
J Optim Theory Appl (2008) 136: 87–103
DOI 10.1007/s10957-007-9290-1

Convergence of an Interior Point Algorithm
for Continuous Minimax

B. Rustem · S. Žaković · P. Parpas

Published online: 15 November 2007
© Springer Science+Business Media, LLC 2007

Abstract We propose an algorithm for the constrained continuous minimax problem.
The algorithm uses a quasi-Newton search direction, based on subgradient informa-
tion, conditional on maximizers. The initial problem is transformed to an equivalent
equality constrained problem, where the logarithmic barrier function is used to ensure
feasibility. In the case of multiple maximizers, the algorithm adopts semi-infinite pro-
gramming iterations toward epiconvergence. Satisfaction of the equality constraints
is ensured by an adaptive quadratic penalty function. The algorithm is augmented by
a discrete minimax procedure to compute the semi-infinite programming steps and
ensure overall progress when required by the adaptive penalty procedure. Progress
toward the solution is maintained using merit functions.

Keywords Worst case analysis · Continuous minimax algorithms · Interior point
methods · Semi–infinite programming

1 Formulation of the Problem

In a companion paper [1] we propose an algorithm for the continuous minimax prob-
lem, we presented our motivation and discussed numerical results. In this paper, we
focus on the theoretical properties of the algorithm and establish its convergence. The
notation we use is identical with [1]. For ease of exposition we repeat some of the
basic definitions and concepts. Before we consider the convergence proof of the algo-
rithm we also give an outline of its basic steps. Readers interested in the motivation
and computational implementation and numerical performance of the algorithm are
referred to in [1].

Communicated by L.C.W. Dixon.

B. Rustem · S. Žaković · P. Parpas (�)
Department of Computing, Imperial College, London, UK
e-mail: pp500@doc.ic.ac.uk

88 J Optim Theory Appl (2008) 136: 87–103

The problem we are concerned with is given by

min
x

max
y∈Y

{f (x, y) | g(x) = 0, x ≥ 0}. (1)

The exact properties of the functions and sets involved are detailed below. For now it
is sufficient to say that f , and g are assumed to be differentiable, and Y compact. The
proposed algorithm combines semi-infinite programming with quasi-Newton search
directions. The latter direction is generated using subgradient information. We use
the interior point algorithmic framework and a merit function to enforce positivity of
the iterates and encourage feasibility.

The applications of the continuous minimax problem span many areas where op-
timization methods can be fruitfully applied. Details are given in [1]. Likewise, there
are many different solution methods for the problem. There exist algorithms that
are very efficient when the cardinality of Y is finite [2–5]. Efficient algorithms are
also available when f is convex in its first argument, and concave in its second (see
e.g. [6, 7]). The contribution of this paper is to propose an algorithm that is efficient
in the general case i.e. when Y is infinite, and when the convexity of f in x is not
assumed. Applications and solution algorithms for the continuous minimax problem
are reviewed in [1], see also [8–13].

The max function and the set of maximizers will be denoted by

�(x) = max
y∈Y

f (x, y), Ŷ (x) = {y ∈ Y | f (x, y) = �(x)}.

The transformed minimax problem, for x > 0, is given by

min
x

max
y∈Y

{
f (x, y) − μ

n∑
i=1

log(xi) | g(x) = 0

}
. (2)

Consider the following augmented objective function:

P(x, y; c,μ) = f (x, y) + c

2
‖g(x)‖2

2 − μ

n∑
i=1

log(xi); (3)

the maximum of the preceding equation will be denoted by �(x; c,μ),

�(x; c,μ) = max
y∈Y

P (x, y; c,μ). (4)

The basic idea behind the algorithm is to use the augmented objective function (3) and
generate a descent direction where the current incumbent can be improved in terms
of feasibility and reduction of the objective function. Despite the differentiability
of (3), its maximum may fail to be differentiable. For this reason a straightforward
application of Newton’s or other descent methods is impossible. In order to use a
descent-type method, we will need to work with the subdifferentials of both the max
and merit functions,

∂�(x) = conv{∇xf (x, y) | y ∈ Ŷ (x)} =
∑

y∈Ŷ (x),β∈B
βy∇xf (x, y),

J Optim Theory Appl (2008) 136: 87–103 89

∂�(x; c,μ) = conv{∇xP (x, y; c,μ) | y ∈ Ŷ (x)} =
∑

y∈Ŷ (x),β∈B
βy∇xP (x, y; c,μ),

where B = {β | ∑
y βy = 1, βy ≥ 0}. Using Caratheodory’s theorem [14], a vec-

tor ∇�(x; c,μ) ∈ ∂�(x; c,μ) can be characterized with at most (n + 1) vectors
∇xP (x, y; c,μ) ∈ ∂�(x; c,μ) so that

∇�(x; c,μ) =
∑

y∈Ŷ (x),β∈B
βy∇xf (x, y) + c∇g(x)tg(x) − μX−1e, (5)

where X−1 is the diagonal matrix, defined as X−1 = diag(1
x1 , 1

x2 , . . . , 1
xn). Similarly,

we have ∇�(x) = ∑
y∈Ŷ (x),β∈B βy∇xf (x, y). Working directly with the whole set

of maximizers at a given point is extremely difficult. For this reason we define the sets
Yi ⊂ Y so that, Y0 = {y0}, yi = arg maxy∈Y f (xi, y), Yi = Yi−1 ∪ yi , i = 1,2,
A finite set of maximizers at the current point xk is denoted by

Y(xk) = {y ∈ Yk|f (xk, y) = �(xk)}.

Note that Y(xk) ⊂ Yk . The proposed algorithm works with Y(xk). This makes the
method more efficient numerically as the whole set of maximizers can not, in general,
be computed. The first-order conditions of problem (3) are given by

∇�(x) − μX−1e − ∇gt (x)λ = 0; g(x) = 0,

where ∇x�(x) is a sub-gradient of �(x) and its evaluation is considered in the next
section. Invoking the nonlinear transformation z = μX−1e yields

FT = [∇�(x) − z − ∇gt (x)λ, g(x), XZe − μe
] = 0, (6)

where F = F(x,λ, z;μ) and Z is the diagonal matrix Z = diag(z1, z2, . . . , zk).
These equations represent the perturbed optimality conditions for problem (1). The
solution of the Newton system associated with (6) is given by

�xk = �−1
k ∇gt

k�λk − �−1
k hk,

�λk = −[∇gk�
−1
k ∇gt

k]−1(gk − ∇gk�
−1
k hk),

�zk = −zk + μX−1
k e − X−1

k Zk�xk, (7)

where �k = Hk + X−1
k Zk , and hk = ∇�(xk) − μX−1

k e − ∇gt
kλk . Introducing two

new matrices Mk and Pk given by Mk = ∇gk�
−1
k ∇gt

k , Pk =
(I −�−1

k ∇gt
kM

−1
k ∇gk). Then, the first two equations of the system (7) can be written

as

�xk = −Pk�
−1
k (∇�(xk) − μX−1

k e) − �−1
k ∇gt

kM
−1
k gk;

�λk = −M−1
k (gk − ∇gk�

−1
k hk).

90 J Optim Theory Appl (2008) 136: 87–103

Hk is a positive definite approximation of the Hessian of the Lagrangian associ-
ated with (2).1 Hk is approximated using the updating formula suggested by Pow-
ell [15]. Starting from an initial point w0, the algorithm generates a sequence {wk}:
wk+1 = wk +αk�wk . In order to maintain feasibility of wk+1, the algorithm needs to
ensure xk+1, zk+1 > 0. The algorithm generates a descent direction based on a sub–
gradient of �(x) and an approximate Hessian. It uses a switching scheme between
a continuous minimax based interior point algorithm incorporating a minimum-
norm sub-gradient and a discrete minimax formulation appropriately incorporating
epigraphs to determine potential multiple maximizers. The overall iterative process
is in two stages: first, (2) is solved for μ fixed. This is the inner iteration. Once (2) is
solved, μ is reduced, convergence criteria are checked (outer iteration) and, if nec-
essary, another inner iteration is performed. We now turn to the delicate issue of
computing a descent direction for the max-function.

The quadratic approximation to P(x, y; c,μ) in (3) at xk is given by

Pk(�xk, y; c,μ) = P(xk, y; c,μ) + �xt∇xP (xk, y; c,μ) + 1

2
‖�xk‖2

Hk
. (8)

In the presence of multiple maximizers, the computation of the subgradients of �(x)

is a nontrivial matter. We consider two approaches for determining the β’s in (5). In
the first, βk is computed as follows:

βk = arg max
β∈B

{
�xk(β)t

(∑
y∈Y(xk)

βy∇xf (xk, y) + ck∇gt
kgk − μX−1

k e

)

+ 1

2
‖�xk(β)‖2

Hk

}
. (9)

For later reference, we define

F
βk

k =
[∑

y∈Y(xk)

β
y
k ∇xf (xk, y) − zk − ∇xg

t
kλk, gk, XkZke − μe

]T

. (10)

The second approach is given by: β
y
k = 1 for some y = yk+1 ∈ Y(xk) or β

y
k = 0,∀y 	=

yk+1, y ∈ Y(xk). Thus, �xk(1) corresponds to one element of βk being unity and the
rest null. The choice of the corresponding maximizer is

yk+1 = arg max
y∈Y(xk)

{
�xk(1)t (∇f (xk, y)+c∇gt

kgk −μX−1
k e)+ 1

2
‖�xk(1)‖2

Hk

}
. (11)

We therefore, consider two possible directions �w(1) and �w(βk), depending on the
subgradient ∇�(x) used. The direction �w(1) is easier to compute, as it does not
entail the solution of the quadratic programming problem (9). We define two charac-
terizations of ∇P(xk, ., ck,μ). One corresponds to the maximizer yk+1 responsible

1This is a strong assumption that can be relaxed, for example, by considering the Hessian of the augmented
Lagrangian. We omit further discussion on this for brevity.

J Optim Theory Appl (2008) 136: 87–103 91

for the worst-case descent direction and the other corresponds to multiple maximiz-
ers, y ∈ Y(xk). These are given by

∇P(xk, yk+1; ck,μ) = ∇xf (xk, yk+1) + ck∇g(xk)
tg(xk) − μX−1

k e,∑
y∈Y(xk)

β
y
k ∇P(xk, y; ck,μ) =

∑
y∈Y(xk)

β
y
k ∇xf (xk, y) + ck∇g(xk)

tg(xk) − μX−1
k e.

These two characterizations of ∇P(xk, ., ck,μ) lead to two possible sub-gradient
choices for ∇�(xk) and ∇�(xk; ck,μ).The new maximizer yk+1 is chosen as a max-
imizer of the following augmented quadratic approximation to �(x; c,μ):

yk+1 = arg max
y∈Y

{Pk(�xk(1), y; c,μ) − C[�(xk) − f (xk, y)]2}.

But if there exists a C ≥ 0 such that �(xk) − f (xk, yk+1) = 0 ensures (11).
The two penalty parameters play an important role in the algorithm. By {(x∗(μ),

λ∗(μ), z∗(μ))} we will denote the solution of the system in (6). The trajectory con-
taining the solution to the perturbed system is called the central path. As μ approaches
zero, the path converges to the solution of the original system. A numerically efficient
procedure for the update of the barrier parameter μ is suggested in [1]. For the the-
oretical properties of the algorithm, it is sufficient to have any sequence μ going to
zero.

A much more subtle role in the algorithm is played by the penalty parameter c.
This will be briefly discussed next. For a more detailed discussion we refer the inter-
ested reader to [1].

The subgradient of �(xk; c,μ) at the kth iteration is

∇�x ≡ ∇�(xk; ck,μ) = ∇�(xk) + ck∇gt
kgk − μX−1

k e.

The direction �xk is a descent direction for � , at the current point xk , if

(∇�(xk) + ck∇gt
kgk − μX−1

k e,�xk) + 1

2
‖�xk‖2

Hk
≤ 0. (12)

Using the fact that the Newton system must satisfy ∇gT
k �xk = −gk , the directional

derivative �xt
k∇�(xk; ck,μ) can be written as

�xt
k∇�(xk; ck,μ) = �xt

k∇�(xk) − ck‖gk‖2 − μ�xt
kX

−1
k e, (13)

where ck is the value of the penalty parameter at the beginning of the k-th iteration.
Since μ is fixed we can deduce that if ck is large enough then the descent in (13) can
be achieved. When a single maximizer is present then descent can be assured by in-
creasing c. In the case of multiple maximizers the direction of the single maximizer
can be used as long as it ensures descent without an increase in c. When a single
maximizer cannot ensure descent, problem (9) is solved and a new sub-gradient, that
depends on all known maximizers, is computed. If this new direction is still not de-
scent, the value of c is increased. Thus, the direction �wk is given by

�wk =
{

−(∇F
β=1
k)−1F

β=1
k , if nmax = 1 or �xk(1)t∇�(xk, yk+1; ck,μ) ≤ 0,

−(∇F
β
k)−1F

β
k , otherwise.

92 J Optim Theory Appl (2008) 136: 87–103

Table 1 Choices for ∇x�(xk), ∇x�(xk; ck,μ) with y ∈ Y (xk)

∇x�(xk) �wk ∇x�(xk; ck,μ)

∇xf (xk, yk+1) �wk(1) = −(∇F
βk=1
k

)−1F
βk=1
k

∇P(xk, yk+1; ck,μ)∑
y β

y
k
∇xf (xk, y) �wk(βk) = −(∇F

βk
k

)−1F
βk
k

∑
y β

y
k
∇P(xk, y; ck,μ)

When �xk is not a descent direction for the merit function (4), and 0 < ‖gk‖2
2 < εg ,

then xk+1 and v are given by the solution of the following discrete minimax prob-
lem: minx∈Xf

maxy∈Y(xk){f (x, y)}. The value v is used in Step 2(a) of the algorithm.
At xk+1, the new maximizer is computed as: ŷk+1 = arg maxy∈Y f (xk+1, y). The al-
gorithm terminates if f (xk+1, ŷk+1) ≤ v. Otherwise the new maximizer is added to
the set of maximizers Yk+1 = Yk ∪ ŷk+1, and a new iteration is performed. These
two characterizations of ∇P(xk, ., ck,μ) lead to two possible sub-gradient choices
for ∇�(xk) and ∇�(xk; ck,μ). These are summarized in Table 1 together with the
corresponding �wk . In the rest of this paper we ignore the argument β and use �wk ,
except when distinguishing between �wk(1) and �wk(βk). We now have all the de-
finitions and basic concepts required to state the algorithm.

Inner Iteration

Step 0: Initialization Set β = 1, �xk(1) is used when there is a single maximizer or
descent is assured even in the presence of multiple maximizers.

Step 1(a): If ‖F(xk, yk, λk, zk;μ)‖2 ≤ ημ, inner iteration converged. Go to outer it-
eration.
Compute the descent direction if β = 1 then

yk+1 = arg max
y∈Y(xk)

{
�xt

k(1)∇xP (xk, y; ck,μ) + 1

2
‖�xk(1)‖2

Hk

}
,

�xk = �xk(1) and ∇�(xk) = ∇xf (xk, yk+1) go to Step 1(c)

Step 1(b): If a single maximizer is not sufficient for progress, compute �xk(β)

βk = arg max
β∈B

{
�xk(β)t

∑
y∈Y(xk)

βy∇xP (xk, y; ck,μ) + 1

2
‖�xk(β)‖2

Hk

}

This implies the values ∇�(xk) = βt
k∇xf (xk, y) and �xk = �xk(βk) which are

actually computed in Step 1(c)
Step 1(c): Interior point step

�wk(βk) = −(∇F
βk

k)−1F
βk

k ; αmax
xk = min

1≤i≤n

{−xi
k

�xi
k

: �xi
k < 0

}
,

α̂xk
= min{γ αmax

xk
,1}. (14)

Step 2(a)(i): Test for descent of the merit function Mnum = �xt
k∇�k − ck‖gk‖2

2 −
μl�xt

kX
−1
k e + ‖�xk‖2

Hk
if ((Mnum ≥ 0) and (0 ≤ ‖gk‖2

2 ≤ εg)); then,

J Optim Theory Appl (2008) 136: 87–103 93

If descent condition is not satisfied, and c cannot be increased due to small ‖gk‖2
2,

generate new maximizer and xk+1 using semi-infinite programming step.
Step 2(a)(ii): Semi-infinite programming step,

xk+1 = arg min
x∈Xf

max
y∈Y(xk)

{f (x, y)} v = min
x∈Xf

max
y∈Y(xk)

{f (x, y)},

ŷk+1 = arg max
y∈Y

{f (xk+1, y)};

if f (xk+1, ŷk+1) ≤ v, stop: the additional maximizer(s) ŷk+1 do not improve the
current function value, so xk+1 is the minimax solution. Go to Step 3

Step 2(b): if (Mnum ≤ 0), then descent assured and ck remains unchanged otherwise
no decrease with �xk = �xk(1) and nmax > 1, a new direction �xk(β) needs to be
computed if (nmax 	= 1) and (β = 1); then go to Step 1(b); otherwise, increase the
penalty parameter ck ,

ck+1 = max{(�xt
k∇x�k − μl�xt

kX
−1
k e + ‖�xk‖2

Hk
)/(‖gk‖2

2), ck + δ}. (15)

Step 2(c): Compute wk+1, αxk
= θi α̂k , where i = min{0,1,2, . . .} such that

�(xk + αxk
�xk; ck+1,μ) − �(xk; ck+1,μ) ≤ ραxk

∇x�(xk; ck+1,μ)t�xk. (16)

If ‖xk+αxk�xk‖‖xk‖ ≤ εtol , then go to Step 2(a)(ii) LBi
k = min{ 1

2mμ, (xi
k + αxk�xi

k)z
i
k},

UBi
k = max{2Mμ,(xi

k +αxk�xi
k)z

i
k} αi

zk = max{α > 0 : LBi
k ≤ (xi

k +αxk�xi
k)(z

i
k +

α�zi
k) ≤ UBi

k}. αzk = min{1,min1≤i≤n{αi
zk}}. αλk

= αzk . αk = (αxk
, αzk

, αzk
)t .

wk+1 = wk + αk�wk . ŷk+1 = arg maxy∈Y f (xk+1, y). If ŷk+1 ∈ Yk , k = k + 1, go
to Step 2(a)(ii).

Step 3: Update the set of potential maximizers Yk+1 = Yk ∪ ŷk+1, k = k + 1, go to
Step 1(a).

The outer iteration involves the reduction of μ to zero, and termination checks for the
over problem.

2 Convergence Results

The semi-infinite programming steps in Step 2(a)(ii) of the algorithm provide a
safety-net for the method which tries to progress using descent steps if a sufficient
number of (multiple) maximizers are identified. The interior point approach looks
for new maximizers at each xk+1 assuming the merit function can be reduced. Semi-
infinite programming, solves the discrete minimax problem for the given set of dis-
crete maximizers. Convergence of the semi-infinite programming algorithm is based
on the discretization of (1), given by: minx∈X maxy∈Yk

{f (x, y)}, where Yk is some
finite subset of Y . Let Ȳ denote all finite subsets of Y . At some k, Yk ⊂ Y , xk ∈ Xf ,
the semi-infinite programming algorithm steps compute xk+1 and attempt to find a
ŷ ∈ Y such that: f (xk+1, ŷ) > f (xk+1, y), ∀y ∈ Yk . The semi-infinite algorithm can

94 J Optim Theory Appl (2008) 136: 87–103

be expressed as a point to set mapping [16]. The search for a ŷ can be viewed as:
β : Xf × Ȳ → Ȳ , where β is given by

β(xk,Yk) = {Yk ∪ {ŷ} | f (xk, ŷ) > f (xk, y),∀y ∈ Yk}.

As before, we let Yk+1 = Yk ∪ ŷk+1. Let �k(x) = maxy∈Yk
f (x, y) and let εα

k > 0
indicate the neighborhood: {x ∈ Xf | �(xk) ≤ �(x), x ∈ ‖xk − x‖ ≤ εα

k }. The com-
putation of xk+1, realized by minimizing �k(x), can be defined as

α(β(xk,Yk)) : Yk+1 → Xf ×R+,

α(Yk+1) =
{
x ∈ Xf | is an εα

k local solution to min
x∈Xf

max
y∈Yk+1

f (x, y)
}
.

Lemma 2.1 α ◦ β is closed.

Proof The proof can be found in [17]. �

Lemma 2.2 Let x∗, Y∗ be accumulation points of the sequences {xk} and {Yk} gen-
erated by the algorithm. Then, x∗ is a solution to (1).

Proof The proof can be found in [17]. �

In the rest of this section we focus on the basis that sufficient number of
maximizers are available and the algorithm is able to generate a descent direc-
tion. If descent cannot be assured and new maximizers are needed, the maximiz-
ers found so far are retained and utilized by the semi-infinite programming al-
gorithm. We show that, while the barrier parameter is fixed to a value μl , the
algorithm produces iterates wk(μ

l) = (xk(μ
l), λk(μ

l), zk(μ
l)), for k ≥ 0, which

are bounded and converge to a point w∗(μl) = (x∗(μl), λ∗(μl), z∗(μl)) such that:
‖F(x∗(μl), λ∗(μl), z∗(μl);μl)‖ = 0. In other words, we show that the inner itera-
tion, converges to a solution of the perturbed optimality conditions (6). For simplic-
ity we suppress the index l, and we use wk instead of wk(μ

l) to denote the iterates
produced while μ = μl .

Lemma 2.3 Let f and g be differentiable functions and suppose that there exists
a small εg > 0, such that ‖gk‖2 > εg . If �xk is calculated by (7) and ck+1 is chosen
as in (15), then �xk is a descent direction for the merit function � at the current
point xk . Furthermore,

�xt
k∇�(xk; ck+1,μ) + 1

2
‖�xk‖2

Hk
≤ −1

2
‖�xk‖2

Hk
≤ 0. (17)

Proof Assume that �wk is given by �w(1) and that we are using yk+1 to determine
the search direction: yk+1 = arg maxy∈Y(xk){�xt

k∇xP (xk, y; ck,μ) + 1
2‖�xk‖2

Hk
}.

J Optim Theory Appl (2008) 136: 87–103 95

Then, it follows that: �xk(1)t∇�(xk; ck+1,μ) = �xk(1)t∇xf (xk, yk+1)−ck‖gk‖2
2 −

μ�xk(1)tX−1
k e. In Step 2, the algorithm initially checks the inequality

�xk(1)t∇xf (xk, yk+1) − ck‖gk‖2 − μ�xk(1)tX−1
k e + ‖�xk(1)‖2

Hk
≤ 0. (18)

If (18) is satisfied, then by setting ck+1 = ck and rearranging (18), we obtain (17). On
the other hand, if (18) is not satisfied, by setting

ck+1 = max{(�xk(1)t∇xf (xk, yk+1) − μ�xk(1)tX−1
k e

+ ‖�xk(1)‖2
Hk

)/(‖gk‖2), ck + δ},
for δ > 0, and substituting into (13), it can be verified that (17) also holds. If nmax > 1,
when �wk is given by �w(β), we have

�xk(βk)
t∇�(xk; c,μ) + ‖�xk(βk)‖2

Hk

= max
βy

�xk(βk)
t

(∑
βy

βy∇xP (xk, y)

)
+ 1

2
‖�xk(βk)‖2

Hk
+ 1

2
‖�xk(βk)‖2

Hk

≤ max
βy

{
�xk(β

y)t
(∑

βy

βy∇xP (xk, y)

)
+ 1

2
‖�xk(β

y)‖2
Hk

}
+ 1

2
‖�xk(βk)‖2

Hk

=
{
�xk(βk)

t

(∑
βk

βk∇xP (xk, y)

)
+ 1

2
‖�xk(βk)‖2

Hk

}
+ 1

2
‖�xk(βk)‖2

Hk

= �xk(βk)
t

(∑
y∈Y(xk)

β
y
k ∇xf (xk, y)

)
− ck‖gk‖2

2

− μ�xk(βk)
tX−1

k e + ‖�xk(βk)‖2
Hk

= �xk(βk)
t∇�(xk) − ck‖gk‖2

2 − μ�xk(βk)
tX−1

k e + ‖�xk(βk)‖2
Hk

,

where βk is obtained solving (9). In Step 2, the algorithm checks the inequality

�xk(βk)
t∇x�(xk) − ck‖gk‖2 − μ�xk(βk)

tX−1
k e + ‖�xk(βk)‖2

Hk
≤ 0. (19)

If (19) is satisfied then by setting ck+1 = ck and rearranging (19), we obtain (17). On
the other hand, if (19) is not satisfied, by setting

ck+1 = max

{
�xk(βk)

t∇x�(xk) − μ�xk(βk)
tX−1

k e + ‖�xk(βk)‖2
Hk

‖gk‖2
, ck + δ

}
,

for δ > 0, and substituting into (13), it can be verified that (17) also holds. �

In the previous lemma it is assumed that ‖gk‖2 > εg . The next lemma demon-
strates that �xk remains a descent direction for the merit function � when gk = 0,
i.e., when feasibility of the equality constraints has been achieved.

96 J Optim Theory Appl (2008) 136: 87–103

Lemma 2.4 Let f and g be differentiable functions and let �wk = (�xk,�λk,�zk)

be the Newton direction taken by solving system (7). If for some or all iterations k,
gk = 0, then the descent property (17) is satisfied for any choice of the penalty para-
meter ck ∈ [0,∞).

Proof If gk = 0, then (8) yields

�λk = M−1
k ∇gk�

−1
k hk; �xk = −Pk�

−1
k ∇x�k. (20)

From the fact that xk and zk are strictly positive and assuming that the second or-
der sufficiency condition for optimality is satisfied at the solution point, we have
�xt

kHk�xk ≤ �xt
k(Hk + X−1

k Zk)�xk . Now, for gk = 0, we have

�xt
k∇�(xk; c,μ) + ‖�xk‖2

Hk
≤ �xt

k∇�(xk; c,μ) + ‖�xk‖2
�k

= −∇�tPk�
−1
k ∇� + ∇�tPk�

−1
k ∇� = 0.

Therefore, �xt
k∇�(xk; c,μ)+ 1

2‖�xk‖2
Hk

≤ − 1
2‖�xk‖2

Hk
, which establishes the de-

scent property (17). �

Lemma 2.5 Let the assumptions of the previous lemma hold and let gk = 0, for
some k. Then, the algorithm chooses ck+1 = ck in Step 2. Also, �xk is still a descent
direction for the max of merit function � at xk .

Proof In the previous lemma it was proved that the descent property (17) is satisfied
for gk = 0. This basically means that the condition in Step 2 of the algorithm is
always satisfied. Consequently, the algorithm does not need to increase the value
of the penalty parameter and simply sets ck+1 = ck . For this choice of the penalty
parameter it can be verified that the descent property (17) still holds. �

Lemma 2.6 Let f and g be continuously differentiable functions and �xt
k∇�(xk)−

μ�xt
kX

−1
k e + ‖�xk‖2

Hk
≤M∗ < ∞. Then, for μ fixed:

(i) there exists a constant ck+1 ≥ 0, satisfying Step 2 the algorithm;
(ii) assuming that the sequence {xk} is bounded away from zero, ck is increased

finitely often, then there exist an integer k∗ ≥ 0 and c∗ ∈ [0,∞) such that ck =
c∗ for all k ≥ k∗.

Remark 2.1 In the preceding lemma we assume that the sequence xk is bounded.
Similarly, El-Bakry et al. in [18] define the following set:

�(ε) ≡ {wk | ε ≤ ‖F(xk,λk, zk;0)‖2
2 ≤ ‖F(x0, λ0, z0;0)‖2

2}.

The sequence {μX−1
k e} converges to zk at the end of the inner iteration. It is then

shown, in Lemma 6.1 of [18] that if wk ⊂ �(ε), then the iteration sequence wk is
bounded above and in addition {(zk, xk)} is componentwise bounded away from zero.
This is used in the following proof.

J Optim Theory Appl (2008) 136: 87–103 97

Proof of Lemma 2.6 Part (i) is a direct consequence of Lemmas 2.3–2.5, since a
finite value ck+1 is always generated, in step 2. Part (ii) will be shown by contradic-
tion. Assume that ck → ∞ as k → ∞. From the way ck+1 is defined in Step 2 we
can deduce that, if ck → ∞, then ‖gk‖2 → 0. Thus, there exists an integer k1 such
that for all k ≥ k1 we have: 0 < ‖gk‖2 ≤ εg . However, in the case 0 < ‖gk‖2 ≤ εg ,
the algorithm stops increasing the penalty parameter since it switches to a proce-
dure to generate more maximizers. Therefore the maximum value that ck can take
is: c∗ = ck∗ = M∗/εg < ∞ where M∗ and εg are finite values. This contradicts our
assumption that ck → ∞ as k → ∞. Hence the penalty parameter does not increase
indefinitely, that is, there exists an integer k∗ ≥ 0 such that for all k ≥ k∗, we have
ck < ∞. �

The basic result of Lemmas 2.3 to 2.6 is that the direction �xk , generated by (7),
is a descent direction for the merit function � at the current point xk , that is in-
equality (17) holds. In the next theorem we show that the sequence {�(xk; c∗,μ)}
generated by the interior point section of the algorithm is monotonically decreasing
for barrier parameter μ fixed. It is assumed that at most (n+ 1) maximizers are iden-
tified through the epi-convergent procedure in Step 2. We also show that the step αxk ,
chosen by the Armijo step size strategy in Step 2 is always positive.

Lemma 2.7 Consider the quadratic approximation (8) to P(x, y; c,μ) in (3) at xk .
We note that, for αk ∈ [0,1],

max
y∈Y

P (xk + αk�xk, y; c,μ) = max
y∈Y(xk+αk�xk)

P (xk + αk�xk, y; c,μ),

max
y∈Y(xk)

Pk(0) = max
y∈Y

P (xk, y; c,μ) = max
y∈Y(xk)

P (xk, y; c,μ),

and due to continuity, for αk > 0 sufficiently small,

max
y∈Y(xk+αk�xk)

Pk(αk�xk, y; c∗,μ) ≤ max
y∈Y(xk)

Pk(αk�xk, y; c∗,μ). (21)

Proof The above equalities follow by definition of Y,Y (xk) and Pk . Inequality (21)
follows trivially if Y(xk) ⊇ Y(xk + αk�xk), ∀αk > 0. Otherwise, consider the semi-
infinite setting of: minx∈Xf ,τ {τ | f (x, y) ≤ τ ∀y ∈ Y }. Where we have f (xk, y) = τ

ify ∈ Y(xk), or f (xk, y) < τ otherwise. Let τ(α) be the solution of the problem:
minα{τ(α) | f (xk + α�xk, y) − τ(α) ≤ 0, ∀y ∈ Y }. At xk, y ∈ Y(xk), moving from
xk along �xk , yields τ(α) such that, by continuity of f (x, y): f (xk + α�xk, y) =
τ(α) if y ∈ Y(xk), and f (xk +α�xk, y) < τ(α) otherwise. Hence, there exists αk > 0
such that Y(xk) ⊇ Y(xk + αk�xk). �

We observe that αk > 0 sufficiently large may lead to the case Y(xk + αk�xk) �
Y(xk). Nevertheless, for αk > 0 sufficiently small, the required result is as-
sured. Practical applications also support this. It is also possible to compute
maxy∈Y Pk(αk�xk, y; c∗,μ), to define �(xk+1; c∗,μ). However, this involves ad-
ditional computation.

98 J Optim Theory Appl (2008) 136: 87–103

Theorem 2.1 Assume that:

(i) f and g are twice continuously differentiable;
(ii) the approximate Hessian matrix Hk is positive definite and bounded;
(ii) for each iteration k, there exists a solution to the Newton system (7);
(iv) there exists an iteration k∗, small εg > 0, ‖gk‖2 /∈ (0, εg) and a scalar c∗ ≥

0 (c∗ = c ∗ (εg)) such that

�xt
k∇�(xk; c,μ) + 1

2
‖�xk‖2

Hk
≤ −1

2
‖�xk‖2

Hk

is satisfied for all k ≥ k∗ with ck(εg) = c∗(εg).

Then, the stepsize computed in (14–16) is such that αk ∈ (0,1] and the sequence
{�(xk; c∗,μ)} is monotonically decreasing for k ≥ k∗ and μ fixed.

Proof Consider the case when the direction �wk is given by �wk(1) in Table 1.
Note that

�(xk+1; c∗,μ) = max
y∈Y

{P(xk+1, y; c∗,μ)}

= max
β∈B

{ ∑
y∈Y(xk+1)

βyP (xk+1, y; c∗,μ)

}
. (22)

The second order expansion of P(x, y; c∗,μ) with respect to x yields

P(xk + αk�xk, y; c∗,μ)

= P(xk, y; c∗,μ) + αk∇xP (xk, y; c∗,μ)t�xk

+ α2
k

∫ 1

0
(1 − t)�xt

k(∇2
xP (xk + tαk�xk, y; c∗,μ) + Hk − Hk)�xkdt)}. (23)

Using Pk(�xk, y; c∗,μ) given by (8), we evaluate the maximum on both sides of (23)
with respect to y ∈ Y. Noting xk+1 = xk + αk�xk , we have

�(xk+1; c∗,μ) ≤ max
y∈Y

{Pk(αk�xk, y; c∗,μ)} + α2
kφk

1

2
‖�xk‖2

2,

φk = max
y∈Y

{∫ 1

0
(1 − t)�xt

k(∇2
xP (xk + tαk�xk, y; c∗,μ) − Hk)�xkdt

}
. (24)

Using (21) in Lemma 2.7, we have

max
y∈Y

{Pk(αk�xk, y; c∗,μ)} = max
y∈Y(xk+αk�xk)

{Pk(αk�xk, y; c∗,μ)}

≤ max
y∈Y(xk)

{Pk(αk�xk, y; c∗,μ)}. (25)

As the first term on the right in (25) is a convex function, we have

J Optim Theory Appl (2008) 136: 87–103 99

max
y∈Y(xk)

{Pk(αk�xk, y; c∗,μ)}

≤ αk max
y∈Y(xk)

{Pk(�xk, y; c∗,μ)} + (1 − αk) max
y∈Y(xk)

{Pk(0, y; c∗,μ)}

= αk max
y∈Y(xk)

{Pk(�xk, y; c∗,μ)} + (1 − αk) max
y∈Y(xk)

{P(xk, y; c∗,μ)}

= max
y∈Y(xk)

{(P (xk, y; c∗,μ)}

+ αk

(
max

y∈Y(xk)
{Pk(�xk, y; c∗,μ)} − max

y∈Y(xk)
{P(xk, y; c∗,μ)}

)

≤ max
y∈Y(xk)

{(P (xk, y; c∗,μ)} + αk

(
max

y∈Y(xk)
{P(xk, y; c∗,μ)}

+ max
y∈Y(xk)

{
�xt∇xP (xk, y; c∗,μ) + 1

2
‖�xk‖2

Hk

}

− max
y∈Y(xk)

{P(xk, y; c∗,μ)}
)

= max
y∈Y(xk)

{(P (xk, y; c∗,μ)} + αk max
y∈Y(xk)

{
�xt∇xP (xk, y; c∗,μ) + 1

2
‖�xk‖2

Hk

}
,

where the last inequality is due to taking the maximum of each subcomponent on the
right. Thus, using (24), we have

�(xk+1; c∗,μ) ≤ �(xk; c∗,μ) + αk max
y∈Y(xk)

{
�xt∇xP (xk, y; c∗,μ) + 1

2
‖�xk‖2

Hk

}

+ α2
kφk‖�xk‖2

2. (26)

Consider the choice of �xk(1), yk+1. By Lemmas 2.3 and 2.4, �xk(1), yk+1 in (11)
are chosen to ensure the inequality

max
y∈Y(xk)

{
�xt∇xP (xk, y; c∗,μ)+ 1

2
‖�xk‖2

Hk

}
≤ −1

2
‖�xk‖2

Hk
≤ −m′

2
‖�xk‖2 (27)

as established in Lemmas 2.3 and 2.4. From assumption (ii), we have: ‖�xk‖2
2 ≤

1
m′ �xt

kHk�xk , and from Lemmas 2.3 and 2.4, �xt
kHk�xk ≤ −�xt

k∇�(xk; c∗,μ).
Thus, (24) may be expressed as

�(xk+1; c∗,μ) ≤ �(xk; c∗,μ) + αk�xt
k∇�(xk; c∗,μ)

+ 1

2
α2

k‖�xk‖2
Hk

+ α2
kφk‖�xk‖2

2.

Computing β, by Lemmas 2.3 and 2.4, �xk(βk) and βk in (9) are also chosen to
ensure (27). For β

y
k chosen as βk = arg maxβ∈B{�xt

k

∑
y∈Y(xk)

βy∇xP (xk, y; c,μ)+

100 J Optim Theory Appl (2008) 136: 87–103

1
2‖�xk‖2

Hk
}, we have the corresponding directional derivative

�xt
k∇x�(xk; c∗,μ) = �xt

k

∑
y∈Y(xk)

β
y
k ∇xP (xk, y; c∗,μ).

From (24), we have

�(xk+1; c∗,μ) ≤ �(xk; c∗,μ) + αk�xt
k

∑
y∈Y(xk)

β
y
k ∇xP (xk, y; c∗,μ)

+ 1

2
α2

k‖�xk‖2
Hk

+ α2
kφk‖�xk‖2

2. (28)

From assumption (ii) and Lemmas 2.3 and 2.4, we also have

‖�xk‖2
2 ≤ 1

m′ �xt
kHk�xk; �xt

kHk�xk ≤ −�xt
k∇�(xk; c∗,μ).

Thus, using Lemmas 2.3 to 2.6, (26) and (28) can be written as

�(xk+1; c∗,μ) − �(xk; c∗,μ) ≤ αk�xt
k∇�(xk; c∗,μ)

(
1 − αk

m′ + 2φk

2m′

)
. (29)

The scalar ρ in Armijo’s rule (16) determines a steplength αxk
such that

ρ ≤ 1 − αxk

m′ + 2φk

2m′ ≤ 1

2
.

From Lemmas 2.3 to 2.6 we always have that �xt
k∇�(xk; c∗,μ) ≤ −‖�xk‖2

Hk
≤ 0,

there must exist αxk
∈ (0,1] to ensure (29) and Armijo’s rule. Let α0 be the largest

such number. Consequently, for every α ≤ α0 Armijo’s rule and (29) are also satis-
fied. Therefore, step-length αxk

∈ [βα0, α0] is selected, where 0 < β < 1. From all
the said it follows that the sequence �(xk; c∗,μ) is monotonically decreasing. �

The direct consequence of the above theorem is that the sequence {xk} is bounded
away from zero, which is established in the following corollary.

Corollary 2.1 The sequence {xk} of primal variables generated by the algorithm,
with μ fixed, is bounded away from zero.

Proof Assume to the contrary that the sequence {xk} → 0. Then {−∑n
i=1 log(xi)} →

∞. From the assumption that the feasible region is bounded, we conclude that the se-
quences {f (xk)} and {‖g(xk)‖} are also bounded. Hence, {�(xk; c∗,μ)} → ∞ which
contradicts the monotonic decrease of � . �

The following lemma, proved by Yamashita in [19], shows that the dual stepsize
rule, used by the algorithm, generates iterates zk which are also bounded above and
away from zero.

J Optim Theory Appl (2008) 136: 87–103 101

Lemma 2.8 While μ is fixed, the lower bounds LBi
k and the upper bounds UBi

k ,
i = 1,2, . . . , n, of the box constraints in the dual step size rule, are bounded away
from zero and bounded from above respectively, if the corresponding components xi

k ,
of the iterates xk are also bounded above and away from zero.

Proof The proof can be found in [19]. �

Having established that the sequences of iterates {xk} and {zk} are bounded above
and away from zero, it can further be shown that the iterates {yk}, k ≥ 0 are also
bounded.

Lemma 2.9 Let wk is a sequence of vectors generated by the algorithm for μ fixed.
Then, the sequence of vectors {(�xk, yk + �yk,�zk)} is bounded.

Proof The proof can be found in [20]. �

Lemma 2.10 below establishes the results required in Theorem 2, to demonstrate
the convergence of the sequence {wk} to w∗ = (x∗, y∗, z∗), satisfying the first order
necessary conditions of optimality for (2).

Lemma 2.10 Let the assumptions of the previous theorem hold and the barrier para-
meter μ is fixed. Assume also that, for some iteration k0, the level set S = {x ∈ Rn+ :
�(x; c∗,μ) ≤ �(xk0; c∗,μ)} is compact. Then, for all k ≥ k0, we have

lim
k→∞ max

β∈B
�xt

k

∑
y∈Y(xk)

(β∇xf (xk, y) + c∇gt
kgk − μX−1

k e) = 0. (30)

Proof The scalar ρ ∈ (0,1/2) in the stepsize strategy at step 2, determines αxk such
that ρ ≤ 1 − αxk(0.5 + φk/m′) ≤ 1

2 , and by solving for αxk we obtain

1/2

1/2 + φk/m′ ≤ αxk ≤ 1 − ρ

1/2 + φk/m′ .

Hence, the largest value that the step-length αxk can take and still satisfy Armijo’s
rule in step 2 is α0

xk = min{1,
1−ρ

1/2+φk/m′ }. Recall that the step-length αxk is chosen
by reducing the maximum allowable step-length α̂xk until Armijo’s rule is satisfied.
Therefore αxk ∈ [βα0

xk, α
0
xk] and thereby also satisfies Armijo’s rule. As the aug-

mented objective function P(x, y; c,μ) is twice continuously differentiable and the
level set S1 is bounded, there exists a scalar M̄ < ∞ such that

φk =
∫ 1

0
(1 − t)

∥∥∥∥ ∑
y∈Y(xk)

βy∇2
xP (xk + tαxk�xk, y; c∗,μ) − Hk

∥∥∥∥
2
dt ≤ M̄ < ∞.

Thus, we always have αxk ≥ ᾱxk > 0, where ᾱxk = min{1,
1−ρ

1/2+M̄/m′ }. Hence the

step size αxk is always bounded away from zero. Furthermore, from Armijo’s rule

102 J Optim Theory Appl (2008) 136: 87–103

and Lemmas 2.3 and 2.6 we have

�(xk+1; c∗,μ) − �(xk; c∗,μ) ≤ ραxk∇�(xk; c∗,μ)

= max
β∈B

�xt
k

∑
y∈Y(xk)

β∇xP (xk, y; c∗,μ) < 0. (31)

From our assumption that the level set S is bounded, it can be deduced that

lim
k→∞|�(xk+1; c∗,μ) − �(xk; c∗,μ)| = 0.

Consequently, from (31)

lim
k→∞

(
ραxk max

β∈B
�xt

k

∑
y∈Y(xk)

β∇xP (xk, y; c∗,μ)

)
= 0.

Finally, since ρ, αxk > 0, it can be deduced that (30) holds. �

A consequence of the above is that, under the same assumptions, the following
holds:

lim
k→∞‖�xk‖2

Hk
= 0.

Theorem 2.2 Let the assumptions of the previous theorem hold. Then, the algorithm
terminates at a point satisfying the first-order necessary conditions of problem (2)
and at that point the perturbed conditions (6) are satisfied for μ fixed.

Proof Let limk→∞(xk, λk, zk) = (x∗(μ),λ∗(μ), z∗(μ)), ∀k ≥ k∗, k ∈ K ⊆ {1,2, . . .}.
The existence of such points is ensured since by Lemmas 2.8 and 2.9, the sequence
{(xk(μ), yk(μ), zk(μ))} is bounded for μ fixed, and by Theorem 2.1 the algorithm
always decreases the merit function � sufficiently at each iteration, thereby ensuring
xk ∈ S, with S compact. First we show that for k sufficiently large the dual step αzk

becomes unity. To this end, we need to show the following:

lim
k→∞‖zk + �zk − μX−1

k+1e‖ = 0.

From (7), we have

‖zk + �zk − μX−1
k+1e‖ ≤ ‖X−1

k Zk‖‖�xk‖ + μ‖X−1
k − X−1

k+1‖‖e‖. (32)

Furthermore, we have ‖X−1
k − X−1

k+1‖2 ≤ nmax1≤i≤n(α
2
xk

(�xi
k)

2)/((xi
k)

2(xi
k+1)

2).
Since αxk

∈ (0,1] and (�xi
k)

2 ≤ ‖�xk‖2, using the previous theorem yields

lim
k→∞‖X−1

k − X−1
k+1‖2 ≤ n lim

k→∞ max
1≤i≤n

‖�xk‖2

(xi
k)

2(xi
k+1)

2
.

Therefore, (32) holds and zk+1 = zk + �zk for k sufficiently large. The comple-
mentarity condition becomes Xk+1zk+1 = Xk+1X

−1
k (−Zk�xk + μe). Using the

J Optim Theory Appl (2008) 136: 87–103 103

fact limk→∞ �xk = 0, we can derive that: limk→∞ Xk+1X
−1
k = I . Letting k → ∞

yields limk→∞ Xk+1zk+1 = X∗(μ)z∗(μ) = μe. From (7), it follows that g(x∗(μ)) =
limk→∞ g(xk) = limk→∞ ∇gk�xk = 0. Finally, the first equation of the Newton sys-
tem (7) gives ∇�k − ∇gt

kλk+1 − μX−1
k e = −(Hk + X−1

k Zk)�xk . Letting k → ∞,
the above equation becomes limk→∞ ‖∇�k − ∇gt

kλk+1 − μX−1
k e‖ = 0. From the

assumptions that the functions f and g have continuous gradients and ∇gt
k has

full column rank, the above equation becomes limk→∞ ‖∇�k+1 − ∇gt
k+1λk+1 −

μX−1
k+1e‖ = 0, or ∇�(x∗(μ)) − ∇g(x∗(μ))tλ∗(μ) − μX∗(μ)−1e = 0. �

Acknowledgements Financial support of EPSRC Grants GR/R51377/01, EP/C513581/1 and GR
T02560/01 is gratefully acknowledged. The authors are also grateful to Professor Elijah Polak for valuable
suggestions and advice on this paper.

References

1. Rustem, B., Zakovic, S., Parpas, P.: An interior point algorithm for continuous minimax: implemen-
tation and computation. Comput. Optim. Appl. (2008, to appear)

2. Womersley, R.S., Fletcher, R.: An algorithm for composite nonsmooth optimization problems. J. Op-
tim. Theory Appl. 48, 493–523 (1986)

3. Polak, E., Mayne, D.Q., Higgins, E.J.: A superlinearly convergent minimax algorithm for minimax
problems. UCB/ERL M86/103, Department of Electrical Engineering, University California, Berke-
ley, CA (1988)

4. Rustem, B., Nguyen, Q.: An algorithm for inequality constrained discrete minimax. SIAM J. Optim.
8, 256–283 (1998)

5. Obasanjo, E., Rustem, B.: An interior point algorithm for nonlinear minimax problems (to appear)
6. Demyanov, V.F., Pvnyi, A.B.: Numerical methods for finding saddle points. USSR Comput. Math.

Math. Phys. 12, 1099–1127 (1972)
7. Rustem, B., Howe, M.A.: Algorithms for Worst-case Design with Applications to Risk Management.

Princeton University Press, Princeton (2001)
8. Panin, V.M.: Linearization method for continuous min–max problems. Kibernetika 2, 75–78 (1981)
9. Polak, E.: Optimization Algorithms and Consistent Approximations. Springer, Berlin (1997)

10. Polak, E., Royset, J.O.: Algorithms for finite and semi-infinite min–max–min problems using adaptive
smoothing techniques. J. Optim. Theory Appl. 119, 421–457 (2003)

11. Polak, E., Royset, J.O., Womersley, R.S.: Algorithms with adaptive smoothing for finite minimax
problems. J. Optim. Theory Appl. 119, 459–484 (2003)

12. Sasai, H.: An interior penalty method for minimax problems with constraints. SIAM J. Control Optim.
12, 643–649 (1974)

13. Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM
J. Control Optim. 42, 769–788 (2003)

14. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
15. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Lecture

Notes in Mathematics, vol. 630, pp. 144–157. Springer, Berlin (1978)
16. Hogan, W.W.: Point-to-set maps in mathematical programming. SIAM Rev. 15, 591–603 (1973)
17. Parpas, P., Rustem, B.: An algorithm for the global optimization of a class of continuous minimax

problems. J. Optim. Theory Appl. (2008, to appear)
18. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton

interior point method for nonlinear programming. J. Optim. Theory Appl. 89, 507–541 (1996)
19. Yamashita, H.: A globally convergent primal-dual interior point method for constrained optimization.

Technical Report, Mathematical Systems Institute Inc, 2-5-3 Shinjuku, Shinjuku-ku, Tokyo, Japan
(May 1995)

20. Akrotirianakis, I., Rustem, B.: A globally convergent interior point algorithm for general non-linear
programming problems. J. Optim. Theory Appl. 125, 497–521 (2005)

	Convergence of an Interior Point Algorithm for Continuous Minimax
	Abstract
	Formulation of the Problem
	Convergence Results
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

