends on both fine correction step chosen and the user-defined parameter ρ1 in Armijo
rule. For instance,

Λh =


ρ1µh
L2
h

if dh,k = −[∇2fh,k]
−1∇fh,k,

ρ1

Lh
if dh,k = −∇fh,k.

In order to derive the convergence rate in this section, we use the following lemma on nonnegative
scalar sequences.

Lemma 12. [1] Let {Ak}k≥0 be a nonnegative sequence of the real numbers satisfying

Ak − Ak+1 ≥ γA2
k, k = 0, 1, 2, . . . ,

and
A0 ≤

1

qγ

for some positive γ and q. Then

Ak ≤
1

γ(k + q)
, k = 0, 1, 2, . . . ,

and so
Ak ≤

1

γk
, k = 0, 1, 2, . . . .

Proof. see Lemma 3.5 in [1].

Combining the above results, we obtain the rate of convergence.

Theorem 13. Let {xk}k≥0 be the sequence that is generated by Algorithm 1. Then,

fh,k − fh,? ≤
R2(xh,0)

Λ

1

2 + k
,

where Λ andR(·) are defined as in Lemma 10 and 11, respectively.
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Proof. Notice that
fh,k − fh,k+1 ≥

Λ

R2(xh,0)
(fh,k − fh,?)2 .

and so
(fh,k − fh,?)− (fh,k+1 − fh,?) ≥

Λ

R2(xh,0)
(fh,k − fh,?)2 .

Also, we have

fh,0 − fh,? ≤
Lh
2
‖xh,0 − xh,?‖2 ≤ Lh

2
R2(xh,0) ≤ L2

hR2(xh,0)

2µh
≤ L2

hR2(xh,0)

2µhβlsκ2ρ1

,

≤ R2(xh,0)

2Λ
.

Let’s Ak , fh,k − fh,?, γ ,
Λ

R2(xh,0)
, and q , 2. By applying Lemma 12, we have

fh,k − fh,? ≤
R2(xh,0)

Λ

1

2 + k
,

as required.

Theorem 13 provides the sublinear convergence of Algorithm 1. We emphasize that the
rate is inversely proportional to Λ = min{Λh, ρ1κ

2µh/L
2
h}, and so small κ would result in low

convergence. Therefore, even though κ could be arbitrary small, it is not desirable in terms of
worse case complexity. Note that κ is a user-defined parameter for determining whether coarse
correction step would be used. If κ is chosen to be too large, then it is less likely that the coarse
correction step would be used. In the extreme case where κ ≥ ‖R‖, coarse correction step
would not be deployed because

‖R∇fh,k‖ ≤ ‖R‖‖∇fh,k‖,

and so Algorithm 1 reduces to the standard variable metric method. Therefore, there is a trade-off
between the worse case complexity and the likelihood that coarse correction step would be
deployed.

Bear in mind that one can deploy GAMA without using any fine correction step, as stated in
Section 2.2. In this case the criterion (8) would not be used, but we clarify that the analysis in
this section is still valid as long as we assume there are constants κ, ε such that criterion (8) is
always satisfied.

3.2 Maximum Number of Iterations of Coarse Correction Step
We now discuss the maximum number of coarse correction steps in Algorithm 1. The following
lemma will state the sufficient conditions for not taking any coarse correction step.

Lemma 14. No coarse correction step in Algorithm 1 will be taken when

‖∇fh,k‖ ≤
ε

ω
,

where ω = max{‖P‖, ‖R‖}, and ε is a user-defined parameter in Algorithm 1.
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Proof. Recall that in Algorithm 1, the coarse step is only taken when ‖R∇fh,k‖ > ε. We have,

‖R∇fh,k‖ ≤ ω‖∇fh,k‖ ≤ ω
ε

ω
= ε,

and so no coarse correction step will be taken.

The above lemma states the condition when the coarse correction step would not be per-
formed. We then investigate the maximum number of iterations to achieve that sufficient
condition.

Lemma 15. Let {xk}k≥0 be a sequence generated by Algorithm 1. Then, ∀ε̄, k̄ > 0 such that,

k̄ ≥
(

1

ε̄

)2 R2(xh,0)

Λ2
− 2,

we obtain
‖∇fh(xh,k̄)‖ ≤ ε̄,

where Λ andR(·) are defined as in Lemma 10 and 11, respectively.

Proof. We know that

Λ‖∇fh,k‖2 ≤ fh,k − fh,k+1.

Also, we have,

fh,k − fh,? ≤
R2(xh,0)

Λ

1

2 + k
.

Therefore,

‖∇fh,k‖2 ≤ 1

Λ
(fh,k − fh,k+1) ,

≤ 1

Λ
(fh,k − fh,?) ,

≤ R2(xh,0)

Λ2

1

2 + k
.

For

k =

(
1

ε̄

)2 R2(xh,0)

Λ2
− 2,

we have

‖∇fh,k‖ ≤
√
R2(xh,0)

Λ2

1

2 + k
≤

√
R2(xh,0)

Λ2
(ε̄)2 Λ2

R2(xh,0)
= ε̄,

as required.

By integrating the above results, we obtain the maximum number of iterations to achieve
‖∇fh,k‖ ≤ ε/ω. That is, no coarse correction step will be taken after(ω

ε

)2 R2(xh,0)

Λ2
− 2 iterations.

Notice that the smaller ε, the more coarse correction step will be taken. Depending on the choice
of dh,k, the choice of ε could be different. For example, if dh,k is chosen as the Newton step
where dh,k = −[∇2fh,k]

−1∇fh,k, one good choice of ε could be 3ω(1 − 2ρ1)µ2
h/Lh if µh and

Lh are known. This is because Newton’s method achieves quadratic rate of convergence when
‖∇fh,k‖ ≤ 3(1 − 2ρ1)µ2

h/Lh [2]. Therefore, for such ε, no coarse correction step would be
taken when the Newton method performs in its quadratically convergent phase.
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3.3 Quadratic Phase in Subspace
We now state the required condition for stepsize αh,k = 1, and then we will show that when
‖R∇fh,k‖ is sufficiently small, the coarse correction step would reduce ‖R∇fh,k‖ quadratically.
The results below are analogous to the analysis of the Newton’s method in [2].

Lemma 16. Suppose coarse correction step d̂h,k in Algorithm 1 is taken, then αh,k = 1 when

‖R∇fh,k‖ ≤ η =
3µ2

h

Mh

(1− 2ρ1),

where ρ1 is an user-defined parameter in Algorithm 1. Mh and µh are defined in Assumption 1.

Proof. By Lipschitz continuity (3),

‖∇2fh(xh,k + αd̂h,k)−∇2fh,k‖ ≤ αMh‖d̂h,k‖,

which implies

‖d̂Th,k(∇2fh(xh,k + αd̂h,k)−∇2fh,k)d̂h,k‖ ≤ αMh‖d̂h,k‖3.

Let f̃(α) = fh(xh,k + αd̂h,k), then the above inequality can be rewritten as

|f̃ ′′(α)− f̃ ′′(0)| ≤ αMh‖d̂h,k‖3,

and so
f̃ ′′(α) ≤ f̃ ′′(0) + αMh‖d̂h,k‖3.

Since f̃ ′′(0) = d̂Th,k∇2fh,kd̂h,k = χ2
H,k,

f̃ ′′(α) ≤ χ2
H,k + αMh‖d̂h,k‖3.

By integration,
f̃ ′(α) ≤ f̃ ′(0) + αχ2

H,k + (α2/2)Mh‖d̂h,k‖3.

Similarly, f̃ ′(0) = ∇fTh,kd̂h,k = −χ2
H,k, and so

f̃ ′(α) ≤ −χ2
H,k + αχ2

H,k + (α2/2)Mh‖d̂h,k‖3.

Integrating the above inequality, we obtain

f̃(α) ≤ f̃(0)− αχ2
H,k + (α2/2)χ2

H,k + (α3/6)Mh‖d̂h,k‖3.

Recall that µh‖d̂h,k‖2 ≤ d̂Th,k∇2fh,kd̂h,k = χ2
H,k; thus,

f̃(α) ≤ f̃(0)− αχ2
H,k +

α2

2
χ2
H,k +

α3Mh

6µ
3/2
h

χ3
H,k.

Let α = 1,

f̃(1)− f̃(0) ≤ −χ2
H,k +

1

2
χ2
H,k +

Mh

6µ
3/2
h

χ3
H,k,

≤ −

(
1

2
− Mh

6µ
3/2
h

χH,k

)
χ2
H,k.
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Using the fact that

‖R∇fh,k‖ ≤ η =
3µ2

h

Mh

(1− 2ρ1),

and
χH,k = ((R∇fh,k)T [∇2

Hfh,k]
−1R∇fh,k)1/2 ≤ 1

√
µh
‖R∇fh,k‖,

we have

χH,k ≤
3µ

3/2
h

Mh

(1− 2ρ1) ⇐⇒ ρ1 ≤
1

2
− Mh

6µ
3/2
h

χH,k.

Therefore,
f̃(1)− f̃(0) ≤ −ρ1χ

2
H,k = ρ1∇fTh,kd̂h,k,

and we have αh,k = 1 when ‖R∇fh,k‖ ≤ η.

The above lemma yields the following theorem.

Theorem 17. Suppose the coarse correction step d̂h,k in Algorithm 1 is taken and αh,k = 1,
then

‖R∇fh,k+1‖ ≤
ω3ξ4Mh

2µ2
h

‖R∇fh,k‖2,

where Mh and µh are defined in Assumption 1, ω = max{‖P‖, ‖R‖} and ξ = ‖P+‖.

Proof. Since αh,k = 1, we have

‖R∇fh,k+1‖ = ‖R∇fh(xh,k + d̂h,k)−R∇fh,k −R∇2fh,kPd̃H,i?‖
≤ ‖R‖ ‖∇fh(xh,k + d̂h,k)−∇fh,k −∇2fh,kd̂h,k‖

≤ ω

∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

(∇2fh(xh,k + td̂h,k)−∇2fh,k)d̂h,k dt

∣∣∣∣∣
∣∣∣∣∣

≤ ω
Mh

2
‖d̂h,k‖2.

Notice that

‖d̂h,k‖ = ‖P[R∇2fh,kP]−1R∇fh,k‖
≤ ‖P‖ ‖[R∇2fh,kP]−1‖ ‖R∇fh,k‖

≤ ωξ2

µh
‖R∇fh,k‖.

Thus,

‖R∇fh,k+1‖ ≤
ω3ξ4Mh

2µ2
h

‖R∇fh,k‖2,

as required.

The above theorem states the quadratic convergence of ‖∇fh,k‖ within the subspace
range(R). However, it does not give insight on the convergence behaviour on the full space RN .
To address this, we study the composite rate of convergence in the next section.
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3.4 Composite Convergence Rate
At the end of this section, we study the convergence properties of the coarse correction step when
incumbent is sufficiently close to the solution. In particular, we deploy the idea of composite
convergence rate in [7], and consider the convergence of coarse correction step as a combination
of linear and quadratic convergence.

The reason of proving composite convergence is due to the broadness of GAMA. Suppose in
the naive case when P = R = I, then the coarse correction step in GAMA becomes Newton’s
method. In such case we expect quadratic convergence when incumbent is sufficiently close
to the solution. On the other hand, suppose P is any column of I and R = PT , then the
coarse correction step is a (weighted) coordinate descent direction, as described in Section 2.4.
One should expect not more than linear convergence in that case. Therefore, both quadratic
convergence and linear convergence are not suitable for GAMA, and one needs the combination
of them. In this paper, we propose to use composite convergence, and show that it can better
explain the convergence of different variants of GAMA.

We would like to emphasize the difference between our setting compared to [7]. To the
best of our knowledge, composite convergence rate was used in [7] to study subsample Newton
methods for machine learning problems without dimensional reduction. In this paper, the class
of problems that we consider is not restricted to machine learning, and we focus on the Galerkin
model, which is a reduced dimension model. The results presented in this section are not direct
results of the approach in [7]. In particular, if the exact analysis of [7] is taken, the derived
composite rate would not be useful in our setting, because the coefficient of the linear component
would be greater than 1.

Theorem 18. Suppose the coarse correction step d̂h,k in Algorithm 1 is taken and αh,k = 1,
then

‖xh,k+1 − xh,?‖ ≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I−PR)(xh,k − xh,?)‖

+
Mhω

2ξ2

2µh
‖xh,k − xh,?‖2, (17)

where Mh and µh are defined in Assumption 1, ω = max{‖P‖, ‖R‖} and ξ = ‖P+‖. The
operator∇2

H is defined in (13).

Proof. Denote

Q̃ =

∫ 1

0

∇2f(xh,? − t(xh,k − xh,?))dt,

we have

xh,k+1 − xh,? = xh,k − xh,? −P[∇2
Hfh,k]

−1R∇fh,k,
= xh,k − xh,? −P[∇2

Hfh,k]
−1RQ̃(xh,k − xh,?),

=
(
I−P[∇2

Hfh,k]
−1RQ̃

)
(xh,k − xh,?),

=
(
I−P[∇2

Hfh,k]
−1R∇2fh,k

)
(xh,k − xh,?)

+
(
P[∇2

Hfh,k]
−1R∇2fh,k −P[∇2

Hfh,k]
−1RQ̃

)
(xh,k − xh,?),

=
(
I−P[∇2

Hfh,k]
−1R∇2fh,k

)
(I−PR)(xh,k − xh,?)

+P[∇2
Hfh,k]

−1R
(
∇2fh,k − Q̃

)
(xh,k − xh,?).
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Note that

‖∇2fh,k − Q̃‖ =

∥∥∥∥∥∇2fh,k −
∫ 1

0

∇2f(xh,? − t(xh,k − xh,?))dt

∥∥∥∥∥ ≤ Mh

2
‖xh,k − xh,?‖.

Therefore,

‖xh,k+1 − xh,?‖ ≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I−PR)(xh,k − xh,?)‖

+‖P[∇2
Hfh,k]

−1R‖Mh

2
‖xh,k − xh,?‖2,

≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I−PR)(xh,k − xh,?)‖

+
Mhω

2ξ2

2µh
‖xh,k − xh,?‖2,

as required.

Theorem 18 provides the composite convergence rate for the coarse correction step. However,
some terms remain unclear, and in particular ‖I − P[∇2

Hfh,k]
−1R∇2fh,k‖. Notice that in the

case when rank(P) = N (i.e. P is invertible),

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ = ‖I−P[R∇2fh,kP]−1R∇2fh,k‖,
= ‖I−PP−1[∇2fh,k]

−1R−1R∇2fh,k‖,
= 0.

It is intuitive to consider that ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ should be small and less than 1 when
rank(P) is close to but not equal to N . However, the above intuition is not true, and we prove
this in the following lemma.

Lemma 19. Suppose rank(P) 6= N , then

1 ≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ ≤

√
Lh
µh
,

where Lh and µh are defined in Assumption 1. The operator∇2
H is defined in (13).

Proof. Since∇2fh,k is a positive definite matrix, consider the eigendecomposition of∇2fh,k,

∇2fh,k = UΣUT ,

where Σ is a diagonal matrix containing the eigenvalues of∇2fh,k, and U is a orthogonal matrix
where its columns are eigenvectors of∇2fh,k. We then have

I−P[∇2
Hfh,k]

−1R∇2fh,k

= I−P[R∇2fh,kP]−1R∇2fh,k,

= UΣ−1/2Σ1/2UT −UΣ−1/2Σ1/2UTP[RUΣ1/2Σ1/2UTP]−1RUΣ1/2Σ1/2UT ,

= UΣ−1/2Σ1/2UT

−UΣ−1/2(Σ1/2UTP)[(Σ1/2UTP)T (Σ1/2UTP)]−1(Σ1/2UTP)TΣ1/2UT ,

= UΣ−1/2(I− ΓΣ1/2UT P)Σ1/2UT ,
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where ΓΣ1/2UT P is the orthogonal projection operator onto the range of Σ1/2UTP, and so

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ = ‖UΣ−1/2(I− ΓΣ1/2UT P)Σ1/2UT‖,
= ‖Σ−1/2(I− ΓΣ1/2UT P)Σ1/2‖.

For the upper bound, we have

‖Σ−1/2(I− ΓΣ1/2UT P)Σ1/2‖ ≤ ‖Σ−1/2‖‖(I− ΓΣ1/2UT P)‖‖Σ1/2‖ ≤

√
Lh
µh
,

since I−ΓΣ1/2UT P is an orthogonal projector and ‖(I−ΓΣ1/2UT P)‖ ≤ 1. For the lower bound,
we have

‖Σ−1/2(I− ΓΣ1/2UT P)Σ1/2‖ = ‖Σ−1/2(I− ΓΣ1/2UT P)(I− ΓΣ1/2UT P)Σ1/2‖,
= ‖Σ−1/2(I− ΓΣ1/2UT P)Σ1/2Σ−1/2(I− ΓΣ1/2UT P)Σ1/2‖,
≤ ‖Σ−1/2(I− ΓΣ1/2UT P)Σ1/2‖‖Σ−1/2(I− ΓΣ1/2UT P)Σ1/2‖,
= ‖Σ−1/2(I− ΓΣ1/2UT P)Σ1/2‖2.

The assumption rank(P) 6= N implies

I 6= ΓΣ1/2UT P and ‖Σ−1/2(I− ΓΣ1/2UT P)Σ1/2‖ 6= 0.

Therefore, 1 ≤ ‖Σ−1/2(I− ΓΣ1/2UT P)Σ1/2‖, as required.

Lemma 19 clarifies the fact that the term ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖ is at least 1 when
n < N . This fact reduces the usefulness of the composite convergence rate in Theorem 18. In
Section 5-7, we will investigate different Galerkin models, and show that ‖(I−PR)(xh,k−xh,?)‖
is sufficiently small in those cases.

4 Complexity Analysis
In this section we will perform the complexity analysis for both the Newton’s method and
GAMA. Our complexity analysis for Newton’s method is a variant of the results in [2, 21, 30].
The main difference is that in this paper we focus on the complexity that yield ‖xh,k−xh,?‖ ≤ εh
accuracy instead of ‖∇fh,k‖ ≤ εh. This choice is made for simpler comparison with GAMA. At
the end of this section, we compare the complexity of Newton’s method and GAMA, and we
will state the condition for which GAMA has lower complexity.

4.1 Complexity Analysis: Newton’s Method
It is known that for Newton’s method, the algorithm enters its quadratic convergence phase
when αh,k = 1, with

‖xh,k+1 − xh,?‖ ≤
Mh

2µh
‖xh,k − xh,?‖2.

The above equation, however, does not guarantee that ‖xh,k+1−xh,?‖ is a contraction. To obtain
this guarantee, it requires

Mh

2µh
‖xh,k − xh,?‖ < 1 ⇐⇒ ‖xh,k − xh,?‖ <

2µh
Mh

. (18)
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Moreover, αh,k = 1 when

‖∇fh,k‖ ≤ 3(1− 2ρ1)
µ2
h

Lh
. (19)

In what follows we will first prove the number of iterations needed to satisfy condition (18)-(19)
(called the damped Newton phase), and we will then compute the number of iterations needed
in the quadratically convergent phase. To this end, we define the following two variables:

• kd: The number of iterations in the damped Newton phase.

• kq: The number of iterations in the quadratically convergent phase.

Thus, the total number of iterations needed is kd + kq.

Lemma 20. Suppose Newton’s method is performed, the conditions (18)-(19) are satisfied after

kd ≥
(

1

εN

)2 R2(xh,0)

Λ2
N

− 2

iterations, where

εN , min

{
3

2
(1− 2ρ1), δ

}
︸ ︷︷ ︸

,ηN

2µ2
h

Mh

, ∀δ ∈ (0, 1), ΛN ,
ρ1βlsµh
L2
h

.

Note that ρ1 and βls are user-defined parameters in Armijo rule as Algorithm 1; Mh, h, and µh
are defined in Assumption 1;R(·) is defined in Lemma 11.

Proof. It is known that for Newton’s method

fh,k+1 − fh,k ≤ −ΛN‖∇fh,k‖2.

Using the above equation together with the proofs of Lemma 11 and Theorem 13, we obtain

fh,k − fh,? ≤
R2(xh,0)

ΛN

1

2 + k
.

Therefore, using the proof of Lemma 15, it takes a finite number of iterations, kd, to achieve
‖∇fh,kd‖ ≤ εN for εN > 0, and

kd ≤
(

1

εN

)2 R2(xh,0)

Λ2
N

− 2.

By convexity and the definition of εN , we obtain

‖xh,kd − xh,?‖ ≤
1

µh
‖∇fh,kd‖ ≤

1

µh
εN =

1

µh
min

{
3

2
(1− 2ρ1), δ

}
2µ2

h

Mh

<
2µh
Mh

.

So we obtain the desired result.

Lemma 20 gives, kd,the number of iterations required in order to enter the quadratic phase.
In the following lemma we derive kq.
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Lemma 21. Suppose Newton’s method is performed and ‖∇fh,0‖ ≤ εN , where εN is defined in
Lemma 20. Then, for εh and kq such that

εh ∈ (0, 1), and kq ≥
1

log 2
log

 log
(
Mhεh
2µh

)
log ηN

− 1,

we obtain ‖xh,kq − xh,?‖ ≤ εh. Note that Mh and ηN are defined in Assumption 1 and Lemma
20, respectively.

Proof. Given that
‖xh,0 − xh,?‖ ≤

1

µh
‖∇fh,0‖ ≤

εN
µh
≤ ηN

2µh
Mh

,

we have

‖xh,k+1 − xh,?‖ ≤
Mh

2µh
‖xh,k − xh,?‖2,

≤
(
Mh

2µh

)(
Mh

2µh

)2

‖xh,k−1 − xh,?‖4,

≤
(
Mh

2µh

)∑k
j=0 2j

‖xh,0 − xh,?‖2k+1

,

=

(
Mh

2µh

)2k+1−1(
ηN

2µh
Mh

)2k+1

,

=
2µh
Mh

η2k+1

N .

To achieve the desired accuracy, we require

2µh
Mh

η2kq+1

N ≤ εh,

2kq+1 log ηN ≤ log

(
Mhεh
2µh

)
,

(kq + 1) log 2 ≥ log

 log
(
Mhεh
2µh

)
log ηN

 ,

kq ≥
1

log 2
log

 log
(
Mhεh
2µh

)
log ηN

− 1.

So we obtain the desired result.

Combining the results in Lemma 20 and Lemma 21, we obtain the complexity of Newton’s
method.

Theorem 22. Suppose Newton’s method is performed and k = kd + kq, where kd and kq
are defined as in Lemma 20 and Lemma 21, respectively. Then we obtain the εh-accuracy
‖xh,k − xh,?‖ ≤ εh with the complexity

O
(
(kd + kq)N

3
)
.

Proof. The total complexity is the number of iterations, kd + kq, multiply by the cost per
iteration, which is O (N3).
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4.2 Complexity Analysis: GAMA
We follow the same strategy to compute the complexity of GAMA. In order to avoid unnecessary
complications in notations, in the section, we let r1 and r2 to be the composite rate in which

‖xh,k+1 − xh,?‖ ≤ r1‖xh,k − xh,?‖+ r2‖xh,k − xh,?‖2, (20)

when

‖R∇fh,k‖ ≤
3µ2

h

Mh

(1− 2ρ1). (21)

For ‖xh,k+1 − xh,?‖ in (20) to be a contraction, we need r1 < 1 and

‖xh,k − xh,?‖ <
1− r1

r2

. (22)

We clarify that the above form in (20) is not exactly in the same form of the composite rate in
Section 3.4, where ‖(I−PR)(xh,k − xh,?)‖ is used instead of ‖xh,k − xh,?‖. The latter case is
used solely for simpler analysis, and does not contradict with the results presented in Section
3.4; in particular, one can simply let

r1 = ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖
‖(I−PR)(xh,k − xh,?)‖

‖xh,k − xh,?‖
. (23)

In order to guarantee convergence, we simply assume 1 fine correction step is taken after a
fixed number of coarse correction steps. For the purpose of simplifying analysis, we make the
following assumptions on the fine correction step taken.

Assumption 23. The coarse correction step of Algorithm 1 has the following properties:

1. 1 fine correction step is taken for every KH coarse correction steps.

2. The computational cost of each fine correction step is O(Ch).

3. When the composite rate (20) applies for the coarse correction steps, the fine correction
step satisfies

‖xh,k+1 − xh,?‖ ≤ ‖xh,k − xh,?‖.

Recall that GAMA only achieves the composite rate when condition (21) is satisfied, as
stated in Lemma 16 and Theorem 18. When (21) does not hold, a global sublinear rate of
convergence is still guaranteed, as concluded in Theorem 13. We shall call the former case and
the latter case as composite convergent phase and sublinear convergent phase, respectively.

In the following lemma, we compute the number of iterations needed for both composite
convergent phase and sublinear convergent phase. Similar to the case of Newton’s method, we
define the following notation:

• ks: The number of iterations in the sublinear convergent phase.

• kc: The number of iterations in the composite convergent phase.

Thus, the total number of iterations of GAMA would be ks + kc.
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Lemma 24. Suppose Algorithm 1 is performed and Assumption 23 holds, the conditions (21)-
(22) are satisfied after

ks ≥
(

1

εG

)2 R2(xh,0)

Λ2
− 2

iterations, where

εG , min

{
3µ2

h

ωMh

(1− 2ρ1), δ

}
, ∀δ ∈

(
0,
µh(1− r1)

r2

)
.

Note that ρ1 is a user-defined parameter in Algorithm 1; ω = max{‖P‖, ‖R‖}; Mh and µh are
defined in Assumption 1; Λ andR(·) are defined in Lemma 10 and 11, respectively; r1 and r2

are defined in (20).

Proof. Using the result in Lemma 15, we obtain

‖∇fh,ks‖ ≤ εG.

We then show that the above condition is sufficient for αh,ks = 1. By definitions,

‖R∇fh,ks‖ ≤ ω‖∇fh,ks‖ ≤ ωεG ≤ ω
3µ2

h

ωMh

(1− 2ρ1) =
3µ2

h

Mh

(1− 2ρ1).

By Lemma 16, αh,ks = 1. On the other hand,

‖xh,ks − xh,?‖ ≤
1

µh
‖∇fh,ks‖ <

1

µh

µh(1− r1)

r2

=
1− r1

r2

.

Therefore, we obtain the desired result.

Lemma 24 gives the number of iterations required in the sublinear convergent phase, ks. In
the following lemma, we derive kc.

Lemma 25. Suppose Algorithm 1 is performed, Assumption 23 holds, and

‖∇fh,0‖ ≤ εG,

where εG is defined in Lemma 24. Then for εh and kc such that

εh ∈ (0, 1), and

kc ≥
1 + 1/KH

r1 − 1

log

(
µhεh
εG

)
− log

(
r1 + r2

εG
µh

)
+

r2εG

µh log
(
r1 + r2

εG
µh

)
 ,

we obtain ‖xh,kc−xh,?‖ ≤ εh. Note that µh andKH are defined in Assumption 1 and Assumption
23, respectively; r1 and r2 are defined in (20).

Proof. Based on Assumption 23, if k coarse correction steps are needed, k/KH fine correction
steps would be taken. The total number of searches would then be k(1 + 1/KH). Therefore, we
first neglect the use of fine correction steps, and consider this factor at the end of the proof by
multiplying (1 + 1/KH).

We obtain
‖xh,0 − xh,?‖ ≤

1

µh
‖∇fh,0‖ ≤

εG
µh
.
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and εG
µh
< 1−r1

r2
, based on the definition of εG. Since ‖xh,k − xh,?‖ is a contraction,

‖xh,0 − xh,?‖ ≥ ‖xh,1 − xh,?‖ ≥ ‖xh,2 − xh,?‖ ≥ . . .

Based on the above notations, observations, and the fact that composite rate holds, we obtain

‖xh,k − xh,?‖ ≤ (r1 + r2‖xh,k−1 − xh,?‖) ‖xh,k−1 − xh,?‖,

≤
(
r1 + r2

εG
µh

)
‖xh,k−1 − xh,?‖,

≤
(
r1 + r2

εG
µh

)k
‖xh,0 − xh,?‖,

=

(
r1 + r2

εG
µh

)k
εG
µh
.

We denote r(k) , r1 + r2

(
r1 + r2

εG
µh

)k
εG
µh

and we obtain

‖xh,k+1 − xh,?‖ ≤ r1‖xh,k − xh,?‖+ r2‖xh,k − xh,?‖2,

≤ (r1 + r2‖xh,k − xh,?‖) ‖xh,k − xh,?‖,
≤ r(k)‖xh,k − xh,?‖,

≤

(
k∏
j=0

r(j)

)
‖xh,0 − xh,?‖,

≤

(
k∏
j=0

r(j)

)
εG
µh
.

Therefore, it is sufficient to achieve εh-accuracy when(
k∏
j=0

r(j)

)
εG
µh
≤ εh,

k∏
j=0

(
r1 + r2

(
r1 + r2

εG
µh

)j
εG
µh

)
≤ µhεh

εG
,

k∑
j=0

log

(
r1 + r2

(
r1 + r2

εG
µh

)j
εG
µh

)
≤ log

(
µhεh
εG

)
,

k+1∑
j=1

log

(
r1 + r2

(
r1 + r2

εG
µh

)j−1
εG
µh

)
≤ log

(
µhεh
εG

)
.
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Using calculus, we know that

k+1∑
j=1

log

(
r1 + r2

(
r1 + r2

εG
µh

)j−1
εG
µh

)

≤ log

(
r1 + r2

εG
µh

)
+

∫ k+1

1

log

(
r1 + r2

εG
µh

(
r1 + r2

εG
µh

)x−1
)

dx,

≤ log

(
r1 + r2

εG
µh

)
+

∫ k+1

1

(r1 − 1) + r2
εG
µh

(
r1 + r2

εG
µh

)x−1

dx,

≤ log

(
r1 + r2

εG
µh

)
+ k(r1 − 1) +

r2
εG
µh

r1 + r2
εG
µh

∫ k+1

1

(
r1 + r2

εG
µh

)x
dx,

≤ log

(
r1 + r2

εG
µh

)
+ k(r1 − 1) +

r2
εG
µh

r1 + r2
εG
µh


(
r1 + r2

εG
µh

)x
log
(
r1 + r2

εG
µh

)
∣∣∣∣∣∣
x=k+1

x=1

,

≤ log

(
r1 + r2

εG
µh

)
+ k(r1 − 1) +

r2
εG
µh

log
(
r1 + r2

εG
µh

) (r1 + r2
εG
µh

)k
−

r2
εG
µh

log
(
r1 + r2

εG
µh

) ,
≤ log

(
r1 + r2

εG
µh

)
+ k(r1 − 1)− r2εG

µh log
(
r1 + r2

εG
µh

) .
So, it is sufficient to achieve εh-accuracy if

log

(
µhεh
εG

)
≥ log

(
r1 + r2

εG
µh

)
+ k(r1 − 1)− r2εG

µh log
(
r1 + r2

εG
µh

) ,
k(r1 − 1) ≤ log

(
µhεh
εG

)
− log

(
r1 + r2

εG
µh

)
+

r2εG

µh log
(
r1 + r2

εG
µh

) ,
k ≥ 1

r1 − 1

log

(
µhεh
εG

)
− log

(
r1 + r2

εG
µh

)
+

r2εG

µh log
(
r1 + r2

εG
µh

)
 .

So we obtain the desired result.

Although the result of Lemma 25 states the number of iterations needed for composite
convergent phase. The derived result is, however, difficult to interpret. To this end, in the
following lemma, we study a special case of Lemma 25 .

Lemma 26. Consider the setting as in Lemma 25 with

εG = min

{
3µ2

h

ωMh

(1− 2ρ1),
µh(1− r1)

2r2

}
.

Then for εh and kc such that

εh ∈ (0, 1), and kc ≥
1 + 1/KH

1− r1

(
log

(
3µh

ωMhεh

)
+ 1

)
,

we obtain ‖xh,kc −xh,?‖ ≤ εh. Note that Mh and µh are defined in Assumption 1; KH is defined
in Assumption 23; r1 is defined in (20).
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Proof. By definition,

εG ≤
µh(1− r1)

2r2

⇒ r2
εG
µh
≤ 1− r1

2
, and r1 + r2

εG
µh
≤ 1 + r1

2
.

Also,

εG ≤
3µ2

h

ωMh

(1− 2ρ1)⇒ εG
µh
≤ 3µh
ωMh

(1− 2ρ1) ≤ 3µh
ωMh

.

Thus, using the results in Lemma 25, it is sufficient when

kc ≥
1 + 1/KH

r1 − 1

(
log

(
ωMhεh

3µh

)
− log

(
1 + r1

2

)
+

1− r1

2 log
(

1+r1
2

)) ,
=

1 + 1/KH

1− r1

(
log

(
3µh

ωMhεh

)
+ log

(
1 + r1

2

)
+

r1 − 1

2 log
(

1+r1
2

)) .
Since

r1 − 1

2 log
(

1+r1
2

) < 1, and log

(
1 + r1

2

)
< 0, for 0 < r1 < 1,

It is sufficient when

kc ≥
1 + 1/KH

1− r1

(
log

(
3µh

ωMhεh

)
+ 1

)
.

So we obtain the desired result.

Lemma 26 provides a better picture of the convergence when composite rate holds. One can
see that the number of iterations required, kc, is clearly inverse proportional to 1− r1.

Theorem 27. Suppose Algorithm 1 is perform, Assumption 23 holds, and k = ks + kc, where
ks and kc are defined in Lemma 24 and 25. Then we obtain the εh-accuracy ‖xh,k − xh,?‖ ≤ εh
with complexity

O
(

ks + kc
1 + 1/KH

n3 +
1/KH(ks + kc)

1 + 1/KH

Ch

)
,

where KH and Ch are defined in Assumption 23.

Proof. The total complexity is the number of iterations, ks+kc, multiply by the cost per iteration.
Based on Assumption 23, ks+kc

1+1/KH
coarse correction steps and 1/KH(ks+kc)

1+1/KH
fine correction steps

are taken. The computational cost of each coarse correction step and fine correction step is
O (n3) and O (Ch), respectively.

4.3 Comparison: Newton v.s. Multilevel
Using the derived complexity results, we now compare the complexity of Newton’s method
and GAMA. We conclude this section by stating the condition for which GAMA has lower
complexity.

Theorem 28. Suppose Assumption 23 holds, then for sufficiently large enoughN , the complexity
of Algorithm 1 is lower than the complexity of Newton’s method. In particular, if εG in Lemma
24 is chosen to be

εG , min

{
3µ2

h

ωMh

(1− 2ρ1),
µh(1− r1)

2r2

}
,
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then the complexity of Algorithm 1 is lower than the complexity of Newton’s method when

r1 ≤ 1−
(KHn

3 + Ch)(1 + 1/KH)
(

log
(

3µh
ωMhεh

)
+ 1
)

N3(KH + 1)(kd + kq)− (KHn3 + Ch)ks
, (24)

for
N3(KH + 1)(kd + kq)− (KHn

3 + Ch)ks > 0.

Note that ρ1 is a user-defined parameter in Algorithm 1; ω = max{‖P‖, ‖R‖}; Mh and µh are
defined in Assumption 1; KH and Ch are defined in Assumption 23; r1 and r2 are defined in
(20); kd, kq, and ks are defined in Lemma 20, 21, and 24, respectively.

Proof. When the complexity of Algorithm 1 is less than Newton’s method, we have

ks + kc
1 + 1/KH

n3 +
1/KH(ks + kc)

1 + 1/KH

Ch ≤ (kd + kq)N
3,

ksn
3 + kcn

3 +
1

KH

(ks + kc)Ch ≤
(

1 +
1

KH

)
(kd + kq)N

3,

ks

(
n3 +

Ch
KH

)
+ kc

(
n3 +

Ch
KH

)
≤

(
1 +

1

KH

)
(kd + kq)N

3,(
1 +

1

KH

)
(kd + kq)N

3 − ks
(
n3 +

Ch
KH

)
≥ kc

(
n3 +

Ch
KH

)
.

From the first inequality we can see that it satisfies when N is sufficiently large. Using the
definition of kc in Lemma 26, we obtain

1 + 1/KH

1− r1

(
log

(
3µh

ωMhεh

)
+ 1

)
≤

(
(KH + 1)N3

KHn3 + Ch

)
(kd + kq)− ks,

1

1− r1

≤

(
(KH+1)N3

KHn3+Ch

)
(kd + kq)− ks

(1 + 1/KH)
(

log
(

3µh
ωMhεh

)
+ 1
) ,

1− r1 ≥
(1 + 1/KH)

(
log
(

3µh
ωMhεh

)
+ 1
)

(
(KH+1)N3

KHn3+Ch

)
(kd + kq)− ks

,

r1 ≤ 1−
(1 + 1/KH)

(
log
(

3µh
ωMhεh

)
+ 1
)

(
(KH+1)N3

KHn3+Ch

)
(kd + kq)− ks

,

as required.

Theorem 28 shows that when the dimension of the fine model,N , is sufficiently large, GAMA
has lower computational complexity. The condition (24) requires a sufficiently small r1 in the
composite rate (20). This result agrees with the intuition with the following reasoning: when
r1 << 1, it implies that GAMA converges with very fast linear rate, which could outperform
Newton’s method because of the cheaper per-iteration cost.

We shall further study the condition (24). Assume the cost of fine correction step is at most in
the same order of the coarse correction step, i.e. Ch = O(n3). Then, by fixing all the quantities
except N , the condition (24) can be recognized asymptotically as

r1 ≤ 1−O
(

1

N3

)
.

28



Figure 1: P in (25)

Thus, as N → ∞, the above condition holds even when r1 ≈ 1. This condition is relaxed
quickly because N grows in cube.

From equation (23), recall that r1 << 1 is equivalent to

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ ‖(I−PR)(xh,k − xh,?)‖ << ‖xh,k − xh,?‖.

From the above expression, one can see that a small ‖(I−PR)(xh,k − xh,?)‖ is equivalent to
small r1. In the following three sections, we will consider three cases of GAMA and derive
the ‖(I − PR)(xh,k − xh,?)‖ for each case. In particular, we show how the magnitude of
‖(I−PR)(xh,k − xh,?)‖ varies depending on the structure of the problems and the parameters
chosen.

5 PDE-based Problems: One-dimensional Case
In this section, we study the Galerkin model that arises from PDE-based problems. We begin
with introducing the basic setting, and then we analyze the coarse correction step in this specific
case. Building upon the composite rate in Section 3.4, at the end of this section we re-derive
the composite rate with a more insightful bound of ‖(I−PR)(xh,k − xh,?)‖. As mentioned in
Section 3, this quantity is critical in analyzing the performance and complexity of GAMA.

Since the conventional multigrid methods were originally developed for solving (non-)linear
equations arising from PDEs, most research on multilevel optimization algorithms have been
focusing on solving the discretizations of infinite dimensional problems [13, 14, 22, 24, 27, 39].
As mentioned before, the Galerkin model in optimization was first mentioned in [14] and later
tested numerically in [13]. We point out that in the theoretical perspective, the Galerkin model
has been only considered as one special case of the general multilevel framework, and it has not
been shown to have any particular advantage. For the trust-region based multilevel algorithm in
[14], it has the same order of complexity bound as pure gradient method. For the line-search
based multilevel algorithm in [39], the convergence rate was proven to be sublinear for strongly
convex problems, which agrees with our results in Section 3.

For the simplicity of the analysis, we consider specifically the one-dimensional case, i.e. the
decision variable of the infinite dimensional problems is a functional in R. We further assume
that the decision variable is discretized uniformly over [0, 1] with value 0 on the boundary. We
could like to clarify that the approach of analysis in this section could be applied to more general
and high-dimensional settings.

5.1 Galerkin Model by One-dimensional Interpolations
For one dimensional problems, we consider the standard linear prolongation operator and
restriction operator. Based on the traditional setting in multigrid research, we define the
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Figure 2: R in (26)

following Galerkin model.

• N is an even number,

• the (fine) discretized decision variable is in RN−1, and

• the coarse model is in RN/2−1.

For interpolation operator P ∈ R(N−1)×(N/2−1), we consider

P =
1

2



1
2
1 1

2
1

. . . 1
2
1


, (25)

and the restriction operator

R =
1

2
PT ∈ R(N/2−1)×(N−1). (26)

Notice that the P and R in (25) and (26) have geometric meanings, and they are one of the
standard pairs of operators in multilevel and multigrid methods [3]. As shown in Figure 1, P is
an interpolation operator such that one point is interpolated linearly between every two points.
On the other hand, from Figure 2, R performs restriction by doing weighted average onto every
three points. These two operators assume the boundary condition is zero for both end points.
We emphasize that the approach of convergence analysis in this section is not restricted for this
specific pair of P and R. We believe the general approach could be applied to interpolation type
operators, especially operators that are designed for PDE-based optimization problems.

5.2 Analysis
With the definitions (25) and (26), we investigate the convergence behaviour of the coarse
correction step. The analytical tool we used in this section is Taylor’s expansion. To deploy this
technique, we consider interpolations over the elements of vectors. In particular, we consider
interpolations that are twice differentiable with the following definition.
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Definition 29. For any vector r ∈ RN−1, we denote FN−1
r to be the set of twice differentiable

functions such that ∀w ∈ FN−1
r ,

w(0) = w(1) = 0, and wi = w(yi) = (r)i,

where yi = i/N for i = 1, 2, . . . , N − 1.

Using the definitions (25) and (26), we can estimate the “information loss” via interpolations
using the following proposition.

Proposition 30. Suppose P and R are defined in (25) and (26), respectively. For any vector
rh ∈ RN−1, we denote (rh)0 = (rh)N = 0 and obtain

(PRrh)j =

{
1
4
((rh)j−1 + 2(rh)j + (rh)j+1) if j is even,

1
8
((rh)j−2 + 2(rh)j−1 + 2(rh)j + 2(rh)j+1 + (rh)j+2) if j is odd,

for j = 1, 2, . . . , N − 1.

Proof. By the definition of R and P, we have

(Rrh)j =
1

4
((rh)2j−1 + 2(rh)2j + (rh)2j+1), 1 ≤ j ≤ n

2
− 1.

So
(PRrh)j = (Rrh)j/2 =

1

4
((rh)j−1 + 2(rh)j + (rh)j+1) if j is even,

and

(PRrh)j =
1

2

(
(Rrh)(j−1)/2 + (Rrh)(j+1)/2

)
,

=
1

8
((rh)j−2 + 2(rh)j−1 + 2(rh)j + 2(rh)j+1 + (rh)j+2) if j is odd.

So we obtain the desired result.

Using the above proposition and Taylor’s expansion, we obtain the following lemma.

Lemma 31. Suppose P and R are defined in (25) and (26), respectively. For any vector
rh ∈ RN−1,

‖(I−PR)rh‖∞ ≤ min
w∈FN−1

rh

max
y∈[0,1]

|w′′(y)| 3

4N2
.

Note that the definition of FN−1
rh

follows from Definition 29.

Proof. Using Proposition 30 and Taylor’s Theorem, in the case that j is even, we obtain

1

4
((rh)j−1 + 2(rh)j + (rh)j+1) =

1

4
(w (yj−1) + 2w (yj) + w (yj+1)) ,

= w (yj) +
w′′(yc1)

8

1

N2
+
w′′(yc2)

8

1

N2
,

= (rh)j +
w′′(yc1) + w′′(yc2)

8

1

N2
,
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where w(·) ∈ FN−1
rh

, yj−1 ≤ yc1 ≤ yj , and yj ≤ yc2 ≤ yj+1. Similarly, in the case that j is odd,
we have

1

8
((rh)j−2 + 2(rh)j−1 + 2(rh)j + 2(rh)j+1 + (rh)j+2)

= (rh)j +
4w′′(yc3) + 2w′′(yc4) + 2w′′(yc5) + 4w′′(yc6)

16

1

N2
, (27)

where yj−2 ≤ yc3 ≤ yj , yj−1 ≤ yc4 ≤ yj , yj ≤ yc5 ≤ yj+1, and yj ≤ yc6 ≤ yj+2. Therefore,

‖(I−PR)rh‖∞ ≤ max
y∈[0,1]

|w′′(y)| 3

4N2
for ∀w(·) ∈ FN−1

rh
.

So we obtain the desired result.

Lemma 31 provides upper bound of ‖(I−PR)rh‖∞, for any rh ∈ RN−1. This result can
be used to derive the upper bound of ‖(I−PR)(xh,k − xh,?)‖, where rh = xh,k − xh,?. As we
can see, if |w′′(y)| = O(1), where w ∈ FN−1

rh
, then ‖(I−PR)rh‖∞ = O(N−2). This can be

explained by the fact that when the mesh size is fine enough (i.e. large N ), linear interpolation
and restriction provide very good estimations of the fine model.

In the following lemma, we provide an upper bound of |w′′| in terms of the original vector
rh. The idea is to specify the interpolation method in which we construct w, and we will use
cubic spline in particular. Cubic spline is one of the standard interpolation methods, and the
output interpolated function w satisfies the setting in Definition 29 and Lemma 31.

Lemma 32. Suppose P and R are defined in (25) and (26), respectively. For any vector
rh ∈ RN−1, we obtain

‖(I−PR)rh‖∞ ≤
9

4N2
‖Arh‖∞,

where

A = N2


2 −1
−1 2 −1

−1
. . . . . .
. . . 2 −1
−1 2

 .

Proof. We follow the notation in Definition 29. For w ∈ FN−1
rh

that is constructed via cubic
spline, in the interval (yi, yi+1), we have

w(y) = Awi +Bwi+1 + Cw′′i +Dw′′i+1,

where

A =
yi+1 − y
yi+1 − yi

,

B =
y − yi
yi+1 − yi

,

C =
1

6
(A3 − A)(yi+1 − yi)2,

D =
1

6
(B3 −B)(yi+1 − yi)2.
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It is known from [31] that
d2w

dy2
= Aw′′i +Bw′′i+1, (28)

and

yi − yi−1

6
w′′i−1 +

yi+1 − yi−1

3
w′′i +

yi+1 − yi
6

w′′i+1 =
wi+1 − wi
yi+1 − yi

− wi − wi−1

yi − yi−1

, (29)

and for i = 1, 2, . . . , N − 1. Using the above equation (28), at the interval (yi, yi+1), we obtain∣∣∣∣∣d2w

dy2

∣∣∣∣∣ =
∣∣Aw′′i +Bw′′i+1

∣∣ =

∣∣∣∣∣ yi+1 − y
yi+1 − yi

w′′i +
y − yi
yi+1 − yi

w′′i+1

∣∣∣∣∣,
≤

∣∣∣∣∣ yi+1 − y
yi+1 − yi

∣∣∣∣∣|w′′i |+
∣∣∣∣∣ y − yi
yi+1 − yi

∣∣∣∣∣|w′′i+1|,

≤ max{|w′′i |, |w′′i+1|}.

Suppose j ∈ arg maxi{|w′′i |}i, then from (29) and the fact that yj+1 − yj = 1/N ,

yj+1 − yj−1

3
w′′j =

wj+1 − wj
yj+1 − yj

− wj − wj−1

yj − yj−1

− yj − yj−1

6
w′′j−1 −

yj+1 − yj
6

w′′j+1,

2

3N
w′′j = N(wj+1 − wj)−N(wj − wj−1)− 1

6N
w′′j−1 −

1

6N
w′′j+1,

2w′′j = 3N2(wj+1 − 2wj + wj−1)− 1

2
w′′j−1 −

1

2
w′′j+1.

Thus,

|2w′′j | ≤ 3N2|wj+1 − 2wj + wj−1|+
1

2
|w′′j−1|+

1

2
|w′′j+1|,

2|w′′j | ≤ 3N2|wj+1 − 2wj + wj−1|+
1

2
|w′′j |+

1

2
|w′′j |,

|w′′j | ≤ 3N2|wj+1 − 2wj + wj−1|.

Therefore,
|w′′i | ≤ max

i
3N2|wi+1 − 2wi + wi−1|,

and so,

‖(I−PR)rh‖∞ ≤ max
y∈[0,1]

|w′′(y)| 3

4N2
≤ max

i

9|wi+1 − 2wi + wi−1|
4

=
9

4N2
‖Arh‖∞,

as required.

Lemma 32 provides the discrete version of the result presented in Lemma 31. The matrix A
is the discretized Laplacian operator, which is equivalent to twice differentiation using finite
difference with a uniform mesh.
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5.3 Convergence
With all the results, we revisit the composite convergence rate with the following Corollary.

Corollary 33. Suppose P and R are defined in (25) and (26), respectively. If the coarse
correction step d̂h,k in (15) is taken with αh,k = 1, then

‖xh,k+1 − xh,?‖ ≤

√
Lh
µh

min
w∈FN−1

xh,k−xh,?

max
y∈[0,1]

|w′′(y)| 3

4N3/2
+
Mhω

2ξ2

2µh
‖xh,k − xh,?‖2,

≤ 9

4N3/2

√
Lh
µh
‖A(xh,k − xh,?)‖+

Mhω
2ξ2

2µh
‖xh,k − xh,?‖2,

where A is defined in Lemma 32. Note that Mh, Lh, and µh are defined in Assumption 1,
ω = max{‖P‖, ‖R‖}, and ξ = ‖P+‖.

Proof.

‖xh,k+1 − xh,?‖ ≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I−PR)(xh,k − xh,?)‖

+
Mhω

2ξ2

2µh
‖xh,k − xh,?‖2,

≤

√
Lh
µh

min
w∈FN−1

xh,k−xh,?

max
y∈[0,1]

|w′′(y)| 3

4N3/2
+
Mhω

2ξ2

2µh
‖xh,k − xh,?‖2,

≤ 9

4N3/2

√
Lh
µh
‖A(xh,k − xh,?)‖+

Mhω
2ξ2

2µh
‖xh,k − xh,?‖2,

as required.

Corollary 33 provides the convergence of using Galerkin model for PDE-based problems
that we considered. This result shows the complementary of fine correction step and coarse
correction step. Suppose the fine correction step can effectively reduce ‖A(xh,k − xh,?)‖, then
the coarse correction step could yield major reduction based on the result shown in Corollary 33.

6 Low Rank Approximation using Nyström Method
In this section, we focus on the Galerkin model that is based on low rank approximation of the
Hessian matrix. We begin with an introduction of low rank approximation and the Nyström
method. Then we make the connection between the Nyström method and the coarse correction
step in (15). Finally, we re-derive the composite rate with a more insightful bounds of both
‖I−P[∇2

Hfh,k]
−1R∇2fh,k‖ and ‖(I−PR)(xh,k − xh,?)‖.

Before introducing the obscure connection between low rank approximation and Galerkin
model, let’s start with the setting and consider a symmetric positive semi-definite matrix A ∈
RN×N . The best low rank approximation of A with rank q can be obtained by solving the
following optimization problem

min
Aq∈RN×N

‖A−Aq‖, s.t. rank(Aq) = q. (30)

It is known that the above problem can be solved via eigendecomposition. However, eigende-
composition is computationally expensive. In the context of optimization, the cost for each
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iteration of Newton’s method is not more expensive than performing eigendecomposition. If
a Galerkin model is constructed via eigendecomposition, one could apply Newton’s method
instead.

Although computing the exact solution of (30) is unfavorable, we could seek for its approxi-
mation. Nyström method was originally developed to numerically approximate eigenfunctions,
and the idea was applied later in the machine learning community for the low rank optimization
problem [41]. It provides a suboptimal solution of the low rank approximation with cheaper
computational cost.

Nyström method is performed by the column selection procedure. Consider a set Q =
{1, 2, . . . , N}, and suppose a subsetQ1 ⊆ Q with n elements. We denote qi as the ith element of
Q1, for i = 1, 2, . . . , n. Then one can approximate A ∈ RN×N using the following procedures.

1. Define a matrix A1 ∈ Rn×N such that the ith row of A1 is the qth
i row of A.

2. Define a matrix A2 ∈ RN×n such that the ith column of A1 is the qth
i column of A.

3. Define a matrix A3 ∈ Rn×n such that (A3)i,j is the element of A in qth
i row and qth

j

column.

4. Compute the pseudo-inverse A+
3 .

5. Compute the low rank approximation of A by A2A
+
3 A1.

Equivalently, the above procedure can be described by using a matrix S ∈ RN×n such that the
ith column of S is the qth

i column of the identity matrix I. The output of the above procedure is
the same as

A ≈ A2A
+
3 A1 = AS[STAS]+STA. (31)

Much research have been focused on developing Nyström based on different methods on
selecting the subset Q1 [6, 11, 33, 41]. In this paper, we consider the naïve Nyström method in
which elements in Q1 are selected uniformly without replacement from Q.

6.1 Galerkin Model by Naïve Nyström Method
Now we are in the position to show how Nyström method can be used to develop Galerkin model.
The approximation (31) is highly similar to the coarse correction step in multilevel algorithm.

Definition 34. Consider a set Q = {1, 2, . . . , N}, and an n elements subset Q1 in which
elements are selected randomly, and uniformly without replacement from Q. Denote qi as the ith

element ofQ1. Then the prolongation operator, P ∈ RN×n, and restriction operator, R ∈ Rn×N ,
are generated using naïve Nyström method if

i. The ith column of P is the qth
i column of the identity matrix I.

ii. R = PT .

Definition 34 defines the prolongation and restriction operators that are based on naïve
Nyström method. One can see the analogy by substituting S = P, ST = R, and A = ∇2fh,k
in equation (31). Under the setting of naïve Nyström method, P is full column rank, and so
Assumption 3 is satisfied. Moreover, different from the assumption that A is positive semi-
definite in (31),∇2fh,k is positive definite as stated in Assumption 1, and so it is guaranteed to
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be invertible. Consider the low rank approximation (31) with P, R, and ∇2fh,k. Multiplying
∇2f−1

h,k from both left and right yields,

∇2f−1
h,k ≈ P[R∇2fh,kP]+R = P[R∇2fh,kP]−1R,

and so
−∇2f−1

h,k∇fh,k ≈ −P[R∇2fh,kP]−1R∇fh,k = d̂h,k.

Thus, the coarse correction step d̂h,k is an approximation of Newton step. We emphasize that
naïve Nyström method is effective in practice, and computationally inexpensive to perform
(uniform sampling without replacement).

It is worth mentioning that the coarse correction step is highly related block-coordinate
descent algorithms. In fact, P and R from Definition 34 can be used to derive block-coordinate
descent algorithms, as described in Section 2.4. The coarse correction step in this section
is different from first order block-coordinate descent type methods because GAMA uses the
Hessian∇2fh,k instead of identity matrix in the coarse model (11).

Interestingly, similar works have been done from the perspective of block coordinate methods
for machine learning problems. In particular, Gower et al [12] recently developed a stochastic
block BFGS for solving the sum of twice differentiable convex functions. The coarse correction
step we study in this section is a special case of the stochastic block BFGS: when the previous
approximated inverse Hessian is set to be zero and when all functions (in the summation) are
used to compute Hessians. On the other hand, the proposed coarse correction step is also studied
by Qu et al [32] for the dual formulation of empirical risk minimization. In both cases, they
provided (expected) linear convergence rates. Moreoever, due to different sources of motivation,
they did not mention that Nyström is used inherently within the search direction.

6.2 Analysis
We are now in the position to analyze the two important factors in the composition convergence
rate, ‖I − P[∇2

Hfh,k]
−1R∇2fh,k‖ and ‖(I − PR)(xh,k − xh,?)‖. The analytical tool we used

is concentration inequality. The following Chernoff bounds will be used to analyze ‖(I −
PR)(xh,k − xh,?)‖.

Theorem 35 ([36]). Let Q be a finite set of positive numbers, and suppose

max
q∈Q

q ≤ B.

Sample {q1, q2, . . . , ql} uniformly at random from Q without replacement. Compute

s = l · E(q1).

Then

P

{∑
j

qj ≤ (1− σ)s

}
≤
(

e−σ

(1− σ)1−σ

)s/B

for σ ∈ [0, 1), and

P

{∑
j

qj ≥ (1 + σ)s

}
≤
(

eσ

(1 + σ)1+σ

)s/B

for σ ≥ 0.

Proof. See Theorem 2.1 from Tropp [36].
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Theorem 35 is useful to derive statistical bounds for ‖(I−PR)rh‖, for any rh ∈ RN . The
results are provided in the following lemma.

Lemma 36. Suppose prolongation operator P ∈ RN×n and restriction operator R ∈ Rn×N

are generated using naïve Nyström method according to Definition 34 and rh ∈ RN . Then
∀σ ∈ [0, 1), we obtain

P

{
‖(I−PR)rh‖ ≤

√
(1− σ)

N − n
N
‖rh‖

}
≤
(

e−σ

(1− σ)1−σ

)N−n
N
‖rh‖2/‖rh‖2∞

,

and ∀σ ≥ 0, we obtain

P

{
‖(I−PR)rh‖ ≥

√
(1 + σ)

N − n
N
‖rh‖

}
≤
(

eσ

(1 + σ)1+σ

)N−n
N
‖rh‖2/‖rh‖2∞

.

Proof. We denote Q = {1, 2, . . . , N} to be a set of indices, a subset Q1 ⊂ Q such that

range(P) = span ({ej : j ∈ Q1}) ,

and the complement Q2 ⊂ Q such that

Q2 ∪Q1 = Q, and Q2 ∩Q1 = ∅.

These definitions lead to
‖(I−PR)rh‖2 =

∑
j∈Q2

(rh)
2
j ,

sinceQ2 is a set of indices that are associated with the selected coordinates in I−PR. Therefore,
Q2 contains N − n samples from Q that are distributed uniformly without replacement. By
applying Theorem 35, we obtain

max
j∈Q

(rh)
2
j = ‖rh‖2

∞,

and
s = (N − n)

1

N

∑
j∈Q

(rh)
2
j =

N − n
N
‖rh‖2.

By direct substitutions, we obtain the desired result.

Lemma 36 provides bounds for ‖(I−PR)rh‖, for any rh ∈ RN . On the other hand, we bear
in mind that Nyström method is a method of computing low rank approximations. In the follow-
ing lemma, we will show that this feature is shown in the bound of ‖I−P[∇2

Hfh,k]
−1R∇2fh,k‖.

Lemma 37. Suppose prolongation operator P ∈ RN×n and restriction operator R ∈ Rn×N

are generated using naïve Nyström method according to Definition 34. For p ∈ {1, 2, . . . , N},
let the eigendecomposition of∇2fh,k has the following form

∇2fh,k = UΣUT =
(
U1 U2

)(Σ1

Σ2

)(
UT

1

UT
2

)
,

where Σ1 ∈ Rp×p, Σ2 ∈ R(N−p)×(N−p), U1 ∈ RN×p, and U2 ∈ RN×(N−p) are the sub-matrices
of Σ and U. Denote τ as the coherence of U1,

τ ,
N

p
max
i

(U1U
T
1 )ii.
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Then, for β, σ and n such that

β, σ ∈ (0, 1), and n ≥
2τp log

(
p

β

)
(1− σ)2

,

we obtain

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ ≤

√
λp+1(∇2fh,k)

µh

(
1 +

N

nσ

)
,

with probability at least 1 − β. Note that λp+1(∇2fh,k) is the p + 1th largest eigenvalue of
∇2fh,k.

Proof. Following from Lemma 19, we have

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ = ‖UΣ−1/2(I− ΓΣ1/2UT P)Σ1/2UT‖,
≤ ‖UΣ−1/2‖‖(I− ΓΣ1/2UT P)Σ1/2UT‖,

≤
√

1

µh
‖(I− ΓΣ1/2UT P)Σ1/2UT‖.

Using results from Gittens [10], Theorem 2,

‖(I− ΓΣ1/2UT P)Σ1/2UT‖ ≤

√
λp+1(∇2fh,k)

(
1 +

N

nσ

)
,

with probability at least 1− β.

In addition to Lemma 19, Lemma 37 provides a new alternative on the bounding of the
term ‖I − P[∇2

Hfh,k]
−1R∇2fh,k‖. This is a direct result from the fact that Nyström is used

inherently with the P and R in Definition 34. As we will show later, this result would improve
the convergence rate if the Hessian can be well-approximated using low rank approximation.

As mentioned in [10, 4], we would like to point out that the coherence τ defined in Lemma
19 ranges from 1 to N/p. For an N × p random orthogonal matrix in which its columns are
selected uniformly among all families of p orthonormal vectors, its coherence is bounded by
O(max{p, logN}/p) with high probability [4].

6.3 Convergence
Using the above results, we obtain the following corollaries.

Corollary 38. Suppose P ∈ RN×n and R ∈ Rn×N are generated using naïve Nyström method
according to Definition 34, and τ is the coherence as defined in Lemma 37. If the coarse
correction step d̂h,k is taken with αh,k = 1, then ∀σ2 ≥ 0,

‖xh,k+1 − xh,?‖ ≤

√
Lh
µh

(1 + σ2)
N − n
N
‖xh,k − xh,?‖+

Mhω
2ξ2

2µh
‖xh,k − xh,?‖2,

with probability at least

1− (Φ(σ2))
N−n
N
‖xh,k−xh,?‖2/‖xh,k−xh,?‖2∞ for Φ(σ2) =

eσ2

(1 + σ2)1+σ2
. (32)

Note that Lh, Mh, and µh are defined in Assumption 1, ω = max{‖P‖, ‖R‖} and ξ = ‖P+‖.
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Proof. The result could be obtained by combining results from Lemma 36 with rh = xh,k−xh,?,
Lemma 19, and Theorem 18.

Corollary 38 provides the probabilistic composite convergence rate. As expected, the
coefficient of the linear component goes to 0 as n → N . We point out that when n = N , the
probability in (32) is equal to zero since (N − n)/N = 0. Thus, Corollary 38 is not meaningful
at the exact limit of n = N . However, in this case, no dimension is reduced, and so based on
Theorem 18, the quadratic convergence is obtained.
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Figure 3: Φ(σ2) in (32)

Figure 3 shows the value of Φ(σ2) in (32), and one can see that with reasonably small σ2,
Φ(σ2) << 1. Also, since ‖xh,k − xh,?‖2 is the sum of squares of the error in each dimension, it
is reasonable to expect that it is in O(N). Therefore, one could expect that

N − n
N

‖xh,k − xh,?‖2

‖xh,k − xh,?‖2
∞
∼ O(N − n),

and so for n < N , the power coefficient above should reduce Φ(σ2) further.
While Corollary 38 illustrates how ‖(I − PR)(xh,k − xh,?)‖ varies with respect to n, it

does not show that using the prolongation and restriction operators that are inspired by Nyström
method has any advantage when Hessians have the low rank structure. By combining result in
Lemma 37, we obtain the following corollary.

Corollary 39. Suppose P ∈ RN×n and R ∈ Rn×N are generated using naïve Nyström method
according to Definition 34, and τ is the coherence as defined in Lemma 37. If the coarse
correction step d̂h,k is taken with αh,k = 1, then ∀β, σ1σ2, p, n such that

β, σ1 ∈ (0, 1), σ2 ≥ 0, p ∈ {1, 2, . . . , N}, and n ≥
2τp log

(
p

β

)
(1− σ1)2

,

we obtain

‖xh,k+1 − xh,?‖ ≤

√
λp+1(∇2fh,k)

µh

(
1 +

N

nσ1

)
(1 + σ2)

N − n
N
‖xh,k − xh,?‖

+
Mhω

2ξ2

2µh
‖xh,k − xh,?‖2,
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with probability at least

(1− β)
(

1− (Φ(σ2))
N−n
N
‖xh,k−xh,?‖2/‖xh,k−xh,?‖2∞

)
for Φ(σ2) =

eσ2

(1 + σ2)1+σ2
.

Note that Lh, Mh, and µh are defined in Assumption 1; ω = max{‖P‖, ‖R‖} and ξ = ‖P+‖;
λp+1(∇2fh,k) is the p+ 1th largest eigenvalue of∇2fh,k.

Proof. The result could be obtained by combining results from Lemma 36 with rh = xh,k−xh,?,
Lemma 37, and Theorem 18.

Compared to Corollary 38, Corollary 39 replaces the largest eigenvalue of∇2fh,k, Lh, with
the scaled p + 1th largest eigenvalue, λp+1(∇2fh,k), with high probability. It provides a clear
advantage when there is a large gap between the pth and p+ 1th eigenvalue. In particular, when

µh ≤ λN(∇2fh,k) ≤ · · · ≤ λp+1(∇2fh,k) << λp(∇2fh,k) ≤ λ1(∇2fh,k) ≤ Lh.

We point out that concentration inequality is not only useful for getting composite convergence
rate, but also useful for bounding the parameter κ in Algorithm 1.

Lemma 40. Suppose prolongation operator P ∈ RN×n and restriction operator R ∈ Rn×N are
generated using naïve Nyström method according to Definition 34. Then ∀rh ∈ RN ,∀σ ∈ [0, 1),
we obtain

P
{
‖PRrh,k‖ ≤

√
(1− σ)

n

N
‖rh,k‖

}
≤
(

e−σ

(1− σ)1−σ

) n
N
‖rh,k‖2/‖rh,k‖2∞

,

and ∀σ ≥ 0, we have

P
{
‖PRrh,k‖ ≥

√
(1 + σ)

n

N
‖rh,k‖

}
≤
(

eσ

(1 + σ)1+σ

) n
N
‖rh,k‖2/‖rh,k‖2∞

.

Proof. The proof is exactly the same as in Lemma 36 with consideration of Q1 as a sample set
instead.

Lemma 40 provides the fact that with high probability

‖R∇fh,k‖ = ‖PR∇fh,k‖ ≥ O
(√

n

N

)
‖∇fh,k‖.

Note that in the analysis in Section 3, when the coarse correction step is taken, we assume
‖R∇fh,k‖ > κ‖∇fh,k‖ for some constant κ. As stated in Lemma 10 and Theorem 13, the square
of this kappa is proportional to Λ, which is inversely proportional to the rate of convergence.
Therefore, we shall conclude that in the setting considered in this section, with high probability
the rate of convergence is inversely proportional to O (n/N), or equivalently, proportional to
O (N/n).

7 Block Diagonal Approximation
In this section, we focus on the case that the Hessian∇2fh,k is approximated by block diagonal
approximation. The structure of this section is similar to the last two sections: we introduce
and formally define block diagonal approximation, perform analysis, and finally re-derive the
composite rate in this setting.
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Definition 41. Suppose∇2fh,k ∈ RN×N and n1, n2, . . . , nq ∈ N such that n1 +n2 + · · ·+nq =
N . Then the q-block diagonal approximation of∇2fh,k is defined as∇2

Bfh,k where

(∇2
Bfh,k)i,j =

(∇2fh,k)i,j if
m−1∑
p=1

np < i, j ≤
m∑
p=1

np, for any m = 1, 2, . . . , q,

0 otherwise.

Definition 41 states the formal definition of block diagonal approximation of a Hessian. That
is, we only preserve the elements which are located in block diagonal positions, and set all the
other elements to zeros. Recall that even though Newton’s method is one of the best algorithms
with quadratic convergence rate, the trade-off, however, goes into the high computational cost at
each iteration: solving an N -by-N system of linear equations. By replacing the Hessian with
its q-block diagonal approximation, the corresponding N -by-N system of linear equations can
be decomposed by q smaller systems of linear equations, and thus lower computational cost is
required.

The above block diagonal approximation approach is a special case of the incomplete Hessian
Newton minimization method proposed by Xie and Ni [42]. In the case where n1 = n2 = · · · =
nN = 1, this diagonal approximation is also considered in [9]. While it is clear that the block
diagonal approximation contains partial second order information and one should expect that it
performs better than first order algorithms, no theoretical indication has pointed in this direction.

7.1 Multiple Galerkin Models
We will show that q-block diagonal approximation from Definition 41 could be formulated using
multiple Galerkin models. We denote prolongation operators Pi ∈ RN×ni , for i = 1, 2, . . . , q.
Notice that n1 + n2 + · · ·+ nq = N , and we assume

[P1 P2 . . .Pq] = I.

We also denote the corresponding restriction operators Ri = PT
i , for i = 1, 2, . . . , q. Then,

block diagonal approximation can be expressed as

∇2
Bfh,k = diag(R1∇2fh,kP1,R2∇2fh,kP2, . . . ,Rq∇2fh,kPq),

and the corresponding coarse correction step is defined as

d̂h,k = −[∇2
Bfh,k]

−1∇fh,k =

q∑
i=1

−Pi[Ri∇2fh,kPi]Ri∇fh,k. (33)

7.2 General functions? A counterexample
We start with a counterexample to show that it is impossible to be as good as the classical
Newton’s method for general functions in term of convergence. Suppose we have the following
problem

min
xh∈R2

fh(xh) ,
1

2
xTh

(
1 −

√
0.5

−
√

0.5 1

)
xh + xTh

(
1
1

)
.

The above quadratic program (QP) has positive definite Hessian(
1 −

√
0.5

−
√

0.5 1

)
=

(
1

−
√

0.5

)(
1 −

√
0.5
)

+

(
0√
0.5

)(
0
√

0.5
)
.
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Therefore, the above function is a strongly convex function. In this example we assume 2-blocks
approximation is performed, with n1 = n2 = 1. Notice that the classical Newton’s method
solves the above QP in 1 iteration. The coarse correction step, on the other hand, fail to do so; in
fact, the diagonal of the Hessian has only 1’s, which implies that in this particular example, the
coarse correction step is equivalent to gradient descent.

7.3 Weakly connected Hessian
We now introduce specific class of problems in which the coarse correction step could be as
good as Newton’s method at the limit.

Definition 42. Consider a twice-differentiable strongly convex function fh which satisfies
Assumption 1. fh is said to have (δ, q)-weakly connected Hessians if

∇2fh(xh) = Qh(xh) + δQ̂h(xh), (34)

where Qh(xh) = diag(Qh,1(xh),Qh,2(xh), . . . ,Qh,q(xh)) is a block diagonal matrix with q
blocks, with Qh,i(xh) ∈ Rni×ni and

∑q
j=1 nj = N for i = 1, 2, . . . , q. All Qh,i(xh)’s are

positive definite, and there exists constants µh,q, µh,q̂, Lh,q, Lh,q̂ such that

µh,qI 4 Qh(xh) 4 Lh,qI

µh,q̂I 4 Q̂h(xh) 4 Lh,q̂I

Definition 42 defines the specific structure we consider in this section. The defined (δ, q)-
weakly connected Hessian provides a connection between the block diagonal matrix and general
positive definite matrix. Suppose when δ = 0, then the (δ, q)-weakly connected Hessian is
exactly a block diagonal matrix. Similarly, when δ = O(1), then the (δ, q)-weakly connected
Hessian is a general positive definite matrix.

Notice that when δ = 0, the coarse correction step (33) is exactly same as Newton’s method.
In what follows, we will consider fh which has (δ, q)-weakly connected Hessians and show how
the performance of coarse correction step (33) converges to quadratic convergence when δ → 0.

7.4 Analysis
In order to analyze the convergence of coarse correction step (33), we relate it with the classical
Newton’s step and derive the difference using the following propositions.

Proposition 43 ([38]). For matrices A,B,C,D, suppose A, C, and A+BCD are nonsingular,
then

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1

Proof. See [38].

Proposition 44. Suppose the Hessian∇2fh,k is (δ, q)-weakly connected as defined in Definition
42, then (

1

Lh,q̂
+

δ

Lh,q

)
I 4 Q̂−1 + δQ−1 4

(
1

µh,q̂
+

δ

µh,q

)
I,

and so (
1

µh,q̂
+

δ

µh,q

)−1

I 4 (Q̂−1 + δQ−1)−1 4

(
1

Lh,q̂
+

δ

Lh,q

)−1

I,
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where (
1

Lh,q̂
+

δ

Lh,q

)−1

=
Lh,q̂Lh,q

Lh,q + δLh,q̂
and

(
1

µh,q̂
+

δ

µh,q

)−1

=
µh,q̂µh,q

µh,q + δµh,q̂
.

The constants µh,q, µh,q̂, Lh,q, Lh,q̂ are defined in Definition 42.

Proof. This can be obtained via direct computation.

Proposition 45. Suppose the Hessian∇2fh,k is (δ, q)-weakly connected as defined in Definition
42, then

Q̂−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1 = I− δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1,

and for any rh ∈ RN

1

Lh,q̂

µh,q̂µh,q
µh,q + δµh,q̂

‖rh‖ ≤ ‖Q̂−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1rh‖.

Proof.

I = (Q̂−1
h,k + δQ−1

h,k)(Q̂
−1
h,k + δQ−1

h,k)
−1,

= Q̂−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1 + δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1,

and thus,
I− δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1 = Q̂−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1.

For the second part,

‖Q̂−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1rh‖2 = rT (Q̂−1

h,k + δQ−1
h,k)
−1Q̂−1

h,kQ̂
−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1rh,

≥ 1

L2
h,q̂

rTh (Q̂−1
h,k + δQ−1

h,k)
−1(Q̂−1

h,k + δQ−1
h,k)
−1rh,

≥ 1

L2
h,q̂

(
µh,q̂µh,q

µh,q + δµh,q̂

)2

‖rh‖2.

So we obtain the desired result.

We derive the difference between the classical Newton’s step and coarse correction step in
the following lemma.

Lemma 46. Suppose the function fh(xh) has (δ, q)-weakly connected Hessians as defined in
Definition 42. Let

dN
h,k = −[∇2fh,k]

−1∇fh,k,
dB
h,k = −[Qh,k]

−1∇fh,k. (35)

Then
dN
h,k = dB

h,k − δQ−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1dB

h,k.

Proof. The Newton’s step is

dN
h,k = −[∇2fh,k]

−1∇fh,k = −[Qh,k + δQ̂h,k]
−1∇fh,k.
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Using Proposition 43, we have

[Qh,k + δQ̂h,k]
−1 = [Qh,k + I(δQ̂h,k)I]−1,

= Q−1
h,k −Q−1

h,k(δ
−1Q̂−1

h,k + Q−1
h,k)
−1Q−1

h,k,

= Q−1
h,k −Q−1

h,k(δI)(δI)−1(δ−1Q̂−1
h,k + Q−1

h,k)
−1Q−1

h,k,

= Q−1
h,k − δQ

−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1Q−1

h,k.

Therefore,

dN
h,k = −

(
Q−1
h,k − δQ

−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1Q−1

h,k

)
∇fh,k,

= dB
h,k − δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1dB

h,k,

as required.

7.5 Convergence
Using Proposition 45 and Lemma 46, we derive the composite convergence rate.

Theorem 47. Suppose the function fh(xh) has (δ, q)-weakly connected Hessians defined in
Definition 42. Suppose dB

h,k in (35) is taken and αh,k = 1, then

‖xh,k+1 − xh,?‖ ≤ δ
µh,q + δµh,q̂
µh,q̂µ2

h,q

L2
h,q̂Lh,q

Lh,q + δLh,q̂
‖xh,k+1 − xh,k‖

+Lh,q̂
µh,q + δµh,q̂
µh,q̂µh,q

Mh

2µh
‖xh,k − xh,?‖2.

Proof. Using Lemma 46, we obtain

xh,k+1 − xh,? = xh,k − xh,? + dB
h,k,

= xh,k − xh,? + dB
h,k + dN

h,k − dN
h,k,

=
(
xh,k − xh,? + dN

h,k

)
+ δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1dB

h,k,

=
(
xh,k − xh,? + dN

h,k

)
+ δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1(xh,k+1 − xh,k).

Using the fact that

Q−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1(xh,k+1 − xh,k)

= Q−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1(xh,k+1 − xh,?)−Q−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1(xh,k − xh,?),

we have

(I− δQ−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1)(xh,k+1 − xh,?)

=
(
xh,k − xh,? + dN

h,k

)
− δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1(xh,k − xh,?). (36)
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Using Proposition 45, we have

1

Lh,q̂

µh,q̂µh,q
µh,q + δµh,q̂

‖xh,k+1 − xh,?‖ ≤ ‖(I− δQ−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1)(xh,k+1 − xh,?)‖,

≤ ‖xh,k − xh,? + dN
h,k‖

+δ‖Q−1
h,k‖‖(Q̂

−1
h,k + δQ−1

h,k)
−1‖‖xh,k − xh,?‖,

≤ Mh

2µh
‖xh,k − xh,?‖2

+
δ

µh,q

Lh,q̂Lh,q
Lh,q + δLh,q̂

‖xh,k − xh,?‖.

Therefore,

‖xh,k+1 − xh,?‖ ≤ Lh,q̂
µh,q + δµh,q̂
µh,q̂µh,q

Mh

2µh
‖xh,k − xh,?‖2

+Lh,q̂
µh,q + δµh,q̂
µh,q̂µh,q

δ

µh,q

Lh,q̂Lh,q
Lh,q + δLh,q̂

‖xh,k − xh,?‖,

as required.

Theorem 47 shows that the coefficient of ‖xh,k−xh,?‖ is inO(δ). As expected, as δ → 0, the
composite rate in Theorem 47 will recover the quadratic convergence, and the linear component
of composite rate decays at least linearly with δ.

8 Numerical Experiments
In this section, we will first verify our convergence results with three numerical examples. Each
example will correspond to each of the settings in Section 5-7. The first example corresponds
to Section 5, and it is an one-dimensional Poisson’s equation, which is a standard example in
numerical analysis and multigrid algorithms. In the second example, we consider the case in
Section 6, and we use regularized logistic problem to be the illustrative example. In the third
example, we consider a synthetic example to study the case in Section 7. We investigate the
convergence by varying the parameter δ.

In the second part of this section, we will compare GAMA with other algorithms. We
emphasize that the goal of this paper is to gain understanding in Galerkin-based multilevel
algorithm, which apparently is closely related to many existing algorithms: ranging from
conventional multigrid algorithms to machine learning-driven algorithms. The use of this
section is to show the potential of Galerkin model, and we are not trying to claim that GAMA
outperforms the state-of-the-art algorithms, including variants of GAMA.

8.1 Poisson’s Equation
We consider an one-dimensional Poisson’s equation

− d2

dq2
u = w(q) in [0, 1], u(0) = u(1) = 0,

where w(q) is chosen as

w(q) = sin(4πq) + 8 sin(32πq) + 16 sin(64πq).
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Figure 4: Convergence of solving Poisson’s
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We discretize the above problem and denote x,b ∈ RN−1 , where (x)i = u(i/N) and (b)i =
w(i/N), for i = 1, 2, . . . , N − 1. By using finite difference, we approximate the above equation
with

min
x∈RN−1

1

2
xTAx− bTx, (37)

where A is defined as in Lemma 32, which is a discretized Laplacian operator.
Figure 4 shows the convergence results of solving (37) with different N ’s. In this example

we use the prolongation and restriction operators that are defined in (25) and (26). Since there is
only one pair of P and R, we follow the traditional multigrid approach in which we combine
the coarse correction step with fine correction step. Steepest descent is used to compute the fine
correction step. The pink stars in Figure 4 and Figure 5 indicate where coarse correction steps
were used.

As expected from Corollary 33, the performance of convergence is inversely proportional to
the discretization level N . More interestingly, one can see the complementary of fine correction
step and coarse correction step. From Figure 4, fine correction steps are often deployed after
coarse correction steps. Each pair of fine and coarse correction steps provides significant
improvement in convergence. Figure 5 shows the smoothing effect of the fine correction step
by looking at the quantity ‖A(xh,k − xh,?)‖, where A is the discretized Laplacian operator, as
defined in Lemma 32. As opposed to coarse correction steps, fine correction steps are effective
in reducing ‖A(xh,k − xh,?)‖. Once the error is smoothed, coarse correction steps provide large
reduction in error, as shown in Figure 4.

8.2 Regularized Logistic Regression
We study the Galerkin model that is generated via navïe Nyström method and consider an
example in `1 regularized logistic regression,

min
x∈RN

1

m

m∑
i=1

log(1 + exp(−bixTai)) + ω1‖x‖1,

where ω1 ∈ R+, and {(ai, bi)}mi=1 is a training set with m instances. For i = 1, 2, . . . ,m,
ai ∈ RN is an input and bi ∈ R is the corresponding output.
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Notice that the above formulation involves non-differentiable function ‖x‖1, and so the
above problem is beyond the scope of the setting in this paper. To overcome this issue, we
replace the ‖x‖1 with its approximation, the pseudo-Huber function [8], and solve the following
formulation.

min
x∈RN

1

m

m∑
i=1

log(1 + exp(−bixTai)) + ω1

N∑
i=1

(
(µ2

r + x2
i )

1/2 − µr
)
, (38)

where µr ∈ R+ is a parameter, and it provides good approximation of the `1 norm when µr is
small.

The dataset gisette is used for {(ai, bi)}mi=1. Gisette is a handwritten digits dataset from
the NIPS 2003 feature selection challenge. In this example N = 5000, m = 6000, and we
choose parameter ω from [23, 43] and µr = 0.001. One can find and download gisette at
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

Notice that when P ∈ Rn×N and R ∈ Rn×N are generated using naïve Nyström method
according to Definition 34, n is a user-defined parameter, and the probabilistic approach men-
tioned in Section 2 is used to generate multiple P’s and R’s. That is, a pair of P and R is
sampled uniformly over

(
N
n

)
possible coarse models. This setting satisfies the condition stated

in Proposition 7, and so no fine correction step is needed.
Figure 6 shows the convergence results. As expected from Corollary 38 and 39, the perfor-

mance of convergence is proportional to n.

8.3 A Synthetic Example for Block Diagonal Approximation
To study the case of block diagonal approximation in Section 7, we construct an artificial
example with weakly connected Hessian. In particular, we solve

min
x∈RN

1

2
xT
(
Qh + δQ̂h

)
x + bTx, (39)
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Figure 7: Block diagonal approximation.

where δ ∈ R+, Qh = diag(Qh,1,Qh,2, . . . ,Qh,p) is a block diagonal matrix with p blocks, with
Qh,i(xh) ∈ Rni×ni and

∑p
i=1 ni = n for i = 1, 2, . . . , p. In this example, we have N = 1000,

p = 10, n1 = n2 = · · · = n10 = 100. We construct Q̂h via

Q̂h =
N∑
j=1

vjuju
T
j ,

where vj ∈ R+ is sampled uniformly from [vδ, 1 + vδ], and uj ∈ RN is a random orthonormal
vectors, for j = 1, 2, . . . , N . Each Qh,i is also constructed similar to Q̂h but in the smaller
dimension Rni×ni , for i = 1, 2, . . . , p. vδ = 0.0001 in this example.

We consider the optimization problem in (39) with different δ’s. As expected from The-
orem 47, Figure 7 shows that the performance of convergence is inversely proportional to
δ.

8.4 Numerical Performance: PDE Test Cases
We now compare the numerical performance of GAMA with the conventional unconstrained
optimization algorithms as well as conventional line search multilevel/multigrid algorithm in
[39]. We focus on PDE-based optimization problems in this section.

We test algorithms on five examples from [39, 13], and all of them are discretized 2-
dimensional variational problems over unit square S2 , [0, 1]× [0, 1]. The decision variable,
u(x, y), obeys the boundary condition, u = 0 on ∂S2, for all problems. The five problems are
listed in the following.

1. Problem DSSC:

min
u∈S2

∫
S2

1

2
‖∇u(x, y)‖2 − λ exp(u(x, y)), where λ = 6.
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2. Problem WEN:

min
u∈S2

∫
S2

1

2
‖∇u(x, y)‖2 + λ exp

[
u(x, y)

]
(u(x, y)− 1)− γ(x, y)u(x, y),

where λ = 6 and

γ(x) =

[(
9π2 + λ exp

[ (
x2 − x3

)
sin(3πy)

]) (
x2 − x3

)
+ 6x− 2

]
sin (3πy) .

3. Problem BRATU:

min
u∈S2

∫
S2
‖∆u(x, y)− λ exp(u(x, y))‖2, where λ = 6.8.

4. Problem POSSION2D:
min

x

1

2
xTAx− bTx,

where A and b are the discretizations of the Laplacian and the function γ(x, y) =
2(y(1− y) + x(1− x)), respectively.

5. Problem IGNISC:

min
u∈S2

∫
S2

(u(x, y)− z)2 +
β

2

∫
S2

(exp[u(x, y)]− exp[z])2

+
ν

2

∫
S2
‖∆u(x, y)− δ exp(u(x, y))‖2,

where δ = β = 6.8, ν = 10−5, and z = 1/π2.

DSSC WEN BRATU
Time Accuracy Time Accuracy Time Accuracy

L-BFGS 5524.9 9.5164e-06 1048.7 9.9788e-06 44355 12.449
Newton 59.01 1.3351e-07 47.6 4.3493e-08 565.79 2.0853e-06
GAMA-NT 21.8 1.153e-13 21.26 4.6412e-12 180.19 1.9028e-06
COMA-NT 20.13 1.1531e-13 20.19 4.6412e-12 161.52 1.9027e-06
GAMA-qNT 13 7.2882e-06 5.1 7.9565e-06 840.47 0.0021644
COMA-qNT 12.52 9.4619e-06 6.43 7.3332e-06 860.4 37.708

POSSION2D IGNISC
Time Accuracy Time Accuracy

L-BFGS 1105.7 7.815e-06 50274 0.00039108
Newton 15.99 7.2561e-15 124.93 2.1409e-06
GAMA-NT 20.93 0 77.58 2.0008e-11
COMA-NT 20.92 0 77.69 2.0008e-11
GAMA-qNT 1.28 8.1249e-06 62.81 9.0643e-06
COMA-qNT 1.46 8.1304e-06 43.13 9.1113e-06

Table 1: PDE-based text examples
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Table 1 shows the numerical performance of different algorithms, i.e., the CPU time (Time)
needed to achieve small ‖∇fh,k‖ (Accuracy). We denote the COnventional Multilevel Algorithm
as COMA. For both GAMA and COMA, we denote “-NT” and “-qNT” when Newton’s method
and L-BFGS are used for fine correction steps, respectively. For all five examples, we choose the
fine models to be the discretization with mesh size ∆x×∆y, where ∆x = ∆x = 1/210, and the
standard five-point finite differences are used. We point out that all the algorithmic settings are
the same as in [39], including line search strategy, stopping criteria, and choice of parameters.

For both GAMA and COMA, we follow the same strategy as in [39], and the standard full
multilevel scheme is deployed. Suppose level j is denoted as the discretization with mesh size
∆x×∆y, where ∆x = ∆y = 1/2j . For j = 3, 4, . . . , 9, we compute the solution xj,? in level
j, and use Pj+1

j xj,? as the initial guess for level j + 1. Pj+1
j is denoted as the prolongation

operator from level j to level j + 1.
From Table 1, we can see that the multilevel algorithms clearly outperform the conventional

algorithms. The performance of GAMA is comparable with COMA and is more robust due
to the use of second order information. In the problem BRATU, first order algorithms (i.e.
L-BFGS, GAMA-qNT, and COMA-qNT) are not efficient, but GAMA-qNT is able to achieve
much better accuracy. Therefore, GAMA is empirically competitive against the conventional
multilevel algorithm, and yet more robust with a more understandable rate of convergence.

8.5 Numerical Performance: Machine Learning Test Cases
We now study the performance of GAMA that is generated by Nyström method. Suppose
we have the training set {(ai, bi)}mi=1, we use GAMA to solve the empirical risk minimization
(ERM) problem

min
x∈RN

1

m

m∑
i=1

fi(a
T
i x) + ω1‖x‖1 +

ω2

2
‖x‖2

2,

where ω1, ω2 ∈ R and ai ∈ RN , for i = 1, 2, . . . ,m. Special cases of fi include

1. Quadratic loss function: fi(x) = 1
2
(x− bi)2.

2. Logistic loss function: fi(x) = log(1 + exp(−xbi)).

In the case where w1 = 0 and fi’s are logistic loss functions, we yield to the `1 regularized
logistic regression as in Section 8.2. Similar to Section 8.2, we replace the ‖x‖1 with the
pseudo-Huber function.

The numerical test is conducted over five examples. All dataset/training set can be download
at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Table 2 provides details of the test
examples. We point out that for logistics regression, we select the choice of ω1 and ω2 based on
[23, 12]. For linear regression, we simply select ω1 = ω2 = 10−6, which is a commonly used
value.

Figure 8-12 show the numerical performance of GAMA, compared to Newton’s method
and L-BFGS. Over these five examples, GAMA only performs coarse correction steps, and n is
chosen to be 10%N , 20%N , and 30%N . An exception can be found in log1pE2006test because
these choices of n’s are too large to be traceable. The performance of Newton’s method is also
missing for log1pE2006test because computing its search direction is intractable due to the size
of N . From Figure 8 and 10, we can see that when N is small, Newton’s method outperforms
the other methods. This is not surprising since the per-iteration cost is cheap for small N and yet
Newton’s method enjoys the quadratic convergence. When N is sufficiently large, as showed in
Figure 9 and 11, GAMA is competitive compared to both Newton’s method and L-BFGS.
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fi’s N m ω1 ω2

YearPredictionMSDt Quadratic 90 51630 10−6 10−6

log1pE2006test Quadratic 4272226 3308 10−6 10−6

w8at Logistic 300 14951 0 1/m
Gisette Logistic 5000 6000 1/(0.25m) 0
epsilon_normalizedt Logistic 2000 100000 0 1/m

Table 2: Details of ERM Test Examples

In Figure 12, we can see that the performance of GAMA’s is better than Newton’s method
and similar to L-BFGS. From Table 2, N = 2000 and it is a reasonably good size for Newton’s
method. The poor performance of Newton’s method is due to the large m, which is 100000.
For large m, the evaluation of Hessians becomes the computational bottleneck. To further
illustrate this, in Figure 13, we perform Newton’s method and GAMA with sub-sampling. For
subsample Newton’s method, at each iterations, we evaluate Hessian based on

√
m data points

in the training set. Data points are sampled uniformly without replacement. For GAMA, we
deploy the idea of SVRG, sample

√
m data points at each coarse correction step, and create a

coarse model with

fH(x) =
1√
m

∑
i∈SH

fi(a
T
i x) + ω1

N∑
i=1

(
(µ2

r + x2
i )

1/2 − µr
)

+
ω2

2
‖x‖2

2,

where µr = 0.001 and SH is the set of the samples. We call the coarse model with above fH as
intermediate coarse model. When solving intermediate coarse model, we apply the Galerkin-
model that is generated by Nyström method, and apply five coarse correction steps. The
incumbent solution of intermediate coarse model is then prolonged to the fine model and results
in a coarse correction step on the fine model. We clarify that this algorithmic procedure follows
the idea of SVRG, as introduced in Section 2.5. As shown in Figure 13, great improvements are
achieved for both (subsample) Newton’s method and GAMA’s. The computational bottleneck
of evaluating Hessians is removed by subsampling data points. Since solving a system of 2000
linear equations can be managed easily, Newton’s method outperforms all the other method in
this case. Notice that since the Hessians are not evaluated exactly in this case, Newton’s method
and GAMA no longer enjoy quadratic rate and composite rate, respectively. The theoretical
performance of these methods are beyond the scope of this paper.

9 Comments and Perspectives
We showed the connections between the general multilevel framework and the conventional
optimization methods. The case of using Galerkin model (GAMA) is further studied, and the
local composite rate of convergence is derived. When the coefficient of the linear component in
composite rate is sufficiently small, then GAMA is superior to Newton’s method in complexity.
This linear component is then studied in three different cases, and we showed how the structure
in each case would improve the rate of convergence.

This work advances research in multilevel optimization algorithms in several non-exploited
directions. Firstly, the connections between multilevel framework and standard optimization
methods would motivate systematic designs in optimization algorithms, and the multilevel
framework could be used beyond the traditional linesearch multilevel method in [39].
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Secondly, we take the first step in showing how the structure of problems could improve
the convergence. We expect that similar manner of thinking could be applied beyond GAMA,
and we believe this line of research could motivate more developments in multilevel algorithms
when one tries to tackle problems with specific structure.

We believe the results presented in this paper can be generalized and refined. For example,
the local composite rate of convergence when solving PDE-based optimization can be extended
to cases beyond one-dimensional problems or uniform discretization. These extensions would
require more careful and tedious algebra, but the general approach presented in Section 5 can be
applied. On the other hand, one can extend results in Section 6 by considering different versions
of Nyström method, or even different methods in low rank approximation in general. These
generalizations could be done under the general approach of this paper.
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