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Abstract We consider the problem of efficient resource allocation in a grid com-
puting environment. Grid computing is an emerging paradigm that allows the sharing
of a large number of a heterogeneous set of resources. We propose an auction mech-
anism for decentralized resource allocation. The problem is modeled as a multistage
stochastic programming problem. Convergence of the auction allocations to the social
optimum is established. Numerical experiments illustrate the efficacy of the method.

Keywords Grid computing · Decentralized resource allocation · Multistage
stochastic programming

1 Introduction

Grid computing is an emerging paradigm that allows the sharing of a large number
of a heterogeneous set of resources. Computational grids were inspired by electric-
ity grids. Grids are emerging in many environments including research, academic, as
well as commercial institutions. The areas where grid computing methodologies can
be used includes all fields where substantial computational power and resources are
required. As a result this paradigm from computer science has found many applica-
tions, for example physics (e.g. turbulence simulations), cosmology, bio-informatics,
genetics, and the life sciences (Distributed European Infrastructure Supercomputing
Applications; The London e Science Centre). Managing distributed, loosely-coupled,
heterogeneous resources is an extremely difficult task. The grid computing commu-
nity is trying to address these issues, but there are a lot of open issues that need to be
addressed. The purpose of this paper is to propose a quantitative framework, based on
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tools from operations research and economics literature, in order to address the issue
of managing such a network of resources.

As in physical systems, one can think of resource management as consisting of three
layers: the micro-scopic, meso-scopic, and macro-scopic layer (Birge and Dempster
1996). In the context of grid computing the micro-scopic layer will consist of detailed
decisions e.g. routing paths for data, error correction and retransmission policies. In
the meso-scopic layer we need to address higher level problems e.g. which machine
will run a particular job-request, what encryption algorithm to use etc. In the macro-
scopic layer one encounters strategic issues. For example, whether an agreement with
another grid owner will need to be made in order meet user QoS requirements. Obvi-
ously there is a lot of interaction between these three layers. The problem addressed in
this paper belongs to the meso-scopic layer. However, the method we chose to address
the resource allocation problem can be used in the other layers too. In particular we
will use a pricing mechanism to solve a grid resource management problem. One of
the inputs to the proposed mechanism is an error tolerance parameter. The error arises
from the fact that we use a decentralized resource management strategy. With the pro-
posed approach, problems in the micro-scopic layer (that need to be solved in almost
real time) can be solved with lower accuracy, while problems in the micro-scopic layer
can be solved to optimality.

This is not the first time that pricing has been used as an aid to managing computer
resources. Pricing of resources started in 1968 with the paper by Sutherland (1968).
Even though very little work has been done on grid computing resource management,
there is a lot of related work from models proposed to manage networks, and the
Internet in particular. Contributions in this direction using concepts from game theory
and microeconomics have been made by various authors, see Papadimitriou (2001) for
a review. In this line of research one assumes that each stakeholder (e.g. ISP, router,
etc.) is an agent that selfishly tries to optimize its own utility function. One then tries
to calculate the loss of efficiency in the network by comparing the ‘selfish’ strategies
with the social optimum. To compute the social optimum one optimizes (typically)
a sum consisting of all the different utility functions of each agent. The social opti-
mum or welfare problem requires a central authority to have complete knowledge over
the state of the system. This assumption is unrealistic in real-world networks, and is
unrealistic in the context of grid computing as well.

More related to this paper is work dealing with decentralized resource manage-
ment. When managing computing resources, and grids of IT resources in particular,
one cannot address these problems using a centralized approach. This is the moti-
vation behind decentralized resource management. In Gupta et al. (1997), a model
for achieving efficient utilization of Internet resources using an equilibrium approach
was proposed. Gupta et al. used pricing in order to ‘drive’ the community of agents
towards equilibrium. Convergence of the pricing mechanism towards social welfare
maximization was not studied. Thomas et al. (2002) used Scarf’s algorithm Scarf
(1967, 1973) to establish convergence between the decentralized model and the social
welfare problem. In the decentralized model each agent tries to optimize its own utility
function; while in the social welfare the sum of all the utility functions is optimized.
Stoenescu and Teneketzis (2002) removed some of the assumptions of the Thomas
et al. paper. The papers of Thomas et al. (2002), and Stoenescu and Teneketzis (2002)
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are the ones mostly related to this work in the sense that we too formulate a social
welfare problem, we then use pricing to guide the set of selfish agents towards the
social optimum.

The obvious variation of this paper from the work mentioned above is that we apply
similar ideas to context of grid computing. However, this paper makes more contribu-
tions too. In Thomas et al. (2002) and Stoenescu and Teneketzis (2002) Scarf’s algo-
rithm is used as the basic principle behind the auction mechanism. It is well known that
Scarf’s algorithm can be inefficient. Consequently it is not well suited as the pricing
mechanism for managing grid computing resources. We use a decomposition algo-
rithm, developed in Holmberg and Kiwiel (2006), as the mechanism to guide the agents
to behave in such a way that the social optimum is achieved. Another contribution of
this paper is the inclusion of stochastics and dynamics in the realm of decentralized
resource allocation. While we do not address the decomposition of the subproblems
at the level of individual agents it is clear that decomposition algorithms can be used
to solve each agents subproblems. In summary, this paper makes contributions to the
grid computing community by providing a model for optimal decentralized resource
allocation. We also contribute to the resource management literature by developing
an efficient algorithmic paradigm. We are primarily concerned with the problem of
decentralized resource allocation under uncertainty. However, one can also pose the
problem in the form of a multi-stage stochastic programming problem. Consequently,
the proposed algorithm can be viewed as a decomposition algorithm for a class of
large scale stochastic programming problems.

The rest of this paper is structured as follows: in Sect. 2 we present our model. We
first define the social welfare problem and then we go on to define the problem solved
by each agent. We start with a static model and then go on to define a dynamic model
that also includes uncertainty. In Sect. 3 we define the auction mechanism, and estab-
lish convergence to the social optimum. Numerical experiments are given in Sect. 4.
We conclude by discussing possible extensions of this work in Sect. 5.

2 A Model for Resource Management

Let r = {1, . . . , R} represent the resources available on the grid; and let k = {1, . . . , K }
represent the agents competing for these resources. We use x ∈ X ⊂ R

RK to denote the
levels made available to each agent for each resource. These resources may represent
CPU cycles available to a particular machine, the maximum bandwidth available on a
link, and so on. When dealing with problems in grid computing it is paramount to deal
with services rather than low level hardware/software resources. For this reason we
postulate the existence of a concave function: Ak : R

RK → R
B, that translates a par-

ticular configuration of resources into basic computing blocks; where b = {1, . . . , B}
represents the different basic blocks. Typically this function will be linear. For exam-
ple, if x̂ ∈ X is a particular configuration of the resources then A(x̂) will represent
the ‘output’ of the grid in terms of computing blocks. These blocks can be thought of
as the basic components needed to run a service, examples include random number
generation, solution of an optimization problem, image rendering and so on.

123



384 P. Parpas, B. Rustem

In the grid community there is a tendency to move away from resource manage-
ment of hardware resources to the management of services. This is the motivation for
distinguishing between resources (e.g. a web-server) and computing blocks. By com-
puting blocks we mean the resources that need to be put together to deliver a service
(e.g. a web service). For example, a web-service may provide access to a database
over a browser. The computing blocks required to deliver the service include multiple
resources (e.g. database server, software, web server, and security software).

We postulate the existence of K agents. These agents accept requests for services
from users. The agents use the resources on the grid to construct services which they
deliver to their users. Each agent is therefore competing for the resources on the grid.
Agents derive their benefit by serving their users and meeting the demand. We believe
that the modeling choice we made for representing the grid resources as blocks of
computation represents a reasonable compromise for dealing with low level resources
(e.g CPU cycles), and the high level requests for services (e.g. pricing derivatives
for a financial application). We use q = {1, . . . , Q}, to denote the different services
requested by users. Again we assume that services can be mapped into basic comput-
ing blocks using a convex function Bi : R

Q → R
B . A constraint on the owner of the

grid is to meet the demand of the users, we therefore must have:

Ak(x)− Bk(yk) ≥ 0 k = 1, . . . , K ,

where Ak maps the configuration of the grid resources to basic blocks that will be
made available to agent k; yk represents the request for services made by agent k.
The convexity of the model will play a key role in our convergence proof. Given the
demand constraint above it is natural to assume that Ak , and Bk are linear. We will
use Akb, and Bkb to denote the bth block of the kth agent for the two mappings for
resources and services, respectively.

Each agent must also meet the demand from its users. We will assume that when
users make high level requests for packages of services the concave function hk maps
services into packages. We must then have:

hk(yk)− dk ≥ 0,

where dk represents the demand of agent k. We also assume that yk belongs to a
compact convex set Yk .

In our hypothetical grid market we will use two types of agents: the grid agent
which will be responsible for managing the resources. The second type we call the
market agents and these will be responsible for meeting the demands from the users.
The basic idea is that one central authority (the grid agent) manages the resources.
The market agents accept requests from users and try to secure resources on the grid
in order to perform the required computations. If the grid agent decides to make
allocation x̂ to the market agents then the grid agent will incur some cost. This cost
will be modeled using a convex utility function c0. The grid agent has access to a
bounded amount of resources. This feature of the problem will be modeled with the
following constraint:

∑
j xi j ≤ ri i = 1, . . . , R. Where xi j denotes the amount of
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the i th resource allocated to the j th market agent; ri will be used to denote the total
amount of resource i .

Similarly, if the kth market agent decides to request ŷk then the agents will derive
some benefit which will be modeled using a concave function ck . Putting all these
ideas together we can formulate the social welfare problem as follows:

min c0(x)−
K∑

k=1

ck(yk)

Ak(x)− Bk(yk) ≥ 0 k = 1, . . . , K
∑

j

xi j ≤ ri i = 1, . . . , R (SW-A)

hk(yk)− dk ≥ 0 k = 1, . . . , K

yk ∈ Yk, k = 1, . . . , K x ∈ X.

The exact benefit the agent will derive from meeting the demand is never exactly
known in advance. More importantly, demand for services is in general random,
and decisions need to be taken over several time periods. For these reasons we
propose to study the problem as a multistage stochastic programming problem. Even
though a chance constraint formulation will also be relevant, we will use a recourse
formulation. The reason for considering multiple time periods is that work services
done on grids usually have temporal relationships that we would like to capture.
For example, the output from one computation may be input to another, or that one
process may not be able to start unless another finishes etc. Before we present our
model in full, it is pertinent to explain the basic idea behind stochastic programming.
We refer the interested reader to Birge and Louveaux (1997) for a textbook treatment
of these issues. Since resources are not perfectly divisible, the whole problem should
be modeled as an integer programming problem. However, the resulting problem
would be much more difficult to solve. This is a definite limitation of the proposed
model.

Typically resource management problems need to be addressed over several time
periods t = {1, . . . , T }. These time periods may represent the different demands in
peak and off-peak times. It is also possible to represent work-flows in this manner. The
uncertainty in the model enters in two ways. Firstly, the agents are unsure of the exact
benefit they will derive from a particular strategy. Secondly, the agents are unsure of
the demand they will encounter in the next time periods. These uncertainties can be
represented as a scenario tree. The root of the tree represents the state of the world
that is deterministic. At the root node the grid agent decides x0, the resource allocation
for the first time period. The kth market agent decides y0k , the demand for services in
the first time period. All benefits, costs, and demands are known at this stage. As we
move down the scenario tree, different events represent different realizations of the
uncertainties. Each level of the tree represents a different time period. The path from
the root to a leaf node is termed as a scenario. Thus a node on the tree (i.e an event)
can be indexed using (s, t). We will use a(s, t) to denote the parent node of scenario
s at time t . The basic framework can be described as follows: the grid agent makes
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a decision x0 at time 0; then at time t = 1, the agent is faced with different possible
scenarios concerning the cost of a particular strategy. The agent then makes a decision
based on the new observation. At time t , under scenario s, the cost incurred by the grid
agent is represented by c0(xs

t , xa(s,t)
k , ξ s

t ). In other words, if the grid agent decided to
follow strategy x̂a(s,t) in the previous time period, then observed the random variable
ξ s

t and decided to follow strategy x̂ s
t the costs incurred by this choice of strategy is

given by: c0(x̂ s
t , x̂a(s,t), ξ s

t ), where ξ s
t is a random variable having its support in a

finite set � = �1 × · · · ×�T . Decisions in stochastic programming need to be non-
anticipative. This means that decisions must depend on the past and not the future.
In the context of discrete probability distributions the concept of non-anticipativity
can be represented using a compact or a split-view formulation (Rockafellar and Wets
1991). In the compact formulation the data of the problem can be mapped directly onto
a tree structure as described above. We chose to use a split variable formulation. In
this framework new decision variables are introduced so that the large-scale problem
is decomposed into many different subproblems. Conceptually, using this approach
the non-anticipativity constraints are completely relaxed. In order to enforce these
constraints new constraints are introduced that ‘rebuild’ the links between nodes. We
will use Xs

t , and Y s
t to denote the set of non-anticiaptivity constraints for the grid agent

and market agents, respectively.
The grid agent will want to compute a strategy that performs the best on average

over all time periods and scenarios. Applying similar reasoning to each of the market
agent’s problem we find that the objective function of the stochastic social-welfare
problem should be given by:

C(x, y) � c0(x0)−
K∑

k=1

ck(y0k)+
T∑

t=1

S∑

s=1

ps
t (c0(x

s
t , xa(s,t), ξ s

t )

−
K∑

k=1

ck(y
s
kt , ya(s,t)

k , ωs
t )),

where ps
t represents the probability of scenario s occurring at time t . As before ys

kt
represents the kth agent’s decision at time t under scenario s. ωs

t is a random variable
with support in the finite set � = �1 × · · · ×�T .

Using the same ideas for the constraints of the model, the following multistage
stochastic programming problem will be considered:

min C(x, y)

Ak(x0)− Bk(y0k) ≥ 0 k = 1, . . . , K
∑

j

xi j ≤ ri i = 1, . . . , R

hk(y0k)− d0k ≥ 0 k = 1, . . . , K (SW-B)

y0k ∈ Y0k, k = 1, . . . , K , x0 ∈ X.

Ak(x
s
kt )− Bk(y

s
kt ) ≥ 0 k = 1, . . . , K ∀(s, t)
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∑

j

xs
kti j ≤ ri i = 1, . . . , R ∀(s, t)

hk(y
s
kt )− dst

k ≥ 0 k = 1, . . . , K ∀(s, t)

ys
kt ∈ Y s

kt , k = 1, . . . , K xs
t ∈ Xs

t ∀(s, t).

3 An Auction Mechanism

Solving (SW-B) using a conventional algorithm (e.g. Newton’s method) is an unrealis-
tic approach in the context of grid computing. Firstly, the problem will be too large for
conventional algorithms that do not take advantage of the specific structure. Secondly,
and more importantly, solving (SW-B) using a standard algorithm requires a central
authority to have complete knowledge over the preferences and demand expectations
of the grid agents. Thus for reasons of computational efficiency, and practical appli-
cability, we propose to use an auction mechanism. The basic idea is that a central
authority (the grid agent) selects a configuration of the resources, along with a price
for each market agent. The prices and configuration are then announced to the agents.
The market agents then announce their demands given the price information. The
whole process is then repeated. The auction mechanism we chose to implement to
adjust prices and demands is essentially the Mean Value Cross (MVC) decomposition
algorithm of Holmberg and Kiwiel (2006). A similar approach was taken by Thomas
et al. (2002), but they used Scarf’s algorithm to achieve a similar result. The MVC
decomposition algorithm is computationally efficient, easy to analyze and has a nice
game theoretic interpretation.

We will use x , and y to denote the aggregate vectors for the grid agent’s, and grid
market’s decision vectors, respectively. By π s

kt we denote the dual variables associated
with the

Ak(x
s
kt )− Bk(y

s
kt ) ≥ 0,

constraints. π will be used to denote the vector incorporating all the π s
kt . The auction

is initialized with four parameters (π̂, ŷ, ε, ν). π̂ is the initial vector of prices that will
be announced to each user. ŷ is the starting aggregate demand announced by each user.
ν is a positive scalar representing the maximum number of price announcements the
market agent will make. Finally, ε is a positive scalar indicating an error tolerance.
In this section we show that under appropriate conditions, and if ν is allowed to be
large enough then ε can be taken to be arbitrarily small. Let δ( j) be any sequence
such that:

δ( j) ∈ (0, 1], δ( j) → 0,
∞∑

j=0

δ( j) = ∞.

The auction mechanism can be described as follows:

Step 0: Let j = 1, U = ∞, L = −∞. Let (π̂, ŷ, ε, ν) be given.
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Step 1: The grid agent announces the price π̂( j)k to the kth market agent:

π̂k( j)k = δk( j)πk( j)+ (1 − δk( j))π̂k( j − 1).

Step 2: Given the price information the market agents calculate their demands:1

yk( j) ∈ arg max
y

ψk( j) = ck(y0k)+
∑

st

ps
t ck(y

s
kt , ya(s,t)

k , ωs
t )

−
∑

b

π̂( j)kb Bb(y0k)

−
∑

stb

π̂( j)st
kb Bb(y

s
kt )

s.t. hk(y0k)− d0k ≥ 0

hk(y
s
kt )− ds

kt ≥ 0

y0k ∈ Y0k, ys
kt ∈ Y s

kt .

The market agents then announces yk( j) and ψk( j) to the grid agent.
Step 3: Given the information above, the grid agent solves the following problem:

x( j) ∈ arg min
x

χ( j) = c0(x
1)+

∑

st

ps
t c0(x

s
t , xa(s,t), ξ s

t )

s.t. Ak(x0)− Bk(ŷ0k( j)) ≥ 0 k = 1, . . . , K

Ak(x
s
t )− Bk(ŷ

s
kt ( j)) ≥ 0 k = 1, . . . , K ∀(s, t)

x0 ∈ X, xs
t ∈ Xs

t , ∀(s, t),
∑

j

xi j ≤ ri i = 1, . . . , R

∑

j

xs
ti j ≤ ri i = 1, . . . , R ∀(s, t)

where

ŷs
kt ( j) = δk( j)y( j)k + (1 − δk( j))ŷ( j − 1)k .

Let π( j) denote the Lagrange multiplier vector of the problem above.
Step 4: The grid agent tests for convergence:

U j = χ( j)+
∑

k

ck(ŷ
1
k ( j))+

∑

kst

ps
t ck(ŷ

s
kt ( j), ŷa(s,t)

k ( j), ωs
t ), (3.1)

L j =
∑

k

ψk( j)+ X ( j), (3.2)

1 Note that the market agents try to maximize their net profit.
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where

X ( j) = min
x

c0(x0)+
T∑

t=1

S∑

s=1

ps
t c0(x

s
t , xa(s,t), ξ s

t )

−
∑

kbπ̂kb
1 ( j)Akb(x0)−

∑

bkst

π̂kb
st ( j)Akb(x

s
t )

s.t. x0 ∈ X, xs
t ∈ Xs

t , ∀(s, t)
∑

j

xi j ≤ ri i = 1, . . . , R

∑

j

xs
ti j ≤ ri i = 1, . . . , R ∀(s, t).

If U j < U let U = U j .
If L j > L let L = L j . If U − L < ε or j > ν stop, else set j := j + 1 and
go to Step 1.

We will follow Holmberg and Kiwiel (2006) in order to prove that the procedure
described above does indeed converge to the social optimum. The argument is based
on results from Belenky et al. (1976).

Definition 3.1 (Belenky et al. 1976) A convex game of K players is given by G =
{Zk, fk}K

k=1. Where Zk and fk are the strategy (feasible) set, and payoff function of
the kth player, respectively. Let Z = Z1 × · · · × ZK , then any choice z ∈ Z is called
a play of the game. The game is zero-sum if:

K∑

k=1

fk(z) = 0 ∀z ∈ Z .

Let, fk(zk; ẑ) = fk(ẑ1, . . . , zk, . . . , ẑn) where zk ∈ Zk, and ẑ ∈ Z . The game will
be called convex if Z is convex, compact, and fk is concave with respect to zk and
convex with respect to ẑ.

Definition 3.2 (Belenky et al. 1976) By a game process we will mean the iterative
play of a convex game given as follows:

z( j + 1) = (1 − δ( j))z( j)+ δ( j)u( j),

where u( j) ∈ �(z( j)), and

�(z( j)) ∈ arg max
z

∑
fk(zk; z( j)).

Finally, δ( j) satisfies:

δ( j) ∈ (0, 1], δ( j) → 0,
∞∑

j=0

δ( j) = ∞.
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The main result that we will use to prove convergence of the auction is given in the
following result. The proof can be found in Belenky et al. (1976, Theorem 10).

Theorem 3.3 If G is a convex zero-sum game then the game process given in definition
3.2 is convergent to the set of equilibrium points of the game G.

We will follow Holmberg and Kiwiel (2006) and place the auction procedure described
above into the same framework as the game process in Theorem 3.3. Our analysis will
make use of the following Slater type constraint qualification.

Assumption 3.4 For every (ŷ0k, ŷs
kt ) ∈ Y0k × Y s

kt , satisfying:

hk(y0k)− d0k ≥ 0

hk(y
s
kt )− dst

k ≥ 0.

There exists an (x̂0k, x̂ s
t ) ∈ X × Xs

t such that:

Ak(x̂0)− Bk(ŷ0k) > 0

Ak(x̂
s
t )− Bk(ŷ

s
kt ) > 0.

For completeness we summarize our assumptions concerning the data of the prob-
lem. To simplify notation we will assume that the random variables appearing in
(SW-B) are ν-dimensional.

Assumption 3.5 The functions defining the problem in (SW-B):

c0 : R
RK → R

ck : R
Q → R, k = 1, . . . , K

c0 : R
RK × R

RK × R
ν → R

ck : R
Q × R

Q × R
ν → R, k = 1, . . . , K

are convex. Moreover:

Ak : R
RK → RB, k = 1, . . . , K

Bk : R
Q → RB, k = 1, . . . , K ,

are concave and convex, respectively. The sets X, Y 1
k , Y s

kt , and Xs
t are convex and

compact. Finally, the demand functions:

hk : R
Q → R, k = 1, . . . , K ,

are concave.
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Consider the following partial Lagrangian associated with (SW-B):

L(x, y, π) � c0(x0)−
∑

kck(y0k)+
∑

st

ps
t

[
c0(x

s
t , xa(s,t), ξ s

t )

−
∑

kck(y
s
kt , ya(s,t)

k , ωs
t )

]
−

∑

kb

πk
b

[

Akb(x0)− Bkb(y0k))

−
∑

kbst

πks
bt (Akb(x

s
t )− Bkb(y

s
kt )

]

.

Note that the optimization performed in Step 2 and Step 4 can be combined into a
single optimization problem as follows:

min
y
�(y, π̂) �

∑

k

Mk(yk, π̂k)+ N (π̂)

s.t. (y1
k , ys

kt ) ∈ Y 1
k × Y s

kt , (3.3)

where

Mk(yk, π̂k) � ck(y0k)+
∑

st

ps
t ck(y

s
kt , ya(s,t)

k , ωs
t )+

∑

b

π̂k
b Bkb(y

1
k )

+
∑

stb

π̂ st
kb B(ys

kt )

N (π̂) � min
x

c0(x0)+
∑

st

ps
t c0(x

s
t , xa(s,t), ξ s

t )−
∑

kb

πkb
1 Akb(x

0)

−
∑

kb

πkb
st Akb(x

s
t )

s.t. x1 ∈ X, xs
t ∈ Xs

t .

In order to improve readability we have assumed, with out loss of generality, that the
constraints:

∑

j

xi j ≤ ri i = 1, . . . , R

∑

j

xs
ti j ≤ ri i = 1, . . . , R ∀(s, t),

have been incorporated into X , and Xs
t , respectively.
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Using Assumption 3.4 it can easily be seen that the optimization problem in Step
3 can be reformulated as follows:

max
π≥0

�(ŷ, π) �
[

min
x

c0(x0)+
∑

st

ps
t c0(x

s
t , xa(s,t), ξ s

t )

−
∑

kb

πkb
1 (Akb(x

1)− Bkb(ŷ
1
k ))−

∑

kb

πkb
st (Akb(x

s
t )− Bkb(ŷ

s
kt ))

]

+
∑

k

ck(ŷ0k)+
∑

kst

ps
t ck(ŷ

s
kt , ŷa(s,t)

k , ωs
t ). (3.4)

Note that we added the constant terms from (3.1) in Step 4 of the algorithm in order
to derive Eq. 3.4. In particular, in order to obtain (3.4) the partial Lagrangian of the
problem in Step 3 was taken, with respect to the A(x) − B(y) ≥ 0 constraints. The
equality follows from the convexity of the functions involved.

We are now ready to state the main result of this section.

Theorem 3.6 Let S∗ denote the optimal value of the social welfare problem in (SW-B).
Suppose that 3.4 and 3.5 are satisfied. Then:

lim
j→∞ U j = lim

j→∞ L j = S∗.

Proof We will follow Holmberg and Kiwiel (2006) and formulate the auction mecha-
nism as a game satisfying the conditions of Theorem 3.3. The result will then follow.
In order to place the game in an appropriate form, note that we can view the model
as having only two players. The first is the grid agent, and the second is the sum of
all market agents. By π , and y denote the decisions of the grid and market agent(s),
respectively.

The problem in (3.4) can be written as follows:

Z1(ŷ) = max
π∈� �(ŷ, π).

Note that we have used the fact that the problem satisfies the Slater condition of
Assumption 3.4 in order to contain the prices in a compact set �. Under our assump-
tions this can be done with no loss of generality. We can write (3.3) as follows:

Z2(π̂) = min
y
�(y, π̂).

We now have:

Z1(ŷ)− Z2(π̂) = max
y,π

�(ŷ, π)−�(y, π̂).

Where�(·, π) is the objective function of the grid agent with y fixed. While,�(y, ·)
represents the objective function of the sum of the market agent with π fixed. In terms
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of the notation of Theorem 3.3, the vector (y, π) corresponds to z, while� corresponds
to M.

Let((ŷ, π̂), (y, π)) = �(ŷ, π)−�(y, π̂) and Z(y, π) = Z1(y)−Z2(π). Using
all these we can formulate the optimization problems solved during the auction as the
following single optimization problem:

Z(ŷ, π̂) = max
y,π

((ŷ, π̂), (y, π)).

It is straightforward to show that((y, π), (ŷ, π̂)) is concave in (ŷ, π̂) and convex in
(y, π). Moreover ((y, π), (y, π)) = 0. Note that at every iteration j of the auction
the following optimization problem is solved:

M(ŷ( j), π̂( j)) ∈ arg max((y, π), (ŷ( j), π̂( j))).

Finally, the δ( j)’s used in the auction satisfy the conditions of the game process used
in Theorem 3.3. We have thus formulated the auction mechanism as the game process
in 3.3. The result now follows. 	


4 Numerical Experiments

In this section we discuss the numerical performance of the proposed auction mecha-
nism. The purpose of our numerical study was to empirically test how many iterations
of the auction are required in order to approximate the social optimum. In order to
perform our simulations we generated random instances of the model in (SW-B). For
ease of implementation we used linear utility functions and constraints. Moreover,
the model was assumed to have only two stages. The algorithm was implemented
in C, and GLPK (2006) was used to solve the LP subproblems. All the results were
obtained on a Linux machine with a 3Ghz processor, and 2Gb of RAM. In Table 1
we tabulate the data of the test problems. In Figure 1 we plot the error calculated
as: (U j − L j )/|SW ∗|; where SW ∗ denotes the optimal solution of the social welfare
problem. The error as taken as the average of one hundred instances of the problems
given in Table 1. We used δ j = α/( j + β), with α = 7 and β = 5 for the updates
required in Steps 2 and 3 of the algorithm.

As it can be seen from Fig. 1 the proposed method works well when an approximate
answer is sought in a few iterations. The results show that if one wants to operate near
the optimal value then a few iterations of the auction can achieve this goal. The results

Table 1 Problem data

Problem No. of market No. of blocks No. of No. of No. of
agents resources services scenarios

P1 5 10 5 10 70
P2 15 15 12 14 50
P3 20 25 100 40 10
P4 10 12 10 10 60
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also show that without further refinement of the method it may be too expensive when
an exact answer is required. However, we see from the semi-log plot in Fig. 2 that
the algorithm has a convergence rate that is less than linear. Thus the algorithm can
be useful in obtaining a good solution after a few iterations, but if an exact answer is
required then the algorithm becomes inefficient. Tuning the update parameter δ j can
help towards increasing the efficiency of the method. The efficient use of intelligent
starting points is another direction that we plan to explore.

5 Conclusions

In this paper we proposed an auction mechanism for decentralized resource allocation
in the context of grid computing. An auction mechanism based on a decomposition
algorithm was proposed and its convergence established. The numerical results seem
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to indicate that the proposed approach is feasible. We emphasize that the focus of this
paper is to propose a framework that can be used for managing resources in a grid com-
puting environment. Even though research on this problem is at an embryonic stage
we believe that some of its main features (e.g. the need for decentralized resource
management) have been captured in the auction mechanism adumbrated in the previ-
ous sections. There are still many issues that will need to be addressed. For example,
we have assumed the decisions can take real values. While this assumption enabled
us to to use results from convex games to establish the convergence of the algorithm,
it must be relaxed before the method can be applied to real world grid environments.
One possibility is to integrate the proposed algorithm with a branch and bound frame-
work. Another possibility is to use tools from semi-definite programming to find,
potentially useful, relaxations of the large scale combinatorial problem. Another sim-
plifying assumption we made concerned the existence of the A and B functions used
to convert resources to blocks, and services to blocks, respectively. For the method to
become useful the functional form of these functions will need to be identified. We
believe that the correct modeling and efficient solution of the grid scheduling problem
is extremely complicated. Some fundamental properties were incorporated into this
paper but many issues are still open.
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