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In this paper, we propose an algorithm for the constrained continuous minimax problem. The algorithm,
motivation, and numerical experience are reported in this paper. Theoretical properties and the conver-
gence of the proposed method are discussed in a separate paper [B. Rustem, S. Zakovic, and P. Parpas,
Convergence of an interior point algorithm for continuous minimax, J. Optim. Theory Appl. (2007), in
press]. The algorithm uses quasi-Newton search direction, based on sub-gradient information, conditional
on maximizers. The initial problem is transformed to an equivalent equality constrained problem, where
the logarithmic barrier function is used to ensure feasibility. In the case of multiple maximizers, the
algorithm adopts semi-infinite programming iterations towards epi-convergence. Satisfaction of the equal-
ity constraints is ensured by an adaptive quadratic penalty function. The algorithm is augmented by a
discrete minimax procedure to compute the semi-infinite programming steps and ensure overall progress
when required by the adaptive penalty procedure. Progress towards the solution is maintained using merit
functions. Computational results are included to illustrate the efficient performance of the algorithm.

Keywords: continuous minimax; interior point algorithms; semi-infinite programming; epi-convergence

1. Formulation of the problem

Consider the following problem:

min
x

max
y∈Y

{f (x, y)|g(x) = 0, x ≥ 0}, (1)

where Y is a compact subset of Rm, x ∈ Rn, f (x, y) is continuous in x and y, twice continuously
differentiable in x, and g : Rn → Rk is continuous and twice differentiable in x. We also denote
the feasible region with Xf = {x ∈ Rn|g(x) = 0, x ≥ 0}.

When the maximizer y is defined on a discrete set, Equation (1) becomes a discrete minimax
problem and algorithms for solving such problems have been considered by a number of authors,
including Womersley and Fletcher [33], Polak [22], Rustem and Nguyen [29], Obasanjo and
Rustem [18].

The continuous problem (1) arises in numerous disciplines, including n–person games [27],
finance [28], economics [37], and policy optimization [3]. In general, they are used by the decision
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912 B. Rustem et al.

maker to assess the worst-case strategy of the opponent and compute the optimal response. The
opponent can also be interpreted as nature choosing the worst-case value of the uncertainty,
and the solution would be the strategy which ensures the optimal response to the worst-case.
Neither the robust decision maker nor the opponent would benefit by deviating unilaterally from
this strategy. The solution of Equation (1) can be characterized as a saddle point when f is
convex in x and f is concave in y. A survey of algorithms for computing saddle points can be
found in [8,28].

We consider an algorithm in which f (x, y) is not necessarily convex in x and concave in y.
Previous attempts to solve this problem have mostly focused on unconstrained problems (Kiwiel
[14], Demyanov and Pevnyi [8], and Rustem and Howe [28]), with notable exceptions such as
Breton and El Achem [5] who use projected sub-gradient and bundle methods. An earlier attempt
to solve a similar problem, with decoupled constraints (i.e. constraints that contain only either x

or y), was made by Sasai [31]. Among recent work is that of Polak et al. [23], where a smoothing
technique (using exponential penalty functions) is applied to a finite (discrete) minimax problem.
This work has been extended in [21] where the smoothing technique is applied to solving finite
and semi-infinite min–max–min problems.

The approach in this paper uses an interior point methodology and an adaptive penalty merit
function to encourage feasibility and descent. It differs from the above in the general framework as
well as the choice of the barrier and merit functions. It uses semi-infinite programming steps that:
(i) involve the solution of a discrete minimax problem; (ii) are initiated to complement the interior
point algorithm descent procedure and to prevent the penalty parameter increasing indefinitely; and
(iii) have an additional role in the epi-convergent procedure to glean information about maximizers
and construct an effective algorithm robust to the existence of single or multiple maximizers.

The algorithm is thus intended to combine the desirable aspects of semi-infinite programming
with descent steps for the max function based on sub-gradients and a merit function. Semi-infinite
programming performs well when the set of maximizers Y (xk), at some xk , is stable in that the
maximizers do not change at every iteration. Additionally, in this case, multiple maximizers are
used to generate sub-gradients. Helpful descent steps can then be performed, provided that suffi-
cient number of maximizers are known, so that the merit function can be reduced further. If Y (xk)

changes radically at every iteration, as in the case when f (x, y) is concave in y and there usually
is a different unique maximizer corresponding to every x, a gradient-based descent direction can
perform significantly better. As also mentioned in [40], there are clearly computational difficul-
ties regarding a step size strategy to be overcome and these are discussed in Section 5. However,
semi-infinite programming steps and a sub-gradient-based approach can complement each other
rather well in accumulating maximizer information and in expediting progress through descent
directions, respectively.

The semi-infinite programming formulation (1) is given by:

min
x∈Xf ,τ

{τ |f (x, y) − τ ≤ 0, ∀y ∈ Y }, (2)

which has an infinite number of constraints corresponding to the elements in Y . We compare
our results with an algorithm based on semi-infinite programming [4,11,36]. Other recent con-
tributions in this area are by Lawrence and Tits [16] and Stein and Still [32] in which sequential
quadratic programming and interior point techniques are considered for generalized semi–infinite
problems.

One strategy for problems with an infinite number of constraints is through discretization. Under
this framework, the original problem is replaced by a problem with a finite number of constrains.
There are a number of discretization schemes, exchange methods, or methods based on local
reduction [13]. Polak in [20] discusses discretization and finer consistent approximations of the
original semi–infinite problem through epi-graphs and epi-convergence that we also introduce later
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Optimization Methods & Software 913

in this paper. Convergence is established through a sequence of the solutions to the discretized
problems, assuming that such sequences have an accumulation point. The present paper augments
the discretization scheme by a procedure to generate a descent direction and a merit function to
stabilize progress towards the solution. This allows a direct convergence result for the algorithm.

Let xi denote the ith element of vector x. The penalty formulation to ensure feasibility regarding
the inequality constraints on the slack variable is realized using a barrier function such as − log(xi).
The framework for solving the problem is closely related to the interior point literature (e.g. [1,9]).
The transformed minimax problem, for x > 0, is given by:

min
x

max
y∈Y

{
f (x, y) − μ

n∑
i=1

log(xi)|g(x) = 0

}
. (3)

We define the augmented objective function as:

P(x, y; c, μ) = f (x, y) + c

2
‖g(x)‖2

2 − μ

n∑
i=1

log(xi), (4)

and the merit function � as the maximum of the augmented objective (4):

�(x; c, μ) = max
y∈Y

P (x, y; c, μ). (5)

The algorithm discussed below solves Equation (1) and is based on a sequence of optimization
problems characterized by the penalty parameter c ≥ 0 and barrier parameter μ ≥ 0. The max
function �(x) is defined as follows:

�(x) = max
y∈Y

f (x, y) (6)

and the following set of maximizers at x:

Ŷ (x) = {y ∈ Y |f (x, y) = �(x)}.
Given the maximizers y ∈ Ŷ (x) and using the fact that the maximum over a set of scalars is equal
to the maximum over their convex combination, Equation (3) can be equivalently expressed as:

min
x

max
β∈B

⎧⎨⎩ ∑
y∈Ŷ (x)

βyf (x, y) − μ

n∑
i=1

log(xi)|g(x) = 0

⎫⎬⎭,

where βy is the element of β corresponding to maximizer y and

B = {β|
∑

y

βy = 1, βy ≥ 0}. (7)

A similar reasoning can be applied to the merit function �(x; c, μ):

�(x; c, μ) =
∑

y∈Ŷ (x)

βyP (x, y; c, μ).

We summarize the three definitions related to the objective function:

�(x) = max
y∈Y

f (x, y),

P (x, y; c, μ) = f (x, y) + c

2
‖g(x)‖2

2 − μ

n∑
i=1

log(xi),

�(x; c, μ) = max
y∈Y

P (x, y; c, μ).
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914 B. Rustem et al.

2. Sub–gradient of �(x) and basic iteration

Problem (6) poses several difficulties: firstly, �(x) is in general continuous but may have kinks, so
it might not be differentiable.At a kink, the maximizer is not unique and the choice of sub-gradient
to generate a search direction is not simple. Secondly, �(x) may not be computed accurately
as it would require infinitely many iterations of an algorithm to maximize f (x, y). Finally, in
Equation (5) global maxima are required in view of possible multiple solutions. The use of local,
or insufficient number of global, maxima cannot ensure a monotonic decrease in �(x).

The sub-differential of the max function �(x) can be expressed as:

∂�(x) = conv{∇xf (x, y)|y ∈ Ŷ (x)}.

Similarly, the sub-differential of the merit function:

∂�(x; c, μ) = conv{∇xP (x, y; c, μ)|y ∈ Ŷ (x)}.

For non–unique maximizers y ∈ Ŷ (x), by Caratheodory’s theorem [25]: for every vector
∇�(x; c, μ) ∈ ∂�(x; c, μ), there exist n + 1 points yj ∈ Ŷ (x), j = 1, . . . , n + 1, and multi-
pliers βj , j = 1, . . . , n + 1, with

∑n+1
j βj = 1, βj ≥ 0, such that:

∇�(x; c, μ) =
∑

y∈Ŷ (x),β∈B

βy∇xf (x, y) + c

2
∇g(x)tg(x) − μX−1e, (8)

where X−1 is the diagonal matrix, defined as X−1 = diag(1/x1, 1/x2, . . . , 1/xn). Similarly, we
have:

∇�(x) = max
β∈B

∑
y∈Ŷ (x),β∈B

βy∇xf (x, y).

The determination of βy is discussed in the next section. A problem which the set Ŷ (x) poses is
that it can be of infinite cardinality. For example, the problem

min
x∈R

max−2≤y≤2
(x − 1)2y

has an infinite number of solutions, as every pair (x∗, y∗) = (1, y) for y ∈ Ŷ = {y| − 2 ≤ y ≤ 2}
is a solution. To avoid such problems, we use the discretization described below.

Instead of using the whole set of maximizers at x, Ŷ (x), starting with y0 ∈ arg maxy∈Y f (x0, y),
we define the sets Yi ⊂ Y so that:

Y0 = {y0}; yi ∈ arg max
y∈Y

f (xi, y); Yi = Yi−1 ∪ {yi}, i = 1, 2, . . .

Now, it is possible to define a finite set of maximizers at the current point xk : Y (xk) = {y ∈
Yk|f (xk, y) = �(xk)}. Hence, we note that Y (xk) ⊂ Yk . Table 1 summarizes the various max-
imizer concepts introduced in this paper. The cardinality of Y (xk) is denoted by |Y (xk)|.
For any compact set Yi ⊂ Y let �Yi

(x) ≡ maxy∈Yi
f (x, y). Then for any x ∈ Rn we have
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Optimization Methods & Software 915

Table 1. Maximizer concepts.

Set Definition

Ŷ (x) Ŷ (x) = {y ∈ Y |f (x, y) = �(x)}
Yk Set of potential maximizers accumulated from x0 to xk

Y (xk) Y (xk) = {y ∈ Yk |f (xk, y) = �(xk)}

�Yi
(x) ≤ �(x) = �Y (x). The original problem (1) is approximated with a finite number of

maximizers:

min
x∈Xf

�Yi
(x), i = 0, 1, 2, . . . (9)

To clarify the relationship between the original problem (1) and the approximation (9), we restate
these using the following epi-graphs:

E = {(x0, x)|x ∈ Xf , x0 ≥ �(x)},
Ei = {(x0, x)|x ∈ Xf , x0 ≥ �Yi

(x)}. (10)

Given the epi-graphs E and Ei in Equation (10), the problems (1) and (9) can be reformulated as
follows:

min
(x0,x)∈E

x0, (11)

min
(x0,x)∈Ei

x0. (12)

It can be seen, from Equations (11) and (12), that the two problems differ only in the constraint
set. For the sequence of problems (12) to approximate (11) well, Ei must converge to E .

DEFINITION The sequence of approximating problems (12) epi-converges to the problem (11) if
the epi-graphs Ei converge to the epigraph E in the following sense

limEi = limEi = E .

Clearly, approximate problems in optimization are necessary in order to facilitate computation.
The practical importance of epi-convergence stems from the fact that an approximation that
epi-converges to the original problem will also (under some conditions) have the same minima.
Epi-convergence and its use in algorithm design is discussed in [20] and [26]. In the algorithm
described in this paper, epi-graphs Ei are generated by:

xi+1 ∈ arg min
x∈Xf

�Yi
(x); yi+1 ∈ arg max

y∈Y
f (xi+1, y),

Yi+1 = Yi

⋃
{yi+1}; Ei+1 = {(x0, x)|x ∈ Xf , x0 ≥ �Yi+1(x)}.

The difficulties associated with �(x) and possible large numbers of maximizers are addressed
through a number of methods based on the characterization of maximizers of f (x, y). Another
related difficulty is the potentially costly evaluation of �(x) during line search, required to ensure
global convergence. A class of algorithms, including Demyanov and Malozemov [7], Hager and
Presler [12] and Zhou and Tits [40] are based on approximating �(x) by progressively increasing
the number of discretization points. The algorithm presented in this paper invokes Caratheodory’s
theorem [25], to characterize the search direction with a small number of maximizers that would
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916 B. Rustem et al.

ensure convergence. Rustem and Howe [28] consider an algorithm that defines a direction of
progress for �(x) based on the maximizers at x corresponding to the minimum norm sub-gradient
of ∇xf (x, ·) and a Hessian approximation. The algorithm extends the first order approach of Panin
[19] and Kiwiel [14] to quasi-Newton descent directions, conditional on the maximizer, and also
attempts to deal with the problem of multiple maximizers. The algorithm presented in [28], is in
some respects similar to the algorithm presented here. In [28] it assumed that sufficient maximizers
are available to compute a descent direction. In this paper, we complement this approach with
semi-infinite steps when a descent direction cannot be easily computed.

The Lagrangian associated with Equation (3) is

L(x, y, λ; μ) = max
y∈Y

{f (x, y) − μ

n∑
i=1

log(xi) − λtg(x)}.

Consider the diagonal matrix X = diag(x1, x2, . . . , xn) and the column vector e = [1, 1, . . . , 1]t ∈
Rn. The first-order optimality condition for the problem (3) is given by:

∇�(x) − μX−1e − ∇gt (x)λ = 0; g(x) = 0,

where ∇x�(x) is a sub-gradient of �(x) and its evaluation is considered in the next section.
Optimality conditions for this class of problems are discussed in [28]. Invoking the nonlinear
transformation z = μX−1e yields:

F = [
(∇�(x))T, (g(x))T, (XZe − μe)T

]T = 0, (13)

where F = F(x, λ, z; μ) and Z is the diagonal matrix Z = diag(z1, z2, . . . , zk). These equa-
tions represent the perturbed optimality conditions for problem (1). We note that F =
F(x, λ, z; 0), x ≥ 0, z ≥ 0 represent the optimality conditions. Returning to the original problem
with equality and non-negativity constraints, Equation (1), we define the Lagrangian:

Lec(x, z, λ) = �(x) − ztx − λtg(x), (14)

where z ∈ {v ∈ Rn|v ≥ 0} is the multiplier vector corresponding to x ≥ 0. The Lagrangian (14)
is defined over a set of maximizers. Its sub-gradient is defined as the convex combination of
the gradients corresponding to the set of maximizers. A consistent Hessian definition, mentioned
below, is based on the convex combination of the Hessians corresponding to the maximizers1.

The primal-dual interior point algorithm is essentially the Newton or quasi-Newton method for
solving approximately the perturbed conditions (13) for a fixed value of μ. The Newton system
for Equation (13) above is⎡⎣ Hk −∇gt

k −I

∇gk 0 0
Zk 0 Xk

⎤⎦ ⎡⎣�xk

�λk

�zk

⎤⎦ = −
⎡⎣∇�(xk) − zk − ∇gt

kλk

gk

XkZke − μe

⎤⎦ , (15)

where Hk is a positive definite approximation of the Hessian of the Lagrangian (14). The Hessian
Hk is approximated using the updating formula suggested by Powell [24]. Using matrix-vector
notation, Equation (15) can be expressed as ∇Fk�wk = −Fk where wk = (xk, λk, zk), �wk =
(�xk, �λk, �zk) and Fk = F(xk, λk, zk; μ). The solution of Equation (15) is given by:

�xk = 	−1
k ∇gt

k�λk − 	−1
k hk

�λk = −[∇gk	
−1
k ∇gt

k]−1(gk − ∇gk	
−1
k hk)

�zk = −zk + μX−1
k e − X−1

k Zk�xk,

(16)

where 	k = Hk + X−1
k Zk and hk = ∇�(xk) − μX−1

k e − ∇gt
kλk . Let us introduce two new matri-

ces Mk and Pk given by: Mk = ∇gk	
−1
k ∇gt

k , Pk = (I − 	−1
k ∇gt

kM
−1
k ∇gk). Then the first two
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Optimization Methods & Software 917

equations of the system (16) can be written as:

�xk = −Pk	
−1
k (∇�(xk) − μX−1

k e) − 	−1
k ∇gt

kM
−1
k gk

�λk = −M−1
k (gk − ∇gk	

−1
k hk). (17)

Starting from an initial point w0, the algorithm generates a sequence {wk}:
wk+1 = wk + αk�wk, k = 0, 1, 2, . . .

In order to maintain feasibility of wk+1, the algorithm needs to ensure xk+1, zk+1 > 0. In [38,39]
a single step size is used for all variables. In [35], different step size strategies are suggested.
The algorithm in this paper uses a merit function with an adaptive penalty parameter and αk =
(αxk

, αzk
, αzk

), where αxk
and αzk

are different step sizes for the primal x variables and dual pair
λ, z, respectively.

The algorithm generates a descent direction based on a sub-gradient of �(x) and an approximate
Hessian, in the presence of possible multiple maximizers of Equation (5) or Equation (6). It uses
a switching scheme between a continuous minimax-based interior point algorithm incorporating
a minimum-norm sub-gradient and a discrete minimax formulation appropriately incorporating
epi-graphs to determine potential multiple maximizers. This is discussed further in Section 4 (see
Equation (25)). Each approach uses a different step size strategy to ensure sufficient progress.

The overall iterative process is in two stages: first, Equation (3) is solved for μ fixed. This is the
inner iteration. Once Equation (3) is solved, μ is reduced, convergence criteria is checked (outer
iteration) and, if necessary, another inner iteration is performed.

3. Computing sub-gradients of �(x)

�(x; c, μ) is in general continuous but may have kinks, so it might not be differentiable. At a
kink, the maximizer is not unique and the choice of sub-gradient to generate a search direction is
not simple.The quasi-Newton direction in this paper is based on the combination of the gradients
corresponding to the multiple maximizers that ensures descent. The quadratic approximation to
P(x, y; c, μ) in Equation (4) at xk is given by:

Pk(�xk, y; c, μ) = P(xk, y; c, μ) + �xt∇xP (xk, y; c, μ) + 1

2
‖�xk‖2

Hk
. (18)

We consider two approaches for determining β. The first is motivated by the selection of
the worst-case descent direction based on a combination of possible maximizers y ∈ Y (xk).
In the presence of multiple maximizers, the new direction �wk(βk) is computed such that:
�wk(βk) = −(∇F

βk

k )−1F
βk

k where:

βk = arg max
β∈B

⎧⎨⎩�xk(β)t

⎛⎝ ∑
y∈Y (xk)

βy∇xf (xk, y) + ck∇gt
kgk − μX−1

k e

⎞⎠ + 1

2
‖�xk(β)‖2

Hk

⎫⎬⎭,

(19)
which is a concave maximization problem in β. The direction �xk(βk), which is conditional on
the given βk , is given by:

�xk(βk) = −Pk	
−1
k

⎛⎝ ∑
y∈Y (xk)

β
y

k ∇xf (xk, y) − μX−1
k e

⎞⎠ − 	−1
k ∇xgkM

−1
k gk, (20)
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918 B. Rustem et al.

where F
β

k is defined as

F
βk

k =
⎡⎣ ∑

y∈Y (xk)

β
y

k ∇xf (xk, y) − zk − ∇xg
t
kλk, gk, XkZke − μe

⎤⎦T

. (21)

The solution to problem (19) is unique when the vectors: ∇xf (xk, y), y ∈ Y (xk) are linearly
independent. Otherwise, a minimum norm βk is determined.

The second approach to determining β is given by:

β
y

k = 1 for some y = yk+1 ∈ Y (xk)

β
y

k = 0, ∀y = yk+1, y ∈ Y (xk).

Thus, �xk(1) corresponds to one element of βk being unity and the rest null. The choice of the
corresponding maximizer is:

ỹk+1 ∈ arg max
y∈Y (xk)

{�xk(1)t (∇f (xk, y) + c∇gt
kgk − μX−1

k e) (22)

+ 1

2
‖�xk(1)‖2

Hk
}.

The motivation for this choice is the selection of the worst-case descent direction among the
maximizers. Hence, for such ỹk+1 we have F

β=1
k :

F
β=1
k = [∇xf (xk, ỹk+1) − zk − ∇xg

t
kλk, gk, XkZke − μe

]T
.

Consider, therefore, two possible directions �w(1) and �w(βk), depending on the sub-gradient
∇�(x) used. The direction �w(1) is easier to compute, as it does not entail the solution of the
quadratic programming problem (19). We define two characterizations of ∇P(xk, ., ck, μ). One
corresponds to the maximizer yk+1 responsible for the worst-case descent direction and the other
corresponds to multiple maximizers, y ∈ Y (xk). These are given by:

∇P(xk, yk+1; ck, μ) = ∇xf (xk, yk+1) + ck

2
∇g(xk)

tg(xk) − μX−1
k e∑

y∈Y (xk)

β
y

k ∇P(xk, y; ck, μ) =
∑

y∈Y (xk)

β
y

k ∇xf (xk, y) + ck

2
∇g(xk)

tg(xk) − μX−1
k e.

These two characterizations of ∇P(xk, ., ck, μ) lead to two possible sub–gradient choices for
∇�(xk) and ∇�(xk; ck, μ). These are summarized in Table 2 together with the corresponding
�wk. In the rest of this paper, we ignore the argument β and use �wk , except when distinguishing
between �wk(1) and �wk(βk). The new maximizer yk+1 is chosen as a maximizer of the following

Table 2. Choices for ∇x�(xk), ∇x�(xk; ck, μ) with y ∈ Y (xk).

∇x�(xk) �wk ∇x�(xk; ck, μ)

∇xf (xk, yk+1) �wk(1) = −(∇F
βk=1
k )−1F

βk=1
k ∇P(xk, yk+1; ck, μ)∑

y β
y

k ∇xf (xk, y) �wk(βk) = −(∇F
βk
k )−1F

βk
k

∑
y β

y

k ∇P(xk, y; ck, μ)
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Optimization Methods & Software 919

augmented quadratic approximation to �(x; c, μ):

yk+1 ∈ arg max
y∈Y

{Pk(�xk(1), y; c, μ) − C[�(xk) − f (xk, y)]2}.

The problem above can be interpreted as follows: among all the maximizers we wish to choose
the one that is also a maximizer Y (xk). We formulate this problem as a penalty function to enforce
the choice of y to a maximizer at xk . If C ≥ 0 is large enough, then we can ensure that � − f = 0.

4. Primal-dual step size selection

To determine the new iterate xk+1, we adopt Armijo’s rule [2] to ensure sufficient decrease in the
merit function. The maximum allowable step size is determined by the boundary of the feasible
region. The pseudo-code for choosing the sub-gradient of �(x), the penalty parameter c and the
merit function is presented in Algorithm 3.

Step size determination for the dual variables z uses the information provided by the new primal
iterate xk+1, in order to find the new iterate zk+1. This is a modification of the strategy suggested
by Yamashita [34] Yamashita and Yabe [35], and Akrotirianakis and Rustem [1].

Although the barrier parameter μ is fixed, we determine a step αi
zk along the direction �zi

k , for
each dual variable zi

k, i = 1, 2, . . . , n, such that the box constraints are satisfied.

αi
zk

= max{α > 0 : LBi
k ≤ (xi

k + αxk
�xi

k)(z
i
k + α�zi

k) ≤ UBi
k}. (23)

The lower bounds LBi
k and upper bounds UBi

k , i = 1, 2, . . . , n are defined as:

LBi
k = min{1

2
mμ, (xi

k + αxk
�xi

k)z
i
k}, UBi

k = max{2Mμ, (xi
k + αxk

�xi
k)z

i
k},

where the parameters m and M are chosen such that

0 < m ≤ min

{
1,

(1 − γ )(1 − (γ /(M0)
μ))χl

μ

}
and M ≥ max

{
1,

χ̂l

μ

}
> 0, (24)

where χl and χ̂l are set in Algorithm 3, γ ∈ (0, 1), and M0 is a positive large number. These two
parameters are always fixed to constants which satisfy Equation (24) while μ is fixed. The values
of m and M change when the barrier parameter μ is decreased.

The common dual step length αzk
is the minimum of all individual step lengths αi

zk
with the

restriction of being always not more than one. The step size for the dual variables y can be either
αyk

= 1 or αyk
= αzk

.
Merit function (5) penalizes infeasibility and measures progress towards the optimal solution.

There are, however, two issues regarding (5). Firstly, penalty parameter c might grow unacceptably,
potentially leading to numerical instability. Secondly, the algorithm may not have the required
number of maximizers to generate a descent direction.

The two problems are detected through a single observation based on the descent property
of the direction �x(β). If �x(β) cannot ensure descent it is necessary to either increase c or
generate further maximizers. The latter is achieved by performing individual steps of semi-infinite
programming. This requires the solution of the following discrete minimax problem, at the kth
iteration, defined as:

min
x∈Xf

max
y∈Y (xk)

{f (x, y)}. (25)
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920 B. Rustem et al.

5. Choice of c and μ

The set {(x∗(μ), λ∗(μ), z∗(μ)) :μ > 0}, which contains solutions of the perturbed optimality
conditions (13) for different values of the barrier parameter, is called the central path. Since the
perturbed optimality conditions approximate the optimality conditions of the original problem as
μ → 0, the points in the central path converge to a solution of the initial problem. The central path
can thus be thought of as the route, followed by primal-dual interior point algorithms, towards the
solution of a nonlinear optimization problem. The distance of the current point from the central
path is measured by the Euclidean norm of the perturbed optimality conditions.

The barrier parameter μ plays an important role in interior point methods. By decreasing the
parameter to zero, the algorithm converges to the optimal solution. Again, there are a number
of different strategies for reducing the barrier parameter [9,10]. We adopt the strategy originally
developed for nonlinear programming in [1,10,15]. This barrier selection rule has performed very
effectively in [1], and is presented in Algorithm 1.

ALGORITHM 1 Barrier parameter update rule

Step 0: Initialize x = xk, λ = λk, z = zk, c = ck, μ = μl , r1 = 0.85
Step 1: If ‖F(x, λ, z; c, μ)‖2 > 0.1ημl go to Step 4
Step 2: If μl ≤ 10−4μl+1 = min{r1μ

l, 0.01rk+2σ
1 ‖F(x, λ, z; c, 0)‖2} go to Step 5

Step 3: μl+1 = min{r1μ
l, 0.01rk+σ

1 ‖F(x, λ, z; c, 0)‖2} go to Step 5
Step 4: μl+1 = min{0.95μl, 0.01(0.95)k‖F(x, λ, z; c, 0)‖2}
Step 5: Return (to Algorithm 3)

It has been shown in [9,10] that the direction �wk defined by Equation (16) is a descent direction
for ‖F(x, λ, z; μ)‖2

2 as long as the matrix ∇Fk is non-singular.
The penalty parameter c plays an important role in the descent of the merit function �(x; c, μ).

At each iteration, its value is determined such that a descent property is ensured. This is simple
when all the maximizers are known at the current point, since Caratheodory’s theorem can be used
to select an appropriate sub-set of maximizers to ensure descent. If sufficient number of maximizers
are not known, an epi-convergent procedure is initiated with individual steps of semi-infinite
programming adding new maximizers.

The sub-gradient of �(xk; c, μ) at the kth iteration is:

∇�(xk; ck, μ) = ∇�(xk) + ck∇gt
kgk − μX−1

k e.

The direction �xk is a descent direction for �, at the current point xk , if

(∇�(xk) + ck∇gt
kgk − μX−1

k e, �xk) + 1

2
‖�xk‖2

Hk
≤ 0. (26)

By considering the second equation of the Newton system (15), the directional derivative
�xt

k∇�(xk; ck, μ) can be written as

�xt
k∇�(xk; ck, μ) = �xt

k∇�(xk) − ck‖gk‖2 − μ�xt
kX

−1
k e, (27)

where ck is the value of the penalty parameter at the beginning of the kth iteration. Since the
barrier parameter μ is fixed throughout the inner iterations, we can deduce from Equation (27)
that the sign of �xt

k∇�(xk; ck, μ) depends on the value of the penalty parameter. If ck is not large
enough then the descent property (26) may not be satisfied. Thus, a new value ck+1 > ck must be
determined to guarantee the satisfaction of the descent property.
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Optimization Methods & Software 921

The descent of the merit function depends not only on the value of c but also on the maximizers
y ∈ Y (x). In general, the presence of multiple maximizers requires for the sub-gradient of the
max function to be computed as in Equation (19), in order to ensure the descent. In [28], this is
simplified to a direction-dependent only on one yk+1 as long as it ensures descent. In this paper,
when only one maximizer is known, descent is assured with an appropriate choice of c. In the
case of multiple potential maximizers, the direction based on one maximizer only is used as long
as it ensures descent without an increase in c. This avoids unnecessarily computation of β in
Equation (19). When a single maximizer cannot ensure descent, problem (19) is solved and a new
sub-gradient, which depends on all known maximizers, is computed. If this new direction is still
not descent, the value of c is increased. Thus, the direction �wk is given by:

�wk =
⎧⎨⎩−(∇F

β=1
k )−1F

β=1
k if nmax = 1 or �xk(1)t∇�(xk, yk+1; ck, μ) ≤ 0

−(∇F
β

k )−1F
β

k , otherwise.

We note that �xk(1) corresponds to the direction for β = 1. When this direction does not lead
to descent and there are other known potential maximizers, the algorithm proceeds along the
direction −(∇F

β

k )−1F
β

k .
The choice for c and ∇�(x) is shown inAlgorithm 2. The merit function is based on Equation (5)

and ensures progress towards a minimum. We note that the algorithm may exhibit the Maratos
effect [17] with this merit function. Checks on the growth of c are incorporated to address this
problem.

Let εg > 0 be a finite precision to which the equality constraints are satisfied. Thus, for merit
function (5), we have a worst-case feasibility precision:

‖g(x)‖2 > εg. (28)

Assume that at some inner iteration k, 0 < ‖g(xk)‖2 ≤ εg and the descent condition (26) are not
satisfied. In this case, Equation (26) is initiated as an epi-convergent procedure to generate further
maximizers. This is the semi-infinite programming step discussed in Step 2 of Algorithm 2. If a
further maximizer is thereby identified, Algorithm 2 returns to minimizing merit function (5). As
mentioned earlier, this is a variation of the ‘watchdog’ technique [6]. In the context of interior
point methods, it was also used by Gay et al. in [10].

In Step 2 of Algorithm 2, when �xk is not a descent direction for the merit function (5) and
0 < ‖gk‖2

2 < εg , then xk+1 and v are given by the solution of Equation (25). The value v is used
in Step 2(a) of Algorithm 2. At xk+1, the new maximizer is computed as:

ŷk+1 = arg max
y∈Y

f (xk+1, y). (29)

The algorithm terminates if

f (xk+1, ŷk+1) ≤ v, (30)

otherwise the new maximizer is added to the set of maximizers

Yk+1 = Yk ∪ ŷk+1 (31)

and a new iteration is performed. Where v is the optimal value of the problem given by
Equation (25).

The descent condition (26) for merit function (5) may not always be satisfied for the fol-
lowing reasons: firstly, the direction −(∇F

β=1
k )−1F

β=1
k is computed using only one maximizer,

but there are other known potential maximizers. This is addressed by computing the direction
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922 B. Rustem et al.

−(∇F
β

k )−1F
β

k and restarting the iteration without altering the penalty parameter c. Secondly,
the direction −(∇F

β

k )−1F
β

k and the corresponding �xk(β) are justified in view of the multiple
maximizers employed but the penalty parameter c is not sufficiently large to ensure descent. An
increase in c is required. Thirdly, insufficient number of maximizers are included in the computa-
tion of the direction −(∇F

β

k )−1F
β

k . A semi-infinite programming step is employed in Step 2(a),
by solving a discrete minimax problem. The corresponding maximizer is added to the potential
maximizer set Yk+1 and the new iteration is started without increasing c. Even when a new maxi-
mizer has just been added to Yk+1, there is a possibility that the number of known maximizers are
not sufficient to generate a descent direction. To address this possibility, the algorithm searches
for a step size that ensures satisfaction of the Armijo inequality in Step 2c until a relative tolerance
is reached. Step sizes less than this value are disallowed and the algorithm explores the possibility
of further maxima using semi-infinite programming steps. The algorithm may alternate between
semi-infinite programming and descent steps. However, as the set of potential maximizers Yk

grows, the epi-graph of the max function �(xk; c∗, μ) is characterized with increasing accuracy
and the maximizers generate descent steps. At that stage, Theorem 1 in [30], ensures monotonic
decrease of �(xk+1; c∗, μ).

Semi-infinite programming ensures that:

min
x

max
y∈Y (xk)

{P(x, y; c, μ)|g(x) = 0} ≤ max
y∈Y

{P(xk, y; c, μ)|g(x) = 0} ≡ �(xk; c∗, μ).

Given xk+1, v, ŷk+1 computed using Equation (29), if Equation (30) is satisfied, then xk+1 is
the solution of the inner iteration (Algorithm 2), otherwise, using Equation (31), the algorithm
proceeds further with the multiple maximizers in Yk+1. In such cases, convergence is due to com-
pactness with semi-infinite programming aided further by the decrease in �(xk; c∗, μ) ensured
by subsequent accumulation of sufficient number of maximizers. In cases where sufficient num-
ber of maximizers are attained ∀k ≥ k∗, for some k∗, the monotonic decrease of the sequence
{�(xk; c∗, μ)} is established in Theorem 1 in the second part of this paper.

A detailed description of the algorithm for solving the inner iteration problem (the barrier
parameter μ is fixed) is given below.

ALGORITHM 2 Inner iteration

Step 0: Initialization set β = 1, �xk(1) is used when there is a single maximizer or descent is
assured even in the presence of multiple maximizers.

Step 1(a): If ‖F(xk, yk, λk, zk; μ)‖2 ≤ ημ exit to Algorithm 3. Compute the descent direction
if β = 1 then

yk+1 = arg max
y∈Y (xk)

{
�xt

k(1)∇xP (xk, y; ck, μ) + 1

2
‖�xk(1)‖2

Hk

}
�xk = �xk(1) and ∇�(xk) = ∇xf (xk, yk+1) go to Step 1(c)

Step 1(b): If a single maximizer is not sufficient for progress, compute �xk(β)

βk = arg max
β∈B

⎧⎨⎩�xk(β)t
∑

y∈Y (xk)

βy∇xP (xk, y; ck, μ) + 1

2
‖�xk(β)‖2

Hk

⎫⎬⎭
This implies the values ∇�(xk) = βt

k∇xf (xk, y) and �xk = � xk(βk) which are actually
computed in Step 1(c)
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Optimization Methods & Software 923

Step 1(c): Interior point step

�wk(βk) = −(∇F
βk

k )−1F
βk

k , αmax
xk

= min
1≤i≤n

{−xi
k

�xi
k

:�xi
k < 0

}
α̂xk

= min{γαmax
xk

, 1}.

Step 2(a)(i): Test for descent of the merit function Mnum = �xt
k∇�k − ck‖gk‖2

2 −
μl�xt

kX
−1
k e + ‖�xk‖2

Hk
if ((Mnum ≥ 0) and (0 ≤ ‖gk‖2

2 ≤ εg)) then If descent condition is not
satisfied, and c cannot be increased due to small ‖ gk ‖2

2, generate new maximizer and xk+1 using
semi-infinite programming step.

Step 2(a)(ii): Semi-infinite programming step

xk+1 = arg min
x∈Xf

, max
y∈Y (xk)

{f (x, y)}, v = min
x∈Xf

max
y∈Y (xk)

{f (x, y)}

ŷk+1 = arg max
y∈Y

{f (xk+1, y)}

if f (xk+1, ŷk+1) ≤ v Stop: the additional maximizer(s) ŷk+1 do not improve the current function
value so xk+1 is the minimax solution. go to Step 3

Step 2(b): If (Mnum ≤ 0) then descent assured and ck remains unchanged otherwise no decrease
with �xk = �xk(1) and nmax > 1, a new direction �xk(β) needs to be computed if (nmax = 1)
and (β = 1) then go to Step 1(b) otherwise increase penalty parameter ck :

ck+1 = max

{
�xt

k∇x�k − μl�xt
kX

−1
k e + ‖�xk‖2

Hk

‖gk‖2
2

, ck + δ

}
.

Step 2(c): Compute wk+1 αxk
= θ i α̂k , where i = min{0, 1, 2, . . . , } such that:

�(xk + αxk
�xk; ck+1, μ) − �(xk; ck+1, μ) ≤ ραxk

∇x�(xk; ck+1, μ)t�xk

If (‖xk + αxk�xk‖)/‖xk‖ ≤ εtol then go to Step 2(a)ii

LBi
k = min

{
1

2
mμ, (xi

k + αxk
�xi

k)z
i
k

}
, UBi

k = max{2Mμ, (xi
k + αxk

�xi
k)z

i
k}

αi
zk

= max{α > 0:LBi
k ≤ (xi

k + αxk
�xi

k)(z
i
k + α�zi

k) ≤ UBi
k}.

αzk
= min

{
1, min

1≤i≤n
{αi

zk
}
}

.αλk
= αzk

αk = (αxk
, αzk

, αzk
)t

wk+1 = wk + αk�wk ŷk+1 = arg max
y∈Y

f (xk+1, y)

If ŷk+1 ∈ Yk , k = k + 1, go to Step 2(a)(ii)

Step 2(c): Update the set of potential maximizers Yk+1 = Yk ∪ ŷk+1, k = k + 1, go to Step 1(a).

When updating the penalty parameter c, the following is computed:

Mnum = �xt
k∇�(xk) − ck‖gk‖2

2 − μl�xt
kX

−1
k e + ‖�xk‖2

Hk
.

The algorithm moves from one inner iteration to another (with μ fixed) by minimizing the merit
function �(x; c, μ) which is achieved by appropriately selecting the penalty parameter c at each
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924 B. Rustem et al.

Figure 1. Structure of the overall interior point algorithm.

inner iteration. The monotonic decrease of Equation (5) and the rules for determining the primal
and dual step sizes ensure that the inner iterates converge to the solution of Equation (3) for fixed
value of μ. By reducing μ and {μ} → 0, the optimum of the initial problem (1) is obtained.

In the implementation of the algorithm, the following criterion is used for inner iteration:
‖F(xk, λk, zk; μ)‖2 ≤ ημ. As long as the criteria is not satisfied, μ stays fixed and new wk is
computed.

The interior point algorithm consists of inner iterations (Algorithm 2) and outer iterations
(Algorithm 3). As can be verified, the main work is done in the inner loop, where problem (3) is
solved, with μ being fixed.

ALGORITHM 3 Outer Iteration

Step 0: Initialization:
Choose x0, λ0, z0, (η, μ0, σ, δ, εg, ε0, εtol) > 0, M and m given by Equation (24) for (θ, γ ) ∈

(0, 1), ρ ∈ (0, 1/2);
Compute y0 = arg maxy∈Y {f (x0, y); set l = 0, k = 0, Y0 = {y0}.

Step 1: Termination check for overall optimality:
if ‖F(xl, λl, zl; μ)‖2/(1 + ‖xl, λl, zl‖2) ≤ ε0 stop
set (xk, λk, zk) = (xl, λl, zl), χl = mini{xi

l z
i
l }, χ̂l = maxi{xi

l z
i
l }

Step 2: Execute inner iteration – Algorithm 2

Step 3: Update μ – Algorithm 1

Step 4: Set (xl+1, λl+1, zl+1) = (xk, λk, zk); l = l + 1,Go to Step 1.

The overall structure of the interior point algorithm is given in Figure 1.

6. Computational results

In this section, we report experience with numerical examples. The algorithm defined in the
previous sections have been implemented using Fortran 90 on an IBM compatible Personal Com-
puter, using the Intel Pentium IV 3 GHz processor. The following 10 examples are based on
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Optimization Methods & Software 925

Table 3. Additional constraints for problems in [28].

Problem no. Constraint(s)

1 x2
1 + x2

2 ≤ 0.3
2 x2

1 + x2
2 ≤ 2.5

3 −x2
1 + x2

2 ≤ 1.75
4 x2

1 ≤ 0.15, x2 ≤ 0.1
5 x2

1 + x2
2 ≤ 0.03, x2

2 + x2
3 ≤ 0.06, x2

3 + x2
1 ≤ 0.05

6 x1 ≥ 0.2, x3 + x4 ≥ 0.8
7 x1 ≥ 0.1, x3 + x4 ≤ 0.4
8 x2 ≥ 0.1, x3 + x4 ≤ 1.45
9 x1 + x2 ≥ 0.1, x3 + x4 ≤ 1.7

10 x2
1 + x2

2 ≤ 1.5, x3 + x4 ≤ 0.1

Table 4. Numerical results (1–5).

Problem no. Minimax SIP Dim-x Dim-y

1 CPU 0.094 1.472 2 2
Iterations 11 350(8)

2 CPU 0.141 0.329 2 2
Iterations 16 91(3)

3 CPU 1.250 3.063 2 2
Iterations 71 307(12)

4 CPU 0.109 0.203 2 3
Iterations 11 46(2)

5 CPU 0.266 0.469 3 3
Iterations 18 78(4)

those in [28]. First five are convex–concave functions (i.e. f (x, y) convex in x and concave in y)
and then the further five examples are convex–convex functions, where multiple maximizers are
present, and we examine the behaviour of the algorithm in the presence of such points. Problems
1–6 correspond to problems 1–6 in [28], While problems 7–10 correspond to problems 13–16.
Problems in [28] are unconstrained in the x variables. We therefore added some constraints to
these problems. These are given in Table 3.

The various parameters used in the overall algorithm are as follows. In Algorithm 1, the barrier
reduction rule, we set η = 0.1 and σ = 6. In Algorithm 2, in Step 1(c), we set γ = 0.995, in Step
2(a) εg = 10−12 and in Step 2(b) δ = 10. In Step 2(c), θ = 0.5, ρ = 10−4, εtol = 10−12, m = 1, and
M = 10. The accuracy of the stopping criterion (Algorithm 3) is ε0 = 10−8. The dimensionality
of the problems in the x variables is indicated in the Dim-x column of Tables 4 and 5; similarly
for the y variables.

The results are obtained using the minimax algorithm presented in this paper and the semi-
infinite algorithm (SIP) presented in [36].

6.1 f(x, y) locally convex in x, concave in y

The examples in this section illustrate the algorithm when f (x, y) has a unique maximizer for x

fixed. In Table 4, results in terms of CPU time and number of iterations are presented. For the SIP
case, we present the number of nonlinear programs solved (in brackets) together with the total
number of iterations. The minimax algorithm performs better in terms of CPU time and needs
less iterations to converge, compared with the SIP algorithm discussed in [36].
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Table 5. Numerical results (6–10).

Problem no. Minimax SIP Dim-x Dim-y

6 CPU 0.031 0.094 4 3
Iterations 13 41(2)

7 CPU 0.047 0.125 4 4
Iterations 16 38(2)

8 CPU 0.188 0.215 4 4
Iterations 29 75(3)

9 CPU 0.094 0.220 4 4
Iterations 31 84(3)

10 CPU 0.172 0.204 4 4
Iterations 53 58(4)

6.2 f(x, y) locally convex in x, locally convex in y

The five examples below involve f (x, y) locally convex in x and y, so the maximizers of f (x, y)

lie at the boundary of the feasible region Y . In general, such problems have multiple maximizers.
We present five examples and each example is run twice – with the minimax algorithm and the
semi-infinite programming algorithm in [36]. The CPU time and number of iterations for each of
the problems 6–10 are presented in Table 5.

The results shown in Table 5 are consistent with those from Table 4 and indicate that the
minimax algorithm converges faster. It is also worth observing that both algorithms perform better
for problems with multiple maximizers. The reason for improved performance is that although at
each point x there might be a number of different maximizers, the set of maximizers is discrete
as it usually has a finite number of elements. In the case of convex–concave functions, this is not
the case as the set:

{y|�(x) = f (x, y), ∀x ∈ Xf }
has in general an infinite number of elements, as for each x there exists a different y so that �(x) =
f (x, y). Therefore, at each iteration global optimization is needed, whereas in the convex–convex
case, a switch to the discrete minimax problem is justified (see Step 2(a)(ii), Algorithm 2) once
the appropriate number of maximizers, as established in Caratheodory’s theorem [25], become
available.

7. Conclusions

In this paper, we extend the algorithm for unconstrained continuous minimax problems in Rustem
and Howe [28] to include constraints on the minimizing variable x. An interior point approach
is used to ensure feasibility of the variables. A semi-infinite programming-based epi-convergent
procedure accumulates maximizers. This is realized with a discrete minimax formulation that
identifies the potential maximizers and also tests for termination. A quasi-Newton search direc-
tion, conditional on approximate maximizers is used and progress is maintained through a merit
function.

To illustrate the performance of the algorithm, a number of numerical examples are considered
and compared with a purely semi-infinite programming approach. The results reported underline
a superior performance of the algorithm in this paper. The main reason for this is that the discrete
minimax procedure is able to add new maximizers, if required, at every iteration of the interior
point algorithm whereas semi-infinite programming adds the maximizers as new constraints at the
end of a full minimization. Costly line searches are avoided by terminating the global maximization
procedure after the first maximizer satisfying the Armijo step size rule is identified.
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Note

1. The algorithm utilizes a positive definite approximation to this Hessian.
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