
J Optim Theory Appl (2010) 145: 289–310
DOI 10.1007/s10957-009-9624-2

Decomposition-based Method for Sparse Semidefinite
Relaxations of Polynomial Optimization Problems

P.M. Kleniati · P. Parpas · B. Rustem

Published online: 29 October 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider polynomial optimization problems pervaded by a sparsity pat-
tern. It has been shown in Lasserre (SIAM J. Optim. 17(3):822–843, 2006) and Waki
et al. (SIAM J. Optim. 17(1):218–248, 2006) that the optimal solution of a polyno-
mial programming problem with structured sparsity can be computed by solving a
series of semidefinite relaxations that possess the same kind of sparsity. We aim at
solving the former relaxations with a decomposition-based method, which partitions
the relaxations according to their sparsity pattern. The decomposition-based method
that we propose is an extension to semidefinite programming of the Benders decom-
position for linear programs (Benders, Comput. Manag. Sci. 2(1):3–19, 2005).

Keywords Polynomial optimization · Semidefinite programming · Sparse SDP
relaxations · Benders decomposition

1 Introduction

We consider polynomial optimization problems (POPs) with a sparsity pattern. To
handle this class of problems, we introduce a decomposition-based method based on
the well-known Benders decomposition [3]. Two interesting properties characterize
our method. Firstly, the problem structure plays a key role in the applicability of the
presented method. Secondly, although the decomposition method that we propose
admits as input a polynomial optimization problem, it is not applicable to it but to its
sparse semidefinite (SDP) relaxation.

It has been shown in [1, 2] that the optimal solution of a polynomial optimiza-
tion problem with a structured sparsity can be computed by solving a series of SDP

Communicated by P.M. Pardalos.

P.M. Kleniati (�) · P. Parpas · B. Rustem
Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2AZ, London, UK
e-mail: pk2003@doc.ic.ac.uk

mailto:pk2003@doc.ic.ac.uk

290 J Optim Theory Appl (2010) 145: 289–310

relaxations. Moreover, the SDP relaxations inherit the sparsity pattern that underlies
the polynomial optimization problem. In view of this, we exploit the structure (spar-
sity pattern) of the SDP relaxation and partition the set of (moment)1 variables into
appropriate subsets. As a result, the SDP problem (relaxation) is decomposed into
a master problem and several subproblems. The master problem is an optimization
problem over the coupling variables,2 and each subproblem is an optimization prob-
lem over one of the remaining sets of variables, which are independent of each other.
The master problem is equivalent to the SDP problem (relaxation) we intend to solve.
However, it possesses an infinite number of constraints and for this reason at each it-
eration of our procedure we deal with a relaxed version of it. The objective value of
the relaxed master problem at each iteration is a lower bound on the optimal objective
value of the SDP problem. As a result, by solving a series of relaxed master problems
we obtain a sequence of increasing lower bounds on the optimal objective value of
the SDP relaxation.

Our algorithm is in line with the Benders decomposition for linear programs [3].
However, there exist two main differences between our procedure and the classical
Benders. In the latter, the finiteness of the procedure is guaranteed due to the fact that
the feasible regions of the subproblems are polyhedral cones, hence finitely gener-
ated. On the other hand, the feasible regions of our subproblems, i.e. the so-called
spectrahedra [4], are not polyhedral. Therefore, they possess an infinite number of
generators. Despite this fact, finite ε-convergence is shown in Theorem 4.1. Further-
more, in classical Benders the set of variables is partitioned into two disjoint subsets
yielding one subproblem at each iteration. We partition the set of variables into sev-
eral subsets, based on the problem structure, to yield more than one subproblems.

Our algorithm is divided into two phases. The first phase involves the method of
partitioning the variables, thus we will usually refer to it as the preprocess phase. The
second phase is the major body of the algorithm and involves the decomposition-
based method for the sparse SDP relaxations. For simplicity, we may often refer to
the decomposition-based method as our algorithm or our method. Nevertheless, the
preprocess phase is equally important since it sets up the problem data and makes the
decomposition-based method applicable.

Contribution The contribution of this paper is twofold: (i) an extension of the Ben-
ders decomposition to semidefinite programming is introduced; (ii) the proposed
decomposition-based method is employed to solve polynomial optimization prob-
lems via their sparse SDP relaxations.

We ought to mention that sparse relaxations are weaker than their dense counter-
parts since they include fewer constraints. As a result, and as pointed out in [5], the
solution of the sparsely relaxed problem may be less accurate than the solution of the
densely relaxed problem if the latter were possible to be used instead.3 However, in

1We will refer to the objective variables of the SDP relaxations as moment variables due to the theory
underlying the sparse SDP relaxation technique. This technique is discussed in Sect. 2.2.
2These are the (moment) variables that appear in all the constraints.
3For quadratic polynomial optimization problems, the quality of bounds achieved by sparse and dense
relaxation technique is equally good as reported in [2].

J Optim Theory Appl (2010) 145: 289–310 291

this work we choose to focus on tackling polynomial problems through their sparse
relaxations only, due to the great potential sparsity offers, including the applicability
of the sparse SDP relaxation technique to large-scale polynomial problems. More-
over, not only can the sparsity pattern that pervades a polynomial optimization prob-
lem be automatically detected using the procedure described in [6], but also general
polynomial optimization problems can be transformed into their sparse equivalent
using the method introduced in [5].

The paper is organized as follows. Section 2 is devoted to a brief overview of the
underlying theory. In Sect. 3, the preprocess phase is described. In Sect. 4, we intro-
duce the decomposition-based method for solving sparse SDP problems. Theoretical
results, including convergence of our procedure, are analyzed. Section 5 includes
technical details of our procedure, while Sect. 6 discusses the performance of our
algorithm when tested on benchmark problems and presents the corresponding nu-
merical results. Section 7 concludes.

Notation Let Sn be the vector space in R(n+1
2) of symmetric n × n matrices. The

inner product in this space is: 〈A,B〉 = tr(AB), for A,B ∈ Sn. The trace tr(·) is the
sum of diagonal elements of a square matrix and is a linear function. A matrix A ∈ Sn

is positive semidefinite if xTAx ≥ 0 for all vectors x ∈ R
n. Similarly, a matrix A ∈ Sn

is positive definite if xTAx > 0 for all vectors x �= 0 ∈ R
n. It is common to write

A � 0 (A � 0) to denote that A is positive semidefinite (positive definite) matrix
and the notation A � B implies that A − B � 0. In addition, by X := Mat(x) we
denote the n × n symmetric matrix whose (i, j)th element is the ((j − 1)n + i)th
element of a vector x ∈ R

n2
. In the same vein, x := vec(X) denotes a vector x ∈ R

n2

whose ((j − 1)n + i)th component is the (i, j)th component of a matrix X ∈ Sn. The
cone Kn = {x ∈ Rn2 | x = vec(X);X � 0} is the cone of vectors obtained from the
vectorization of symmetric positive semidefinite matrices and x �Kn 0 means that
x ∈ Kn.

2 Relevant Theory

2.1 Semidefinite Programming (SDP)

Consider the primal semidefinite programming problem

z1 =
{

min
x

cTx | Ax = b, x �Kn 0
}
, (1)

where c, x ∈ R
n2

, A ∈ R
m×n2

, and its dual

z2 =
{

max
y

bTy | c − ATy �Kn 0
}
, (2)

where b, y ∈ R
m. Semidefinite programming is underpinned by two important theo-

rems, the strong duality theorem and the extended Farkas lemma. Both theorems are
stated below.

292 J Optim Theory Appl (2010) 145: 289–310

Theorem 2.1 (Strong Duality [7]) Let z1 and z2 be the objective values of (1)
and (2), respectively. Assume that there exists an m-vector y such that Mat(AyT) � 0.
Then, z1 = z2.

Lemma 2.1 (Extended Farkas Lemma [7]) Let b ∈ R
m and A ∈ R

m×n2
be a matrix

such that its rows AT
i = vec(Ai), where Ai are symmetric n × n matrices for i =

1, . . . ,m. Furthermore, let there be an m-vector y such that Mat(ATy) � 0. Then,
there exists a symmetric matrix X � 0, with Avec(X) = b or Ax = b, if and only if
yTb ≥ 0 for all y for which Mat(ATy) � 0.

There are several variations of the extended Farkas lemma. For the purposes of
our work, we need to state one of these variations.

Lemma 2.2 ([7]) Let A ∈ R
n2×m be a matrix such that its columns are linearly

independent and are of the form vec(Ai), for symmetric Ai , and let B ∈ R
n×n. As-

sume that there exists some symmetric matrix Y � 0 such that vec(Y)T A = 0. Then,
Mat(Ax) 	 B has a solution in x if and only if 〈B,Y 〉 ≥ 0 for all Y � 0 for which
vec(Y)T A = 0.

In other words, when we deal with the feasibility of the dual SDP problem (2),
one of the two systems will be consistent:

c − ATy �Kn 0, (3)

uTc = −1, uT A = 0, u �Kn 0. (4)

The solution of the system (4) is called the Farkas dual solution. For further reading
on semidefinite programming, the interested reader is referred to [8–11] and the rich
bibliography therein.

2.2 Sparse SDP Relaxations of Polynomial Problems

Consider the following polynomial optimization problem:

p∗ =
{

min
x∈Rn

p∑
k=1

pk(xk) | gj (xk) ≥ 0,
∑
j∈Jk

j = m, k = 1, . . . , p

}
, (5)

where m denotes the total number of constraints.4 Every polynomial involved in the
above problem is a polynomial dependent only on some subset {xk | k ∈ Ik} of the
objective variables x ∈ R

n, where Ik ⊂ {1, . . . , n} and
⋃p

k=1 Ik = {1, . . . , n}. Notice
that these index sets {I1, . . . , Ip} may not be disjoint, in which case their intersection
is equal to the set of linking or coupling variables, namely those variables that appear

4We assume that the m constraints of problem (5) also include the p redundant constraints nkM2 −
‖x(Ik)‖2 ≥ 0, where nk is the cardinality of index set Ik and M > ‖x‖∞ for all feasible points x, as
indicated in [1].

J Optim Theory Appl (2010) 145: 289–310 293

in all the constraints. In addition, in the definition of problem (5) observe the existence
of another collection of p index sets Jk . These sets are defined as follows:

Jk = {j ∈ {1, . . . ,m} | gj ∈ R[x(Ik)]},
where x(Ik) = {xk | k ∈ Ik}. In other words, for every j ∈ Jk , the constraint gj is
only dependent on the variable set x(Ik). The sets {J1, . . . , Jp} are disjoint.

The SDP relaxation of order ω for problem (5) is given below [1]:

p∗
ω = min

y

p∑
k=1

∑
αk∈Nn

pαk
yαk

,

s.t. Mω(y, Ik) � 0, k = 1, . . . , p,

Mω−dj
(gj y, Ik) � 0, j ∈ Jk, k = 1, . . . , p,

y0 = 1, (6)

for 2ω ≥ max{degf,maxj deggj }, where ω is called order of the relaxation. By in-
creasing ω and formulating the corresponding sparse relaxations, one obtains a hier-
archy of convergent sparse SDP relaxations. In particular, Theorem 3.1 in [1] shows
that, under a certain assumption on the sparsity pattern, or in other words under an
assumption on the sets {I1, . . . , Ip}, the resulting sequence of optimal objective val-
ues of the relaxations converges to the global optimal solution p∗ of (5). Moreover, if
(5) has a unique global minimizer x∗, then the resulting sequence of optimal solution
vectors of the relaxations converges to the global minimizer x∗ [1, Theorem 3.1].

The matrices Mω(y, Ik) and Mω−dj
(gj y, Ik) in (6) are called moment and local-

izing matrices, respectively. The interested reader can find all the details of the sparse
SDP relaxation technique in [1] and [2]. Given that our paper is focusing on solving
the sparse SDP relaxations (6), we restrict ourselves to addressing the sparse SDP
relaxation technique only. For a thorough investigation of the underlying theory on
dense5 SDP relaxations of polynomial programming problems, the reader is referred
to [12, 13] and the references therein. Also, [14] contains an explanatory survey on
the topic.

3 Preprocess Phase (Partitioning of Variables)

Our decomposition-based method intends to solve problems (6) by exploiting their
decomposable sparse structure. But the question that arises is how to find (compute)
such structure/pattern and how this would help us partition the set of (moment) vari-
ables y. The answer comes from the fact that the sparsity pattern that underlies the
original polynomial optimization problem (5) is inherited into its sparse SDP relax-
ation. Therefore, if the polynomial problem has a specific sparsity pattern expressed

5Sparsity pattern is not taken into account.

294 J Optim Theory Appl (2010) 145: 289–310

by the collection {I1, . . . , Ip}, we are able to specify the sparsity pattern of the semi-
definite relaxation in an equivalent way.

In fact, the sets {I1, . . . , Ip} are the maximal cliques of a chordal graph with as
many nodes as the number of polynomial variables [1, 2]. When the intersection of
these sets is nonempty, the resulting set is the index set of the coupling variables, i.e.
the variables that appear in all the constraints. This phenomenon is known as weak
coupling, in contrast to strong coupling where Ik ∩ Ik+j = ∅ for j > 1. In the former
case, what is essential to note is that, if we remove (fix) the coupling variables, there
remain p disjoint subsets of independent variables. In other words, if I ′

0 is the set of
coupling variables, where I ′

0 ⊂ {1, . . . , n}, then the set {1, . . . , n} \ I ′
0 is partitioned

into p disjoint sets I ′
k such that Ik = I ′

0 ∪ I ′
k , k = 1, . . . , p, and Ik ∩ Ij = I ′

0, for all
j �= k [1]. In view of this, if there exists a weak coupling, i.e. p > 1, we automate the
partitioning of the moment variables in problem (6).

In particular, we partition the moment variables in one subset of coupling moment
variables and p disjoint subsets of independent moment variables. To do so, we use
the information taken from the collections I1, . . . , Ip and I ′

0, . . . , I ′
p . Then, the sub-

set of the coupling moment variables6 is derived from the set of coupling polynomial
variables I ′

0, and the ith set of independent moment variables is derived from the
index set or clique Ii of indices of independent polynomial variables together with
the indices of the coupling polynomial variables, i = 1, . . . , p. For convenience of
the reader, let us recapitulate.

Remark 3.1 The coupling moment variables are derived from the coupling polyno-
mial variables index set I ′

0.

Remark 3.2 The ith set of independent moment variables is derived from the ith
index set Ii (= I ′

0 ∪ I ′
i), i = 1, . . . , p.

The way the aforesaid subsets are derived is based on the fact that the moment
variables correspond to the products of powers of certain variables, i.e. monomials.
Since the sparsity pattern remains unchanged, the ith subset of the moment variables,
i = 1, . . . , p, corresponds to the set of monomials formed by the specific polynomial
variables belonging to the index set Ii , up to the specified relaxation order. Similarly,
the set of the coupling moment variables corresponds to the set of monomials formed
by the specific polynomial variables belonging to the index set I ′

0, up to the specified
relaxation order. In other words, two parameters affect the generation of the subset of
coupling moment variables and the p disjoint subsets: the collection I ′

0, I1, . . . , Ip ,
and the relaxation order. In fact, the relaxation order determines the number of mo-
ment variables7 and the collection I ′

0, I1, . . . , Ip determines which moment variable
belongs to which subset. For instance, let us examine the following example taken
from [15]:

6The coupling moment variables appear in all the semidefinite constraints of problem (6).
7The bigger the relaxation order is, the more monomials are considered.

J Optim Theory Appl (2010) 145: 289–310 295

Example 3.1

max 0.5 · (x2
1 + x2

2 + x2
3 + x2

4 + x2
5) + 10.5x1 + 7.5x2 + 3.5x3 + 2.5x4

+ 1.5x5 + 10x6,

s.t. 6x1 + 3x2 + 3x3 + 2x4 + x5 ≤ 6.5,

10x1 + 10x3 + x6 ≤ 20,

0 ≤ xi ≤ 1, i = 1, . . . ,5,

0 ≤ x6 ≤ 20.

The sparsity pattern of Example 3.1 is expressed by p = 2 maximal cliques, i.e.
I1 = {1,3,6} and I2 = {1,2,3,4,5}. The coupling polynomial variables are then
given by the set I ′

0 = {1,3} and the p = 2 disjoint sets of independent polynomial
variables are I ′

1 = {6} and I ′
2 = {2,4,5}. If we form the sparse SDP relaxation of

order 1, we get a semidefinite problem with 21 moment variables. These are given in
Table 1 along with the corresponding monomials.

The sparsity pattern that underpins the first SDP relaxation of Example 3.1 is
expressed by the set of coupling moment variables (CMV): {y1, y3, y7, y9, y16}
extracted from the set I ′

0 of coupling polynomial variables, and p = 2 disjoint sets of
independent moment variables (IMV): {y6}, derived from the index set I1 and {y2,

y4, y5, y8, y10, y11, y12, y13, y14, y15, y17, y18, y19, y20, y21}, derived from the
index set I2. The three foregoing sets are summarized in Table 2.

Table 1 Moment variables and corresponding monomials for the first SDP relaxation of Example 3.1

Moment
Variable
(MV)

Monomial
(M)

MV M MV M

y1 x1 y8 x1x2 y15 x2x5

y2 x2 y9 x1x3 y16 x2
3

y3 x3 y10 x1x4 y17 x3x4

y4 x4 y11 x1x5 y18 x3x5

y5 x5 y12 x2
2 y19 x2

4
y6 x6 y13 x2x3 y20 x4x5

y7 x2
1 y14 x2x4 y21 x2

5

Table 2 Partitioning of
variables for the first SDP
relaxation of Example 3.1

CMV IMV (1) IMV (2)

y1 y6 y2 y11 y17

y3 y4 y12 y18

y7 y5 y13 y19

y9 y8 y14 y20

y16 y10 y15 y21

296 J Optim Theory Appl (2010) 145: 289–310

To sum up, given the sparsity pattern of the polynomial problem, as well as the
dimension of its sparse SDP relaxation of order ω, we can automatically derive the
sparsity pattern of the relaxation. Next, based on the relaxation sparsity pattern, we
partition the moment variables into the set of coupling moment variables and p sets
of independent moments variables. Such a partitioning decomposes the SDP relax-
ation into several smaller problems, i.e. the (relaxed) master problem and the sub-
problems. In what follows, the coupling moment variables are the objective variables
of the master problem in addition to few more objective variables which we add for
convenience, namely the scalar variables z1, . . . , zp . In the same vein, the ith set of
independent moment variables is the set of objective variables of the ith subproblem.
More details on the derivation of the master problem and the subproblems can be
found in Sect. 4. Below we recapitulate the preprocess phase.

Algorithm 1 (Preprocess Phase)

1. Input the polynomial optimization problem and the desired relaxation order.
2. Extract the collections I1, . . . , Ip and I ′

0, . . . , I ′
p , and the dimension/data of the

semidefinite relaxation (procedure from [2]).
3. Compute the sparsity pattern of the semidefinite relaxation, namely the coupling

moment variables and the p disjoint sets of independent moment variables.
4. Output the data of the semidefinite relaxation and its sparsity pattern.

4 Decomposition-Based Method for Sparse SDP Problems

Taking into account the formerly described sparsity pattern of the sparse SDP relax-
ations (6), we consider the following SDP problem:

min
y,y1,...,yp

bTy +
p∑

i=1

diT
yi,

s.t. T iy + Wiyi + hi �Kmi 0, i = 1, . . . , p,

Ay + c �Kν 0, (7)

where the variable vector y corresponds to the set of coupling moment variables and
the variable vectors yi , i = 1, . . . , p, correspond to the p disjoint sets of independent
moment variables. Fixing the coupling variables y yields the following decomposi-
tion problem:

min
y

bTy + ρ(y), s.t. Ay + c �Kν 0, (8)

where

ρ(y) =
p∑

i=1

ρi(y), (9)

ρi(y) =
{

min
yi

diT
yi | Wiyi + (hi + T iy) �Kmi 0

}
. (10)

J Optim Theory Appl (2010) 145: 289–310 297

The latter problems are the subproblems. Their duals read:

max
λi

(−hi − T iy)
T
λi, s.t. WiT

λi = di, λ �Kmi 0. (11)

The p subproblems (10) and their duals are the means of solving the original SDP
problem (7). Note that subproblems (10) or (11) are independent of each other, a
fact that gives rise to the possibility of a parallel implementation. More details on
the implementation can be found in Sect. 5. At the moment, we are interested in
examining whether the subproblems are feasible or not. This issue can be tackled
using the extended Farkas Lemma 2.2. According to the systems of (3) and (4), the
subproblems (10) are infeasible if, for each i = 1, . . . , p, there exists a Farkas dual
solution that satisfies the following system:

(hi + T iy)
T
ui = −1, −WiT

ui = 0, ui �Kmi 0. (12)

As a result, we obtain the following lemma.

Lemma 4.1 (Feasibility Constraints) Let Y = {y | Ay + c �Kν 0}. Also let V i = {y |
T iy + (Wiyi + hi) �Kmi 0 for some yi}, for all i = 1, . . . , p, and let V = ⋂p

i=1 V i .
Then, a point ŷ ∈ Y is also in V if and only if ŷ satisfies the inequalities below for
i = 1, . . . , p:

(hi + T iy)
T
ui ≥ 0, (13)

for all ui �Kmi 0 such that −WiT
ui = 0.

Proof If ŷ ∈ V , then T iy + (Wiyi + hi) �Kmi 0 for some yi , i = 1, . . . , p. Conse-
quently, there are no Farkas dual solutions and conditions (13) are satisfied for all
ui �Kmi 0 such that −WiT

ui = 0. To prove the converse, let us assume that the con-

ditions (13) are satisfied for all ui �Kmi 0 such that −WiT
ui = 0 and that ŷ /∈ V .

Since ŷ /∈ V , for each i = 1, . . . , p, there exists a Farkas dual solution that satisfies
the following system:

(hi + T iy)
T
ui = −1, −WiT

ui = 0, ui �Kmi 0. (14)

But this contradicts our assumption; hence, ŷ ∈ V . �

Conditions (13) are the feasibility constraints. Taking the aforesaid into account,
we are able to rewrite our initial problem (7) as follows:

min
y∈Y∩V

bTy +
p∑

i=1

{
min
yi

diT
yi | Wiyi + (hi + T iy) �Kmi 0

}
, (15)

where as stated earlier, Y = {y | Ay + c �Kν 0} and V = ⋂p

i=1 Vi for the sets V i =
{y | T iy + (Wiyi + hi) �Kmi 0 for some yi}, i = 1, . . . , p.

298 J Optim Theory Appl (2010) 145: 289–310

The constraints y ∈ Y ∩ V ensure the feasibility of the inner optimization prob-
lems, i.e. the subproblems, so we are able to employ the strong duality Theorem 2.1
and introduce the following corollary.

Corollary 4.1 (Optimality Constraints) For each subproblem i, i = 1, . . . , p, if there

exists an m-vector yi such that Mat(−WiT
yi � 0), then for fixed y ∈ Y the optimal

values of (10) equal those of their duals on Y ∩ V , that is,

ρi(y) =
{

max
λi

(−hi − T iy)
T
λi | WiT

λi = di, λ �Kmi 0
}
. (16)

Using Corollary 4.1, problem (15) becomes

min
y∈Y∩V

bTy +
p∑

i=1

{
max

λi
(−hi − T iy)

T
λi | WiT

λi = di, λi �Kmi 0
}
. (17)

The optimal solution of each inner dual SDP problem, introduced above, consists of
the extreme points of the corresponding feasible region. So, denoting the extreme
points as λi ∈ �i , where �i = {WiT

λi = di, λi �Kmi 0}, and similarly denoting the

complementary points as ui ∈ Ui , where Ui = {WiT
ui = 0, ui �Kmi 0}, we obtain

the formulation

min
y

bTy +
p∑

i=1

{
max
λi∈�i

(−hi − T iy)
T
λi

}
,

s.t. (hi + T iy)
T
ui ≥ 0, ∀ui ∈ Ui, i = 1, . . . , p,

Ay + c �Kν 0. (18)

Finally, we introduce scalars z1, . . . , zp to obtain the following final form of the mas-
ter problem:

min
y,z1,...,zp

bTy +
p∑

i=1

zi,

s.t. zi ≥ (−hi − T iy)
T
λi, ∀λi ∈ �i, i = 1, . . . , p,

0 ≥ (−hi − T iy)
T
ui, ∀ui ∈ Ui, i = 1, . . . , p,

Ay + c �Kν 0, (19)

which is equivalent to (7). The first set of constraints consists of the optimality con-
straints and the second set includes conditions (13), i.e. the feasibility constraints.

The number of constraints of problem (19) is in general infinite. The feasible re-
gions of the SDP subproblems (10) are nonpolyhedral, which means that they pos-
sess an infinite number of generators, i.e. extreme points. The solution strategy that
we follow is relaxation. Hence, we solve a relaxed version of our master problem

J Optim Theory Appl (2010) 145: 289–310 299

ignoring all but few constraints and, at each iteration, based on the solutions of the
subproblems for fixed y, we either add p feasibility constraints or p optimality con-
straints. Despite the infinite number of constraints in (19), in Theorem 4.1 we show
finite termination of our procedure within any given accuracy.

The algorithm is characterized by some attractive properties. The subproblems and
the master problem are convex programming problems. The optimality and feasibility
constraints are linear. Thus, at each iteration, the relaxed master problem is only
amended by linear constraints. Such a feature keeps the relaxed master problems
simple. Moreover, in case the original polynomial problem lacks constraints on the
coupling variables, then the semidefinite relaxation (7) does not have any constraints
of type Ay + c �Kν 0, which gives rise to the following linear master problem:

min
y,z1,...,zp

bTy +
p∑

i=1

zi,

s.t. zi ≥ (−hi − T iy)
T
λi, ∀λi ∈ �i, i = 1, . . . , p,

0 ≥ (−hi − T iy)
T
ui, ∀ui ∈ Ui, i = 1, . . . , p. (20)

In such cases, we possess a linear (relaxed) master problem at each iteration and, as is
well known, there are numerous fast and reliable linear programming solvers capable
of solving large-scale linear programming problems, such as lp_solve [16].

4.1 Algorithm

Our decomposition-based method for solving sparse SDP relaxations of polynomial
problems is stated next. In this description of the algorithm, we consider problem (7)
as our input problem; for simplicity, we assume that it has an optimal solution. Our
complete procedure, including the preprocess phase, is presented in the flow diagram
of Fig. 1.

Algorithm 2 (Decomposition-Based Method for Sparse SDP Problems)

Step 1: Initialize y (i.e. the set of coupling moment variables) to ŷ1, where ŷ1 ∈
Y ∩ V . Initialize the iteration counter, e.g. k = 1 and set the lower (LB) and
upper (UB) bounds to minus infinity (−∞) and plus infinity (∞), respec-
tively. Set nopt = 0 and nfeas = 0, where nopt is the counter for the optimality
constraints and nfeas is the counter for feasibility constraints. Determine the
convergence tolerance parameter ε > 0.

Step 2: Solve the ith subproblem (10), i = 1, . . . , p, for y = ŷk .
Step 2.1: If all p subproblems are infeasible, obtain p Farkas dual solutions

ūi
k and generate p feasibility constraints

(hi + T iy)
T
ūi

k ≥ 0, i = 1, . . . , p. (21)

Increase the infeasibility counter nfeas = nfeas + 1. Go to Step 3.

300 J Optim Theory Appl (2010) 145: 289–310

F
ig

.1
D

ec
om

po
si

tio
n-

ba
se

d
m

et
ho

d
fo

r
sp

ar
se

PO
Ps

(i
nc

lu
di

ng
pr

ep
ro

ce
ss

ph
as

e)

J Optim Theory Appl (2010) 145: 289–310 301

Step 2.2: If all p subproblems are feasible, get the optimal objective val-
ues ρi(ŷk) and the optimal solution vectors λ̄i

k , i = 1, . . . , p, and
generate the optimality constraints

zi ≥ (−hi − T iy)
T
λ̄i

k, i = 1, . . . , p. (22)

Increase the optimality counter nopt = nopt + 1. Update the upper
bound UB = bTŷk + ∑p

i=1 ρi(ŷk) only if necessary, i.e. if the new
upper bound is less than the last stored upper bound value. Go to
Step 3.

Step 3: Solve the relaxed master problem

min
y,z1,...,zp

bTy +
p∑

i=1

zi,

s.t. zi ≥ (−hi − T iy)
T
λ̄i

m, i = 1, . . . , p, m = 1, . . . , nopt,

0 ≥ (−hi − T iy)
T
ūi

n, i = 1, . . . , p, n = 1, . . . , nfeas,

Ay + c �Kν 0, (23)

by any suitable algorithm. Let (ŷk+1, ẑ
1
k+1, . . . , ẑ

p

k+1) be the optimal solution.
Update the lower bound: LB = bTŷk+1 + ∑p

i=1 ẑi
k+1. If LB ≥ UB − ε, stop.

Else, increase the iteration counter k = k + 1 and go to Step 2.

Observe that our decomposition-based method is a word-by-word extension of
the Benders decomposition for linear programs [3] to SDP problems, except that we
obtain several (independent) subproblems in place of one in the classical Benders
decomposition.

4.2 Theoretical Convergence

Theorem 4.1 (Finite ε-Convergence) Assume that Y ∩V is a nonempty compact set.
Then, for any given ε, the decomposition-based method for sparse SDP relaxations
of polynomial problems terminates in a finite number of steps.

Proof (This is based on the finite ε-convergence proof in [17].) We fix ε arbitrarily
and suppose that no termination is achieved. Let 〈zk, yk〉 be the sequence of optimal
solutions to (23) at successive iterations. We may assume that this sequence, or a
subsequence, converges to a point (z∗, y∗) such that y ∈ Y ∩ V , since 〈zk〉 is a non-
decreasing sequence bounded above and the sequence 〈yk〉 belongs to the compact
set Y ∩ V . Next, at iteration k + 1, for k sufficiently large, the optimality constraints
which we would normally generate,

z
(k+1)
i ≥ (−hi − T iy(k+1))

T
λ̄i

k, i = 1, . . . , p, (24)

302 J Optim Theory Appl (2010) 145: 289–310

are satisfied by the current solution due to the accumulation of constraints in (23). In
addition, we may assume that the sequence of optimal multiplier vectors 〈λi〉 con-
verges to a point λi∗ for each subproblem i, i = 1, . . . , p. Then, by the continuity of
the polynomial function f (y,λi) = (−hi − T iy)

T
λi , we have

z∗
i ≥ (−hi − T iy∗)T

λi∗, i = 1, . . . , p. (25)

In what follows, let us call �i(y) the set of optimal solutions to the dual subprob-
lem (11). In other words, for each dual subproblem i, i = 1, . . . , p, the set �i(y)

consists of all points λi such that f (y,λi) = ρi(y). Again by the continuity of the
function f (y,λi), we may apply Theorem 1.5 of [18] in order to show that the sets
�i(y) are upper-semicontinuous mappings at y∗.8

The upper semicontinuity of the set �i(y) at y∗ implies that λi∗ ∈ �i(y∗), i =
1, . . . , p. The former conclusion yields z∗

i ≥ ρi(y
∗), ∀i, or

∑p

i=1 z∗
i ≥ ρ(y∗), and

this in turn implies bTy∗ +∑p

i=1 z∗
i ≥ bTy∗ +ρ(y∗). By the upper semicontinuity of

function ρ(y), we finally conclude that

bTyk +
p∑

i=1

zk
i + ε ≥ bTyk + ρ(yk), (26)

which is equivalent to our termination criterion, i.e. LB ≥ UB − ε. As a result, our
supposition that the termination criterion is not met was proved false. �

Observe that Theorem 4.1 assumes that every fixation of coupling moment vari-
ables y yields feasible subproblems. Namely, it is assumed implicitly that only the
optimality constraints are added to the relaxed master problem at each iteration. How-
ever, in practice not all fixations produce feasible subproblems. To make matters
worse, the consecutive addition of feasibility constraints may prevent the procedure
from converging. A failure of convergence is also met at the generalized Benders de-
composition, for the convergence is based on the assumption that either Y 9 is finite
or that optimality constraints are generated for every fixation of y. To overcome such
problematic situation, Grothey et al. suggested a procedure, called feasibility restora-
tion, that guarantees convergence even in the presence of feasibility constraints [19].
We extended this work such that it applies to semidefinite programming and included
it to our decomposition-based method. The feasibility restoration and our modified
algorithm are described next.

4.3 Feasibility Restoration

As pointed out earlier, the consecutive addition of feasibility constraints may cause
failure of convergence. To rectify this situation, we amend our procedure as follows.

8The definition of the upper semicontinuity of a point-to-set mapping can be found in [18].
9Y is the set to which the vector variable y belongs.

J Optim Theory Appl (2010) 145: 289–310 303

Recall how the ith subproblem (10) would be formulated for y = ŷk ,

min
yi

diT
yi, s.t. Wiyi �Kmi ci

k, (27)

where

ci
k = (−hi − T i ŷk) ∈ R

mi2

, i = 1, . . . , p.

If all subproblems were feasible, the SDP solver would compute a dual optimal so-
lution λ̄i

k for each subproblem. The solver internally would also compute a feasible
primal optimal solution (ȳi

k, s̄
i
k) satisfying the corresponding primal constraints,

Wiȳi
k − s̄i

k = ci
k, s̄i

k �Kmi 0.

On the other hand, if all subproblems were infeasible, the SDP solver would certify
infeasibility by computing a Farkas dual solution ūi

k �Kmi 0 such that WiT
ūi

k = 0

for each subproblem. The solver would still compute a primal solution (ȳi
k, s̄

i
k) for

each subproblem (27), but such a solution would not satisfy the corresponding primal
constraints, i.e.

Wiȳi
k − s̄i

k �= ci
k, s̄i

k �Kmi 0.

Instead, the latter solution would satisfy a relaxed set of constraints such as

Wiȳi
k − s̄i

k = ĉi
k, (28)

s̄i
k �Kmi 0. (29)

The above constraints give rise to the construction of feasible subproblems. In other
words, from each (infeasible) subproblem (27), we exploit the primal information to
compute the modified right-hand side ĉi

k using (28). Then, we construct the corre-
sponding relaxed ith subproblem,

min
yi

diT
yi, s.t. Wiyi �Kmi ĉi

k − αivec(Imi), (30)

which by construction is feasible. By subtracting αivec(Imi) from ĉi
k , where αi > 0

and Imi ∈ R
m×m the identity matrix, we ensure the existence of a strictly feasible

solution. Namely, the Slater-type regularity condition is satisfied and hence strong
duality between the primal and dual formulations holds [20]. Finally, the dual optimal

solutions ˆ̄λi
k from the p auxiliary subproblems (30) are used to generate p optimality

constraints,

zi ≥ (−hi − T iy)
T ˆ̄λi

k, i = 1, . . . , p. (31)

To sum up, each time infeasibility is met, not only the p feasibility constraints from
the Farkas dual solutions of the original p subproblems (27) are generated, but also
the p optimality constraints from the p auxiliary subproblems (30). Such an amend-
ment yields the relaxed master problem below and our modified algorithm is briefly

304 J Optim Theory Appl (2010) 145: 289–310

stated in Algorithm 3.

min
y,z1,...,zp

bTy +
p∑

i=1

zi,

s.t. zi ≥ (−hi − T iy)
T
λ̄i

m, i = 1, . . . , p, m = 1, . . . , nopt,

zi ≥ (−hi − T iy)
T ˆ̄λi

n, i = 1, . . . , p, n = 1, . . . , nfeas,

0 ≥ (−hi − T iy)
T
ūi

n, i = 1, . . . , p, n = 1, . . . , nfeas,

Ay + c �Kν 0. (32)

Algorithm 3 (Decomposition-based Method with Feasibility Restoration)

Step 1: The same as in Algorithm 2, i.e. initialize.
Step 2: The same as in Algorithm 2, i.e. solve p subproblems (10) for y := ŷk .

Step 2.1: If all the subproblems are infeasible, generate p feasibility con-
straints from (27). Compute ĉi

k , i = 1, . . . , p, and solve p auxil-
iary subproblems (30) to generate p optimality constraints (31).
Add both types of constraints to the relaxed master problem and
increase the feasibility counter nfeas := nfeas + 1. Go to Step 3.

Step 2.2: The same as in Algorithm 2.
Step 3: The same as in Algorithm 2, except that the amended relaxed master problem

(32) is solved in place of the relaxed master problem (23).

5 Implementation

Our method was implemented in C++ and several essential tools were incorporated.
To begin with, our program reads as input a file in GAMS scalar format. The input
files were found in [21]. After the input file is read and parsed, we employ a set of
functions from SparsePOP [6] in order to extract the sparsity pattern of the input
polynomial problem, as well as to generate the sparse semidefinite relaxation. We
also use a set of functions for permuting and factorizing symbolically sparse matrices.
This set of functions is part of CHOLMOD [22].

After the sparse semidefinite relaxation is computed and the polynomial sparsity
pattern is obtained, several routines were implemented in order to determine the cou-
pling moment variables, the p disjoint sets of independent moment variables and the
data that correspond to the relaxed master and each subproblem.

At each iteration of our main algorithm, we solve the SDP subproblems with the
CSDP solver [23], which not only outputs the solution when found, but also the Farkas
dual solution in case of infeasibility.10 Finally, in order to solve the SDP relaxed
master problem at each iteration, we employ the CSDP solver [23].

10All well-known SDP solvers such as DSDP [24], SDPA [25] and SeDuMi [26] compute the Farkas dual
solution in case of infeasibility, since it serves as a certificate of infeasibility.

J Optim Theory Appl (2010) 145: 289–310 305

Furthermore, we compare our results with the results obtained if CSDP were used
in place of our decomposition-based method for solving the computed sparse SDP re-
laxation of the POP. To compute the sparse SDP relaxations, we employ a set of func-
tions from SparsePOP. However, the SparsePOP solver is mainly implemented in
Matlab and calls SeDuMi to solve the computed sparse SDP relaxations. We consid-
ered it more convenient to have everything implemented in C++; for this reason, we
replicated SparsePOP usage in C++, using CSDP in place of SeDuMi. From this
point onward, we refer to our C++ version of SparsePOP as SparsePOP/CSDP.
Hence, let us refer to the optimal objective value computed by our decomposition-
based method as p∗

ω and to the one computed by SparsePOP/CSDP as p∗
ω,bmrk .

Similarly, let us call the optimal solution vector produced by our method as x∗ and
the one computed by SparsePOP/CSDP as x∗

bmrk . To evaluate the accuracy of our
solution against the benchmark solution, the following metrics were used:

εp∗ = | p∗
ω,bmrk − p∗

ω |
max{1, | p∗

ω,bmrk |} , εx∗ = max

{ | x∗
i,bmrk − x∗

i |
max{1, | x∗

i,bmrk |}

}
, (33)

where x∗
i (x∗

i,bmrk) corresponds to the ith element of the vector x∗ (x∗
bmrk).

6 Computational Experience

Let us consider Example 3.1. Applying our method to its first and second sparse
SDP relaxations, i.e. ω = 1 and ω = 2 respectively, we get the convergent bounds
presented in Fig. 2. Recall that the global optimal solution of this example is p∗ =
−213, with its first SDP relaxation giving a lower bound equal to p∗

1 = −214 and its
second relaxation giving the global optimal solution, i.e. p∗

2 = p∗ = −213. Figure 3
is another graphical example of convergent bounds computed by our method and it
corresponds to test problem st_e21. In particular, we tested our method to a collection

Fig. 2 Convergent bounds for Example 3.1 (Bex2_1_2)

306 J Optim Theory Appl (2010) 145: 289–310

Fig. 3 Convergent bounds for test problem st_e21

of polynomial optimization problems taken from [21] and some indicative results are
presented in Table 3.11 For a detailed list of numerical results, the reader is referred
to [27]. The first two columns of Table 3 show the problem dimensions, i.e. n is the
number of polynomial variables and m is the number of constraints, while column
ω records the order of the sparse SDP relaxation used. The following three columns
hold the number of iterations and the values of metrics stated in (33).

Remarks Our code should be able to compute the value that the benchmark solver
SparsePOP/CSDP computes. Table 3 demonstrates that this is true in all cases with
good accuracy. However, as the theory of SDP relaxation technique implies, the so-
lution of the relaxation is not always the global optimal solution of the POP. Con-
sequently, the same applies to our solution. However, as we increase the relaxation
order, we will be able to compute a better and better approximation of the global
optimal solution of the POP.

Moreover, several numerical issues were met. The most important one was the dif-
ficulty in computing a starting feasible point. It was observed that, when the starting
point made all subproblems infeasible, then in most of the cases the relaxed master
problem at the first iteration was unbounded and our procedure was terminated. As
a remedy to this problem, an interesting algorithm is intended to be incorporated as
a Phase 1 between the preprocess phase and the decomposition-based method. The
algorithm will be a modification of a similar Phase 1 algorithm discussed in [28]. The
latter algorithm is also iterative and requires the solution of an optimization problem
and the computation of an approximate analytic center at each iteration. Other numer-
ical issues were met when CSDP did not make any progress in solving one or more
subproblems or was stuck at the edge of dual feasibility. In such cases, our procedure
was terminated. We would like to examine whether or not the use of another SDP

11Note that test problem Bex2_1_2 is Example 3.1.

J Optim Theory Appl (2010) 145: 289–310 307

Table 3 Decomposition-based method on test problems

Problem n m ω Iters εp∗ εx∗

Bex2_1_2 6 2 1 3 1.24e–09 1.54e–07

Bex2_1_2 6 2 2 8 1.2e–08 2.25e–07

Bex2_1_3 13 9 1 6 7.35e–09 1.1e–08

Bex2_1_8 24 10 1 4 1.17e–08 0.0023

Bex3_1_1 8 6 2 165 8.92e–06 0.00232

Bex3_1_1 8 6 3 152 7.45e–06 0.00101

Bex5_2_2_case1 9 6 1 9 6.04e–09 1.39e–06

Bex5_3_2 22 16 1 3 1.4e–10 0.667

Bex5_4_2 8 6 2 114 1.74e–07 2.1e–05

Bex9_1_1 13 12 1 10 5.04e–09 0.013

Bex9_1_1 13 12 2 99 7.56e–05 0.594

Bex9_1_2 10 9 1 12 1.13e–09 0.00121

Bex9_1_4 10 9 1 11 8.93e–06 0.000119

Bex9_1_5 13 12 1 2 2.33e–09 0.0808

Bex9_1_5 13 12 2 24 5.17e–09 0.0451

Bex9_1_8 14 12 1 5 6.79e–11 0.0257

Bex9_2_1 10 9 1 2 1.028e–07 9.192e–06

Bex9_2_2 10 11 1 4 7.27e–06 8.03e–05

Bex9_2_4 8 7 1 3 6.73e–10 0.0441

Bex9_2_4 8 7 2 36 3.41e–09 4.33e–06

Bex9_2_5 8 7 1 1 2.43e–09 3.73e–07

Bex9_2_8 6 5 1 1 1.62e–09 2.42e–08

Bex9_2_8 6 5 2 6 6.94e–09 3.72e–06

Balkyl 14 7 3 121 9.76e–05 0.0067

Bhaverly 12 9 1 8 2.06e–05 0.000218

Bst_e05 5 3 1 2 9.61e–06 0.432

Bst_e05 5 3 2 143 4.42e–06 0.000258

Bst_e07 10 7 1 7 1.49e–09 3.7e–08

Bst_e07 10 7 2 83 1.78e–07 0.000507

st_e21 6 6 1 4 3.88e–09 1.83e–09

st_e21 6 6 2 25 1.12e–08 2.93e–08

Bst_bpaf1a 10 10 1 6 4.68e–09 1.1e–05

Bst_bpaf1b 10 10 1 7 2.04e–09 1.72e–08

st_glmp_kk90 5 7 2 4 8.66e–09 3.44e–09

st_glmp_kk90 5 7 3 5 4.93e–08 7.1e–09

308 J Optim Theory Appl (2010) 145: 289–310

solver could reduce some of these numerical problems. In addition, there were some
cases where, although the subproblems were either solved to optimality or infeasibil-
ity was detected and the corresponding cuts were added, little progress did happen in
the increment of the lower bound toward the optimal solution of the relaxation. On
the contrary, the upper bound tended to reach the optimal solution of the relaxation
quite early in the process. Nevertheless, the slow progress in the lower bound slowed
down the convergence between the lower and upper bounds. What is more, in cases
where feasibility cuts were only added at some point onward, convergence was either
extremely slow or not possible.12 This does not contradict finite ε-convergence shown
in Theorem 4.1, since its proof is based on adding optimality constraints only. Such
a situation also appears in [17]. In practice, the addition of feasibility cuts does not
usually prevent the procedure from converging. However, in cases where convergence
appears to be very slow, the feasibility restoration is essential to ensure convergence.

7 Discussion

In this work we deal with polynomial problems with a sparsity pattern, which has
been shown to be inherited into their sparse SDP relaxations. By exploiting this spar-
sity pattern, we apply a decomposition method to the sparse SDP relaxations aiming
at solving polynomials problems. At each iteration of our algorithm, we solve p sub-
problems and the relaxed master problem. The subproblems give a sequence of upper
bounds and the relaxed master problems give a sequence of lower bounds. Our pro-
cedure terminates when these bounds are very close.

Many ideas have been raised from this work and remain to be examined. Firstly, a
difficulty often met was the computation of a starting point to make all subproblems
feasible. The remedy to this situation is the incorporation of a Phase 1 algorithm, such
as the one discussed in [28]. This is an iterative algorithm and requires the solution
of an optimization problem and the computation of an approximate analytic center at
each iteration. We intend to extend it for the purposes of our work. Next, to improve
the performance of our algorithm we intend to exploit the fact that the subproblems
are solved independently at each iteration. At the moment, this property has been
developed in a sequential algorithm. We intend to explore how our algorithm could
be converted into a parallel algorithm hoping to gain in terms of efficiency and time.
A similar work has been carried out in [29, 30]. Lastly, a very interesting extension of
our algorithm is to separate it from the POP framework and amend it accordingly so
as to make it directly applicable to a sparse SDP problem. This would yield a decom-
position algorithm for sparse SDPs and would potentially be very useful in large-scale
semidefinite programming. To achieve the separation of the decomposition-based
method from the POP, we should aim at detecting and extracting the sparsity pat-
tern of the SDP problem independently of any POP it may approximate. If the SDP
sparsity pattern can be detected independently, then the decomposition-based method
is ready for application in sparse semidefinite programming.

12The maximum number of iterations was reached and the procedure was terminated. The maximum
number of iterations was set to 500.

J Optim Theory Appl (2010) 145: 289–310 309

References

1. Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim.
17(3), 822–843 (2006)

2. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relax-
ations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242
(2006) (electronic)

3. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Comput.
Manag. Sci. 2(1), 3–19 (2005). Reprinted from Numer. Math. 4, 238–252 (1962)

4. Ramana, M., Goldman, A.J.: Some geometric results in semidefinite programming. J. Glob. Optim.
7(1), 33–50 (1995)

5. Kim, S., Kojima, M., Toint, P.: Recognizing underlying sparsity in optimization. Technical Report,
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology (2006)

6. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: SparsePOP: a sparse semidefinite programming re-
laxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2) (2008)

7. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial
optimization. SIAM J. Optim. 5(1), 13–51 (1995)

8. Pardalos, P.M., Wolkowicz, H. (eds.): Topics in Semidefinite and Interior-point Methods. Fields Insti-
tute Communications, vol. 18. American Mathematical Society, Providence (1998)

9. Ramana, M.V., Pardalos, P.M.: Semidefinite programming. In: Interior Point Methods of Mathemati-
cal Programming. Appl. Optim., vol. 5, pp. 369–398. Kluwer Academic, Dordrecht (1996)

10. Pataki, G.: The geometry of semidefinite programming. In: Handbook of Semidefinite Programming.
Internat. Ser. Oper. Res. Management Sci., vol. 27, pp. 29–65. Kluwer Academic, Dordrecht (2000)

11. Yajima, Y., Ramana, M.V., Pardalos, P.M.: Cuts and semidefinite relaxations for nonconvex quadratic
problems. In: Generalized Convexity and Generalized Monotonicity, Karlovassi, 1999. Lecture Notes
in Econom. and Math. Systems, vol. 502, pp. 48–70. Springer, Berlin (2001)

12. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim.
11(3), 796–817 (2000/01)

13. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program.,
Ser. B 96(2), 293–320 (2003). Algebraic and geometric methods in discrete optimization

14. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging
Applications of Algebraic Geometry. IMA Vol. Math. Appl., vol. 149, pp. 157–270. Springer, New
York (2009)

15. Floudas, C.A., Pardalos, P.M.: A collection of test problems for constrained global optimization algo-
rithms. Lecture Notes in Computer Science, vol. 455. Springer, Berlin (1990)

16. LP_SOLVE Description (2008). tech.groups.yahoo.com/group/lp_solve
17. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10, 237–260 (1972)
18. Meyer, R.: The validity of a family of optimization methods. SIAM J. Control Optim. 8, 41–54 (1970)
19. Grothey, A., Leyffer, S., Mckinnon, K.I.M.: A note on feasibility in benders decomposition (1999)
20. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior point method for semidefinite

programming. SIAM J. Optim. 6(2), 342–361 (1996)
21. GLOBAL Lib: www.gamsworld.org/global/globallib/globalstat.htm (2008)
22. Davis, T.A.: User Guide for CHOLMOD: a sparse Cholesky factorization and modification package.

Technical Report, Dept. of Computer and Information Science and Engineering, University of Florida
(2006)

23. Borchers, B.: CSDP, A C library for semidefinite programming. Optim. Methods Softw. 11, 613–623
(1999)

24. Benson, S.J., Ye, Y.: DSDP5: Software for semidefinite programming. Technical Report, Mathematics
and Computer Science Division, Argonne National Laboratory (2005)

25. Fujisawa, K., Kojima, M., Nakata, K., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm)
User’s Manual—Version 5.01. Technical Report, Tokyo Institute of Technology (1995)

26. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.
Methods Softw. 11/12(1–4), 625–653 (1999)

27. Kleniati, P.M.: Decomposition Schemes for Polynomial Optimization, Semidefinite Programming and
Applications to Nonconvex Portfolio Decisions. Ph.D. Thesis, Imperial College London (2009)

http://tech.groups.yahoo.com/group/lp_solve
http://www.gamsworld.org/global/globallib/globalstat.htm

310 J Optim Theory Appl (2010) 145: 289–310

28. Zhao, G.: A log-barrier method with Benders decomposition for solving two-stage stochastic linear
programs. Math. Program., Ser. A 90(3), 507–536 (2001)

29. Sivaramakrishnan, K.K., Plaza, G., Terlaky, T.: A conic interior point decomposition approach for
large scale semidefinite programming (2005)

30. Sivaramakrishnan, K.K.: A parallel interior point decomposition algorithm for block angular semi-
definite programs. Comput. Optim. Appl. (2008)

	Decomposition-based Method for Sparse Semidefinite Relaxations of Polynomial Optimization Problems
	Abstract
	Introduction
	Contribution
	Notation

	Relevant Theory
	Semidefinite Programming (SDP)
	Sparse SDP Relaxations of Polynomial Problems

	Preprocess Phase (Partitioning of Variables)
	Decomposition-Based Method for Sparse SDP Problems
	Algorithm
	Theoretical Convergence
	Feasibility Restoration

	Implementation
	Computational Experience
	Remarks

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

