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Abstract We discuss the global optimization of the higher order moments of a portfolio of
financial assets. The proposed model is an extension of the celebrated mean variance model
of Markowitz. Asset returns typically exhibit excess kurtosis and are often skewed. More-
over investors would prefer positive skewness and try to reduce kurtosis of their portfolio
returns. Therefore the mean variance model (assuming either normally distributed returns or
quadratic utility functions) might be too simplifying. The inclusion of higher order moments
has therefore been proposed as a possible augmentation of the classical model in order to
make it more widely applicable. The resulting problem is non-convex, large scale, and highly
relevant in financial optimization. We discuss the solution of the model using two stochas-
tic algorithms. The first algorithm is Differential Evolution (DE). DE is a population based
metaheuristic originally designed for continuous optimization problems. New solutions are
generated by combining up to four existing solutions plus noise, and acceptance is based on
evolutionary principles. The second algorithm is based on the asymptotic behavior of a suit-
ably defined Stochastic Differential Equation (SDE). The SDE consists of three terms. The
first term tries to reduce the value of the objective function, the second enforces feasibility
of the iterates, while the third adds noise in order to enable the trajectory to climb hills.

Keywords Portfolio selection · Heuristics · Global optimization ·Markowitz model

Jel Classification C61 · G11

1 Introduction

Following the seminal work of Harry Markowitz [20], returns of financial assets are typically
described by their mean, while risk is described by variance. Using the first two moments
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only is indeed sufficient if the investors have a quadratic utility function or the returns follow
a Gaussian normal distribution. Unfortunately, neither condition holds in real life. Investors
with non-increasing absolute risk aversion like positive skewness (see, e.g., [2]) as it indicates
that extreme deviations from the mean tend to be on the plus side. Such investors dislike high
kurtosis which indicates that extreme events have a high probability on either side. At the
same time, stylized market facts indicate that higher order moments do matter as empirical
data are skewed and, even more importantly, exhibit excess kurtosis and fat tails.

Against this backdrop, several approaches have been developed to incorporate higher
order moments. In the model suggested by [4] with short-selling allowed and no risk-free
asset, the efficient line in the mean-volatility space is a hyperbola. It is shown in [11] that the
efficient set becomes a cone if skewness is considered in addition. Moreover an equilibrium
asset pricing model was developed in [15] that includes mean, variance and skewness of
returns. Their empirical evidence, however, is contradicted in [8]. In addition, there exist
equilibrium models that include excess kurtosis (see, e.g., [26]).

In this paper we consider an extension of the celebrated Markowitz [20] model by incorpo-
rating the optimization of higher–order moments. The inclusion of higher order moments has
been proposed as one possible augmentation to the model in order to make it more applicable
(see e.g., [3,22], or [16]). The applicability of the model can be broadened by relaxing one
of its major assumptions, i.e., that the rate of returns are normal. Given the numerical and
theoretical challenges presented by these models we only consider a “vanilla” version of the
problem where all other assumptions are kept.

Akin to the a mean variance framework, the selection problem can be split into two steps.
From the universe of feasible portfolios, the majority can be classified as inefficient and
should not be held by any investor for whom the usual assumptions of risk aversion apply.
Which of the remaining efficient portfolios ought to be picked, however, depends on the
investor’s preferences; by means of a utility of preference function, the trade-off between
the favorable expected return and positive skewness on the one side and the (unfavorable)
variance and volatility on the other hand has to be found. This paper is concerned with the
first of these two steps. In particular, we focus on a single period model and we propose two
algorithms that can generate an efficient surface of portfolios. Every point on this surface
will correspond to certain investor’s preference selection.

For the problem described above we apply two promising approaches to stochastic global
optimization. The first algorithm is Differential Evolution (DE). The algorithm was proposed
in [32,33]. DE is a simple evolutionary method for continuous optimization problems which
uses vectors to represent solutions. New solutions are generated in a two step procedure: First,
three distinct individuals are selected, the first of these is used as the base vector to which
the weighted difference of the remaining two is added; next, this combination is crossed-
over with a fourth solution. Acceptance and replacement is based on evolutionary principles.
Extended versions also include noise terms that generate diversity and hinder premature
convergence. DE has recently been applied to constrained portfolio optimization in [19].

The second algorithm, which we call the diffusion algorithm, is based on a suitably defined
Stochastic Differential Equation (SDE). The SDE consists of three terms. The first term indi-
cates a descent direction for the objective function. The second term penalizes deviation
from the feasible set (using a suitable definition of the Lagrange multipliers). If the trajectory
passes through a local minimum then the first two terms will be zero. For this reason we
consider a third term which adds some noise (using a Brownian motion term) to the tra-
jectory and enables it to escape from local minima. The effect of the noise has to be large
enough so that the the trajectory can escape all local minima, however its effects have to
be gradually reduced in order to enable the algorithm to converge to the global minimum.
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When the problem is unconstrained a similar algorithm was considered in [1,6,9,10]. When
the problem has only linear constraints then an extension was proposed in [23]. The idea
in [23] was to project the dynamics of the SDE onto the feasible set. The type of problems
considered in this paper have non-linear constraints and so the method of [23] is not directly
applicable. One of the aims of this paper is to discuss the use of an SDE approach to non-
linearly constrained problems. Based partly on the numerical evidence given in this paper we
believe that the diffusion method seems to be a promising approach for global optimization.
We discuss such extensions through the lens of a highly interesting (and relevant) problem.
The convergence of the algorithm is only discussed heuristically. A rigorous convergence
proof is under development and will appear elsewhere [21].

The purpose of this paper is to show how stochastic optimization algorithms can be used to
solve realistic financial planning problems. A review of applications of global optimization to
portfolio selection problems appeared in [12]. A deterministic global optimization algorithm
for a multi-period model appeared in [17]. This paper extends and complements the methods
mentioned above in the sense that we incorporate the optimization of higher order moments
into the model. The type of models we consider cannot, usually, be solved by deterministic
algorithms. Consequently, practitioners are left with two options: solve a simpler, but less
relevant model, or use a heuristic. In this paper we discuss two stochastic algorithms that
represent very promising approaches to global optimization problems. Moreover, heuristic
search methods have been found useful in different portfolio optimization problems includ-
ing constraints on asset weights, distributions, or risk measures (see, e.g., [18]). We compare
the performance of the two algorithms and discuss their merits in a real world application.
Moreover, we discuss their practical implementation and tuning. Admittedly the model is
rather simplistic. However, given the theoretical and computational difficulties involved with
such models it is important to consider the simplified version of the problem in the hope that
this approach will shed more light to the general case.

2 Higher moments in portfolio selection

To identify the portfolios amongst all feasible portfolios, the traditional optimization problem
in a mean-variance framework can be stated as follows:

min
x

f (x) = V(rP ) (1a)

s.t. rP,t =
∑

i

xi ri,t (1b)

E(rP ) = r∗ (1c)

xi ≥ 0 ∀i (1d)∑

i

xi = 1 (1e)

where E(·) and V(·) denote the mean and variance of portfolio returns, respectively.
ri,t denotes the series of asset returns which, in this case, are input parameter.

Alternatively, the return constraint (1c) can be dropped and the trade-off between return and
risk can be incorporated in a combined objective function, f MV (x) = λV(rP )−(1−λ)E(rP ).
The scalar λ ∈ [0, 1] represents the level of risk aversion: a risk neutral investor with λ = 0
will only maximize expected returns, while increasing values of λ put more weight on risk
and therefore represent higher risk aversion. The efficient frontier can then be explored by
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Fig. 1 Feasible sets for a four asset portfolio in the mean-volatility-skewness (top row) and mean-variance-
kurtosis space (bottom row)

solving the problem for different values of λ. This remedies the problem that for a given value
for the higher moment (skewness or kurtosis), the feasible range for the portfolio’s expected
return is not known in advance. The decision variables (xi ) represent the fractions of initial
wealth invested in asset i . Note that this problem is a convex quadratic programming problem
for which very efficient algorithms exist. The interested reader is referred to the reviews in
[30] and [18] for more information regarding the Markowitz and related models.

If the returns exhibit higher order moments and if risk-averse investors do care about them,
i.e., have a non-quadratic (and non-linear) utility function, then the definition of efficiency
has to be extended. Akin to the original problem, an additional constraint can be introduced
that ensures a certain level of skewness and kurtosis. In this paper, only one of the two higher
moments is considered at a time. The new problem therefore reads as follows:

min
x

f (x) = λV(rP )− (1− λ)E(rP ) (2a)

s.t.M(rP ) = M∗ (2b)

xi ≥ 0 ∀i (2c)∑

i

xi = 1 (2d)

where M(rP ) and M∗ are the portfolio’s actual and the target higher order moment (skewness
or kurtosis), respectively.

The inclusion higher order moments makes the optimization problem non-convex and it
can no longer be solved with the state of the art non-linear programming algorithms. The
non-negativity constraint on the asset weights preclude analytic solutions. Figure 1 illus-
trates this problem for a 4 asset case. When one of the four weights is fixed (here: x4) and the
weights have to add to one (i.e., x3 = 1− x1 − x2 − x4), the feasible set can be represented
by a surface. A common approach is therefore to suggest modifications and simplifications
to regain convexity. For the case of skewness, Konno et al. [14] consider the problem where
the portfolio’s skewness is maximized under constraints on the expected return and variance.
After approximating the variance with the mean absolute deviation, the problem can be re-
stated and solved by linear programming. Based on properties of the original problem, Boyle
et al. [5] suggest local search method where a new portfolio is obtained that is close to base
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portfolio which they find more efficient. Further related applications include [7,13,31] and
[24].

3 Differential evolution

A recent addition to the class of population based heuristics is Differential Evolution (DE),
suggested in [25,32,33]. In this method, each individual of the population represents one can-
didate which is encoded as a vector of all the decision variables (here: portfolio weights x).
In each generation, for each individual p0 a new solution pn is generated in a two step pro-
cedure. First, a linear combination p� of three other, randomly picked individuals, p1, p2

and p3 with p j �= pk∀ j �= k. For this new solution, p1’s solution, x p1 , is chosen as the base
vector to which the weighted difference of the other two solutions x p2 and x p3 is added;
hence: x p� = x p1 + F · (x p2 − x p3). Then, this solution x p� is crossed over with x p0 where
with a probability ρ the i’th element of the vector comes from the p0, otherwise from p�.
When all new solutions for this generation have been produced, each of them is compared to
their respective “parent” p0 and replaces it if it outperforms it. In the course of generations,
the individuals are expected to converge to the global optimum. Premature convergence can
be avoided by adding noise terms z to the parameter F and/or to the difference vector, i.e.,
x p�

i = x p1
i + (F + z1,i ) · (x p2

i − x p3
i + z2,i ). Further extensions suggest to include the elitist

or several difference vectors in the creation of x p� (see, e.g., [25]).
One of the advantages of DE is that it requires only a small number of technical parame-

ters. In the basic version, the population size, the constant F and the cross over probability
ρ have to be fixed; in the presented extended versions, the distributions for z1 and z2 have
to be specified. Furthermore, these parameters require little tuning, and often standard val-
ues produce stable results. This was also found in preliminary experiments for this study,
where the parameters were set to F = 0.5 and ρ = 0.8. However, it was also found for this
problem that using both noise terms is beneficial; with a probability of 0.5, z1 is a normally
distributed variable with zero mean and 0.01 standard deviation, and zero otherwise. With
a probability of 0.01, z2 is a uniformly distributed variable in the range of [−0.005; 0.005],
and zero otherwise.

The non-negativity (2c) and budget constraints (2d) on the weights are satisfied with a
repair mechanism where x p�

i ← max(0, x p�

i ) and x pn
i ← x pn

i /� j x pn
j . For the constraint on

the higher moments (2b), however, a punishment term is introduced that lowers the objec-
tive function by an amount reflecting the difference between targeted (M∗) and actual (Ma)
value for the considered moment. More specifically, if the distance δ = |M∗ −Ma | exceeds
a certain small margin ε, a punishment term π = (1+ δ)φ is introduced where φ is a scaling
constant times the percentage of generations that has been passed already. Hence, the heuris-
tic allows for exploration during the early generations, yet puts more pressure on constraint
satisfaction during the latter. The population size is set to 50, and the number of function
evaluations is limited to 100,000, resulting in 2,000 generations.

4 The diffusion algorithm

4.1 The algorithm

We describe the diffusion algorithm on the following general optimization problem:

min
x

f (x)

s.t. g(x) = 0. (3)
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where f : Rn → R, and g : Rn → R
m , are assumed to be smooth. For the sake of argument,

suppose that we did not have any constraints. A well known method for obtaining a solution
to an unconstrained optimization problem is to consider the following Ordinary Differential
Equation (ODE):

d X (t) = −∇ f (X (t))dt. (4)

By studying the behavior of X (t) for large t , it can be shown that X (t) will eventually
converge to a stationary point of the unconstrained problem. A review of, so called, continu-
ous-path methods can be found in [34]. In order to allow the trajectory to escape from local
minima, it has been proposed by various authors (see [23] and references therein for a review
of the literature) to add a stochastic term that would allow the trajectory to “climb” hills. One
then considers the diffusion process:

d X (t) = −∇ f (X (t))dt +√
2T (t)d B(t) (5)

where B(t) is the standard Brownian motion in R
n . It can be shown (e.g., [6,9,10]) that under

appropriate conditions on f , and if the annealing schedule is chosen as follows:

T (t) �
	

log(3+ t)
, for some 	 ≥ c0, (6)

where c0 is a constant positive scalar (the exact value of c0 is problem dependent). Under
these conditions, as t →∞, the transition probability of X (t) converges (weakly) to a prob-
ability measure 
. The latter, has its support on the set of global minimizers. The problems
considered in this paper are nonlinearly constrained. Consequently none of the above meth-
ods can be directly applied. In order to enforce the feasibility of the trajectory generated by
an SDE, we propose to use the following:

d X (t) = −∇ f (X (t))− ∇g(X (t))T λ(X (t), t)dt +√
T (t)d B(t). (7)

where λ represent an estimate of the Lagrange multipliers of the problem and they are
given by:

λi (x, t) � [∇gi (x)∇gi (x)T ]−1[gi (x)+ T (t)
 gi (x)− ∇gi (x)∇ f (x)]. (8)

∇gi (x) is used to denote the Jacobian of the i th constraint. By ∇g(x) ∈ R
m×n , we denote

the R
m×n Jacobian matrix associated with the constraints. 
gi (x) ∈ R is used to denote the

Laplacian of the constraints. Similar notation is used for the objective function. One way
of studying the behavior of (7) is to first establish that that if t is large enough then X (t)
will eventually satisfy the constraints of the problem. Once this result is established then one
needs to establish that the process will converge to the globally optimal solution of (3).The
proofs are rather lengthy and will appear in a forthcoming paper [21].

4.2 Practical implementation

We note that the specification of the algorithm in the previous Section made use of exact
gradients, Laplacians etc. Such data is not used in practice since noise is added to function
evaluations, the benefits of exact gradient evaluations are wasted. For this reason all gradients
were estimated using a gradient estimation approach proposed by Spall in [29]. Let �t be
a sequence of vectors in R

n and let each component of �t be generated from a Bernoulli
distribution with two equiprobable events {−1,+1}. For each function f whose gradient is
required, we make two measurements:

f +(X (t)) = f (X (t)+ ct�t ), f −(X (t)) = f (X (t)− ct�t )
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where ct is a parameter to be described later. The gradient of f at X (t) is then estimated by:

D(X (t)) =
[

f +(X (t))− f −(X (t))

2ct�t1
, . . . ,

f +(X (t))− f −(X (t))

2ct�tn

]
. (9)

this gradient estimation is reminiscent of finite-differencing with the difference that only 2
measurements of the objective function are made in each iteration as opposed to 2n. In our
implementation we used: ct = c

(t+1)γ
, where γ = 0.14.

From similar studies in the unconstrained case (e.g. [1,27]), we know that a deficiency of
stochastic methods (of the type proposed in this paper) is that they require a large number of
function evaluations. The reason for this shortcoming, is that the annealing schedule has to
be sufficiently slow in order to allow the trajectory to escape from local minima. Therefore,
whilst there are many sophisticated methods for the numerical solution of SDEs, we decided
to use the cheaper stochastic Euler method. A further reason for not using higher order meth-
ods, such as Milstein’s method, is that these methods require derivatives of the annealing
schedule. While the functional form of this function has been identified, its direct use will
slow down the algorithm too much. We will return to the topic of the annealing schedule later
in this Section.

The stochastic Euler method is a generalization of the well known Euler method for ODEs
to the stochastic case. Our implementation has two phases, in the first phase we generate a
point based on the gradient estimate of the objective function, and we also add some noise.
This step is given by:

Xr (t +t) = X (t)− D f (X (t))t +√
2T (t)tu, (10)

where t is the discretized step length parameter, and u is a standard Gaussian vector,
i.e., u ∼ N (0, I ). The second phase is a feasibility restoration phase, and it is an attempt to
perform a numerical implementation of the Lagrange multiplier penalty term described in the
previous section. This step is performed as in gradient restoration algorithms (see e.g., [28]).
Given the Xr from (10) we attempt to compute a point X (t +t) so that g(X (t +t)) = 0.
Following [28] we compute a point X (t +t) as follows:

X (t +t) = Xr (t +t)+X (t +t),

where

X (t +t) = −Dg(Xr (t +t))σ (t)

Dg(Xr (t +t))Dg(Xr (t +t))T σ(t) = ζg(Xr (t +t)).
(11)

In our implementation we solve the system in (11) for ζ = 1, and then compute X (t+t) as
specified above. If the point obtained is feasible then we continue with phase one in (10). If
the point is not feasible then we set ζ := ζ/2, and perform another restoration phase from the
point where the previous restoration phase failed. This process is guaranteed to eventually
yield a feasible point [28].

The algorithm starts by dividing the discretized time into k periods. Starting from a single
strictly feasible point the algorithm generates m different trajectories. After a single period
elapses, we remove the worst performing trajectory. Since all trajectories generate feasible
points, we can assess the quality of the trajectory by the best objective function value achieved
on the trajectory. We then randomly select one of the remaining trajectories, and duplicate it.
At this stage we reduce the noise coefficient of the duplicated trajectory. When all the periods
have been completed, in the manner described above, we count this event as one iteration. If
the current incumbent solution vector remained the same for more than l iterations (l > 4,
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in our implementation) then we reset the noise to its initial value. The algorithm terminates
when the noise term is smaller than a predefined value (0.1e−4) or when after five successive
resets of the noise term, no improvement could be made. In our implementation we used four
trajectories, four periods, each of length 10e3. The annealing schedule was started with the
value T (0) = 30 and decreased by 0.7 in each iteration, i.e., T (t + 1) = T (t) · .3.

5 Empirical study

In this Section we report on the numerical performance of the two algorithms. We only stud-
ied the ten asset case to understand the effects of higher order terms to the portfolio selection
problem. A similar approach can be used for larger problems.

5.1 Data

The empirical study is based on ten stocks included in the Dow Jones Industrial Aver-
age (DJIA). Using the adjusted daily prices downloaded from finance.yahoo.com for 2
March 2000 to 17 November 2006, 1684 log returns where computed. The top row of
Fig. 2 contains scatter plots of the assets’ returns mean and the other moments. Note that points
on the same vertical level refer to the same asset. The mean returns are in the range of−4 to
+9 basispoints, while daily standard deviations are mostly around 2%. The considered time
period includes several turbulent market situations with extreme events. This leads not only
to negative skewness in most of the included assets, but also to excess kurtosis and fat tails in
all of the included assets. Not surprisingly, the assumption of a Gaussian normal distribution
can be rejected for all of the assets both with a Jarque–Bera and a Kolmogorov–Smirnov test.

In the presence of higher order moments, optimizing with respect to mean and variance
only can lead to highly undesirable effects. As the mean-variance optimization problem is
(by definition) oblivious to skewness and kurtosis, the higher order moments of the portfolios
become to some extent random. This can be seen from the graphs in the bottom row of Fig. 2
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Fig. 2 Moments of stocks used for the computational study (top row) and mean-variance optimized portfolios
(bottom row) for the 10 stock case
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where points on the same vertical level represent the same portfolio. The portfolios are effi-
cient in a mean-volatility space as they yield higher returns for any given level of volatility
than individual stocks or other portfolios. However, low volatility portfolios come with higher
kurtosis (lower half of the graphs), while higher volatility not only increase returns, but also
skewness. In any case, the skewness is negative, and all the portfolios exhibit excess kurtosis;
neither is desirable to an investor. Including these higher order moments is therefore a natural
extension to the traditional optimization problem, and efficient sets are to be computed with
respect to skewness and kurtosis.

5.2 Main findings

Other things equal, investors prefer higher return and skewness and lower volatility and kurto-
sis. Hence, when looking at three moments at a time and fixing one of them, efficient surfaces
can be found. Figure 3 depicts the efficient lines with certain fixed skewness values. As can be
seen, only portfolios with skewness below ca. −0.2 can be excluded as they are dominated.
Above this value, increasing the skewness requires higher volatility; investors have therefore
to find combinations that corresponds to their preferences the best. When projected into the
mean-variance space (right), their different curvatures cause the lines to intersect. The hull
of these projected lines constitute the Markowitz efficient line which therefore exhibits dif-
ferent skewness values for different mean-variance efficient portfolios (cf. Fig. 2). The same
effect can be observed when the kurtosis; Fig. 4 depicts the efficient lines for different fixed
values of kurtosis. Again, a projection onto the mean-variance space reveals that efficient
lines for different values of kurtosis intersect, and the mean-variance efficient line is the hull.
As in this case the kurtosis increases when the volatility is reduced, it becomes apparent that
decision makers with a high level of risk aversion will not necessarily choose low volatility
portfolios as they also exhibit a higher likelihood of extreme events. Which of the portfolios
on the surface they should choose, however, depends again on their preferences and utility
functions.

As was stated in the beginning of this Section, both methods can be applied to larger
problems. We report some initial computational experience with such problems. Starting
with the problem where only skewness is constrained initial results are reported in Table 1.
The table shows the average number of function evaluations required to produce a point on
the efficient frontier using the diffusion algorithm, and when skewness was constrained. The
points were produced as described in Sect. 2. The statistics given in Tables 1 and 2 refer to
the SDE algorithm. For the DE implementations, the number of function evaluations was
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Fig. 3 Efficient lines for the 10 stock case with constraints on the skewness
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Table 1 Diffusion method
solution statistics—constraints
on Skewness

Assets Maximum
Skewness

Average
func. eval

Feasibility
violation

10 0.498 5679 0
15 0.4985 24053 0
30 0.515 34655 0
45 0.561 56120 0
65 0.53 120332 0

Table 2 Diffusion method
solution statistics—constraints
on Kurtosis

Assets Minimum Average Feasibility
Kurtosis func. eval violation

10 4.30 6880 0
15 3.65 29960 0
30 3.64 31680 0
45 3.49 63136 0
65 3.42 159604 0

fixed to 100 000. The results are similar in terms of the optimal objective function values.
Since the implementations were done on different platforms, however, using Linux and C++
for the SDE and Matlab on PCs with different processors, a comparison of CPU time is not
informative.

For the model where kurtosis is constrained initial numerical results are reported in Table
2. An illustration of an efficient frontier of a problem with many assets and when the skew-
ness is constrained is given in Fig. 5. While these results were obtained with the diffusion
method, similar results can be obtained with the differential evolution algorithm.

Our numerical experience with the two algorithms has highlighted some advantages and
some disadvantages for the two methods. A key advantage of DE is that it requires little
tuning and can be used out of the box. Consequently a transparent implementation can be
done requiring little input from the user other than the objective function, including a pun-
ishment term for constraint violations. On the downside it requires several restarts. For the
problems considered in this paper ten restarts were performed, each restart requires more
function evaluations than the SDE algorithm, typically 100,000 for the problems considered
in this paper. The effectiveness of the method can be improved when DE is modified with
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Fig. 5 An efficient frontier when
skewness is constrained. This
was generated with 65 assets and
consists of about 2200 points

“noise” as described previously. With this modified version fewer restarts are required, but
then some tuning is required. With respect to the diffusion method, a key advantage has been
that the method always works with feasible solutions. This allows us to compare two different
solutions directly. Moreover, the fact that the current solution is always feasible allows us to
stop the algorithm prematurely but with an implementable strategy. A disadvantage of the
method is that requires an annealing schedule for the reduction of the effects of the noise. This
parameter is always difficult to fine tune. The scheme proposed here is simple, and works, but
undoubtedly much more improvements can be made. If the problem has many local minima
then the noise needs to be adopted accordingly, so it will probably be very difficult to obtain
an annealing schedule that works in all conditions. Finally, the method borrows many ideas
from nonlinear programming algorithms. This allows very efficient implementations of some
of its aspects, e.g the gradient evaluation and projection steps.

6 Conclusions

We proposed an extension of the classical Markowitz model, to take into consideration higher
order moments. We presented two stochastic algorithms for its solution and performed an
empirical study. This work has highlighted many directions for future research. In terms of
the modelling of the problem, we need to consider how to jointly enforce skewness and kur-
tosis constraints. In order to do this we need to identify how one choice for the level of one
moment affects the other. In terms of the algorithms we need to make some improvements
before we are able to apply these methods to larger problems. For future versions of the DE
algorithm it will be beneficial to identify ways in which to better take advantage of “sophis-
ticated guesses” for initial solutions. For the diffusion method more work on the annealing
schedule might be needed, and ways to perform inexact projections will be developed.
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