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a b s t r a c t

Existing complexity results in stochastic linear programming using the Turing model depend only on
problem dimensionality. We apply techniques from the information-based complexity literature to show
that the smoothness of the recourse function is just as important. We derive approximation error bounds
for the recourse function of two-stage stochastic linear programs and show that their worst case is
exponential and depends on the solution tolerance, the dimensionality of the uncertain parameters and
the smoothness of the recourse function.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The computational complexity of a problem is defined as the
amount of resources required to approximate its solution with an
error below a specified tolerance. Here, we study the computa-
tional complexity of the linear two-stage stochastic programming
(TSSP) problem. Stochastic programming problems are optimiza-
tion problems in which one or more parameters are uncertain. In
the TSSP, decisions must be made in two separate stages: in the
first stage, a decision must be made before the outcomes of the
uncertain parameters are known; in the second stage, these pa-
rameters are observed and a second decision must be made given
these observations [2].

In the traditional setting, complexity is calculated in terms of
the size of the input to the problem in question. However, in the
case of stochastic programming, the input size is not the only fac-
tor that impacts complexity; therefore, the standard approachmay
not provide us with a reliable predictive model of the amount of
time required to solve a problem. This issue has been observed in
practice. For example, using numerical methods, Parpas andWeb-
ster showed that the complexity of solving a class of stochastic op-
timizationmodels does not only depend on the dimension but also
on whether the optimal decision is smooth [7]. The smoothness of
the optimizationmodel is usually not taken into account by the ex-
isting complexity results in this area. This paper is a first attempt
toward addressing this issue.
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In order to incorporate the smoothness of the underlyingmodel,
we use information-based complexity (IBC); we assume there is
an oracle which can provide certain information about the prob-
lem, and this information is generally partial, noisy and priced. The
complexity of the problem is thendefined in termsof the total price
of the information provided by the oracle in order to approximate
the solution. The purpose of this paper is to investigate the com-
plexity of the two-stage stochastic programming problem under
the IBC framework. We consider the use of a measure of smooth-
ness for determining complexity, as opposed to just using the di-
mension of the model.

Ourmain contribution is the application of IBC to the two-stage
stochastic programming problem in order to demonstrate how the
smoothness of this kind of problem impacts computational com-
plexity. We show that even two-stage stochastic linear programs
are intractablewhen the randomness comes froma continuous dis-
tribution, and derive error bounds for the approximation of the re-
course function of the TSSP.

2. Background review

2.1. The two-stage stochastic programming problem

The two-stage stochastic programming problem is an optimiza-
tion problem with uncertain parameters and for which decisions
must be made in two separate stages. TSSP models are defined as
follows:

min
x

Q(x),
Ax ≤ b,
x ∈ X .

(1)
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The objective function Q(x) is defined as

Q(x) = cT x + E[Q (x, ξ)], (2)

Q (x, ξ) = min
y∈Y

{q(ξ)Ty|W (ξ)y ≤ h(ξ)− T (ξ)x} (3)

where X ⊂ Rn1 , Y ⊂ Rn2 , and ξ ∈ Rd is the random vector formed
by the components of q(ξ) ∈ Rn2 , h(ξ) ∈ Rk,W (ξ) ∈ Rk×n2

and T (ξ) ∈ Rk×n1 . E[Q (x, ξ)] is the expectation with respect to
ξ . Parameters ξ, q(ξ), h(ξ),W (ξ) and T (ξ) are all uncertain. We
will assume that ξ has its support in the d-dimensional hypercube
Ω = [0, 1]d and that it is distributed according to some contin-
uous probability density function f (ξ). The equations above can
be interpreted as follows: Eq. (1) denotes the first-stage decision,
where we minimize over decision variable x before knowing the
actual values of the uncertain parameters; to account for this un-
certainty, we take the expected value of the second-stage function,
Q (x, ξ). In Eq. (3), Q (x, ξ) constitutes another minimization prob-
lem in which we sample the uncertain parameters and minimize
over decision variable y. Q(x) is called the expected value function
or the recourse function of the TSSP. More information about the
theoretical properties and the applications of the TSSP can be found
in the textbook by Birge and Louveaux [2].

2.2. Information-based complexity

We now briefly introduce the concepts of IBC and present a re-
sult for the complexity of the TSSP given by this framework. From
Eqs. (1)–(3), it is clear that the recourse function Q(x) dominates
the complexity of the TSSP. Note that for a fixed x and ξ,Q (x, ξ)
can be evaluated in polynomial timeusing (for example) an interior
point algorithm. Once the recourse function is determined, we are
left with a simple optimization problem, which can generally be
solved in polynomial time. Following Traub andWerschulz [9], we
assume that there is an oracle which can approximate the recourse
function using a reasonable algorithm to compute its answers. We
apply the real-numbermodel to determinewhat operationswe can
performwith the algorithm and the cost of each operation. At time
t = 1, the algorithm chooses an arbitrary value for x1, with x1 ∈ X
as specified in the TSSP, and the oracle responds with an upper
bound ub(x1) and a lower bound lb(x1). Based on that answer, the
algorithm chooses x2, and so on.We assume that the algorithmwill
always choose xi in such a way that the interval given by the oracle
for xi is smaller than the interval given for xi−1. The algorithm stops
when the answer provided by the oracle converges, i.e., when we
obtain a value xn which approximately minimizes function Q(x).
Note that popular algorithms for TSSP such as Bender’s decompo-
sition and stochastic dual dynamic programming fit exactly with
this framework. Therefore IBC is a natural framework to study this
class of optimization models.

The complexity of the TSSP is defined in IBC as the total cost
of approximating Q(x). This cost is obtained by adding the total
information cost, as determined by the oracle, and the total com-
binatorial cost, as determined by the real-numbermodel. Since the
algorithm only requires a small number of combinatory operations
in order to compare the bounds given by the oracle, and assuming
that the algorithmchooses each xi in polynomial time (say inP (n1)
for some polynomial P ), it follows that the computational com-
plexity of the TSSP will be O(nP (n1)), where n is the total number
of queries the algorithm makes to the oracle.

3. Related work

Our main reference in IBC is the book by Traub and Werschulz
[9], in which the authors describe the IBC framework and discuss
its applications. Their study of the complexity of the integration
problem is of particular interest to us, since the recourse function
requires the computation of an integral which dominates the com-
plexity of the TSSP. For the integration problem, the authors derive
bounds on the computational complexity and show that using the
modified trapezoidal rule with n sample points provides minimal
error among all other algorithms that use information of cardinal-
ity at most n.

Previous work on the complexity of stochastic programming
problems focused on using the Turing model of computation. Dyer
and Stougie study the complexity of the TSSP andof themulti-stage
stochastic programming problem (the general case) by performing
reduction from other problems [4]. They show that the evaluation
of the expected value function Q(x) for a fixed x is #P-hard both
in the case of discrete uncertain parameters and in the continuous
case, in which the parameters are continuously distributed. These
results do not explain how the smoothness of the functions that
define the problems influences their computation time. As shown
in [7], as well as in the example of Section 6 of this paper, the
smoothness of the model can have a substantial impact on the
solution.

Shapiro and Nemirovski study the complexity of stochastic pro-
gramming problems using Monte Carlo sampling algorithms [8].
The authors show that the TSSP can be solved reasonably efficiently
through Monte Carlo methods and apply large deviations theory
to derive bounds on the number of samples and on the number
of steps needed to solve the TSSP. Their analysis differs from ours
in two crucial respects. First, the resulting complexity results do
not depend on the smoothness of the problem. Second, we only
look at deterministic algorithms for the evaluation of the recourse
function. It will be an interesting extension to this paper to study
non-deterministic algorithms aswell as to extend the results to the
multi-stage case.

In a recent paper, Agarwal et al. investigate the complexity of
convex optimization problems under the IBC framework [1]. The
authors describe a new measure for discrepancy between func-
tions. They apply this measure to derive lower bounds for several
convex optimization problems by reducing them to statistical pa-
rameter estimation. In their work, Agarwal et al. assume Lipschitz
continuity in order to derive results for the complexity of stochastic
optimization problems. Ourwork differs from theirs in thatwe first
smooth the second-stage function of our problem, and then derive
error bounds in terms of the measure of smoothness obtained.

4. Smoothing of the second-stage function

In general, the complexity of the TSSP is dictated by how hard
it is to compute the recourse function Q(x). The expected value
E[Q (x, ξ)] is generally not easy to compute; it requires the inte-
gration of a function f over the domain in which the uncertain
parameter ξ is defined, but the exact form of function f is unde-
termined. For ξ ∈ Rd, this integral becomes d-dimensional, which
is hard to compute for large d. In order to derive the approxi-
mation error bounds for the recourse function, we first need to
ensure that the function we are integrating is differentiable. The
second-stage decision of the TSSP, described in Eq. (3), is in gen-
eral a non-differentiable minimization problem. In order to trans-
form the second-stage function into a differentiable function, we
smooth Q (x, ξ) with respect to ξ for fixed x, deriving an approxi-
mation which is guaranteed to be differentiable.

Theorem 4.1. Suppose that the TSSP model in Eqs. (1)–(3) has com-
plete recourse and that ξ has its support in [0, 1]d. Then for fixed x
and ξ , the following holds:

Q̂ (x, ξ) = lim
ϵ→0

−ϵ ln

 
y∈YB(x,ξ)

exp


−q(ξ)Ty
ϵ

 ,
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where Y B(x, ξ) denotes the set of basic feasible solutions of the second-
stage linear program for a fixed first-stage solution.

Proof. We follow the smoothing technique described by Parpas
et al. in [6]. Since we assume complete recourse, the set Y B is non-
empty. Furthermore, the smoothness with respect to the x variable
is not required and so the dependency of Y B on x is not a concern
in our analysis. For clarity, we drop the dependence of Y and Y B on
x. We begin by rewriting the second-stage decision:

Q (x, ξ) = min
y(ξ)∈Y

{q(ξ)Ty(ξ)},

Y = {y(ξ) ∈ [0, 1]|W (ξ)y(ξ)+ T (ξ)x ≤ h(ξ)}.
(4)

Let ŷ(ξ) denote a globalminimizer of (4). Then the optimal solution
for the problem is given by Q̂ (x, ξ) = q(ξ)T ŷ(ξ). Moreover,

q(ξ)T ŷ(ξ) ≤ q(ξ)Ty(ξ), ∀y(ξ) ∈ Y . (5)

Let ϵ > 0 denote the smoothness parameter. Details about the
influence of parameter ϵ in the smoothness of a function are dis-
cussed by Tsoukalas et al. in [10]. Multiplying both sides of Eq. (5)
by −1/ϵ and taking the exponential, we get

exp


−
q(ξ)T ŷ(ξ)

ϵ


≥ exp


−

q(ξ)Ty(ξ)
ϵ


. (6)

In order to avoid the emergence of an integral in the approxi-
mation, we perform the smoothing using a summation over the set
of m basic feasible solutions, Y B

= {y1, y2, . . . , ym}. The basic fea-
sible solutions are the vertices, or extremes points, of the polytope
corresponding to the feasible region, Y . It follows from Eq. (6) that

exp


−q(ξ)T ˆy(ξ)

ϵ


≤


YB

exp


−q(ξ)Ty(ξ)
ϵ



≤ m exp


−q(ξ)T ˆy(ξ)

ϵ


. (7)

Taking the log and multiplying by −ϵ we get

q(ξ)T ŷ(ξ) ≥ −ϵ ln


YB

exp


−q(ξ)Ty(ξ)
ϵ


≥ −ϵ ln(m)+ q(ξ)T ŷ(ξ). (8)

Finally, taking the limit where ϵ ↓ 0, we obtain the required
result. �

5. Approximation error bounds

In the last section we obtained the following approximation for
Q̂ (x, ξ):

Q̂ ϵ(x, ξ) =

−ϵ ln

 
y∈YB(x,ξ)

exp


−q(ξ)Ty
ϵ

 . (9)

Note that the preceding equation does not contain a minimization
with respect to the second-stage variables. We will assume that
Q̂ ϵ(x, ξ) is smooth with respect to the ξ variables. We make our
assumption precise below.

Assumption 5.1. The function Q̂ ϵ(x, ξ) is differentiable with re-
spect to its second argument up to order r(ϵ).
Tomake the notation easier to followwewill write r for r(ϵ). Based
on the approximation in (9) and the smoothness assumption, we
derive bounds on the approximation error of the recourse function,
Q(x), in terms of the smoothness of the second-stage function.
Before we state our main result, we provide some definitions from
the literature on information-based complexity. More information
on this setup can be obtained in [9].

The class of permissible functions is denoted by

W p
r (G) =


f : G → R

 r
k=1

∥∂ f k∥p ≤ 1


, (10)

where ∂ f k is the k-order derivative of f . The solution operator
S : W p

r → Y , where Y is the solution space, is given by

S(f ) =


G
f (x)dx. (11)

The information operatorN is defined as the evaluation of function
f for points in the domain G, N(f ) = ∆ = {f (x)|x ∈ G}. We
also define A(∆), the class of all algorithms that use information
∆, as A(∆) = {ϕ : N(f ) → Y }. Using information ∆ and an
algorithm ϕ ∈ A, we can obtain an approximation for S(f ) given
by A(f ) = ϕ(N(f )). The approximation error is then defined as

e(S,∆) = inf
ϕ∈A(∆)

sup
f∈W r

p (G)
∥S(f )− A(f )∥. (12)

Eq. (12) takes the supremumover all possible functions in classW r
p

and the infimum over all possible algorithms that use information
∆. This means that we are using the worst-case setting in terms
of the class of functions, but taking the best possible algorithm in
order to obtain the approximation.

We define n basis functions, h1, . . . , hn ∈ C∞(G), whichwewill
use to obtain an approximation of any function inW r

p in terms of a
linear combination of hi. The approximation Pn(f ) is defined as

Pn : C∞(G) → C∞(G), (13)

where

Pn(f )(x) =

n
i=1

f (xi)hi(x) (14)

and ∀n ∈ N, with x1, . . . , xn ∈ G.
We will make use of the following upper bound on the approx-

imation error, derived by Ciarlet [3]:

∥f − Pn(f )∥Lq ≤ c

n(−r/d+1/p−1/q)

∥f ∥W r
p

n−r/d
∥f ∥W r

p

(15)

where c > 0 is a constant and Lq denotes the Lq-norm.
Wewill alsomake the following assumptions regarding thedata

of the problem.

Assumption 5.2. The class of permissible functions W p
r is defined

over the domain G = [0, 1]d.

Assumption 5.3. The random variable ξ has its support in [0, 1]d.

We are finally ready to derive an upper bound on the complex-
ity of solving two-stage stochastic programming problems.

Theorem 5.1. The upper bound on the approximation error of the
recourse function is given by

e(S(f ), A(f )) ≤ cn−r(ϵ)/d
∥f (ξ)∥,

where n is the number of queries made to the oracle and c is an
arbitrary constant.
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Proof. We will use the approximation of f given in (13) and (14)
to obtain an upper bound for the approximation error between the
solution operator S(f ) and our approximation A(f ). To this end, let
f ∈ W r

p (G) be arbitrary. Then we construct an approximation for
S(f ) using Eq. (14)

Qn(f ) =


G
Pn(f )(x)dx =

n
i=1

f (xi)wi. (16)

Taking the information operator N(f ) and an algorithm ϕ such
that ϕ(y1, . . . , yn) =


iwiyi, we obtain

e(S(f ), A(f )) = sup
f

|S(f )− ϕ(N(f ))|

= sup
f

|S(f )− Qn(f )|

=


 

f (x)−


n

i=1

f (xi)

G
hi(x)dx


dx


≤ n−r/dc∥f ∥W r

p

≤ cn−r/d,

where we have used the fact that ∥f ∥W r
p = 1. Next, we apply

the approximation obtained for Q̂ (x, ξ) in Theorem 4.1 in order
to derive the upper bound in terms of the smoothing parameter ϵ.
Our aim is to obtain a value for E[Q (x, ξ)] by integrating over all
possible values of ξ . The integrand f (ξ) is given by

f (ξ) = p(ξ)


−ϵ ln


YB

exp


−q(ξ)Ty(ξ)
ϵ


, (17)

where p(ξ) is the known probability distribution for parameter ξ .
We can define the solution operator S(f ) as

S(f ) = E[Q (x, ξ)] =


G
f (ξ)dξ . (18)

As before, we obtain an approximation for S(f ):

Pn(f ) =

n
i=1

p(ξi)Q̂ (x, ξi)

G
hi(ξi)dξ, (19)

and the approximation error will be given by

e(S(f ), A(f )) =



G
f (ξ)−

n
i=1

p(ξi)Q̂ (x, ξi)

G
hi(ξi)dξ

 . (20)

Finally, we can apply the upper bound in (15) to obtain the re-
quired result. �

We conclude this section by proving a lower bound on the
complexity of the TSSP which shows that our bound is tight.

Theorem 5.2. The lower bound on the approximation error of the
recourse function is given by

e(S(f ), A(f )) ≥ cn−r(ϵ)/d,

where n is the number of queries made to the oracle and c is an
arbitrary constant.

Proof. Let m be such that n = md, we subdivide the domain G
into ñ = (2m)d closed cubes of length 1/2m: {Gi}

ñ
i=1. Let gi denote

the point of Gi with the smallest coordinate in each direction. We
take function ψ ∈ C∞(Rd) such that supp(ψ) ⊆ int(G), and
G ψ(x)dx = 1. Let ψi(x) = ψ(2m(x − gi)). Now using y = 2m(x

− gi) and dy = 2mdx, we obtain
G
ψi(x)dx =


G
ψ(y)


1
2m

d

dy = (2m)−d.
We take information Nf = (f (x1), . . . , f (xn)) and an arbitrary al-
gorithm A = ϕ · N, A ∈ An(∆). We define J as the set of all points
not interior to G:

J = {j : 1 ≤ j ≤ ñ, {x1, . . . , xn} ∩ int(Gj) = ∅},

|J| ≥ ñ − n = (2d
− 1)n.

We can now derive the lower bound for the approximation error
in terms of the smoothing parameter ϵ. We replace x in the previ-
ous equations with ξ and redefine the integrand f (ξ) in terms of
functions ψj to obtain f0 as follows:

f0(ξ) =


j∈J
ψj(ξ)j∈J

ψj(ξ)


W r(ϵ)

p (G)

.

Integrating f0 over G, we obtain
G
f0(ξ)dξ ≥

(2m)−d(ñ − n)
cnr(ϵ)/d−1/p

= cn−r(ϵ)/dn1/p 2
−d

n
(2d

− 1)n

= cn−r(ϵ)/d(n1/p2−d) ≥ cn−r(ϵ)/d.

Finally, we obtain the required result:

e(S(f ), A(f )) = sup
f

|S(f )− ϕ(N(f ))|

≥ max
σ=±1

|S(σ f0)− ϕ(0)| ≥ |S(f0)| ≥ cn−r(ϵ)/d. �

We can see in Theorems 5.1 and 5.2 that the upper and lower
bounds derived for the approximation error are functions of both
the dimensionality and the smoothness r(ϵ) of the second-stage
function.We can also see that these bounds are tight. Therefore,we
conclude that the complexity of the TSSP increases exponentially
with the dimension of the problem, but decreases exponentially
when Q (x, ξ) becomes smoother (when r(ϵ) increases). The error
bounds given by Jensen’s and Edmundson–Madansky’s inequali-
ties provide us with a theoretical result which cannot be applied
to the measurement of computational complexity. These bounds
require an exponential cost in computation in order to become
tighter. Even though the evaluation of the bounds can be done in
polynomial time (by solving linear programs in our setup), an ex-
ponential number of LPs needs to be solved. This result is of course
in line with our main result. In addition, our theory predicts that
the smoother the recourse function, the less LPs need to be solved
to obtain the Jensen and Edmundson–Madansky bounds. For ex-
ample, if the recourse function is linear, then the Jensen and EM
bounds are tight and only two LPs are required in order to confirm
this.

6. Illustrative example

We now present an example to illustrate the theoretical results
shown in the previous sections.We illustrate our point using a sim-
ple static stochastic optimizationmodel (i.e. we do not incorporate
any first-stage decisions). We consider two optimization models,

Q1(ξ) = min
y(ξ)


−y(ξ)1{ξ≥c0} | 0 ≤ y(ξ) ≤ 1


(21)

Q2(ξ) = min
y(ξ)


−y(ξ)1{c1≤ξ≤c2} | 0 ≤ y(ξ) ≤ 1


, (22)
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Table 1
Percentage increase in the number of evaluations required to solve the problem
as a function of the number of dimensions of the integrand (compared to the 2-
dimensional model), using both Q1(ξ) and Q2(ξ). Since Q2(ξ) is less smooth, the
number of evaluations increases much more rapidly as the number of dimensions
increases.

Dimensions % increase in number of evaluations
Estimation of Q1(ξ) Estimation of Q2(ξ)

4 0.0136 0
6 0.0652 323.60
8 0 2840.0

10 0.2900 5743.7

where 1A denotes the indicator function on the set A. In the nu-
merical experiments, we used constants c0 = 5, c1 = 4.75 and
c2 = 7.5. To solve the integration problem, we applied the Cuhre
algorithm, which is provided as part of the Cuba library [5].

Table 1 shows the percentage increase in the number of evalu-
ations performed by the algorithm as a function of the number of
dimensions of the integrand. This increase is calculated using the 2-
dimensional model. We can see from this table that the number of
evaluations for Q1(ξ), the smoother function, grows slowly when
compared to Q2(ξ). This can be explained by our results for the ap-
proximation error bounds in the previous section: when a function
is reasonably smooth, the smoothness parameter r is large; there-
fore, an increase in the dimension d of the integrand does not con-
siderably affect the complexity of the problem. On the other hand,
for a non-smooth function, the value of r is small, and even a small
increase in dwill affect the complexity, causing a dramatic increase
in the number of evaluations necessary to solve the problem.

This simple example illustrates the importance of smoothness
in the complexity of stochastic optimization models. It would be
interesting to see if this approach can be extended to the multi-
stage case. Another direction for future research is the study of the
complexity of stochastic programming with random algorithms
(e.g. Monte-Carlo based methods).
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