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Abstract We propose an algorithm for the global optimization of continuous mini-
max problems involving polynomials. The method can be described as a discretiza-
tion approach to the well known semi-infinite formulation of the problem. We pro-
ceed by approximating the infinite number of constraints using tools and techniques
from semidefinite programming. We then show that, under appropriate conditions,
the SDP approximation converges to the globally optimal solution of the problem.
We also discuss the numerical performance of the method on some test problems.

Keywords Worst case analysis · Continuous minimax algorithms · Semidefinite
programming · Global optimization

1 Introduction

Many decision models can be formulated as continuous minimax problems. The min-
imax framework injects robustness into the model. It is a tool that one can use to
perform worst–case analysis, and it can provide considerable insight into the deci-
sion process. It is frequently used alongside other methods such as expected value
optimization in order to identify extreme scenarios and strategies that might provide
cover under such scenarios. Despite its importance and usefulness, there are very
few algorithms that can reliably solve continuous minimax problems. To the authors
knowledge there are no algorithms that can compute the global optimum of such
problems. The aim of this paper is to propose such an algorithm, analyze its conver-
gence properties, and report on its numerical performance.
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We will be concerned with the following problem:

min
x

max
y

f (x, y),

s.t. x ∈ X ⊂ R
n,

y ∈ Y ⊂ R
m,

(1)

where f : R
n ×R

m → R will be assumed to be a polynomial in both variables. More-
over, the sets X and Y will be assumed to be defined by polynomial inequalities as
follows:

X = {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . , nx},

Y = {y ∈ R
m | hi(y) ≥ 0, i = 1, . . . , ny},

where g : R
n → R

nx and h : R
m → R

ny , are polynomials.
Numerous models in finance, engineering, and economics can be formulated as

minimax polynomial optimization problems. The interested reader can find applica-
tions in finance and economics in Ref. [1]. A general interpretation of the model in (1)
is that the decision maker chooses a strategy from X as an optimal response to the
worst case strategy. An opponent chooses the latter strategy from the set Y . When f

is convex in X and concave in Y then the solution to (1) is a saddle point. When f

satisfies convexity/concavity assumptions then very efficient algorithms are available
for the solution of the problem, see for example Ref. [2]. Another special case of the
problem in (1) is when the set Y is of finite cardinality. In this case the problem is
called the discrete minimax problem. Various algorithms have been proposed for the
solution of the discrete minimax problem (see e.g. Ref. [3]). When Y is not discrete
and when f is not assumed to have any (known) convexity properties, then the prob-
lem in (1) is quite hard to solve in practice. To explain the numerical and theoretical
difficulties for developing algorithms for (1) in the general case, we introduce the
following function:

�(x) = max
y

f (x, y),

s.t. h(y) ≥ 0.
(2)

For obvious reasons, �(x) is called the max function. Thus, the problem in (1) is
equivalent to

min
x

�(x),

s.t. g(x) ≥ 0.
(3)

One cannot directly use conventional algorithms to solve (3) because the max-
function is in general non-differentiable. Moreover, function evaluations are ex-
tremely expensive because of the global optimization required over y to evaluate
the max-function for some fixed x. For the unconstrained version of (3), some algo-
rithms have been proposed in the literature; see Ref. [1] for a computational compar-
ison between some of these algorithms. For the constrained version of the problem,



J Optim Theory Appl (2009) 141: 461–473 463

algorithms were proposed in [4]. Since we will be interested in the global solution
of the problem, we will not make a complete review of the available methods for
the solution of the problem. Instead, we refer the interested reader to [4] for a re-
view.

Apart from the nondifferentiable view adopted in the works mentioned above, one
can equivalently formulate (1) as the following semi-infinite programming problem:

min
x,θ

θ,

s.t. θ ≥ f (x, y), ∀y ∈ Y,

g(x) ≥ 0.

(4)

The problem in (4) has an infinite number of constraints since the constraints need
to be satisfied for all y in Y , and the latter set has infinite cardinality. Most of the
available methods for the solution of (4) use some kind of discretization approach
[5–7], see [8] for a review.

The algorithm that we propose in this paper is related to the discretization ap-
proach to the semi-infinite formulation. Our work differs from others in that we en-
deavor to compute the global minimum of (4). Moreover, we use tools from semidef-
inite programming to approximate the infinite number of constraints. To the authors
knowledge this is the first paper to propose a numerical algorithm for the global opti-
mization of the constrained continuous minimax problem. Moreover, we believe that
the links we draw between semi-infinite and semidefinite programming will be useful
in other problems too.

2 Algorithm

In this section, we reformulate the minimax problem so that its solution can be ap-
proximated using techniques from semidefinite programming. We will exploit the
links between global optimization and semidefinite programming proposed recently
by Lassere [9], and Parillo [10].

The crux of the proposed algorithm lies on the way the following constraint:

θ − f (x, y) ≥ 0, ∀y ∈ Y, (5)

is reformulated as an SDP problem. Let x and θ be fixed to xk and θk respectively.
Then if θk − f (xk, y) can be written as a sum of squares of polynomials in y, it
follows that (xk, θk) satisfy the semi-infinite constraints in (5). Therefore, to check
the feasibility of (xk, θk), we need to establish whether or not there exist polynomials
ri(y) such that

θk − f (xk, y) =
∑

i

ri(y)2. (6)

At first sight it may seem that we have not made any substantial progress. However,
the problem of computing sum-of-squares representations of non-negative polynomi-
als has a long and distinguished history. In fact, whether or not a nonnegative poly-
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nomial can be written as a sum-of-squares of rational functions was Hilbert’s 17th
problem, in his famous list of problems. The question was answered positively by
Artin in 1927. Before we explain how we apply the available results on nonnegative
polynomials, it is necessary to introduce some notation.

We will denote polynomials as follows:

k(x) =
∑

α∈S
kαxα,

where x ∈ R
n. S ⊂ Z

n will be used to denote the support of the polynomial. By
|S| we will denote the cardinality of the support. R

S will be used to denote an |S|-
dimensional Euclidean space indexed by α ∈ S . The coordinates will be assumed to
be lexicographically ordered. The elements of k ∈ R

S are indexed by kα with α ∈ S .
R[x1, . . . , xn] = R[X] will be used to denote the set of polynomials in n variables.∑

R[X]2 will denote the set of sum of squares of polynomials.
With sets defined by polynomial inequalities, we associate the set

M(X) �
∑

R[X]2 +
∑

i

∑
R[X]2gi.

The latter set is referred to as the quadratic module generated by X Ref. [11, 12].
We will use SR

S to denote the set of |S| × |S| symmetric matrices with coordinates
indexed by α ∈ S . Matrices in SR

S satisfy Xαβ = Xβα ; for any d ∈ SR
S+, we have

dT Xx =
∑

αβ

dαdβXαβ ≥ 0.

With the notation out of the way we can return to the main thread of our discussion.
Before we delve into the issue on how the coefficients and degrees of the polynomials
in (6) can be calculated, we discuss the delicate issue of the existence of such a
representation. In fact, Hilbert proved in 1888 (and Motzkin found an example in
1967) that a nonnegative polynomial depending on two variables cannot in general
be represented as a sum of squares. We refer the interested reader to Ref. [13] for an
in depth discussion about Hilbert’s 17th problem. We will be taking advantage of the
following result due to Putinar Ref. [14].

Theorem 2.1 (Putinar Ref. [14]) Assume that there exists a polynomial q ∈ M(Y)

such that {y ∈ R
m | q(y) ≥ 0} is compact. Then, every positive polynomial on Y

belongs to M(Y).

This theorem has been quite instrumental in developing efficient approaches to
the global optimization of polynomials over semialgebraic sets. The compactness as-
sumption of the theorem above can be restated in many equivalent ways. We refer the
interested reader to Schweighofer Ref. [12] for a discussion. Since we are interested
in the practical solution of the problem in (1) we will follow Lassere Ref. [9] and
add a redundant constraint b − ∑

i y
2
i ≥ 0 to the set Y . Under this alteration of the

constraint set, the assumptions of Theorem 2.1 can be satisfied. If b is chosen to be
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large enough then this modification of the problem will not change the solution of the
problem we are concerned with. A final remark about Putinar’s theorem as applied to
the constraint (5) is that the result concerns positive polynomials. The effect of this
incongruity can be mitigated by enforcing (5) within ε > 0. Since ε can be taken to
be arbitrarily small, the modification will not affect the numerical performance of the
proposed method.

The following lemma is an application of a result of Powers and Wormann
Ref. [15] to the continuous minimax problem.

Lemma 2.1 Assume that, for fixed x and θ to xk and θk respectively, the polynomial

f (xk, y) − θk =
∑

α∈C
c(xk, θk)y

α

is of degree 2d in the y variables and let C denote its support. Then, if the following
semidefinite programming problem is feasible:

∑

β+γ=α,|β|≤d,|γ |≤d

Xβγ = c(xk, θk)α|α| ≤ 2d,

X � 0, X ∈ SR
C ,

then (xk, θk) satisfies the semi-infinite constraints

θk − f (xk, y) ≥ 0, ∀y ∈ R
m.

Proof Let z denote the vector of monomials with degree of at most d . Since X � 0
is positive semidefinite, it can be written as

X =
∑

i

λiviv
T
i ,

where λi denotes the nonnegative eigenvalue associated with the ith eigenvector vi .
Let v̂i = √

λvi ; then

zT
(∑

v̂i v̂
T
i

)
z =

∑

i

(∑

α

v̂αiy
α

)2

,

and by matching coefficients,

zT
(∑

v̂i v̂
T
i

)
z =

∑

β,γ

Xβγ yαyβ =
∑

α

c(xk, θk)αyα,

the result follows. �

The lemma above, while useful for understanding the link between SDP and sum-
of-square representations, it is not sufficiently general for our intended application.
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We will follow Lassere’s method [9] and formulate the max function as follows:

�(x) = inf{φ | f (x, y) < φ}
= inf{φ | f (x, y) ≤ φ}
= inf{φ | φ − f (x, y) ∈ M(Y)}.

Where the last equality follows from Putinar’s theorem. In order to make sure the
assumptions of Theorem 2.1 are satisfied, we follow the approach in Ref. [9] and add
a redundant ball constraint: ‖y‖ ≤ 
; where 
 is selected to be large enough so that
the value of the max-function remains the same. Thus, given a point (xk, θk), we can
check if

θk − f (xk, y) ∈ M(Y). (7)

If the preceding equation is satisfied we declare (xk, θk) as feasible. Otherwise the
point must be infeasible and we generate a yk that violates (5). Generating such a
point is a difficult issue, we will return to this point later in this section. We first
discuss how can one numerically check condition (7).

Checking for membership in the set M(Y) is not computationally tractable since
the latter set involves polynomials of arbitrary degree. The basic idea is then to trun-
cate this structure to Mτ(Y ), where [12]

Mτ(Y ) �
∑

R[Y ]2
d0

+
∑

i

∑
R[Y ]2

di
hi

�
{
u0(y) +

∑

i

ui(y)hi(y) | ui ∈
∑

R[Y ]2,

deg(u0) ≤ τ,deg(uihi) ≤ τ, i = 1, . . . , ny

}
.

∑
R[Y ]2

di
represents the set of sum-of-squares of polynomials with degree of at most

di , where

d0 = max{k ∈ N | 2k ≤ τ },
di = max{k ∈ N | 2k + deg(hi) ≤ τ }, i = 1, . . . , ny.

τ is selected to belong to the following set:

τ ∈
{
s ∈ N | s ≥ max{deg(h1),deg(h2), . . .deg(hm),deg(fx)}

}
,

where fx denotes the polynomial f (x, y) in the y variables when x is fixed to some
value. Using this truncation, we need to check the following problem for feasibility:

θk − f (xk, y) = u0(y) +
∑

i

ui(y)hi(y),

ui(y) ∈
∑

R[Y ]2, deg(u0), deg(u1hi), . . . ,deg(umhm) ≤ τ.

(8)
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According to Putinar’s theorem, as τ is increased, one will eventually be able to
ascertain set membership for the full set M(Y). In practice, this seems to happen
early on in the truncation process [9, 16].

The SDP associated with (8) is given by

θk − fxk
=

〈
(Ŷ β+γ ),G0

〉
+

∑

i

〈
(Ŷ β+γ hi),Gi

〉
, ∀(β, γ ) ∈ d̂i × d̂i ,

Gi ∈ SR
�(di)×�(di), i = 0, . . . ,m,

(9)

where d̂i � {a ∈ N
n | |a| ≤ di}, and Ȳ a

a∈d̂
is the basis of R[Y ]d . Finally, fxk

denotes
the coefficients of the polynomial f (x, y) when x is fixed to xk .

We are interested in both checking the feasibility of a point (xk, θk) and in extract-
ing a vector yk in the case (xk, θk) is infeasible. For these reasons it will be more
efficient to solve an optimization problem rather than the feasibility problem in (8).
The optimization problem is given by

max γ,

s.t. γ − fxk
=

〈
(Ŷ β+γ ),G0

〉
+

∑

i

〈
(Ŷ β+γ hi),Gi

〉
, ∀(β, γ ) ∈ d̂i × d̂i ,

Gi ∈ SR
�(di)×�(di), i = 0, . . . ,m.

(10)

Let γ ∗ denote the objective function value of the problem above. Then it is easy to
see that if γ ∗ = θk then (xk, θk) is feasible. Otherwise a violating y vector will need
to be computed. We now turn our attention to the thorny issue of extracting such a
vector. Under certain conditions (given below) this vector can be extracted from the
dual of (10). Following the usual procedure for taking duals in SDPs, we find

min
∑

α

(fxk
)αzα,

s.t. Mτ (z) � 0,

Mτ−di
(hiz) � 0, i = 1, . . . ,m,

where the matrices Mτ , and Mτ−di
are called moment and localizing matrices re-

spectively [9, 12, 17]. These matrices are constructed as follows: let

Sk =
{
α ∈ Z

n+ | |α| =
∑

i

αi ≤ k

}
;

given a sequence z = (z)α∈Sk
, then the moment matrix Mτ(z) is the matrix indexed

by Sk with the (α,β)th entry given by zα+β . The localizing matrix Mk−di
(hiz) is

constructed as follows: define a shifted vector hiz � Mk(z)hi , where the αth entry of
hiz is given by

(hiz)α =
∑

β

hiβzα+β.

The moment matrix of hiz is defined as the localizing matrix.
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Suppose that, at the τ th relaxation of (10), an optimal solution is obtained. If
γ ∗ = θk , then (xk, θk) is feasible. Otherwise, we extract a vector yk that violates (5).
A sufficient condition that ensures optimality of the τ th relaxation is given by the
following rank condition:

rank Mτ(z
∗) = rank Mτ−d(z∗), (12)

where

d = max
j

⌈
deg(qj )

2

⌉
.

Whenever condition (12) holds, it was shown in Ref. [18] that one could extract
an optimal solution vector out of the dual problem (11). In addition it was shown in
Ref. [12] that when the problem has a unique global minimum then the relaxation (11)
is guaranteed to (asymptotically) converge to this unique point. In theory the SDP
relaxations in (10) and its dual (11) are guaranteed to eventually yield the optimal
objective function value. In terms of theoretical results, much less is available when
the solution vector is required. However, using higher relaxations, and perturbations
we were able to solve problems with many, and even infinite number of maximizers.
We will discuss practical aspects of the numerical implementation of the algorithm
in Sect. 4.

We can now specify the algorithm for the global optimization of continuous min-
imax problems. The algorithm consists of two main steps. In the first step the set Y

is discretized and solved to global optimality to obtain (xk, θk). The second step con-
sists of checking whether (xk, θk) is feasible. If it is then we stop, and declare xk as
the optimal solution vector of the minimax problem. Otherwise, we compute a yk that
proves the infeasibility of (xk, θk). We then add yk to the discretized version of the
set Y and we repeat the process. The algorithm is given below; we omit the details
on how Step 1 is performed, since it is derived in a similar way as (10) and (11) (see
also [9, 12]).

Step 0. Let k = 0 and let Yk be some finite subset of Y . Let τmax > 0 be a given
scalar.

Step 1. Solve

min θ̂ ,

s.t. Mτ (ẑ) � 0,

Mτ−di
(ẑ(θ − fy)) � 0, ∀y ∈ Yk,

Mτ−di
(ẑgi) � 0, i = 1, . . . , nx. (13)

Extract a solution (xk, θk) from the problem above. If extraction is not possible, then
increase τ . If τ > τmax, then stop; the problem may violate the rank assumption (12).
If a solution is extracted, go to the next step.

Step 2. Solve:

min
∑

f xk
α zα,

s.t. Mτ (z) � 0,

Mτ−di
(hiz) � 0, i = 1, . . . ,m.
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Let z∗ denote the optimal solution of the problem above. If θk = ∑
f

xk
α z∗

α then
stop the vector xk solves the problem. Otherwise, extract a solution vector yk that
violates (5). If extraction is not possible, then (as above) increase τ until either
extraction is possible or τ exceeds τmax.

Step 3. Set Yk+1 = Yk ∪ {yk}, set k := k + 1 and go to Step 1.

3 Convergence Analysis

In this section, we establish the convergence of the algorithm under certain condi-
tions. The proof makes uses of point-to-set mappings. We refer the interested reader
to Refs. [19, 20] for more information on these mappings. The following definitions
are taken from Ref. [19].

Assumption 3.1 A point-to-set map η from a set A into a set B is a map which
associates a subset of B with each point of A.

Assumption 3.2 η is open at a point α̂ ∈ A if, for a sequence {αk} ⊂ A with αk → α̂,
and β̂ ∈ η(α̂) imply the existence of a sequence {βk} ⊂ B such that βk ∈ η(αk) and
βk → β̂ .

Assumption 3.3 η is closed at a point α̂ ∈ A if for a sequence {αk} ⊂ A with αk → α̂,
βk ∈ η(α̂k) and βk → β̂ imply that β̂ ∈ η(α̂).

Assumption 3.4 η is continuous at a point α̂ ∈ A if it is both open and closed.

We will say that η is open, closed or continuous on A if it has the respective
property for every α ∈ A. We now proceed to place the proposed algorithm in the
framework of point-to-set maps. For the rest of this section we assume that the rank
assumption in (12) is satisfied, and that τmax has been allowed to be large enough so
that a solution vector is eventually extracted. In practice we have found that a mod-
est τmax is enough to render the algorithm usable in practice. More on the practical
implementation of the algorithm will be given in the next section.

We will use Ŷ to denote all finite subsets of Y . Step 2 of the algorithm can be
viewed as

η : R
n × R × Ŷ → Ŷ .

Let (xk, θk) and Yk represent the solution vector obtained at Step 1 and the finite
subset of Y available at Step 1. k will denote the iteration number throughout this
section. The η mapping is defined as follows:

η(xk, θk, Ŷk) = {Yk ∪ {ŷ} | θk − f (xk, ŷ) < 0, ŷ ∈ Y },
where ŷ is the optimal vector extracted from the solution (11). If more than one
solution is extracted then, without loss of generality, the one with the highest norm is
chosen.
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Step 1 of the proposed algorithm can be viewed as the following map:

ζ(η(xk, θk, Yk)) → X × R,

where

ζ(Ŷ ) = {(x̂, θ̂ ) ∈ X × R | (x̂, θ̂ ) is the solution extracted from (13)}.

Lemma 3.1 ζ ◦ η is closed.

Proof We need to show that, if

(xk, θk, Yk) → (x∗, θ∗, Y ∗)

and

Yk+1 ∈ η(xk, θk, Yk),

xk+1 ∈ ζ(Yk),

then

Y ∗ ∈ η(x∗, θ∗, Y ∗),

x∗ ∈ ζ(Y ∗).

Since Yk → Y ∗ for k large enough, we must have that

Yk = Yk+1 = Y ∗.

But for any (x, θ), we must then have

η(x, θ,Yk) = η(x, θ,Yk+1) = η(x, θ,Y ∗).

Since Yk ∈ β(x, θ,Yk) = η(x, θ,Y ∗) and Y ∗ = Yk , it follows that the inner map is
closed.

For the outer map, we need to show that, if

(xk, θk) → (x∗, θ∗) with (xk+1, θk+1) ∈ ζ(η(xk, θk, Yk)),

then

(x∗, θ∗) ∈ ζ(η(x∗, θ∗, Y ∗)).

Since xk is solution to

min
x

�k−1(x),

where

�k(x) = max
y∈Yk

f (x, y),
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it follows by the continuity of �k that x∗ is a local solution to

min
x

�∞(x),

where

�∞(x) = max
y∈Y ∗ f (x, y).

In other words, if xk is optimal for �∞(x), then {xk} → x∗ imply that is a solution to

min
x

�∞(x).

Since

�∞(xk) ≤ �∞(x),

by continuity

�∞(x∗) ≤ �∞(x). �

Theorem 3.1 Let (x∗, θ∗), Y ∗ be accumulation points of the sequences {xk, θk} and
let {Yk} be generated by the algorithm. Then, x∗ is a global optimum solution of (1).

Proof Let {xk, θk} → (x∗, θ∗) and {Yk} → Y ∗; then, we must have

(x∗, θ∗) ∈ ζ(Y ∗).

Since Y ∗ ∈ η(x∗, θ∗, Y ∗), we also have

f (x∗, y) ≤ f (x∗, y∗), ∃y∗ ∈ Y ∗, ∀y ∈ Y.

Since x∗ is a local solution to

min
x

�∞(x),

we have that, for k sufficiently large,

�∞(x∗) ≤ �∞(x) = max
y∈Y ∗ f (x, y) = max

y∈Y
f (x, y) = �(x). �

4 Numerical Results

In this section we discuss the numerical implementation of the algorithm. A pos-
sible deficiency of the proposed algorithm is its dependence on the existence of a
sum-of-squares representation. While the latter condition can be asymptotically sat-
isfied, a more strict assumption is the possibility of extracting solution vectors at
every iteration. The aim of our numerical experiments was to assess whether the rank
condition (12) was too strict for our intended application.

The algorithm was implemented in the MATLAB environment, and GloptiPoly
Ref. [21] was used to solve the subproblems in Steps 1 and 2 of the algorithm. The
test problems were taken from the literature and they can be found in Chap. 5 of
Ref. [1]. The dimensions of the problems are given in Table 1, where x-Dim stands
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Table 1 Test problems
Name # x-Dim # y-Dim

1 2 2

2 2 2

3 2 2

4 2 3

5 3 3

6 4 3

7 5 5

8 1 1

9 2 2

10 2 2

11 4 2

12 4 3

Table 2 Solution results
Name #Iterations Max-Relax Purturb-Param

1 6 0 0

2 6 0 0

3 10 3 0

4 8 0 0

5 4 0 0

6 10 0 0

7 25 0 0

8 8 0 0

9 28 9 u ∗ 0.001

10 24 7 u ∗ 0.001

11 16 0 u ∗ 0.001

12 19 4 u ∗ 0.001

for the dimension of the function in the x variables, and similarly for y-Dim. Prob-
lems 1–7 are convex in x, and concave in the y variables. As was mentioned in the
introduction such problems can be solved efficiently with more specialized methods.
Moreover there are no issues concerning the global optimization of such functions
since local minima are also global minima. The purpose of these problems was to
test the correctness of the implementation. More importantly, these tests allow us to
assess the efficiency of the algorithm in computing the global optimum as compared
with more efficient (but less general) methods.

Test problems 8–12 have no convexity properties. Problems 8–10 have an infinite
number of maximizers for each x, while problems 11–12 have multiple (but finite)
number of maximizers. As mentioned above, the purpose of these problems is to
assess the numerical performance of the algorithm in view of these multiple optima.

The solution statistics for each problem are reported in Table 2. Max-Relax cor-
responds to the maximum relaxation required to solve the test problems in Steps 1
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and 2 of the proposed method. All problems were solved with a 10e–8 precision. As
it can be seen the convex problems require a modest amount of iterations. While the
concave problems require much more iterations. In order to solve problems 8–12,
we had to resort to slight permutations of the decisions variables. This was done as
follows:

x̂i = xi + ui ∗ 0.001, i = 1, . . . , n,

where ui is a uniform random number in the interval [0,10]. The same strategy was
followed for the y variables. Perturbing the variables allows the algorithm to break
the symmetries in the problem and facilitates the extraction of the optimum solution
vector.
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