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a b s t r a c t

We present a numerical method for finite-horizon stochastic optimal control models. We derive a

stochastic minimum principle (SMP) and then develop a numerical method based on the direct solution

of the SMP. The method combines Monte Carlo pathwise simulation and non-parametric interpolation

methods.Wepresent results froma standard linear quadratic controlmodel, and a realistic case study that

captures the stochastic dynamics of intermittent power generation in the context of optimal economic

dispatch models.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic optimal control is a useful formalism for developing

and analyzing models that have stochastic dynamics. Applications

of stochastic optimal control include manufacturing systems,

option pricing, portfolio optimization, analysis of climate policies,

biological andmedical applications, and energy systemsmodeling.

Realistic models do not admit closed-form solutions. As a re-

sult, a large number of numerical methods have been proposed

to approximate their solution. Traditional numerical methods for

stochastic optimal control such as value iteration (Bertsekas, 2007),

policy iteration (Bertsekas, 2007), and the Markov Chain approxi-

mation method in Kushner and Dupuis (2001) all rely on a mesh.

Typically, the mesh is obtained by discretizing the state. This dis-

cretization gives rise to a mesh (or a grid), and computation is

performed on each point of the mesh. For example, the exact

� The work of the first author was partially supported by an FP7 Marie Curie

Career Integration Grant (PCIG11-GA-2012-321698 SOC-MP-ES) and by the Cyprus

Program at MIT Energy Initiative. The work of the second author was supported by

the US National Science Foundation Grant No. 1128147 and by the US Department

of Energy Office of Science, Biological and Environmental Research Program,

Integrated Assessment Research Program, Grant Nos. DE-SC0005171 and DE-

SC0003906. The material in this paper was not presented at any conference.

This paper was recommended for publication in revised form by Associate Editor

Fabrizio Dabbene under the direction of Editor Roberto Tempo.

E-mail addresses: p.parpas@imperial.ac.uk (P. Parpas), mort@mit.edu

(M. Webster).
1 Tel.: +44 0 20 7594 8366; fax: +44 0 20 7581 8932.

implementation of policy or value iteration requires the specifica-
tion of a lookup table (or mesh in the language of this paper). Simi-
larly, theMarkov Chain approximationmethod (Kushner &Dupuis,
2001) requires the construction of a finite-difference grid. Com-
putational complexity of classical stochastic optimal control in-
creases exponentially with the number of state variables and they
therefore suffer from the curse of dimensionality. Alternative for-
mulations using multistage stochastic programming also depend
on a mesh. In the stochastic programming literature, the mesh is
referred to as a scenario tree. The number of points on the mesh,
or the number of nodes in the scenario tree, grows exponentially
with the number of time periods. In this case, stochastic program-
ming algorithms suffer from the curse of dimensionality due to the
number of time periods involved in realistic models. The problem
that motivated this paper (see Section 5.2) has both a large state
vector and a large number of time periods. Therefore new meth-
ods are needed to address this class of problems.

1.1. Overview of the proposed algorithm

The method proposed in this paper does not perform any
(structured) discretization in the state dimension. Instead of
discretizing the state dimension and performing computation on
each point of the resulting mesh, the proposed algorithm relies
on a three-step procedure. Starting with an incumbent control
law, the first step consists of forward simulations. In the setting of
this paper, forward simulations are computationally inexpensive.
The second step consists of backward steps that approximately
solve the adjoint equation associated with the model and the
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incumbent control law. The difference between this method and
classical algorithms such as policy and value iteration is that those
algorithms compute the value function or optimal control for each
possible state. We only visit ‘‘promising states’’. These promising
states are obtained during the forward simulation phase. The
solution of the system of adjoints is approximate because we only
use points that were visited in the forward phase to construct
the approximation. The approximation is constructed via a non-
parametric method for scattered data approximation. Finally,
the third step uses the information gleaned from the forward
and backward steps to improve the incumbent control law. The
algorithm is described in detail in Section 4.

An exact resolution of the adjoints would require the construc-
tion of a structured mesh. However, since the proposed method
is used to solve for the stochastic minimum principle (SMP) as-
sociated with the model, only the adjoints along the optimal path
are needed. In other words, when the adjoint information is used
in conjunction with the optimality conditions of the SMP, the ex-
act resolution of the adjoints is not necessary. An advantage of the
proposed method is that the adjoints can be interpreted as prices
or hedging strategies (Øksendal & Sulem, 2005). A disadvantage
of our approach is that the forward paths need to be stored and
searched frequently. However, using appropriate data structures
(discussed in Section 4.3), the computational burden associated
with this part of the algorithm appears to be manageable even
for high-dimensional problems. For example, in Section 5, we re-
port on the solution of a 30-dimensional linear quadratic control
(LQC) model, and compare our method with the closed-form so-
lution. We also present numerical results from a power generator
scheduling case study. This application introduces some complex-
ities not present in the LQC model. In particular, the case study
shows the importance of the appropriate selection of basis func-
tions used in the numerical implementation, and the difficulty of
correctly specifying a global parametric class.

1.2. Contributions and literature review

This paper makes three contributions. The first is the develop-
ment of a stochastic minimum principle (SMP) for finite-horizon
stochastic optimal control models driven by piecewise determin-
istic Markov processes (Section 3). The second contribution is the
development of the adaptive pathwise algorithm (Section 4). Our
final contribution is to show that the proposed method can be ap-
plied to realistic models (Section 5). We expand on these contribu-
tions in the context of the existing literature below.

The algorithm proposed in this paper is applicable to a class
of stochastic processes known as piecewise deterministic. The
theoretical properties of these processes have been extensively
studied; see, e.g., Davis (1993). To enable the development of
the numerical method, we need to make use of an appropriate
stochastic minimum principle (SMP). Our first contribution is the
SMP described in Section 3. A number of papers have developed
SMPs for similar models. However, a form of the SMP suitable
for numerical computation and appropriate for the application
discussed in this paper has not appeared elsewhere. A similar
SMP was developed in Rishel (1975), but it assumes that the
Markov processes are governed by a constant generator. Our SMP
covers the finite-horizon case, and allows for the generator to
be both time inhomogeneous and to depend on the controls.
Optimality conditions for the infinite-horizon case have received
more attention; see, e.g., Haurie and Van Delft (1991) and Ye
(1997). The proof of the SMP in the latter work is based on
the reduction of the problem to a deterministic infinite-horizon
problem. A minimum principle is then used for the deterministic
problem in order to derive the necessary and sufficient conditions
for the original model. From the point of view of computation, the

deterministic infinite-horizon problem is not in a form suitable for
efficient numerical approximations. Another contribution related
to the SMP is the time discretization result in Section 4.1. The
result in Section 4.1 enables the numerical implementation of the
algorithm described in Section 4.2.

Our second contribution is the development of the three-step
numerical algorithm described in Section 4. The fact that our
method does not construct a grid means that it can potentially
address high-dimensional problems. Many methods have been
proposed to address the curse of dimensionality in stochastic
optimization.Methods from the stochastic programming literature
include decomposition and aggregation methods (for a review,
see Birge and Louveaux (1997) and Parpas and Rustem (2007)).
The method proposed in this paper differs from the numerical
methods used in stochastic programming in that (a) we deal with
continuous-timeproblems, (b)we allow thepossibility of the prob-
ability distribution of the random variables to depend on the deci-
sions, (c) our method does not depend on convexity assumptions,
and (d) we never construct amesh or a scenario tree. The complex-
ity of stochastic programming problems grows exponentially with
the number of time periods. As a result, stochastic programming
models are used when only a small number of decision periods is
required. The power system application that motivated this work
has a large number of time periods (288). A stochastic program for-
mulatedwith the coarsest possible scenario tree of two realizations
for each random variable cannot be solved even with aggregation
or decomposition algorithms.

We have already explained the differences of the proposed
method from the traditional methods of dynamic programming
(DP) such as value and policy iteration algorithms in Section 1.1.
However, there are similarities between the proposed method
and the algorithms that belong to the approximate dynamic
programming (ADP) and reinforcement learning (RL) literature,
and the specialized algorithms developed in the energy systems
area (see, e.g., Kuhn, Parpas, and Rustem (2008), Parpas and
Webster (2010), and Secomandi and Wang (2012)). Most ADP
algorithms are concerned with approximating the value function.
For example, Q -learning was originally proposed in the context of
value function approximation (see, e.g., Powell (2007)). There are,
however, methods that are based on policy space approximation,
for example, the methods based on perturbation and sensitivity
analysis (including the extension of TD andQ -learning algorithms)
for policy space approximation described in Cao (2007). The
methods described in Cao (2007) are developed in the context
of infinite-horizon or average-cost models, whereas we deal
with finite-horizon models. This important difference requires
the development of a different approximation method. Infinite-
horizon or average-cost models are not meaningful for the power
systems application that motivated this work, because these
systems are not adequately described by steady-state dynamics
(see Section 5).

Another important difference is that the sensitivity and
perturbation based methods described in Cao (2007) estimate
the sensitivity of the model to a set of parameters. For example,
one could expand the control as a series of basis functions, and
then use a perturbation method to find the optimal weight for
each element of the basis. The approximation will be parametric,
and convergence is within the chosen parametric class. Recently,
a method similar to the one described in this paper was
proposed in Carpentier, Cohen, and Dallagi (2009). The method
in Carpentier et al. (2009) is concerned with the discrete finite-
horizon case, whereas we deal with the continuous case. Similarly
to perturbation methods, the method in Carpentier et al. (2009)
requires a global parametric interpolation to be used for the
controls and the adjoints. The method proposed in this paper does
not rely on a user-specified choice of the parametric class.
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Finally, ADP, RL, and to a large extent perturbation methods
are based on stochastic approximation (SA). An advantage of
algorithms based on SA is that the algorithm avoids the explicit
calculation of the conditional expectations that appear in models
of stochastic control. Instead, SA methods rely on sampling and
smoothing in order to estimate these conditional expectations
(Powell, 2007). However, the gradients used in SA methods are
stochastic, and as a result these algorithms are extremely sensitive
to the selection of the step-size strategy. The proposed algorithm
also relies on a step-size strategy. However, because we use
a Monte Carlo integration method to compute gradients, our
algorithm exhibits less sensitivity to the step-size strategy (the
gradients are still stochastic but the variance can be controlled).
To make this point clear, consider the following static stochastic
optimization problem,

min
u

E[F(η, u)],
where u is the control and η is a random variable. Methods based
on SA consist of iterations of the form

uk+1 = uk − τ∇uF(η, u), (1)

where k is the iterationnumber and τ is the step size. The algorithm
proposed in this paper is more in the spirit of

uk+1 = uk − τE[∇uF(η, u)]. (2)

The quantityE[∇uF(η, u)] cannot be estimated exactly, but a noisy
estimate can be obtained via Monte Carlo integration. Methods
based on (2) are less sensitive to the choice of step size but
require more expensive iterations. Methods based on (1) require
less expensive iterations, but are sensitive to the choice of step
size. Moreover when the problem is not static (as is the case in
the model we study in this paper) the computation of the gradient
∇uF is considerably more complicated than in the static case. The
gradients in this paper are computed by the adjoint calculations
described in Section 4.2.

Finally, we study the numerical performance of the algorithm
to models of realistic size. It will be shown in Section 5 that the
proposed algorithm can be used to solve problems with a large
number of decision stages and a large state space. First, we apply
the method to a linear quadratic control (LQC) model, for which a
closed-form solution is available. We then apply the algorithm to
a realistic power systems model.

2. Problem statement and notation

Weuseη(t) to denote a continuous-time, discrete-stateMarkov
process. This class of processes is also known as piecewise
deterministic (Davis, 1993). The state space of the Markov process
will be denoted byM. The cardinality ofM will be denoted by |M|.
For the applications that motivated this paper, such a finite state
space will suffice. The theory of piecewise deterministic processes
is relatively mature, and we adopt the well-known framework and
terminology described in Davis (1993).

As is well known (see, e.g., Yin and Qing (1998)), the probability
transition matrix of η satisfies the following equation:

dP(t, s)

dt
= P(t, s)Qt(xt , ut), P(s, s) = I|M|, (3)

where In denotes an identity matrix of dimension n. The matrix Q
is called the generator of η, and it is allowed to depend on time t ,
and on the state control pair (x, u). The (i, j)th entry of this matrix
is denoted by qij. We will use Js to denote the objective function
value at time s,

J0(x0, η0, u) � E

[∫ T

0

e−ρtGt(xt , ηt , ut)dt

+ e−ρTΦ(xT ) | x(0) = x0, η(0) = η0

]
,

where u is some feasible control, and x0 ∈ R
n and η0 ∈ M are the

initial conditions of x and η respectively. The functionΦ : R
n → R

is the terminal condition. With these definitions, the full problem
we consider in this paper is given below.

v0(x0, η0) = min
u∈U

J0(x0, η0, u)

dx

dt
= f (x, η, u), x(0) = x0, (P )

η(0) = η0, u ∈ At .

We make the following assumptions concerning the problem
above: the feasible set U is a compact subset of R

m, and the
functions f : R

n × M × U → R
n, G : R

n × M × U → R, and
Φ : R

n → R are continuously differentiable in the state variable,
and with bounded derivatives. The set At is used to denote the set
of Ft-adapted policies that are piecewise continuous in time, and
once continuously differentiable with a bounded derivative in the
state variable.

The differential equation that drives the system in (P ) is
stochastic with (right) jump discontinuities. In order to be exact,
one must define the class of functions that can satisfy the system
in (P ). In this paper, we will use the framework in Ludwig (1998,
Section 2.2) to study the dynamics of the system ((P ) is also
called a hybrid system in the optimal control literature). The
solution of the differential equation in (P ) is a cadlag function
(i.e., right continuous with left limits), and the solutions of the
differential equation are interpreted as Caratheodory solutions.We
will use the notation ψu

t (s, xs, ηs) to denote the solution to the
state equation of (P ) at time t , with the initial conditions (x(s) =
xs, η(s) = ηs), and an admissible control u. If η is fixed to θ , then
the state equation of (P ) is a deterministic differential equation,

and we denote its solution with ψ̂
u,θ
t (s, xs).

3. A stochastic minimum principle

In this section, we derive necessary and sufficient optimality
conditions for (P ). We start by deriving a recursive equation that
the objective function value of (P ) must satisfy (Theorem 1). We
will then use this recursive equation to reformulate the problem
as a standard optimal control problem for which the optimality
conditions are already known (Theorem 2).

Theorem 1. The objective function of (P ) satisfies the equation

J0(x0, η0, u) =
∫ T

0

z(t)

(
Gt(ψ̂

u,η0
t , η0, ut)

+
∑
η′ �=η0

qη0η
′(ψ̂u,η0

t , ut)Jt(ψ̂
u,η0
t , η′, ut)

)
dt

+ Φ(ψ̂
u,η0
T )z(T ), (4)

where z(t) = exp[− ∫ t

0
ρ + qη0(ψ̂

u,η0
k , uk)dk], and

qη0(y, u) � −qη0,η0(y, u) =
∑
η′ �=η0

qη0η
′(y, u).

Proof. Let G̃t(x, η, u) = Gt(x, η, u)1{t<T }. Then, for any given
feasible control u, we can rewrite the objective function as follows:

J0(x0, η0, u) = E

[ ∫ ∞

0

e−ρsG̃s(xs, ηs, us)ds

+ e−ρTΦ(xT )

∣∣∣∣∣x(0) = x0, η(0) = η0

]
.

In the preceding equation, let J1
0(x0, η0, u) and J2

0(x0, η0, u)
denote the first and second term, respectively. Let τ be the first



1666 P. Parpas, M. Webster / Automatica 49 (2013) 1663–1671

jump time of η after time 0. Suppose that η(0) = η0; then the
probability that the first jump occurs in time [t, t +Δt] is given by

P[t < τ < t + Δt] = qη0(xt , ut)e
− ∫ t

0 qη0
(xs,us)dsΔt + o(Δt). (5)

When s ∈ [0, τ ), the stochastic solution ψu
s (0, x0, η0) coincides

with the deterministic solution ψ̂
u,η0
s (0, x0). Below, we drop the

dependence of ψ̂
u,η0
s (0, x0) on (x0, η0), and use ψ̂u

s for brevity.
Using the law of total expectation and the Markov property, we
can write J1

0 as follows:

J1
0 = E

[ ∫ τ

0

e−ρsG̃s(ψ̂
u
s , ηs, us)ds

+ e−ρτ J1
τ (ψ̂

u
τ , ητ , uτ )

∣∣∣∣∣x(0) = x0, η(0) = η0

]
.

The expectation above is taken with respect to the probability of
jumping at time τ to state ητ given that we started at time 0 at
state x(0) = x0 and η(0) = η0. This expectation can be expanded
using (5) as follows:

J1
0 =

∫ ∞

0

qη(ψ̂
u
t , ut)e

− ∫ t
0 qη(ψ̂u

s ,us)ds

×
(∫ t

0

e−ρsĜ(ψ̂u
s , η0, us)ds + It

)
dt, (6)

where

It = e−ρt
∑
η′ �=η0

qη0η
′(ψ̂u

t , ut)

qη0(ψ̂
u
t , ut)

J1
t (ψ̂

u
t , η′, ut).

Note that in the derivation of (6) we have used the fact that the
probability of jumping from η0 to state η′ given that the process
jumped at time τ is given by

P(η(τ ) = η′ | τ , η(0) = η0) = −qη0η
′(ψ̂u

τ , uτ )

qη0(ψ̂
u
τ , uτ )

.

Integrating by parts the first term in (6), and using the fact that

G̃t = J1
t = 0 for t > T , we obtain

J1
0 =

∫ T

0

z(t)

(
Gt(ψ̂

u
t , η0, ut)

+
∑
η′ �=η0

qη0η
′(ψ̂u

t , ut)J
1
t (ψ̂

u
t , η′, ut)

)
dt,

where z(t) = exp[−ρt − ∫ t

0
qη0(ψ̂

u
s , us)ds]. A similar argument

establishes the following expression for J2
0(y, η0):

J2
0 = Φ(ψ̂u

T )z(T ) +
∑
η′ �=η0

∫ T

0

z(t)qη0η
′(ψ̂u

t , ut)J
2
t (ψ̂

u
t , η′, ut)dt.

Adding the two expression for J1
0 and J2

0 , we obtain the required
result in (4). �

The Hamilton–Jacobi–Bellman equation associated with (P ) is
given below. A rigorous proof can be found in Appendix A.4 of Yin
and Qing (1998).

ρvt(x, η) = min
u

{
Gt(x, η, u) + ∇xv(x, η)�f (x, η, u)

}
+ ∂vt

∂t
+

∑
η′ �=η

qη′η(vt(x, η
′) − vt(x, η)). (7)

We use the shorthand notation u(t) = u(t, xt , ηt) and λ(t) =
λ(t, xt , ηt) to denote the control and adjoint, respectively. Explicit

notation will be used when confusion might arise. We end this
section by showing how the previous result is related to the
necessary and sufficient conditions for optimality for (P ).

Theorem 2. Suppose that G is convex and f is linear. A necessary and
sufficient condition for a control u∗ to be optimal for (P ) is that there
exists a solution to the following backwards equation:

dλt

dt
= −∇xHt(ψ̂

u∗,η

T , η, u∗, λt) + (ρ + qηη)λt

λT (x, η) = ∇xΦ(ψ̂
u∗,η

T ).

(8)

For any control adjoint pair (u, λ), the function Ht is defined as
follows:

Ht(x, η, u, λ) = Gt(x, η, u) + λ�f (x, η, u) −
∑
η′ �=η

qηη′vt(x, η).

In addition, u∗ must satisfy that

Ht(x, η, u∗, λ) − Ht(x, η, u, λ) ≤ 0 ∀u ∈ U . (9)

Proof. It follows from Theorem 1 that (P ) is equivalent to

v0(x0, η0) = min
u∈U

{ ∫ T

0

z(t)

(
Gt(xt , ηt , ut)

+
∑
η′ �=η0

vt(x, η
′)

)
dt + z(T )Φ(xT )

}

dx

dt
= f (x, η, u), x(0) = x0, η(0) = η0. (P̃ )

Since (P̃ ) is a deterministic finite-horizon problem, the result
follows from the application of the deterministic maximum
principle on (P̃ ). �

4. An adaptive pathwise algorithm

In this section, we show how the SMP derived in the previous
section can be used to develop an efficient algorithm. There are
three key elements of the proposed algorithm. The first is the
time discretization scheme of the continuous-time problem in
(P ). Integrating the state equation forward in time using a simple
Euler scheme is sufficient. However, more care needs to be taken
when integrating the adjoints backward. We describe our time
discretization scheme in Section 4.1. The second element of our
approach is the application of the minimum principle. In order to
apply theminimumprinciple, we first simulate forward in time the
incumbent control. We call this the forward simulation phase. We
then proceed to improve the incumbent policy by calculating the
adjoint process. This step amounts to the solution of a backwards
stochastic differential equation (BSDE). We call this the backward
simulation phase. This is the most expensive part of the algorithm.
The third and final element of our approach is the scattered data
interpolation algorithm. Although the algorithm is based on a
Monte Carlo simulation methodology, we still need a mesh, or
some sort of grid, in order to represent the incumbent control
and the adjoint process. If we used a traditional grid (e.g., a finite-
difference grid) for this part of the algorithm, our approach would
not scale to problems of realistic size. For this reason, we use
the method described in Section 4.3 that does not require the
construction of a structured mesh.

4.1. Time discretization

Applying the Euler–Maruyama (Yuan & Mao, 2004) scheme to
the state equation of (P ), we obtain the following discrete-time
dynamics.

xt+δt = f Δ(xt , ut , ηt+δt) � xt + f (xt , ut , ηt+δt)δt. (10)
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Note that xt+δt is, by definition, adapted to the filtration generated
at time t . A simple Euler scheme cannot be directly applied
backwards in time because it will not yield an Ft adapted adjoint
process. However, we show below how an Ft adapted process
can be constructed by a discrete-time approximation and an
expectation that can be calculated with Monte Carlo simulation.
An expectation taken with respect to

P
Δ(t, t + δt) = exp

[∫ t+δt

t

Q (s, us)ds

]
is denoted by E

Δ[·], where exp[·] above denotes the matrix
exponential.

Theorem 3. Suppose that there exists a function λδ that satisfies the
following equation,

λδ
t (xt , ηt) = E

Δ

[
∇xG(xt , ηt+δt , ut)δt − ρδtλδ

t+δt(ηt+δt)

× ∇xf
Δ(xt , ut , ηt+δt)λ

δ
t+δt(ηt+δt)|xt , ηt

]
, (11)

and the boundary condition λδ(T ) = ∇Φ(xT ). Then, as δt → 0, λδ is
also a solution to (8).

Proof. We proceed by breaking up (11) into the following three
terms, which we analyze in turn.

I1(t) = E
Δ[∇xG(xt , ηt+δt , ut)δt]

I2(t) = −λδ
t (ηt) + E

Δ[∇xf
Δ(xt , ut , ηt+δt)λ

δ
t+δt(ηt+δt)]

I3(t) = E
Δ[−ρδtλδ

t+δt(ηt+δt)].
If λδ is chosen to satisfy (11), then (I1 + I2 + I3)/δt = 0. Next, note
that

I1

δt
= 1

δt

[∑
η′ �=η

qηη′(ut)(∇xG(xt , η, ut) − ∇xG(xt , η
′, ut))δt

2

+ ∇xG(xt , η, ut)δt

]
+ o(δt).

I2(t)/δt can be expanded as follows:

I2

δt
= 1

δt
[−λδ

t (ηt)] + EΔ[(∇xf
Δ(xt , ut , ηt+δt)δt)λ

δ
t+δt(ηt+δt)]

= 1

δt

[
∇xf (x, ηt)λ

δ
t (ηt)δt + dλδ(t, ηt)

dt
δt

+
∑
η′ �=η

qηη′(ut)(λ
δ
t (η

′) − λδ
t (η))δt

]
+ o(δt).

Finally, I3(t)/δt can be expanded as follows:

I3

δt
= 1

δt

[
−ρδtλδ

t (ηt) + ρδt2
∑
η′ �=η

qηη′(ut)(λ
δ
t (η

′) − λδ
t (η))

]
.

Collecting all the terms, we conclude that, as δt → 0, then λδ
t (ηt)

satisfies (8). �
The discretized adjoint process is equivalent to the adjoint process
of the discrete-time minimum principle (see Theorem 1.23 in
Seierstad (2009)).

4.2. Algorithm description: APA (Adaptive Pathwise Algorithm)

Using the result from Theorem 3, the algorithm is specified be-
low. We will refer to this algorithm as APA (Adaptive Pathwise Al-
gorithm) in the numerical experiments section. In the description

of the algorithmbelow,weuse the index k for the iteration counter,
and j is used to index different paths. For example, uk

j is shorthand

for the value of the incumbent control u(tj, xj, ηj) at iteration k.

[Initialization]: Let tol be a user-specified convergence
tolerance parameter. Set k ← 0, t ← 0, and let uk(t, x, η) be
arbitrary.
[Forward Simulation-k ]: SimulateM sample paths using
the state transition equation and uk:

xj(t + Δt) = xj(t) + f (xj(t), u
k
j , η

t+Δt
j )Δt.

Let GΔ denote the set of sample paths generated during the
forward phase.
[Backward Simulation-k ]: For each path j ∈ GΔ:
(1) Apply boundary condition:

λk(T ) ← ∇xΦ(xj(T )). (12)

(2) Let tj ← T − Δt , and perform backward steps:

λk(tj) ← EΔ
[
∇xG(xj, η

t+Δt
j , uk

j )Δt + (∇xf
Δ(xj, u

k
j , η

t+Δt
j )

− IρΔt)λ(tj + δt, ηt+Δt
j ) | xj, ηj

]
Dk(tj, ηj) ← EΔ

[
∇uG(xj, η

t+Δt
j , uk

j ) + ∇uf
Δ(xj, u

k
j , η

t+Δt
j )

× λ(tj + Δt, ηt+Δt
j ) | xj, ηj

]
.

(3) Set t ← t − Δt , and perform backward steps until t = 0.
[Update Policy-k ]

uk+1(t, xj, ηj) ← ΠU [uk − κDk(tj)],
where ΠU [·] denotes the projection on the set U .
[Convergence Test] Stop if

max
j

|uk+1(0, xj, ηj) − uk(0, xj, ηj)|
|uk+1(0, xj, ηj)| < tol.

Otherwise, set k ← k + 1 and go to the [Forward
Simulation]step.

In the [Forward Simulation] phase, we discretize the system
as discussed in Section 4.1 (see (10)). After the terminal time is
reached (i.e., t = T ), we apply the appropriate boundary condition
to the adjoint equation (see (12)). The algorithm then proceeds
to solve the adjoint equation in the [Backward Simulation]
phase. The equation for λ in the [Backward Simulation
Phase] is given by (11) and is derived in Theorem 3. The equation
for D in the [Backward Simulation Phase] follows from (9).
The [Backward Simulation] phase terminates when t = 0.
In the third phase, [Update Policy], we use the information
gleaned from the [Backward Simulation Phase] to update
the control. The notationΠU [·] denotes the projection on the setU ,
and κ denotes the step size. In our numerical results in Section 5we
use a constant step size. Note that, because we use a Monte Carlo
integration method to compute gradients, our algorithm exhibits
less sensitivity to the step-size strategy compared to stochastic
approximation algorithms.

In Step (2) of the [Backward Simulation Phase], the
adjoint λ and the gradient D are not evaluated at all possible
states (as in for example policy iteration) but only at the states
visited during the forward phase. As a result, when Monte Carlo
simulation is used to estimate the expectations in Step (2), the
algorithm needs to estimate the value of the adjoint at states that
have not been visited during the forward phase. This challenging
problem is solved using the method described next.

The derivative Dk(tj) is defined in Step (2) of the [Backward
Simulation] phase of the algorithm and used in Step (3)
[Update Policy-k] needs to be motivated further. To this end,
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suppose that (λ∗, u∗) is the optimal adjoint/control pair. Then,
using similar arguments as in Theorem 3,

Jt(x, η, u∗) = E

[
G(x, ηt+δt , u

∗)δt + (1 − ρδt)

(
vt(x, ηt+δt)

+ ∇xV (x, ηt+δt)δx + ∂v

∂t
δt

) ∣∣∣∣x, η
]

+ o(δt).

It follows that

0 = ∇uJt(x, η, u∗)

= E

[
∇u

(
G(x, ηt+δ, u)δt + (1 − ρδt)

(
vt(x, ηt+δt)

+ ∇xV (x, ηt+δt)δx + ∂v

∂t
δt

) ∣∣∣∣x, η
] )

+ o(δt).

Dividing by δt and taking limits, we obtain

∇uJt(x, η, u∗) = E

[∇uG(x, ηt+δ, u
∗)

+ ∇uf (x, ηt+δt , u
∗)λ∗(x, ηt+δt)|x, η

]
.

Note that many of the terms drop out, since u∗ is assumed to be
optimal. Therefore the quantity D is the derivative of J along the
optimal path. Of course, u and λ are not optimal. The basic idea
behind the algorithm then is to use the approximate information
currently known about u andλ, and computeD. Then the algorithm
takes a step along the direction suggested by D. The result is to
drive D to zero. Under the assumptions of this paper, when D
is zero, ∇uJ = 0. Therefore, even if D is not the same as the
gradient of J with respect to u, when the algorithm converges
(under convexity assumptions) it should converge to an optimal
solution. A complete convergence proof of the algorithm is beyond
the scope of this paper.

4.3. Scattered data approximation

After the forward phase of the proposed algorithm we have,
at time T , a set of unstructured data points GΔ = ∪j G

Δ
j . Here,

GΔ
j represents the jth path generated by the algorithm given by

GΔ
j = {(x0j , η0

j , 0), . . . (x
T
j , η

T
j , T )}. In order to make the algorithm

implementable, we need to solve two important practical prob-
lems. The first is how to interpolate between the data sites in order
to do the backwards simulation. The second issue is how to struc-
ture the data generated from the Monte Carlo steps so that the al-
gorithm is tractable.

For the interpolation problemwe use a non-parametricmethod
called moving least squares (MLS). This is a standard method, and
we refer the interested reader to Fasshauer (2007) for details.
The application of the MLS method to this class of problems
where little is known about the functional form of the optimal
control, and quite often the optimal control is merely piecewise
continuous, is expedient, because the choice of basis functions
does not play a crucial role in the quality of the approximation.
In the next section, we show that, even though we only use
linear interpolation, because of the local nature of the weight
functions and the possibility to recompute the weights, we can
interpolate nonlinear functions accurately. In order to ensure that
the coefficients in the MLS method can be computed efficiently,
we need to implement the appropriate data structures for large
sets of unstructured data. We use kd-trees in order to solve this
problem (the use of kd-trees is standard in the area of scattered
data approximation (Wendland, 2005)). The basic idea behind kd-
trees is to split the number of data sites into a small number of
subsets such that each subset contains a comparable number of
points. Once such a data structure is built, a range search (for
example) only takes O(logN) time.

Fig. 1. Convergence of the controls. We use n to denote the dimensionality of

the state vector, and m denotes the dimensionality of the control vector. Error is

measured as ‖uk(x0) − u∗(x0)‖/‖u∗(x0)‖, where x0 denotes the initial point, and

u∗(x0) is the optimal decision at the first time period. Convergence of the value

function and adjoint functions behaves in a similar manner.

Table 1
Solution times with 1% error tolerance.

n m Iterations CPU time (s)

10 10 20 5.51

20 10 54 47.23

20 20 183 164.65

30 10 178 331.58

30 30 263 505.23

5. Numerical experiments

In this section, we discuss the numerical implementation
of the algorithm. The numerical experiments were run on a
standard desktop computer. We performed M = 10,000 forward
simulations for all the results reported below. The step size κ is
held constant at 0.01 for all the results reported below. We used
a tolerance of 1% to check for convergence (see Step 3 of the
algorithm). In Section 5.1, we validate our implementation on the
LQCmodel. The solution of the LQCmodel is known in closed form.
The results obtained with the LQC model are useful, since they
validate the proposed approach. For the LQC model, the control
and adjoints are linear functions of the state. For this reason, one
of the main advantages of the algorithm, i.e., its non-parametric
nature, is not clear. In order to illustrate the usefulness of the non-
parametric approach, we also report results from a real application
in Section 5.2. Interesting applications have controls and adjoints
that are in general nonlinear; therefore the results from Section 5.2
will be useful to other applications as well.

5.1. Validation with the LQC model

The LQC model is well known, and we refer the interested
reader to Bertsekas (2007) for the problem specification and its
solution. We selected the coefficients of the model at random, but
we ensured that the system is stable. We used a discretization
parameter of Δt of 0.005, for a horizon T = [0, 1] (i.e., 200 time
periods). In Fig. 1 (n denotes the dimensionality of the state vector,
and m denotes the dimensionality of the control vector), we show
the convergence of the algorithm for the controls. Note that both
the control and the adjoints are high-dimensional objects (n =
10, 20, and 30) but still the algorithm finds the optimal solution
in a reasonable amount of time. The amount of time required to
find the solution within 1% is shown in Table 1.
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5.2. Application to a power systems case study

In this section, we illustrate the application of the algorithm
to a more complex model, an economic dispatch model with
high penetration of renewable energy. The economic dispatch
model is a standard power systems model that is used for
production scheduling between different generators so that costs
are minimized (Claudio, Gomez-Exposito, Conejo, Canizares, &
Antonio, 2008). A review of different issues concerning economic
dispatch can be found in Claudio et al. (2008). We will focus
on the case where the generator mix contains a large amount
of intermittent wind generation. Traditionally, economic dispatch
models are deterministic. Even though some stochastic extensions
have been proposed (Weber, 2005), most authors consider a small
number of time periods or a rolling-horizon formulation. Due to
the computational complexity involved with solving models with
a short time step and a large number of state variables, stochastic
optimal control has not been conventionally used in this area. In
what follows, we show that the algorithm described in this paper
can be effectively implemented for this application. As this is a new
algorithm, the size of the problem we consider is moderate (six-
dimensional state space). Given the solution times for the current
model, larger systems could be solved with the proposed method.
In Section 6, we discuss the computational and mathematical
extensions required so that the method can be scaled up to more
realistic system sizes.

5.2.1. The model

We use xi(t) to denote the output from generator i, and ui(t)
to denote the change in output from generator i at time t . We
use d(t) to denote the deterministic part of demand, and η0(t)
specifies a stochastic disturbance in demand. We use the Markov
processes ηi(t), i = 1, . . . , n, taking values in [0, 1] to represent
the stochastic availability of each generator i ≥ 1.

min
u

E

{∫ T

0

n∑
i=1

cix(t) + c+x+(t) + c−x−(t)dt

}

dxi

dt
= ui(t), (13a)

n∑
i=1

xi(t) + x+(t) − x−(t) = d(t) + η0(t), (13b)

−Ri ≤ ui(t) ≤ Ri (13c)

xi(t) + ui(t) ≥ 0, x+(t) ≥ 0, x−(t) ≥ 0 (13d)

xi(t) ≤ x̄i (13e)

ui(t) ≤ (x̄i − xi)ηi(t). (13f)

The constraint in (13b) specifies that demand must equal supply
at all time periods. The positive variables x+ and x− account for
overproduction and underproduction of electricity, respectively.
Both quantities are penalized in the objective by c+,−. This type of
constraint is not covered by the theory developed in Section 3. In
order to incorporate it into the algorithm, an exact penalty function
with exponential smoothing is used (Bertsekas, 1999). The bounds
in (13c)–(13e) enforce the ramping limits, the minimum output,
and the maximum output for each generator, respectively.

The objective function minimizes the cost associated with
meeting demand. We use typical cost parameters from Claudio
et al. (2008).

5.2.2. Solution of a deterministic model

When η is fixed to some constant, then the model in (13)
is deterministic and can be solved with a linear programming
solver. In order to derive the linear program, the objective function

Table 2
Error.

i |ūS
i − ūD

i | (%)
1 0.26

2 0.03

3 0.15

4 0.10

5 0.02

Table 3
CPU time (in s).

Algorithm Stochasticity Time

LP-approx. – 84

APA – 201

APA Wind 1152

APA Wind & Dem. 1204

was discretized using a quadrature rule (in our case a simple
rectangle rule was used). The state equation was discretized with
a simple first-order Euler scheme. Note that, in the deterministic
case, the optimal control is open loop, and that xt does not depend
on η. With these discrete-time approximations, the model can
be solved with a standard linear programming solver. Setting
η to some constant (η is allowed to be time dependent), the
algorithm proposed in this paper can also be used to solve the
deterministic version of (13). The results tabulated in Table 2
show that the average (averaged over time) difference between the
control obtained between the two methods is very small. We use
ūS
i (ūD

i ) to denote the average stochastic (deterministic) policy for
generator i. The solution times in Table 3 (top two entries) suggest
that the algorithm is competitivewith the deterministic algorithm.
In the deterministic case, the APA algorithm is initialized using a
random feasible point.

5.2.3. Interpolation with the MLS method

It is instructive to compare the MLS method with global
regression methods in the context of stochastic optimal control.
This test was performed on the one-dimensional version of the
deterministic version of (13). The reasonwemade this test on such
a small problem is that the solution can be obtained in closed form.
In Fig. 2 we plot the optimal control, and the interpolated values
using the moving least square method described in Section 4.3,
and a linear regression scheme using an eighth-order polynomial.
In the MLS approximation, we use a linear basis. The global fit is
shown in Fig. 2(a). In order to understand the differences better,
we plotted the differences for a smaller range in Fig. 2(b). The
latter figure illustrates the difficulty of using a global regression
method in optimal control methods. The optimal control in this
case is linear in the state for the range [6000, 9000] and constant
when outside this range. The control has this piecewise linear form
due to the ramping constraints. The MLS scheme, even though a
linear basis is used, manages to deal with the nature of the optimal
control very well. On the other hand, a regression method is very
accurate in some regions, but in some regions it does very poorly.
Due to the gradient descent nature of the proposed algorithm,
global regression methods create numerical instabilities that force
the algorithm to oscillate and never converge. This is not just a
property of our algorithm but also a property of other algorithms
that rely on gradient information (e.g., stochastic approximation
and approximate dynamic programming algorithms (Powell,
2007), and sensitivity/perturbationmethods (Cao, 2007)). Thus the
non-parametric nature of the proposed method is fundamental to
the numerical performance of this class of algorithms.

5.2.4. Comparison of stochastic and deterministic solutions

In our final test, we compared the solutions obtained with the
deterministic and stochastic versions of the model. The results
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0

a b

Fig. 2. Comparison of moving least squares (MLS) with linear basis and global regression with eightth-order polynomial.

Fig. 3. Comparison of the deterministic with the stochastic model. The stochastic model ramps up the coal and CCGT units earlier and therefore makes less use of expensive

gas turbines.

are shown in Fig. 3. When the stochastic model was run for this
test, the only stochastic parameter was the availability of wind.
Thus demand is deterministic in both models. Both models were
used to generate optimal policies. Then the two optimal policies
were used during the forward phase of the algorithm (no backward
steps were performed since the algorithm was used in simulation
mode only). If for the deterministic optimal policy the amount of
available power was not enough to meet demand, the gas turbine
generator (i = 4) was used in order to meet the demand at every
time period. Finally, the results at each time period were averaged
in order to obtain the graph in Fig. 3.

It can be seen from these results that the stochastic and
deterministic models on average use the same amount of
wind energy. However, the stochastic model anticipates the
unavailability of wind, and as a result ramps up the coal and
CCGT generators sooner. Therefore in the stochastic model we can
address the fluctuations in wind generation without resorting to
the expensive gas turbine generator. In the deterministic model,
wind output was assumed to be a deterministic function of time.
However, when run in the ‘‘real’’ setting where wind availability
is stochastic, the coal and combined-cycle gas turbine (CCGT)
generators cannot be ramped up fast enough, and so expensive gas

turbine (GT) generators are used instead. The solution time for the
stochastic model is shown in the third row of Table 3. In the final
row of Table 3 we show the solution time when both demand and
wind are uncertain.

6. Conclusions

We introduced a new numerical method based on the solution
of a stochasticminimumprinciple (SMP) and showed how the SMP
can be discretized in order to derive an implementable algorithm.
The proposed method does not perform any discretization in
the state dimension, and does not perform computation at every
possible state. Instead, it relies on an iterative forward/backward
scheme. We showed how non-parametric interpolation methods
can be used to estimate the value of the adjoint at states that
have not been visited. We validated the proposed algorithm on
a standard LQC model. We have also shown that the method can
be applied to a realistic model from power systems. We have
used a scattered data interpolation technique in our algorithm.
There aremany other approaches that could be explored, including
methods that interpolate derivatives. Finally, given the pathwise
nature of the algorithm, it will be straightforward to implement in
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parallel. Finding an efficient way to perform the interpolation of
the adjoints will be a challenge. However, given that interpolation
relies on a neighborhood of points, this step can be done efficiently.
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