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Abstract. Markov Random Fields (MRF) minimization is a well-known
problem in computer vision. We consider the augmented dual of the MRF
minimization problem and develop a Mirror Descent algorithm based on
weighted Entropy and Euclidean Projection. The augmented dual prob-
lem consists of maximizing a non-differentiable objective function subject
to simplex and linear constraints. We analyze the convergence proper-
ties of the algorithm and sharpen its convergence rate. In addition, we
also use the convergence analysis to identify an optimal stepsize strategy
for weighted entropy projection and an adaptive stepsize strategy for
weighted Euclidean projection. Experimental results on synthetic and
vision problems demonstrate the effectiveness of our approach.

1 Introduction

MRF energy minimization is a central problem in many computer vision ap-
plications. State-of-the-art algorithms to solve the MRF problem can be clas-
sified in three methodological frameworks: graph cut [1], belief propagation [2]
and LP relaxation. We concentrate on the LP relaxation model for MRF prob-
lem. The two common frameworks for the LP relaxation of MRF are based on
tree-reweighted message passing [3] and dual decomposition [4]. Message-passing
techniques exploit acyclic structures in the MRF models and are known to be
efficient. However, the convergence properties of message-passing algorithm is
not fully understood. In contrast, the dual decomposition approach is connected
to the theory of convex optimization, thus the convergence analysis and sub-
optimality can be established. In the dual framework, the graphical model is
decomposed into easy slave MRFs with favourable properties such as submod-
ular graph, acyclic graph. These slaves can be solved efficiently via dynamic
programming and their solutions are used to update the parameters of the mas-
ter problem in a subgradient projection manner. Compared to other methods,
the dual-based approach benefits from better convergence properties and has
suboptimality guarantees. Recently, improvements to the Dual Decomposition
Sub Gradient technique have been made, including Nesterov’s smoothing [5],
First Order Primal-Dual method [6], Improved Decomposition [7].

In this paper, we develop a projection algorithm to solve the dual problem of
the LP relaxation using weighted Entropy and Euclidean distances. The method
is based on Mirror Descent algorithm [8,9] and its generalization on “favourable
geometry” domain [10]. We employ a dual decomposition technique as in Ko-
modakis et al. [4] to obtain the dual framework with two types of problems.
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The master problem solves a non-smooth objective function subject to linear
constraints. The MRFs subproblems can be solved by dynamic programming
independently. In the dual LP-based algorithm [4,7], subgradient projection is
often used by the master to optimally distribute the data cost between the slaves.
Main drawbacks of this approach are slow convergence rate and its sensitivity
to the choice of stepsize. In order to address these drawbacks, we transform the
domain of dual variables to the intersection of simplexes and linear constraints.
The search is performed within the simplexes before proceeding with subgradi-
ent method. As a result, our method inherits faster convergence rate from the
Mirror Descent algorithm with weighted entropy distance. For the second pro-
cedure we employ the weighted Euclidean projection with an adaptive stepsize
that shows significant speed up in practice. Our method does not require more
memory than any other dual-based methods. The sub problems and all variables
are decoupled therefore parallelizing computation is fully supported. In the worst
case, this method has an O( 1

ε2 ) complexity whereas the method based on Nes-
terov’s smoothing technique [5,11] provide a convergence rate of O(1ε ). However,
those methods run an inner loop to compute a good stepsize where each inner
iterations require computations of sub MRF problems. It is important to stress
that this theoretical comparison is only valid in the worst case. In practice, using
good adaptive stepsize strategy for first order method significantly reduces the
number of iterations.

The main contributions of this paper are:

- We reformulate the original dual problem and construct the ingredients re-
quired for the Mirror Descent algorithm, including weighted distance, weighted
norm, dual norm and the local Lipschitz constants.
- We provide the solutions updates using Mirror Descent algorithm for our model.
- Through the convergence analysis, we show that sequential updates by per-
forming Entropy projection before Euclidean projection is better than parallel
updates. We also use the bounded optimality to identify the optimal stepsize for
entropy projection and adaptive stepsize for euclidean projection.

2 Background

Discrete MRF minimization aims to solve a general graphical multi-labelling
problem. Given a set of discrete labels L, the goal is to find a labelling configu-
ration such that it returns the minimal energy on the MRF model specified by
an undirected hypergraph G = (V,E) where V and E denote the sets of nodes
and edges respectively. Each node a ∈ V must admit one label from L. By θa,i,
we denote the unary cost of assigning label i ∈ L to node a ∈ V . The notation
θab,ij is used to denote the pairwise cost for edge ab ∈ E. The LP relaxation of
the MRF problem is defined as follows:

min
x∈X

∑

a∈V

∑

i∈L

θa,i.xa,i +
∑

ab∈E

∑

i∈L

∑

j∈L

θab,ij .xab,ij (1)
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where the constraint set X is known as the local marginal polytope [3]. Due to
the special structure of the problem above, it turns out that the dual of (1) can
be solved efficiently [4]. We write the LP problem compactly as:

E(θ, x) := min
x∈X

〈θ, x〉 (2)

In the dual approach , the original graph G is decomposed into a collection of
trees (acyclic graphs) T . Each tree t ∈ T corresponds to a simpler MRF problem
Et(θt, xt) that can be solved efficiently by the Max Product Belief Propagation
algorithm. Without loss of generality, we assume each tree contains all nodes
and every edge must appear only once in T . For example, in a 2D grid graph,
one tree contains all horizontal edges and one contains all verticle edges. In this
setting, no constraints apply to pairwise cost and the sum of unary costs across
the trees must preserve the unary cost of the original graph, ie.

∑
t∈T θ

t
a,i = θa,i.

The dual-based algorithm aims to distribute the right amount of unary costs for
each tree in order to maximize the dual problem.

max
{θt}∈Θ

∑

t∈T

Et(θt, xt) where Θ =

{
∑

t∈T

θt = θ

}
(3)

It is well-known that the solution to problem (3) is the lower bound of the
LP problem (2). The key property in dual-based algorithms is to maintain the
feasibility set Θ.

Transformation of the Dual Domain: For computational reasons, most
methods to solve (3) are based on the subgradient algorithm with Euclidean
projection. One disadvantage of this approach is the slow convergent rate. The
choice of stepsize significantly affects the algorithm and at every iteration, all
unary costs are adjusted by the same amount. In order to address this issue,
ie. adjusting the unary cost differently based on the cost itself, we transform
the domain of the dual problem such that it still maintains the fesibile set Θ
while accelerating the search procedure. Consider the following augmented dual
problem:

max
ρ∈Δ,λ∈Λ

F (ρ, λ) := max
ρ∈Δ,λ∈Λ

∑
t∈T E

t(ρt.θ + λt, xt) (4)

where: Δ =
{
ρ
∣∣∑

t∈T ρ
t = 1 , ρ � 0

}
; Λ =

{
λ
∣∣∑

t∈T λ
t = 0

}

It is easy to see that the sets Δ and Λ preserve Θ. The augmented model has
the same optimal objective function value as the original dual problem. Notice
that if we choose a constant ρ ∈ Δ, then our model is equivalent to Komodakis
et al. [4]. The objective function F (ρ, λ) is linear in both variables; in addition,
ρ and λ are completely decoupled.

3 Mirror Descent (MD)

Mirror Descent algorithm [8,10] is a generalization of the proximal algorithm [12]
with a nonlinear distance function [9] and an optimal stepsize. In order to utilize
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the Mirror Descent algorithm with the special structure of our augmented dual
model, we need to define the subgradient, the weighted distances and weighted
norm which favour the problem’s geometry. Instead of solving the augmented
dual problem (4) directly, we generate a sequence of updates:

[
ρk+1

λk+1

]
= argmax

ρ∈Δ,λ∈Λ

{ 〈
F ′(ρk), ρ

〉− 1
τDΔ(ρ, ρ

k)
+
〈
F ′(λk), λ

〉 − 1
ηDΛ(λ, λ

k)

}
(5)

Since the function F is linear in both variables, ρ and λ are decoupled, the sub-
gradients with respect to each variable are also disjoint. The weighted distances
DΔ, DΛ and stepsizes τ, η are defined independently to exploit the geometry of
each set. To simplify our notation, we define an index set to cover all unary
terms: I = {(a, i)|∀a ∈ V, ∀i ∈ L}. The domains Δ and Λ are built by taking the
direct product of the disjoint subsets:

Δ :=⊗ Δi ; Λ :=⊗ Λi , ∀i ∈ I

Let T (i) be the collection of trees that cover the same unary term i, then each
subset reads:

Δi =

⎧
⎨

⎩
∑

t∈T (i)

ρti = 1 , ρti ≥ 0

⎫
⎬

⎭ ; Λi =

⎧
⎨

⎩
∑

t∈T (i)

λti = 0.

⎫
⎬

⎭

Subgradient: The following lemma shows how the subgradient is estimated in
our algorithm.

Lemma 1. Let F ′(ρ, λ) be defined as follows: F ′(ρ, λ) = [θ.x̄; x̄], where x̄ ∈
argminx∈X〈ρ.θ + λ, x〉. Then F ′(ρ, λ) ∈ ∂F (ρ, λ), where ∂F (ρ, λ) denotes the
subgradient of F (ρ, λ) at the point (ρ, λ).

Proof. The point x̄ is suboptimal for minx∈X〈ρ′.θ + λ′, x〉, therefore:
F (ρ′, λ′) ≤ 〈ρ′.θ + λ′, x̄〉 = 〈ρ.θ + λ, x̄〉+ 〈θ.x̄, ρ′ − ρ〉+ 〈x̄, λ′ − λ〉
F (ρ′, λ′) ≤ F (ρ, λ) + 〈θ.x̄, ρ′ − ρ〉+ 〈x̄, λ′ − λ〉

as required by subgradient inequality. 	

Distance Function: MD generates a projection based on nonlinear distance
function. Let Di

C denotes a Bregman distance function defined on a single closed
convex set Ci:

Di
C(ui, vi) = ψi

C(ui)− ψi
C(vi)− 〈∇ψi

C(vi), ui − vi〉
where ui, vi ∈ Ci and ψi

C : Ci → R is a 1-strongly convex distance-generating-
function (d.g.f). The weighted distance function DC defined on the domain
C :=⊗ Ci is thus given by:

DC(u, v) =
∑

i∈I

αiDi
C(ui, vi) =

∑

i∈I

αi
[
ψi
C(ui)− ψi

C(vi)− 〈∇ψi
C(vi), ui − vi〉

]

:= ψC(u)− ψC(v)− 〈∇ψC(v), u − v〉
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where αi
C > 0 is the weighted parameter. The weighted d.g.f defined on C is:

ψC(u) =
∑

i∈I

αiψi
C(ui) (6)

Norm: Another requirement for MD is its compatible norm, ie. weighted d.g.f
ψC : C → R is 1-strongly convex w.r.t the weighted norm ‖.‖C [10]:

‖u‖C =

√∑

i∈I

αi‖ui‖2Ci
(7)

In the formulation above, ‖.‖Ci is a local norm that is defined based on the
geometry of a subset Ci.

Dual Norm and the Local Lipschitz Constant:
From the definition of Dual Norm [13], we can derive the dual norm of (7):

‖u‖C∗ =

√∑

i∈I

‖ui‖2Ci∗/α
i

Let LCi := sup
ui∈Ci

‖F ′
u‖Ci∗ then the local Lipschitz constant is given by:

LC = sup
u∈C

‖F ′
u‖C∗ =

√∑

i∈I

L2
Ci
/αi (8)

Note that in our notation, we refer the Lipschitz constant as local since it depends
on the specific choice of subgradient.

Weighted Entropy Distance. With the general definitions of distance and
norm, we define the weighted entropy distance DΔ over the domain Δ using
entropy d.g.f ψi

Δ and l1-norm ‖.‖1 on individual set Δi:

ψi
Δ(ρi) =

∑

t∈T (i)

ρti ln ρ
t
i ; ‖ρ‖Δ =

√∑

i∈I

αi
Δ‖ρi‖21 (9)

Lemma 2. Let ψΔ : Δ → R be the weighted d.g.f (6) defined with summand
ψi
Δ. Then ψΔ is 1-strongly convex w.r.t the norm ‖.‖Δ

Proof. 〈∇ψΔ(u)−∇ψΔ(v), u − v〉 =
∑

i∈I

αi
Δ〈∇ψi

Δ(ui)−∇ψi
Δ(vi), ui − vi〉

≥
∑

i∈I

αi
Δ‖ui − vi‖21 = ‖u− v‖2Δ (10)

The inequality in (10) comes from the well known 1-strongly convex property of
entropy function ψi

Δ over the simplex Δi w.r.t l1-norm [9]. 	
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Weighted Entropy Distance. Weighted Euclidean distance DΛ is defined by
summand ψi

Λ and l2-norm on subset Λi as follow:

ψi
Λ(λi) =

1

2
λ�i λi ; ‖λ‖Λ =

√∑

i∈I

αi
Λ‖λi‖22 (11)

Lemma 3. Let ψΛ : Λ→ R be the weighted d.g.f (6) defined with summand ψi
Λ.

Then ψΛ is 1-strongly convex w.r.t the norm ‖.‖Λ.
Proof. The proof is similar to Lemma 2. 	


Solution Updates: Using the weighted distance DΔ and DΛ above, we obtain
the solutions to proximal sequence (5):

ρ
k+1(t)
i =

ρ
k(t)
i exp (F ′(ρk)ti.τ/α

i
Δ)

∑

t∈T (i)

ρ
k(t)
i exp (F ′(ρk)ti.τ/α

i
Δ)

λ
k+1(t)
i = η

αi
Λ

(
F ′(λk)ti −

∑
t∈T F ′(λk)ti

Ti

) (12)

where Ti denotes the number of trees that cover the unary term i. It is straight-
forward to see that variable updates only happen at the nodes which are assigned
different labels across the trees. In addition, the stepsize update for each unary
term is affected by the weighting factor associated with that term. Through the
convergence analysis below, we derive an optimal stepsize for entropy projection
and adaptive stepsize for euclidean projection.

4 Convergence Analysis

The MD iterations (5) solve for ρ and λ independently. Since the two variables are
disjoint, MD can either update them simultenously or sequentially. By examining
the convergence analysis, we justify that updating sequentially provides a faster
convergence rate, ie. MD updates ρ first, until there is no improvement in the
dual, then it switchs to update λ. In addition, we define the optimal stepsize for
entropy projection and an adaptive stepsize for euclidean projection based on
the bounded sub-optimality.

4.1 Convergence Analysis

Lemma 4. The proximal update (5) provides better sub-optimality in sequential
manner than in parallel manner. It has the following worst case optimality:

F ∗ − max
k=1..K

{Fk} ≤
√
2(LΔ

√
ΩΔ + LΛ

√
ΩΛ)√

K
(13)

Proof. (Sketch) Assume we have a sequence of updates {ρk}k1

k=1, {λk}k1+k2

k=k1+1,
follows the proof of Proposition 1.1 (i) as in [10] with ingredients of MD algorithm
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that we developed in Section 3, we can obtain the following inequality:

〈F ′(ρk), ρ∗ − ρk〉 ≤ 1

τ
DΔ(ρ∗, ρk)− 1

τ
DΔ(ρ

∗, ρk+1) +
τ‖F ′(ρk)‖2Δ∗

2
(14)

〈F ′(λk), λ∗ − λk〉 ≤ 1

η
DΛ(λ

∗, λk)− 1

η
DΛ(λ

∗, λk+1) +
η‖F ′(λk)‖2Λ∗

2
(15)

Let K = k1 + k2, F̂ = maxk{Fk}. Summing up (14) and (15) over K iterations:

K(F ∗ − F̂ ) ≤
K∑

k=1

(F ∗ − Fk) ≤
k1∑

k=1

〈F ′(ρk), ρ∗ − ρk〉+
K∑

k=k1+1

〈F ′(λk), λ∗ − λk〉

≤ DΔ(ρ
∗, ρ1)
τ

+
DΛ(λ

∗, λk1+1)

η
+
k1τL2

Δ + k2ηL2
Λ

2

where LΔ and LΛ are the local Lipschitz constants. Let ΩΔ = max
ρ∈Δ

DΔ and

ΩΛ = max
λ∈Λ

DΛ, then:

F ∗ − F̂ ≤ ΩΔ

Kτ
+
ΩΛ

Kη
+

1

2

(
k1
K
τL2

Δ +
k2
K
ηL2

Λ

)
(16)

Inequality (16) gives the bounded sub-optimality when updates are done in se-
quential manner. Let B denotes the RHS of (16). If parallel updates are used,
then k1 = k2 = K, and we have:

B ≤ ΩΔ

Kτ
+
ΩΛ

Kη
+

1

2

(
τL2

Δ + ηL2
Λ

)
(17)

From inequality (17), we can justify that sequential updates provide better sub-
optimal approximation than parrallel updates. Minimizing the RHS of (17) w.r.t
τ and η gives:

τ =

√
2ΩΔ

LΔ

√
K

; η =

√
2ΩΛ

LΛ

√
K

(18)

Hence, the rate of convergence is bounded by:

F ∗ − F̂ ≤
√
2(LΔ

√
ΩΔ + LΛ

√
ΩΛ)√

K

Theorem 1. The sequential updates generated by the MD algorithm provides
the following bound on sub-optimality:

F ∗ − max
k=1..K

{Fk} ≤
√
2
(∑

i∈I |θi|
√
ln(Ti) + |λ∗i |Ti

)

√
K

(19)
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Proof. We want to minimize the RHS of (13). The parameters associate with
two disjoint domains can be computed independently. Consider minimizing an
arbitrary term:

ΩL2 =

[
∑

i∈I

αiΩi

][
∑

i∈I

α−1
i L2

i

]
(20)

Optimising (20) w.r.t α, we obtain:

αi =
Li√

Ωi
[∑

i∈I Li

√
Ωi
]

Therefore, Ω = 1 and L =
∑

i∈I Li

√
Ωi .

The Lipschitz Constant over the Domain Δ
Each subset Δi is equipped with ‖.‖1, therefore LΔ

i = supρi∈Δi
‖F ′

i (ρ)‖∞ = |θi|
In addition, the maximum distance Ωi

Δ over the simplex Δi is defined in Propo-

sition 5.1 (c) [9]: Ωi
Δ = ln(Ti). Hence, we have: LΔ =

∑
i∈I |θi|

√
ln(Ti)

The Lipschitz Constant over the Domain Λ
Similarly, we can compute:

LΛ
i = sup

λi∈Λi

‖F ′
i (λ)‖2 =

√
Ti ; Ωi

λ = Ti(λ
∗
i )

2 ; Lλ =
∑

i∈I

|λ∗i |Ti

Note that, the amount λ∗i and its maximum distance Ωi
λ can only estimated due

to the “unbounded” nature of the set Λi. Finally, we obtain the bound (19):

F ∗ − F̂k=1..K ≤
√
2
(∑

i∈I |θi|
√
ln(Ti) + |λ∗i |Ti

)

√
K

Remarks. From Lemma 4, we have justified that sequential updates is better
than parallel updates. Now, let us consider two other type of updates: using
weighted entropy projection only and using weighted Euclidean projection only.
Clearly, using weighted entropy only will get trapped into a local maxima because
the set Δ does not cover the original feasible set Θ. However, in applications
where the simplexes fully cover the original feasible set, we can obtain very fast
convergence. If we use only weighted Euclidean projection to search within the
same space defined by Δ, then in the worst-case, the sub-optimality is defined
by: √

2
(∑

i∈I |θi|Ti + |λ∗i |Ti
)

√
K

It is easy to see that this bound is much larger than our optimal bound in the
RHS of (19) as the size of the set I is very large.

4.2 Discussion

Switching Criteria: An intuitive idea is to derive switching criteria based on
dual gap. When the MD sequence based on entropy projection finds a sub-
optimal distribution in its domain, it will not improve the dual further. One
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can define a switching point when there is no improvement in the dual objective
or dual gap. However, subgradient method often fluctuates the dual objective,
thus, the dual gap appears to have zic-zagging behaviour. Therefore it is not
efficient to detect switching point based on the dual gap. On the other hand,
an important feature of the Dual Decomposition model is that as the method
converges, the number of non-agreement nodes is decreasing. This observation
works better in general since it does not fluctuate as much as the dual objective.
We define a threshold σ ∈ {1, .., 20} depends on applications for switching to
Euclidean projection when the number non-agreement nodes does not decrease
after σ iterations.

Implementation: The proximal updates are done in sequence where we solve
for ρ until the switching criteria is met, then we solve for λ. With the ingredients
developed sofar, the sequence (12) reduces to:

ρt =
θti∑
t∈T θ

t
i

; ωt = ε. sign(θti .x̄
t
i)
√
2 ln(Ti)/k ; ρt =

ρt exp(ωt)∑
t∈T (i) ρ

t exp(ωt)

θti = ρt

(
∑

t∈T

θti

)
(21)

θti = θti +

√
2.
Ωi

k

(
x̄ti −

∑
t∈T x̄

t
i

Ti

)
(22)

where ε ∈ (0, 2) is a speed up parameter. The entropy projection updates the
master’s parameter by (21). Equation (22) is used for Euclidean projection.
Since we can compute ρ based on the current value of unary terms, the memory
required is not more than any other type of dual decomposition methods.

Adaptive Stepsize: The stepsize for entropy projection is optimal and can
be computed analytically since we know the maximum distance of the simplex.
However, we do not know the maximum distance Ωi on the unbounded set Λi,
therefore we estimate it by:

√
Ωi

k
≈ |Ê − F̂ |

Ti.Lk
(23)

where Ê is the best primal solution after k iterations. At iteration k, there is
Lk number of non-agreement nodes that need to be adjusted to reduce the dual
gap |Ê − F̂ |. The difference between primal and dual is distributed evenly for
Lk nodes. In addition, for each node, this amount is dispensed evenly amongst
the trees that cover the node.

5 Experiments

In order to demonstrate the effectiveness of our method, we present experimen-
tal results with synthetic data and segmentation problem with the UGM Mat-
lab package [6]. In addition, we also examine our method with the Tsukuba
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(a) Potts Model: Convergence rate

(b) Potts Model: Number of non-agreement
Nodes

(c) Uniform Model: Number of non-
agreement Nodes

Fig. 1. Synthetic data

Stereo problem in MRF-Bechmark package [14]. In all experiments, we ap-
ply three methods: Tree-reweighted variants (TRBP in UGM and TRW-S in
MRF-benchmarks), Mirror Descent and Sub Gradient with adaptive stepsize

α = |Ê−F̂ |
‖F ′

k
‖2 as suggested in [4].

Synthetic Data: For our synthetic experiments, we used a grid graph of size
20× 20 and 5 labels. For the Potts model, θa,i was drawn from U(−1,+1), while
θab,ij = ωab ∗ I(i = j) and ωab = N (0, 1). For the Uniform model, we withdraw
all data from U(0, 1), for the edge weight, we also use ωab = N (0, 1). For these
small tests, we set the switching threshold to 5.

Figures 1(a) and 1(b) shows the convergence of primal-dual gap and num-
ber of labels to fix for the Potts model. The switch between methods occur be-
tween iterations 20 and 25. All methods converge eventually, however our method
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Fig. 2. Segmentation data

Fig. 3. Stereo: Convergence

outperforms the sub-gradient method significantly and obtains the optimal so-
lution slightly before TRW. In the Uniform model (Figure 1(c)), the switch even
not happen, MD can compute optimal labelling by entropy projection only.

Segmentation Probem: The segmentation problem is to recover a coloured X
from its noisy image in the UGM package. Figures 2(a) and 2(b) show how the
methods perform. Note the switching step happens between 15 and 20 iterations.
After the switch to the Euclidean projection, with our adaptive stepsize, MD can
recover the optimal solution at around iteration 25.

The Stereo Problem: Figure 3 shows the convergence rate for Tsukuba prob-
lem with three methods. We can see that TRW still converges fastest, with the
MD method comes second. Both TRW and MD generate similar dual objective
sequence after 30 iterations.
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6 Conclusion

An efficient algorithm to solve the dual MRF minimization problem is presented.
The method is based on Mirror Descent algorithm with weighted distance pro-
jections, weighted norms and local Lipschitz constants. After a careful analysis
of the algorithm, we are able to sharpen the theoretical convergence rate as well
as to improve the performance of the algorithm in practice. Mirror Descent can
be applied efficiently on any bounded set, a direction of future research is to
establish the relationship between the dual gap and feasible sets, and address
the possibility of performing entropy projection on the unbounded set Θ.
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