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Abstract. We consider the global optimization of two problems arising
from financial applications. The first problem originates from the portfo-
lio selection problem when high-order moments are taken into account.
The second issue we address is the problem of scenario generation. Both
problems are non-convex, large-scale, and highly relevant in financial en-
gineering. For the two problems we consider, we apply a new stochastic
global optimization algorithm that has been developed specifically for
this class of problems. The algorithm is an extension to the constrained
case of the so called diffusion algorithm. We discuss how a financial plan-
ning model (of realistic size) can be solved to global optimality using a
stochastic algorithm. Initial numerical results are given that show the
feasibility of the proposed approach.

1 Introduction

We consider the global optimization of two problems arising from financial appli-
cations. The first problem originates from the portfolio selection problem when
high-order moments are taken into account. This model is an extension of the
celebrated mean-variance model of Markowitz[1, 2]. The inclusion of higher order
moments has been proposed as one possible augmentation to the model in order
to make it more applicable. The applicability of the model can be broadened by
relaxing one of its major assumptions, i.e. that the rate of returns are normal.
The second issue we address is the problem of scenario generation i.e. the descrip-
tion of the uncertainties used in the portfolio selection problem. Both problems
are non-convex, large-scale, and highly relevant in financial engineering.

Given the numerical and theoretical challenges presented by these models we
only consider the “vanilla” versions of the two problems. In particular, we focus
on a single period model where the decision maker (DM) provides as input pref-
erences with respect to mean, variance, skewness, and possibly kurtosis of the
portfolio. Using these four parameters we then formulate the multi-criteria op-
timization problem as a standard nonlinear programming problem. This version
of the decision model is a non-convex linearly constrained problem.

Before we can solve the portfolio selection problem we need to describe the
uncertainties regarding the returns of the risky assets. In particular we need
to specify: (1) the possible states of the world and (2) the probability of each
state. A common approach to this modeling problem is the method of matching
moments (see e.g. [3, 4, 5]). The first step in this approach is to use the historical
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data in order to estimate the moments (in this paper we consider the first four
central moments i.e. mean, variance, skewness, and kurtosis). The second step
is to compute a discrete distribution with the same statistical properties as
the ones calculated in the previous step. Given that our interest is on real–
world applications we recognize that there may not always be a distribution that
matches the calculated statistical properties. For this reason we formulate the
problem as a least squares problem [3, 4]. The rationale behind this formulation
is that we try to calculate a description of the uncertainty that matches our
beliefs as well as possible. The scenario generation problem also has a non-convex
objective function, and is linearly constrained.

For the two problems described above we apply a new stochastic global opti-
mization algorithm that has been developed specifically for this class of problems.
The algorithm is described in [6] (see also section 4). It is an extension to the
constrained case of the so called diffusion algorithm [7, 8, 9, 10]. The method fol-
lows the trajectory of an appropriately defined Stochastic Differential Equation
(SDE). Feasibility of the trajectory is achieved by projecting its dynamics onto
the set defined by the linear equality constraints. A barrier term is used for
the purpose of forcing the trajectory to stay within any bound constraints (e.g.
positivity of the probabilities, or bounds on how much of each asset to own).

The purpose of this paper is to show that stochastic optimization algorithms
can be used to solve realistic financial planning problems. A review of applica-
tions of global optimization to portfolio selection problems appeared in [11]. A
deterministic global optimization algorithm for a multi-period model appeared
in [12]. This paper extends and complements the methods mentioned above in
the sense that we describe a complete framework for the solution of a realis-
tic financial model. The type of models we consider, due to the large number
of variables, cannot be solved by deterministic algorithms. Consequently, practi-
tioners are left with two options: solve a simpler, but less relevant model, or use a
heuristic algorithm (e.g. tabu–search or evolutionary algorithms). The approach
proposed in this paper lies somewhere in the middle. The proposed algorithm be-
longs to the simulated–annealing family of algorithms, and it has been shown in
[6] that it converges to the global optimum (in a probabilistic sense). Moreover,
the computational experience reported in [6] seems to indicate that the method
is robust (in terms of finding the global optimum) and reliable. We believe that
such an approach will be useful in many practical applications. Admittedly the
models (especially the portfolio selection problem) are rather simplistic. Given
the theoretical and computational difficulties involved with such models it is
important to consider the simplified version of the problem in the hope that
this approach will shed more light to the general case. Moreover, to the authors’
knowledge this is the first paper to address, in a holistic manner, the global
optimization of the moment problem and the portfolio selection problem with
higher order moments.

The rest of the paper is structured as follows: in section 2 we describe the sce-
nario generation problem. While there are many ways to generate scenario trees
for stochastic programming problems, we will focus on the moment matching
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approach. The interested reader is referred to [3] for a review of other methods.
Also in this section we discuss the importance of arbitrage opportunities; we
describe how we dealt with this requirement of financial models in our imple-
mentation. In section 3 we discuss the portfolio selection problem. A model with
a non-convex objective and linear constraints is proposed as a simple extension
to the classical Markowitz model. The non-convexities in the model arise from
the inclusion of higher order moments. The model considered here relaxes the
normality assumption of the classical model, the reader is referred to [13] for a
more complete overview of non-convex optimization problems in financial appli-
cations. In section 4 we describe an algorithm for the solution of the two models
described above. For a full theoretical treatment of the algorithm we refer the
interested reader to [6]. In section 5 we present some initial numerical experi-
ments. We study how difficult (in terms of computation time) it is to compute
an arbitrage free scenario tree. We also study how the global optimum changes
as we vary the parameters of the model. To illustrate the effect of the parame-
ters we present some 3-dimensional plots of efficient frontiers, the analogs of the
classical Markowitz efficient frontiers.

2 Scenario Generation

From its inception Stochastic Programming (SP) has found several diverse appli-
cations as an effective paradigm for modeling decisions under uncertainty. The
focus of initial research was on developing effective algorithms for models of re-
alistic size. An area that has only recently received attention is on methods to
represent the uncertainties of the decision problem.

A review of available methods to generate meaningful descriptions of the un-
certainties from data can be found in[3]. We will use a least squares formulation
(see e.g. [3, 4]). It is motivated by the practical concern that the moments, given
as input, may be inconsistent. Consequently the best one can do is to find a
distribution that fits the available data as well as possible. It is further assumed
that the distribution is discrete. Under these assumptions the problem can be
written as:

min
ω,p

n∑

i=1

( k∑

j=1

pjmi(ωj) − μi

)2

s.t
k∑

j=1

pj = 1 pj ≥ 0 j = 1, . . . , k

Where μi represent the statistical properties of interest, and mi(·) is the as-
sociated ‘moment’ function. For example, if μi is the target mean for the ith

asset then mi(ωj) = ωi
j i.e. the jth realization of the ith asset. Numerical experi-

ments using this approach for a multistage model, were reported in [4] (without
arbitrage considerations). Other methods such as maximum entropy[14], and
semidefinite programming [15], while they enjoy strong theoretical properties
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they cannot be used when the data of the problem are inconsistent. A disadvan-
tage of the least squares model is that it is highly non-convex which makes it
very difficult to handle numerically. These considerations have lead to the devel-
opment of the algorithm described in section 4 (see also [6]) that can efficiently
compute global optima for problems in this class.

When using scenario trees for financial planning problems it becomes neces-
sary to address the issue of arbitrage opportunities[4, 16]. An arbitrage oppor-
tunity is a self–financing trading strategy that generates a strictly positive cash
flow in at least one state and whose payoffs are nonnegative in all other states.
In other words it is possible to get something for nothing. In our implementation
we eliminate arbitrage opportunities by computing a sufficient set of states so
that the resulting scenario tree has the arbitrage free property. This is achieved
by a simple two step process. In the first step we generate random rates of re-
turns, these are sampled by a uniform distribution. We then test for arbitrage
by solving the system:

xi
0 = e−r

m∑

j=1

xi
jπj ,

m∑

j=1

πj = 1, , πj ≥ 0, j = 1, . . . , m i = 1, . . . , n. (1)

Where xi
0 represents the current (known) state of the world for the ith asset, xi

j

represents the jth realization of the ith asset in the next time period (these are
generated by the simulations mentioned above). r is the risk-less rate of return.
The πj are called the risk neutral probabilities. According to a fundamental
result of Harisson and Kerps [17], the existence of the risk neutral probabilities
is enough to guarantee that the scenario tree has the desired property. In the
second step, we solve the least squares problem with some of the states fixed
to the states calculated in the first step. In other words, we solve the following
problem:

min
ω,p

n∑

i=1

( k∑

j=1

pjmi(ωj) +
m∑

l=1

plmi(ω̂l) − μi

)2

s.t
k+m∑

j=1

pj = 1 pj ≥ 0 j = 1, . . . , k + m (2)

In the problem above, ω̂ are fixed. Solving the preceding problem guarantees a
scenario tree that is arbitrage free.

3 Portfolio Selection

In this section we describe the portfolio selection problem when higher order
terms are taken into account. The classical mean–variance approach to portfolio
analysis seeks to balance risk (measured by variance) and reward (measured by
expected value). There are many ways to specify the single period problem. We
will be using the following basic model:
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min
w

− αE[w] + βV[w]

s.t
n∑

i=1

wi = 1 li ≤ wi ≤ ui i = 1, . . . , n. (3)

Where E[·] and V[·] represent the mean rate of return and its variance respec-
tively. The single constraint is known as the budget constraint and it specifies
the initial wealth (without loss of generality we have assumed that this is one).
The α and β are positive scalars, and are chosen so that α+β = 1. They specify
the DMs preferences, i.e. α = 1 means that the DM is risk–seeking, while β = 1
implies that the DM is risk averse. Any other selection of the parameters will
produce a point on the efficient frontier. The decision variable (w) represents the
commitment of the DM to a particular asset. Note that this problem is a convex
quadratic programming problem for which very efficient algorithms exists. The
interested reader is referred to the review in [13] for more information regarding
the Markowitz model.

We propose an extension of the mean–variance model using higher order
moments. The vector optimization problem can be formulated as a standard
non-convex optimization problem using two additional scalars to act as weights.
These weights are used to enforce the DMs preferences. The problem is then
formulated as follows:

min
w

− αE[w] + βV[w] − γS[w] + δK[w]

s.t
n∑

i=1

wi = 1 li ≤ wi ≤ ui i = 1, . . . , n. (4)

Where S[·] and K[·] represent the skewness and kurtosis of the rate of return
respectively. γ and δ are positive scalars. The four scalar parameters are chosen
so that they sum to one. Positive skewness is desirable (since it corresponds to
higher returns albeit with low probability) while kurtosis is undesirable since it
implies that the DM is exposed to more risk. The model in (4) can be extended
to multiple periods while maintaining the same structure (non convex objective
and linear constraints). The numerical solution of (2) and (4) will be discussed
in the next two sections.

4 A Stochastic Optimization Algorithm

The models described in the previous section can be written as:

min
x

f(x)

s.t Ax = b

x ≥ 0.

A well known method for obtaining a solution to an unconstrained optimization
problem is to consider the following Ordinary Differential Equation (ODE):

dX(t) = −∇f(X(t))dt. (5)
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By studying the behavior of X(t) for large t, it can be shown that X(t) will
eventually converge to a stationary point of the unconstrained problem. A review
of, so called, continuous-path methods can be found in [18]. A deficiency of using
(5) to solve optimization problems, is that it will get trapped in local minima. In
order to allow the trajectory to escape from local minima, it has been proposed
by various authors (e.g. [7, 8, 9, 10]) to add a stochastic term that would allow
the trajectory to “climb” hills. One possible augmentation to (5) that would
enable us to escape from local minima is to add noise. One then considers the
diffusion process:

dX(t) = −∇f(X(t))dt +
√

2T (t)dB(t). (6)

Where B(t) is the standard Brownian motion in R
n. It has been shown in

[8, 9, 10], under appropriate conditions on f , and T (t), that as t → ∞, the
transition probability of X(t) converges (weakly) to a probability measure Π .
The latter, has its support on the set of global minimizers.

For the sake of argument, suppose we did not have any linear constraints, but
only positivity constraints. We could then consider enforcing the feasibility of
the iterates by using a barrier function. According to the algorithmic framework
sketched-out above, we could obtain a solution to our (simplified) problem, by
following the trajectory of the following SDE:

dX(t) = −∇f(X(t))dt + μX(t)−1dt +
√

2T (t)dB(t). (7)

Where μ > 0, is the barrier parameter. By X−1, we will denote an n-dimensional
vector whose ith component is given by 1/Xi. Having used a barrier function to
deal with the positivity constraints, we can now introduce the linear constraints
into our SDE. This process has been carried out in [6] using the projected SDE:

dX(t) = P [−∇f(X(t)) + μX(t)−1]dt +
√

2T (t)PdB(t). (8)

Where, P = I − AT (AAT )−1A. The proposed algorithm works in a similar
manner to gradient projection algorithms. The key difference is the addition of
a barrier parameter for the positivity of the iterates, and a stochastic term that
helps the algorithm escape from local minima.

The global optimization problem can be solved by fixing μ, and following the
trajectory of (8) for a suitably defined function T (t). After sufficiently enough
time passes, we reduce μ, and repeat the process. The proof that following the
trajectory of (8) will eventually lead us to the global minimum appears in [6].
Note that the projection matrix for the type of constraints we need to impose
for our models is particularly simple. For a constraint of the type:

∑n
i=1 xi = 1

the projection matrix is given by:

Pij =

{
− 1

n if i �= j,
n−1

n otherwise.



914 P. Parpas and B. Rustem

5 Numerical Experiments

The algorithm described in the previous section was implemented in C++. Be-
fore we discuss our numerical results we provide some useful implementation
details. From similar studies in the unconstrained case[7] and box constrained
case[19], we know that a deficiency of stochastic methods (of the type proposed
in this paper) is that they require a large number of function evaluations. The
reason of this shortcoming is that the annealing schedule has to be sufficiently
slow in order to allow the trajectory to escape from local minima. Therefore,
whilst there are many sophisticated methods for the numerical solution of SDEs,
we decided to use the cheaper stochastic Euler method. The latter method is
a generalization of the well known Euler method, for ODEs, to the stochastic
case. The main iteration is given by:

X(t + 1) = X(t) + P [−∇f(X(t)) + μX(t)−1]Δt +
√

2T (t)ΔtPu.

Where Δt is the discritized step length parameter, u is a standard Gaussian
vector, i.e. u ∼ N(0, I), and X(0) is chosen to be strictly feasible.

The algorithm starts by dividing the discritized time into k periods. Following
a single trajectory will be too inefficient. Therefore, starting from a single strictly
feasible point the algorithm generates m different trajectories. After a single
period elapses, we remove the worst performing trajectory. Since, all trajectories
generate feasible points, we can assess the quality of the trajectory by the best
objective function value achieved on the trajectory. We then randomly select one
of the remaining trajectories, and duplicate it. At this stage we reduce the noise
coefficient of the duplicated trajectory.

When all the periods have been completed, in the manner described above, we
count this event as one iteration. At this point we reduce the barrier parameter.
This parameter is started at μ = 0.1, and reduced by 0.75 at every iteration.
We then repeat the same process, with all the trajectories starting from the
best point found so far. If the current incumbent solution vector remained the
same for more than l iterations (l > 4, in our implementation) then we reset
the noise to its initial value. The algorithm terminates when the noise term is
smaller than a predefined value (0.1e − 4) or when after five successive resets of
the noise term, no improvement could be made. In our implementation we used
two trajectories, two periods (each of length 20e4). We used an initial value of
10 for the annealing schedule, and reduced it by 0.6 at every iteration. The same
parameters were used for all the simulations.

In table 1 we show the computational effort required to compute the sufficient
set of states required to guarantee the arbitrage free property of the scenario tree.
The numbers shown are averages of 50 runs. It is clear from table 1 that it is
relatively easy to find the sufficient states. However, as the number of assets
increases the number of states also increases. While in a single period model
this does not cause much computational burden, it suggests that it will lead to
a state explosion in the multi-period case. In the future we plan to investigate
the approach of finding the state that causes the arbitrage opportunity and
eliminating/modifying it rather than just adding more states.
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Table 1. States added to guarantee arbitrage free tree

Assets States Added Time (secs)

2 4 0

5 14 0

10 27 0.01

15 77 0.14

20 170 0.79

Table 2. Solution Times Moment
Problem

Assets Time (secs) Variables

2 820 105
5 1230 111
10 4160 124
15 23316 184
20 52544 242

Table 3. Solution Times Portfolio
Selection

Assets M-V M-V-S M-V-K M-V-S-K

2 0.01 56 36 34
5 0.3 138 101 204
10 1.3 250 195 195
15 4 375 433 519
20 14.8 551 776 762

In table 2 we show the time required to solve the moment problem. The
number of variables differ from one run to the next. This is because the num-
ber of states that are needed to guarantee the arbitrage free property differ
from run to run (since they are randomly generated). In all runs we added
fifty more (non-constant) states. The resulting problem given by (2) was then
solved using the algorithm described above. The times shown are the averages
for ten runs for problems with 2, 5, and 10 assets. Due to the large amount
of time required to solve the larger problems (15 and 20 assets) the times re-
ported are from a single run. Table 3 details the time required to generate a
point on the efficient frontier for the four versions of the portfolio selection prob-
lem we considered in this paper. The first is the mean-variance (M-V) model,
this is obtained by setting γ = δ = 0 (we used this model to test the quality
of the solutions provided by the algorithm). Similarly M-V-S, M-V-K and M-
V-S-K stand for Mean-Variance-Skewness, Mean-Variance-Kurtosis and Mean-
Variance-Skewness-Kurtosis respectively. We realize that providing the compu-
tation times is not the best way to judge the speed of an algorithm. However,
one of the aims of this paper is to show how one can use a stochastic global op-
timization algorithm to solve a financial planning problem. Even though there
are many open questions, and some of our assumptions may be too stringent,
we believe that the computation times tabulated below show the feasibility of
this approach. In figures 1 and 2 we show some 3-dimensional efficient frontiers
for the M-V-S and M-V-K problems respectively. The gaps that appear in the
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frontiers are due to the way we generate the frontier. If we used constraints,
instead of weights, to express the preferences of the DM, then we believe that
the frontier would look more smooth. However, a formulation using constraints
would lead to an optimization problem that could not be solved by our global
optimization solver. We plan to address this deficiency in the future. Figures 3
and 4 show efficient frontiers using the M-V-S-K model. In figure 3 we plot the
first three measures of interest, while in figure 4 we plot the mean, variance and
kurtosis of the portfolio.
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6 Conclusions

We considered the computational challenges associated with the global opti-
mization of a financial planning model. We proposed a simple extension to the
classical Markowitz model; in the proposed model higher order moments were in-
cluded using scalar weights. The scenario generation problem was also addressed
by matching the first four central moments of the postulated distribution. We
also addressed the issue of imposing the arbitrage free property to the generated
scenario tree. A stochastic algorithm was proposed for the two models. Our ini-
tial numerical results show that problems of realistic size can be solved using
the proposed framework.



Global Optimization of the Scenario Generation 917

References

1. Markowitz, H.M.: Portfolio selection. J. Finance 7 (1952) 77–91
2. Markowitz, H.M.: The utility of wealth. J. Polit. Econom. (1952) 151–158
3. Dupacova, J., Consigli, G., Wallace, S.: Scenarios for multistage stochastic pro-

grams. Ann. Oper. Res. 100 (2000) 25–53 (2001)
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