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Abstract
The links between optimal control of dynamical
systems and neural networks have proved benefi-
cial both from a theoretical and from a practical
point of view. Several researchers have exploited
these links to investigate the stability of different
neural network architectures and develop mem-
ory efficient training algorithms. We also adopt
the dynamical systems view of neural networks,
but our aim is different from earlier works. We
exploit the links between dynamical systems, op-
timal control, and neural networks to develop a
novel distributed optimization algorithm. The
proposed algorithm addresses the most significant
obstacle for distributed algorithms for neural net-
work optimization: the network weights cannot
be updated until the forward propagation of the
data, and backward propagation of the gradients
are complete. Using the dynamical systems point
of view, we interpret the layers of a (residual)
neural network as the discretized dynamics of
a dynamical system and exploit the relationship
between the co-states (adjoints) of the optimal
control problem and backpropagation. We then
develop a parallel-in-time method that updates
the parameters of the network without waiting
for the forward or back propagation algorithms to
complete in full. We establish the convergence of
the proposed algorithm. Preliminary numerical
results suggest that the algorithm is competitive
and more efficient than the state-of-the-art.

1. Introduction
As transistors get smaller the amount of power per unit vol-
ume no longer remains constant as Dennard and co-authors
predicted in 1974 (Dennard et al., 1974). After over thirty
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years, Dennard’s scaling law ended in 2005, and CPU man-
ufacturers are no longer able to increase clock frequencies
significantly (Koomey et al., 2011). The physical limitations
of silicone-based microprocessors gave rise to computing ar-
chitectures with many cores. The reduction in cost and wide
availability of multi-core processors completely revolution-
ized the field of neural networks, especially for computer
vision tasks. Therefore, the recent success of neural net-
works in many learning tasks can, in large part, be attributed
to advances in computer architectures. Alternative comput-
ing technologies (e.g., quantum computers) are not likely to
be available soon. Thus any future advances in more effi-
cient training of neural networks will come from algorithms
that can exploit distributed computer architectures.

Currently, the greatest obstacle in the development of dis-
tributed optimization algorithms for neural network training
is the entirely serial nature of forward and backward propa-
gation. The parameters of the neural network can only be
updated after the forward propagation algorithm propagates
the data from the first to the last layer and the backpropa-
gation algorithm propagates the gradient information back
to the first layer through all the layers of the network. This
entirely serial nature of the training process severely hin-
ders the efficiency of distributed optimization algorithms
for deep neural networks. As a result, all the widely used
frameworks for training neural networks only offer data par-
allelism, and the problem of layer-wise parallelism remains
open.

We propose a novel distributed optimization algorithm that
breaks the serial nature of forward/backward propagation
and allows for layer-wise parallelism. The proposed algo-
rithm exploits the interpretation of neural networks, and
Residual Neural Networks in particular, as dynamical sys-
tems. Several authors have recently adopted the dynamical
systems point of view (see, e.g., (Haber & Ruthotto, 2018;
E, 2017; Chen et al., 2018; Li et al., 2017) and Section
1.1 for a discussion of related work). Reformulating the
problem of Residual Neural Network (RNN) optimization
as a continuous-time optimal comtrol problem allows us to
model the layers of a neural network as the discretization
time-points of a continuous-time dynamical system. Thus
RNN training can be interpreted as a classical optimal con-
trol problem. The results of this paper hold for Residual
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Neural Networks. It is possible to extend the dynamical
systems view to different architectures but in this paper we
focus on Residual Neural Networks (RNNs). Using the in-
terpretation of RNN training as an optimal control problem,
we decompose the neural network across time (layers) and
optimize the different sub-systems in parallel. The central
insight of this paper is that if the state and co-state (ad-
joint) of the dynamical system are approximately known
in N intermediate points, then we can parallelize the time
dimension of the system and perform N forward/backward
propagations in parallel. This description justifies the name

“parallel-in-time” method because we parallelize across the
time dimension of the optimal control model. A signifi-
cant challenge is to produce approximately correct state and
co-state information for the optimal control problem. We
address this problem by using a coarse discretization of the
problem with a phase we call global prediction phase. The
global prediction phase is followed by a local correction
phase that attempts to improve the predicted optimal state
and co-states of the control model solution.

1.1. Related Work & Contributions

Layer-wise optimization of NNs. Several authors have
identified the limitations that backpropagation imposes on
distributed algorithms. As a result, many approaches have
been proposed including ADMM, block-coordinate descent
(Zeng et al., 2018) delayed gradients(Huo et al., 2018), syn-
thetic gradients(Jaderberg et al., 2017), proximal (Lau et al.,
2018), penalty based methods(Carreira-Perpinan & Wang,
2014; Huo et al., 2018), and alternating minimization meth-
ods (Choromanska et al., 2018). Our method (especially the
local correction phase) is related to the synthetic gradient
approach in (Jaderberg et al., 2017). The major differences
between synthetic gradients of (Jaderberg et al., 2017) and
our approach are that we exploit the dynamical-systems
view and a multilevel discretization scheme to approximate
the co-state (adjoint) variables quickly. We also establish
the convergence of our method with weaker conditions than
in (Jaderberg et al., 2017). In Section 5 we also show that
our method outperforms even an improved version of the
synthetic gradient method.

The dynamical systems point of view. Several authors
have formulated neural network training as an optimal con-
trol problem in continuous time. For example, the authors
in (Haber & Ruthotto, 2018) have adopted this point of
view to develop more stable architectures for neural net-
works. In (Li et al., 2017) the authors used this approach to
propose a maximum-principle based method as an alterna-
tive to backpropagation. The work in (Li et al., 2017) also
allows layer-wise optimization, but unfortunately, it was
slower than stochastic gradient descent (SGD). In (Chen
et al., 2018) the authors proposed to use classical ODE
solvers to compute the forward and backward equations

associated with NN training. We note that none of the ex-
isting approaches used the dynamical systems viewpoint to
allow more parallelization in the optimization process. A
recent exception is the method in (Günther et al., 2018). In
(Günther et al., 2018) the authors used the so-called parareal
method to parallelize across the time (layer) dimension of
neural networks. However, the parareal method is known
to be problematic for non-linear systems (Gander & Hairer,
2008) and the efficiency reported by the authors is lower
than our method and other methods such as synthetic and
delayed gradients.

Contributions. We exploit coarse and fine discretizations
of continuous systems to compute predictions for optimal
states/co-states of optimal control problems. The state/co-
state predictions allows us to develop a layer-wise (parallel-
in-time) optimization algorithm for RNNs (Section 3). We
exploit the structure of the neural network training problem
to show that the value function of the problem can be de-
composed (Lemma 2.1). We also discuss the relationship
between stochastic gradient descent, backpropagation and
the co-state (adjoint) variables in optimal control (Lemma
2.2). We establish appropriate conditions under which the
proposed algorithm will converge (Theorems 4.1 & 4.2).
We report encouraging numerical results in Section 5.

2. Optimal Control & Residual Neural
Networks

The focus of this paper is Residual Neural Networks (RNNs)
because they can achieve state-of-the-art performance in
many learning tasks and can be reformulated as continuous-
time optimal control problems. This reformulation offers
several benefits such as stable classifiers, memory efficient
algorithms and further insights into how and why they work
so well (see, e.g., (E, 2017; Li et al., 2017; Haber & Ruthotto,
2018; Chen et al., 2018)). In this section, we review the
dynamical systems viewpoint of RNN training. We review
the links between the co-state (dual) variables of optimal
control problems and the most widely used method to train
neural networks, namely stochastic gradient descent and
backpropagation (see Lemma 2.2). In Lemma 2.1 we make
a simple observation that enables the decomposition of the
optimal control problem across different initial conditions.
This observation greatly simplifies the proof for a random-
ized version of our algorithm.

For the origins, and advantages of the formulation below
we refer to (E, 2017; Haber & Ruthotto, 2018), where train-
ing with residual neural networks is reformulated as the
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following optimal control problem.

V0([X]) = min
U

m∑
i=1

Φi(X
i
T ) +

∫ T

0

R(Ut)dt

Ẋi
t = ft(X

i
t , Ut)

Xi
0 = xi i = 1, . . . ,m.

(1)

Where Φi : Rn → R is a data fidelity term, and R :
Rd → R is a regularizer. We note that the label for the
ith data-point has been subsumed in the definition of Φi.
The regularizer function could also be a function of the
state (X) and time t. Regularization is typically used to
prevent over-fitting and therefore applied to the parame-
ters (U ) of the network. Hence we assume that the reg-
ularizer is only a function of the control parameter U .
The notation [X] = [x1, . . . , xm]> ∈ Rmd is used to de-
note the initial conditions of the dynamics in (1). We use
[X]i ∈ Rd to denote the ith element in [X]. The func-
tion f : R+ × Rd × Ru → Rd describes the activation
function applied at time t. For example, for the parame-
ters U = [W, b], the activation function may be defined as
tanh(XW + b), where tanh is applied element wise. For
the usual activation, regularization and data fidelity terms
used in practice, the optimal control problem above is well
defined (see also (Bardi & Capuzzo-Dolcetta, 1997)).

The function V : Rmd → R defined in (1) is called the
value function of the problem. The value function, and its
derivatives, will play a crucial role in this paper, and below
we make a simple observation regarding the dimensionality
of the value function. Using the principle of optimality
(Bertsekas, 2017) we can rewrite the original model in (1)
as follows,

V0([X]) = min
u

∫ s

0

R(Ut)dt+

m∑
i=1

Vs([Xs]).

Ẋi
t = ft(X

i
t , Ut)

Xi
0 = xi i = 1, . . . ,m.

(2)

Where Vs([X]) is defined as follows,

Vs([X]) = min
u

m∑
i=1

Φ(Xi
T ) +

∫ T

s

R(Ut)dt

Ẋi
t = ft(X

i
t , Ut)

Xi
s = [X]i i = 1, . . . ,m.

(3)

We take advantage of the structure of the problem to show
that the value function can be written as a sum of identical
functions from Rd to R.

Lemma 2.1. Let Vs([X]) denote the optimal value function
of (3). Then for any 0 ≤ s ≤ T , there exists a function
Vs : Rd → R such that: Vs([X]) =

∑m
i=1 Vs(x

i).

The result above simplifies the problem dramatically. It
allows us to approximate themd-dimensional value function
with a sum of d-dimensional functions.

2.1. Discretization

To approximate the problem in (1) we use a discretization
scheme to obtain the following finite dimensional optimiza-
tion problem.

min
U
J (U) =

m∑
i=1

Φi(X
i
Tδ

) +

Tδ−1∑
j=0

Rδj(U(tj))

Xi(tj+1) = fδj (Xi(tj), U(tj)), 0 ≤ j ≤ Tδ − 1

Xi
0 = xi, i = 1, . . . ,m.

(4)

Where we used a discretization parameter δ, such that with
δ = T/Tδ we obtain the discrete-time optimal control prob-
lem in (4) with Tδ time-steps. We use the notation fδ to
denote an explicit discretization scheme of the dynamics
in (1). For example, if an explicit Euler scheme is used
then fδj (X,U) = X + δfj(X,U). When we use the simple
explicit Euler scheme, with δ = 1 the formulation above
reduces to the standard RNN architecture. The deficiencies
in terms of numerical stability of the explicit Euler scheme
are well known in the numerical analysis literature (Butcher,
2016). In (Haber & Ruthotto, 2018) the authors argue that
the use of the explicit Euler scheme for RNNs explains nu-
merical issues related to the training of NNs such as explod-
ing/vanishing gradients and classifier instability. To resolve
these numerical issues the authors in (Haber & Ruthotto,
2018) propose to use stable discretization schemes. We
follow the same line of reasoning, and show that a further
advantage of appropriately defined discretization schemes
is that they can be used to design convergent distributed al-
gorithms to solve (4). Before we describe our approach we
review serial-in-time methods and explain why it is difficult
to design efficient distributed algorithms for (4).

Multilevel Discretization. Since (1) is a continuous time
model we can approximate it using different levels of dis-
cretization. To keep the notation simple and compact we
assume that we want to solve (1) using a step-size of δ. This
gives rise to the model in (4), with Tδ time-steps/layers.
With our terminology the number of time-steps refers to the
number of layers in the NN. We use the terms time-steps and
layers interchangeably. We call the model with the a step-
size of δ the fine model. Later on we will take advantage of
a coarse discretization of (1), and we refer to the resulting
model as the coarse model. The time-step parameter of the
coarse model is denoted by ∆. We use T∆ to denote the
number of time-steps in the coarse model. The coarse model
has less time-steps than the fine model, and it is therefore
faster to optimize. As a practical example, suppose we are
interested in the solution of (1) using a fine model with 1024
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steps (layers). Suppose we also use a coarse model with 64
steps/layers (for example). A forward/backward pass of the
coarse model will roughly be 16 times faster. The use of
multiple levels of discretization is a well known technique
in the solution of optimal control problems, and has its ori-
gins in the multigrid literature(Briggs et al., 2000). From
the multigrid literature we will use the idea of interpolation
operators in order to transform a trajectory from the coarse
discretization grid to the fine grid (see (Briggs et al., 2000;
Haber & Ruthotto, 2018))

2.2. Serial-in-Time Optimization

The most popular optimization algorithm for (4) is batch
stochastic gradient descent(Curtis & Scheinberg, 2017; Bot-
tou et al., 2018). Stochastic first order methods compute
the gradient of the objective function in (4) with respect to
the parameters U using backpropagation. In optimal control
algorithms, the same gradient information is computed by
solving backwards the co-state equations associated with
the dynamics in (4). The connections between co-states,
adjoints, Lagrange multipliers and backpropagation are well
known (see e.g. (Baydin et al., 2018; LeCun et al., 1988)).
We adopt the language used in scientific computing, and
call the forward propagation the forward solve, and the
backward propagation the backward solve. The forward
solve is specified in Algorithm 1. This algorithm plays the
same role as forward propagation of conventional NN al-
gorithms. The difference is that we do not rely on explicit
Euler discretization but we use a discretization scheme with
a forward propagator that is stable and consistent with the
dynamics in (1). We use stable in the sense used in numeri-
cal analysis (see (Butcher, 2016)) and consistent in the sense
used in optimization (see (Polak, 1997)). The backwards
solve is specified in Algorithm 2. The purpose of the back-
ward solve is to generate the information needed to compute
the gradient of the objective function of (4) with respect to
the controls U . We use a stable and consistent scheme for
the backward solve too. After the forward and backward
equations are solved, the information generated is used in
some algorithmic mapping denoted by A. This mapping
generates a (hopefully) improved set of controls. A full
iteration of a serial (in time) stochastic first order algorithm
consists of a forward solve, a backward solve, followed
by an update for U . We state the standard serial-in-time
algorithm in Algorithm 3. In order to make our terminology
more concrete we show that for a specific choice of A, the
procedure above reduces to the standard stochastic gradient
method with backpropagation.

Lemma 2.2. Suppose that the algorithmic mapping in (5)
is defined as follows,

A(U,X, P ) = U − η
(
〈∇ufδt (X,U), P 〉+∇uR(u)

)
then Algorithm 3 generates the same iterations as batch

stochastic gradient descent with a learning rate of η.

3. A Parallel-in-Time Method
It is challenging to parallelize optimization algorithms for
the model in (4) because the backward solve cannot start
before the forward solve finishes. Moreover, it is not pos-
sible to parallelize the forward solve because Xt+δ cannot
be computed before Xt is computed. Similarly P (t + δ)
must be computed before P (t) in the backward solve. Thus
most algorithms only allow for data parallelism (e.g. across
batches or in the calculation of f ), but not across time/layers
(see Section 1.1 for some exceptions).

Algorithm 1 Forward(δ,Xs, t0, t1, {U(t)}t=t1t=t0)

t← t0, X(t) = Xs

while(t ≤ t1) do
X(t+ δ) = fδt (X(t), U(t)), t← t+ δ
return X(t), t0 ≤ t ≤ t1

Algorithm 2 Backward(δ, Pe, t0, t1, {U(t), X(t)}t=t1t=t0)

t← t1, P (t1) = Pe
while(t ≥ t0) do
P (t− δ) = −〈∇xfδt (X(t), U(t), P (t)〉, t← t− δ
return P (t), t0 ≤ t ≤ t1

Algorithm 3 Serial-in-time(δ, 0, Tδ, {U0(t)}t=Tδ−1
t=t0 )

Let Xk(0) be a random sample from [X].
Xk(t) =Forward(δ,Xk(0), 0, Tδ, U

k(t)), 0 ≤ t ≤ Tδ
P k(Tδ) = ∇xΦ(Xk(Tδ))
P k(t)=Backward(δ, P k(T ), 0, T, Uk(t)), 0 ≤ t ≤ Tδ
Update control for 0 ≤ t ≤ Tδ − 1

Uk+1(t) = A(Uk(t), Xk(t), P k(t+ δ)). (5)

Suppose (somehow) we had an approximately optimal tra-
jectory at some intermediate point X?(s) and the corre-
sponding co-state variable P ?(s). Suppose we also had two
processors, Processor A and B, then we could potentially
halve the cost of a full iteration of Algorithm 3. We achieve
this impressive reduction in time by using Processor A to
do a backward solve from t = s to t = 0 , followed by a
forward solve from t = 0 to t = s. In parallel, processor B
is able to do a forward solve from time t = s to time T , fol-
lowed by a backward solve from time t = T to time t = s.
Thus, with two processors we can (potentially) halve the
cost of a full iteration of any stochastic first-order method
for (4). In reality, the reduction in time due to the extra pro-
cessing power will not be halved (due to communication).
The difficult issue is how to compute the approximately op-
timal intermediate pointsX?(s) and P ?(s)? To address this
question we proceed using two phases: a prediction phase,
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followed by a correction phase. To be more precise, we
first construct a coarse discretization of (1) which we solve
approximately using Algorithm 3. We call this phase the
global prediction phase because it generates global informa-
tion regarding the optimal trajectory. The global prediction
phase generates useful information but it is not exact. To
correct the prediction we have a second phase we call the
local correction phase. The local correction is the time-
parallel phase where we solve discretized versions of (2) to
find better initial conditions for (3) in parallel. Below we
explain these two phases in turn.

3.1. Global Prediction Phase

In the global prediction phase we construct an approximate
solution of (1) using a coarse discretization scheme. Our
main assumption regarding the discretization scheme is that
it provides a consistent approximation in the sense of (Polak,
1997). We use a large step-size ∆ > δ, to approximate the
model in (1) with a finite dimensional optimization problem.
We use a standard algorithm (e.g. Algorithm 3) to perform
some iterations on the coarse model. We call this phase the
global prediction phase because we use the coarse model to
quickly generate global information about the solution of
the model in (1). In this context, the global information is
contained in the forward trajectory (good initial conditions
to initialize the local correction phase), and the backward
trajectory (sensitivity information regarding the initial con-
ditions at time s). We also obtain a good initial point for the
parameters U . The coarse model is only used to generate
predictions regarding the optimal state and co-states of the
control problem. The predictions are corrected in parallel
using the local correction phase described below.

3.2. Local Correction Phase

Using the information generated from the global prediction
phase we split the original model into two sub-systems. The
first subsystem is responsible for identifying the optimal
initial conditions for the second subsystem. The second sub-
system receives the initial conditions from the first subsys-
tem and is responsible for solving the classification problem.
The second subsystem also passes information back to the
first subsystem in the form of sensitivity information (from
the co-state variables).

The local correction phase is shown in Algorithm 4 for the
case when the original model is decomposed into two sub-
subsystems. The left column in Algorithm 4 describes the
steps to optimize the first subsystem, and the right column
describes the steps for the second subsystem. Note that
the two sub-systems are solved in parallel. This is why we
call the algorithm parallel-in-time. Our method computes
the optimal parameters for time t > s without waiting for
information from the past t ≤ s.

We first describe the work that Processor A performs (left
column) on the first sub-system i.e. the optimization of
(4) from time t = 0 to t = s using a time-step of δ. To
start a backward solve at iteration k from time s we need
Xk(s), P k(s) and Uk(s). In the first iteration of the local
correction phase (k = 0), we compute X0(s) and U0(s) by
simple interpolation from the coarse model. In subsequent
iterations Xk(s) and Uk(s) are also available to the local
correction phase of the first sub-system. This is because the
first subsystem has all the information required from time 0
to time s. Unfortunately, the co-state variable P k(s) is not
available at time s because to compute it we need to perform
a backward solve from time T to time s. Using coarse infor-
mation only is not sufficient to build a good approximation
for the co-state variables. Instead, we approximate P k(s)
from state/co-state observations from the prediction phase,
along with state/co-state observations collected from the sec-
ond sub-system. In the first iteration of the local correction
phase we only have the observations from the prediction
phase to approximate P 0(s) (information from the second
sub-system is not yet available). We use Ik to denote the
state/co-state pairs observed by the first sub-system at itera-
tion k of the local correction phase. The prediction phase,
after H iterations of the coarse model, produces the follow-
ing information I0 = {(Xi(s), P i(s)), i = 0, . . . ,H − 1}.
We use the state/co-state pairs observed so far to (approxi-
mately) solve the following regression problem,

min
A,B

L[I0] =
∑

(Xi(s),P i(s))∈I0

‖AXi(s)+B−Pi(Xi(s))‖2.

(6)
Using the solution of the linear regression problem above
we can approximate P (s) = P (X(s)) at any state X(s) as
P̂ (s) ≈ A?X(s)+B? (whereA?, B? are approximate solu-
tions to the regression problem above). After the backward
solve finishes, we update the controls, do a forward-solve
and pass the state Xk(s) to the second subsystem. We next
discuss how to solve the problem from time s to time T, and
how to update the information set I0.

In the first iteration of the local correction phase, Processor
B (right column) in Algorithm 4, receives the approximate
state X0(s), and controls {U0(t)}Tt=s from the global pre-
diction phase. Starting from X0(s) it performs a forward
solve, a backward solve and updates its controls. After
the backward solve finishes, Processor B passes sensitivity
information in the form of the co-state variables P 0

s to Pro-
cessor A. Processor A then sets I1 = I0 ∪ (X0(s), P0(s)).
The same steps are then repeated by both processors. We
use the notation L[Ik] when the regression problem in (6)
is solved with the information set Ik. With a slight abuse of
notation we write P̂ k(s) = L[Ik] to denote the approximate
co-state information P k obtained using the solution of the
regression problem in (6).
Remark 1 (More than two sub-systems). We described the
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algorithm using only two sub-systems. To use more than
two sub-systems we observe that the second sub-system is
a standard optimal control problem from time s to time T .
We can therefore use the same procedure we described in
this section to divide the second subsystem into two. We can
then continue to divide the system to as many sub-systems
as required.

Remark 2 (Mini-batches and asynchronous computation).
To simplify the notation we did not describe the algorithm
using mini-batches. In order to use mini-batches we just
change Algorithms 1 and 2 to use mini-batches. We then
change the notation so that Xk,i(t) denotes the state at
iteration k, batch i at time t (with similar notation for the
control and co-state variables). Finally, Algorithm 4 has
a synchronization step after each sub-system completes a
single iteration. This is how the algorithm was analyzed
and implemented and we leave the asynchronous version
for future work.

Algorithm 4 Parallel-in-Time Optimization
Global Prediction: Use Algorithm 3 to make m
iterations of (4) with step-size ∆. Initialize with
{U0

t , P
0
t , X

0
t ]}Tt=0 from global prediction phase.

Processor A Processor B
Backward solve:
P̂ ks = L[Ik]

Backward(δ, P̂ ks , 0, s, U
k)

Update:
Uk+1
t = A(Xk

t , P̂
k
t )

Forward solve:
Forward(δ,Xk

0 , 0, s, U
k
t )

Synchronization: Send Xk
s

to Processor B.

Forward solve:
Forward(δ,Xk

s , s, Tδ, U
k
t )

Backward solve:
P kTδ = ∇x(Xk

Tδ
)

Backward(P kTδ , Tδ, s, U
k)

Update:
Uk+1
t = A(Xk

t , P
k
t )

Synchronization: Send P ks
to Processor A.

4. Convergence Analysis
In this section we summarize the theoretical convergence
results for Algorithm 4. All proofs and technical lemmas
appear in the supplementary material. Algorithm 4 is quite
general because we do not specify the algorithmic mapping
in the update step, or the discretization scheme used to de-
rive (4). In order to keep the convergence analysis as close
to the numerical implementation as possible we use the al-
gorithmic mapping specified in Lemma 2.2. It is possible to
establish similar convergence results for other schemes too.
For example, because our method can decompose a large
network into smaller sub-networks, it might be possible to
use second-order methods. We leave such refinements of the
scheme to future work. Moreover, as discussed in Remark 2
the fact that the algorithm has a synchronization step simpli-
fies the analysis. This simplifying assumption allows us to
analyze the algorithm as if it was run on a single processor.

The starting point of our analysis is the result in Lemma 2.1.

It allows us to compute the optimal value function as the
sum of m d−dimensional functions as opposed to a single
md−dimensional function. This is an important insight,
because we know from the maximum principle (Fattorini,
1999) that P ?i (t) = −∇Vt(X?

i (t)) at the optimal solution
(where i denotes the ith initial condition in (1)). Since V
is a function from Rd to R, it follows that the adjoint is
function from Rd to Rd. In fact, in the proof of Lemma 2.2
we show that,

P k,δt = −∇xtΦ(Xk
T ).

The equation above explains why the co-state variables pro-
vide sensitivity information for the first sub-system. The
main additional assumption we need to prove the conver-
gence of Algorithm 4 (beyond the assumptions needed for
any stochastic first-order methods) is that there exists an
εp > 0 such that,

‖P̂ δ(t)− P δ(t)‖ ≤ εpη‖P̂ δ(t)‖. (7)

We note that, at least in principle, such an εp is guaranteed to
exist. The more interesting question is, of course, whether
this constant is small or not. The theoretical results below
assume an arbitrary εp. In practice, we found that this con-
stant is small. In Section 5 we conjecture that this constant is
small because we use data for several levels of discretization
to construct P̂ . As was mentioned in the introduction, the
regression step in the local correction phase has similarities
with the the so called synthetic gradient method proposed in
(Jaderberg et al., 2017). The conceptual differences between
synthetic gradients and the proposed method were detailed
in 1.1). However, the convergence analysis and assumptions
are different too. For example, in (Jaderberg et al., 2017)
the authors assume that ‖Sg −∇J‖ ≤ ε (where Sg is the,
so called, synthetic gradient). Our assumptions are weaker.
In addition, the convergence analysis in (Jaderberg et al.,
2017) is for gradient descent and not for stochastic gradient
descent. Our first convergence result is for the case where
the full gradient is used.

Theorem 4.1 (Reduction in objective function). Suppose
that, ηk ≤ 2

2εp+L . Then, J (Uk+1) ≤ J (Uk) and in par-
ticular,

J (Uk+1)− J (Uk) ≤ −
Tδ−1∑
j=0

(
θ1‖∂jfδk‖2‖P̂ kj+1‖2

+θ2‖∂jfδk‖‖P̂ kj+1‖‖∂jRδk‖+ θ3‖∂jRδk‖2
)
,

where the scalars θ1 ≤ θ2 ≤ θ3 are positive and depend
only on L (the Lipschitz constant of J ) and εp.

We note that if εp = 0, then Theorem 4.1 gives exactly the
same result as the gradient descent method for (4). Our next
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result deals with the case when the algorithm is run using
mini-batches.

Theorem 4.2. Suppose that the step-size in Algorithm 4
satisfies the following conditions,

∞∑
k=1

ηk =∞,
∞∑
k=1

η2
k <∞.

Then, limM→∞
1
HM

E
(∑M

k=1 ηk‖∇J(Uk)‖2
)

= 0, where

HM =
∑M
k=1 ηk.

We note that for the theorem above to hold some additional
restrictions on εp are required (see the on-line supplement
for additional discussion).

5. Numerical Experiments
In this section, we report preliminary numerical results for
Algorithm 4. This paper aims to establish a framework for
time-parallel training of neural networks, and not to report
on extensive numerical experiments. Still, it is essential
to show that the algorithm is promising. We implemented
the algorithm on a standard computer with a quad-core
processor and 8GB of RAM. We decomposed the system
into only two sub-systems. We believe that the performance
of our algorithm will improve with more than two sub-
systems, and when ported to systems with a large number of
cores. Below we report results from three datasets. The first
two datasets (co-centric ellipse, and swiss roll) are relatively
low dimensional. To save space, we refer to (Haber &
Ruthotto, 2018) for a description of these two datasets. The
third dataset is the well known MNIST dataset. For large-
scale problems, the cost of approximately solving a coarse
model becomes a less significant part of the overall cost.
Therefore, we believe that the efficiency of our method will
improve for large-scale problems. Indeed we see that for the
MNIST dataset our algorithm achieves good speed-ups even
for relatively shallow neural networks. But such extensive
numerical experiments are beyond the scope of the current
paper. The code is available from the authors’ GitHub page
(and in the on-line supplement during the review phase).

In Section 1.1 we mentioned several approaches for layer
(time) wise parallelization of neural networks. Because
the synthetic gradient method of (Jaderberg et al., 2017) is
closely related to Algorithm 4 we only compare against a
stable version of the synthetic gradient approach. We also
compare different variants of our method against the data-
parallel implementation of SGD in Pytorch 0.4.1. It will be
interesting to compare all the different approaches described
in Section 1.1, but this is not the aim of this paper. In (Huo
et al., 2018) the authors compared several layer-wise par-
allelization frameworks and concluded that their method,
when tested on ResNet architectures on the CIFAR datasets,

outperformed others and achieved speedups of 15% to 50%,
without significant loss of accuracy. Below we report simi-
lar results, but with higher parallel efficiency. In (Huo et al.,
2018) the authors compared their method against the syn-
thetic gradient method in (Jaderberg et al., 2017)and found
that their method significantly outperforms synthetic gradi-
ents. Their implementation of synthetic gradients was based
on network architectures that were shown to be unstable in
(Haber & Ruthotto, 2018). So in our view, more careful nu-
merical experiments are needed in order to decide the merits
of the different approaches. However, these are beyond the
scope of this paper.

Discretization schemes. We considered two discretization
schemes to derive the model in (4). The first one is based
on an explicit Euler scheme and the second on symplectic
integration using the Verlet method. We chose the explicit
Euler scheme because this scheme gives rise to the standard
ResNet architecture. We chose the Verlet scheme because
it was shown to perform well in previous works (Haber
& Ruthotto, 2018). We also tested our method with and
without the global prediction phase. When the global pre-
diction phase is used we refer to our method as the multi-
level parallel-in-time algorithm. When we do not use the
global prediction phase then we call our method the single-
level parallel-in-time method. The regression step in our
single-level, parallel-in-time method is similar to the decou-
pled neural interfaces method with synthetic gradients of
(Jaderberg et al., 2017). However, our single-level method
is implemented with a stable discretization scheme. It is
shown below that the discretization scheme makes a signif-
icant impact in the parallel efficiency and accuracy of the
method. The coarse model we used are exactly half the size
of the fine model (e.g. if the fine model has 64 layers (steps)
then the coarse model is constructed with 32 layers (steps)).

Accuracy of serial and parallel-time method. The first
observation from our results is that the the accuracy of our
method (especially with the Verlet discretization scheme) is
similar to the accuracy obtained with the data-parallel SGD
method. It is clear from Figures 5, 6 and 7 (in the supple-
ment) that the parallel-in-time method produces results with
similar accuracy as Stochastic Gradient Descent (SGD).

Speedup and parallel efficiency results. Figure 1 summa-
rizes the speed-up obtained from our method against the
data-parallel implementation of SGD in Pytorch. For our
parallel-in-time method we include the time needed to solve
the coarse (when used) and fine models in the speed-up
calculations. We report results for the explicit discretization
scheme without using the global prediction phase i.e. using
a single-level discretization, and in Figure 1 we refer to this
method as the single-level Euler method. We also report
results using the multilevel scheme (i.e. using the global
prediction phase) and the Verlet discretization scheme. In
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Figure 1. Speed-up for the Swiss-Roll dataset over SGD.

Figure 1 we refer to this method as the multi-level Verlet
method. We observed similar speed-ups for both the ellipse
and Swiss-Roll and so to save space we only report the re-
sults from the Swiss-Roll dataset in Figure 1 (see Figure 4 in
the on-line supplement for the ellipse dataset). From Figure
1 we see that for relatively small data-sets (e.g. the ellipse
and Swiss-Roll data-sets) there is a cut-off point (around 32
to 64 layers) after which our method is faster than the data
parallel implementation. Since we only use two processors,
we observe that, for deep networks, our method achieves an
efficiency of about 75%. The efficiency of our algorithm
is substantially better than the speed-up efficiency of 50%
reported in (Huo et al., 2018). Our results compare even
more favorably with speed-up efficiencies of 3-4% reported
in (Günther et al., 2018) for an alternative parallel-in-time
method.

In Figure 2 we summarize the results for the MNIST dataset.
For the MNIST dataset we see that our method is faster than
the SGD even for relatively shallow networks (4 layers).
From these results we see that our method achieves much
better speed-ups on MNIST than other speed-ups reported
in the literature. Moreover, the efficiency of over 75% for
the MNIST dataset suggest that the communication over-
heads of our method are small. These results validate our
claim that our method will have an advantage over existing
methods for larger models. The reason is that, for large
models, the time spent solving the coarse model is a small
proportion of the total solution time.

Increased stability due to the global prediction phase.
To test the impact of the global prediction phase using the
coarse model we report the mean-square errors from the
regression step in the backward solve of Algorithm 4. When
the global prediction step is not used our method is simi-
lar to the synthetic gradient method from (Jaderberg et al.,
2017). We see from Figure 3 that when the global prediction
phase is not used the mean-square error of the regression
step varies significantly in the first 20 iterations before con-
verging to a non-zero value. When the global prediction

Figure 2. Speed-up for the MNIST dataset over SGD.

phase is used, we can see from Figure 3 (left y-axis) that
the MSE is an order of magnitude lower and eventually
converges to zero. These results explain why our method is
so efficient. These results also provide empirical validation
for the assumption in (7) required to prove the convergence
of our method. The results in Figure 3 are for the Swiss-
Roll dataset with 512 layers using the Verlet discretization
scheme. Similar behavior was observed in the other models.

Figure 3. Mean Square Errors of regression step in Algorithm 4

6. Conclusions
We proposed a novel parallel-in-time distributed optimiza-
tion method for neural networks. The method exploits the
dynamical systems view of residual neural networks to par-
allelize the optimization process across time (layers). We
discussed how to take advantage of multilevel discretization
schemes in order to predict the optimal states and co-states
of the control model. We established the convergence of
our method. Our initial numerical results suggest that the
proposed method has the same accuracy as Stochastic Gra-
dient Descent, reduces computation time significantly and
achieves higher parallel efficiency than existing methods.
The method can be improved in several ways including an
asynchronous implementation, using more than two dis-
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cretization levels and decomposing the original network to
several components. More detailed numerical experiments
are needed to understand the behavior of the method for
large datasets, but the initial efficiency results are extremely
encouraging.
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7. Supplementary Material for: Predict Globally, Correct Locally: Parallel-in-Time Optimal
Control of Neural Networks

7.1. Notation

In this section we briefly define our notation. We use Xξ,k
δ (t) represent the state at time t, iteration k, batch ξ, with

discretization parameter δ. When it is clear from context we drop ξ and δ and write Xk
t instead. When it is relevant to

identify or sum over the different time-steps we use the notation

Xk
j = Xk(tj).

We use Xk to denote the vector form of Xk
j . We use the same conventions for the exact co-state variables (P kt ), the

approximate co-states (P̂ kt ) and the control parameters/weights (Ukt ). Below all norms are `2 norms.

Algorithm 4 has a synchronization step. This assumption implies that if the algorithmic mapping in Lemma 2.2 is used then
the control parameters U are updated as follows,

Uk+1 = Uk − ηkG(Uk) (8)

where,
G(Uk) = −〈∇xf(Xk, Uk), P̂ k〉+∇uR(Uk).

We note that if gradient descent is used to solve (4) then Algorithm 3 reduces to,

Uk+1 = Uk −∇uJ (Uk)

where J (U) is the objective function of (4), and the gradient∇uJ is calculated using backpropagation. Below we also use
the following short-hand notation,

∂jf
δ
k = ∇ujfδ(Xk

j , U
k
j )

∂jR
δ
k = ∇ujRδ(Ukj )

∂jJk = ∇ujJ (Uk)

We note that with the simplified notation above we have Gj(Uk) = −〈∂jfδk , P̂ kj+1〉+ ∂jR
δ
k.

When the algorithm is run with mini-batches, we use E[A] to denote the total expectation of the random variable A, and
E[A | Ik] is conditional on the information available up to and including iteration k.

7.2. Assumptions

In this section we outline our main assumptions.

1. The objective function (J ) in (4) has Lipschitz continuous gradient. We denote the Lipschitz constant with L.

2. The problems in (1) and (4) have a finite solution.

3. The discretization scheme used to obtain the (4) from (1) is stable (in the sense of (Butcher, 2016)) and consistent in
the sense of (Polak, 1997).

4. The error in the adjoint calculation satisfies the inequality,

‖P kj − P̂ kj ‖ ≤ εpηk‖P̂ kj ‖ (9)

7.3. Proofs for Section 2

Proof. (Of Lemma 2.1).
This result can easily be established by induction. At the terminal time s = T , we must have,

Vs([X]) =

m∑
i=1

Φ(xi).
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Therefore, by taking VT (x) , 1
mΦ(x) we establish that the Lemma is true for s = T . Suppose that the Lemma is true for

some 0 < t+ δt < T , we show that it is true for t also. Let u?(t) denote an optimal solution, then by assumption we have,

Vt([X]) =

∫ t+δt

t

R(u?s)ds+ Vt+δt([X])

=

∫ t+δt

t

R(u?s)ds+

m∑
i=1

Vt+δ(x
i).

Let Vt(x) , 1
m (
∫ t+δt
t

R(u?s)ds+
∑m
i=1 Vt+δ(x)), and the result follows.

Proof. (Of Lemma 2.2).
At time t = T = Tδ , it follows from the boundary condition enforced by Algorithm 2 that P kT = −∇XT Φ(Xk

T ). If we take
one step of the backward solve then for t = T − δ we obtain,

P kt = −〈∇xtfδ(Xk
t , U

k
t ), P kT 〉

= 〈∇xtfδ(Xk
t , U

k
t ),∇XT Φ(Xk

T )〉
= −∇xtΦ(fδ(Xk

t , U
k
t ))

= −∇xtΦ(Xk
T ).

Using the same argument recursively we conclude that,

P kt = −∇xtΦ(Xk
T ), 0 ≤ t ≤ T. (10)

Using the preceding equation we obtain,

∂jJk = ∇ujΦ(Xk
T ) +∇ujRδ(ukj )

= 〈∇uj (Xk
j+1),∇xj+1

Φ(Xk
T )〉+∇ujRδ(ukj )

= −〈∇ujfδ(Xk
j , U

k
j ), P kj+1〉+∇ujRδ(ukj ).

It follows that,
Uk+1
j = Ukj − η∂jJk = A(Ukj , X

k
j , P

k
j+1),

and we conclude that SGD with a learning rate of η produces the same iterations as Algorithm 3.

7.4. Proofs for Section 4

Proof. (Of Theorem 4.1) Because J has a Lipschitz continuous gradient it follows from (8),

J (Uk+1) ≤J(Uk) +

Tδ−1∑
j=0

(
−ηk〈∂jJk, Gj(Uk)〉+

η2
kL

2
‖Gj(Uk)‖2

)

=J (Uk) +

Tδ−1∑
j=0

(
−ηk〈∂jJk −Gj(Uk), Gj(U

k)〉+
η2
kL− 2ηk

2
‖Gj(Uk)‖2

)

=J (Uk) +

Tδ−1∑
j=0

(
ηk〈〈∂jfδk , P kj+1 − P̂ kj+1〉, Gj(Uk)〉+

η2
kL− 2ηk

2
‖Gj(Uk)‖2

)

≤J (Uk) +

Tδ−1∑
j=0

((
εpη

2
k +

η2
kL− 2ηk

2

)
‖∂jfδk‖2‖P̂ kj+1‖2 +

(
εpη

2
k + η2

kL− 2ηk

)
‖∂jfδk‖‖P̂ kj+1‖‖∂jRδk‖

+
η2
kL− 2ηk

2
‖∂jRδk‖2

)
Since ηk ≤ 2

2εp+L the result follows.
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Next we discuss the case when Algorithm 4 is run using mini-batches. In this case, the iteration in (8) is replaced with the
following,

Uk+1 = Uk − αkG(Uk, ξ)

where G(Uk, ξ) denotes a randomized version of G(Uk). The following assumption is standard regrading the sampling
process (see e.g. (Bottou et al., 2018)),

〈∇Jk(Uk),E[∇Jk(Uk, ξ) | Ik]〉 ≥ µ‖∇Jk(Uk)‖2. (11)

We now establish some technical lemmas that are needed for the proof of Theorem 4.2.

Lemma 7.1. Suppose that
E[‖∇ufδ(Xk, Uk, ξ)‖‖P̂ (ξ)‖ | Ik] ≤M1‖∇Jk(Uk)‖

Then,
〈∇Jk(Uk),E[G(Uk, ξ) | Ik]〉 ≥ (µ− εpM1)‖∇Jk(Uk)‖2

Proof. It follows from (11)

µ‖∇Jk(Uk)‖2 ≤ 〈∇Jk(Uk),E[−〈∇ufδ(Xk, Uk, ξ), P k(ξ)〉+∇uRδ(Uk) | Ik]〉

= 〈∇Jk(Uk),E[−〈∇ufδ(Xk, Uk, ξ), P k(ξ)− P̂ k(ξ)〉 − 〈∇ufδ(Xk, Uk, ξ), P̂ k(ξ)〉+∇uRδ(Uk) | Ik]〉
≤ 〈∇Jk(Uk),E[G(Uk, ξ) | Ik]〉+ εp‖∇Jk(Uk)‖E[‖∇ufδ(Xk, Uk, ξ)‖‖P̂ (ξ)‖ | Ik]

≤ 〈∇Jk(Uk),E[G(Uk, ξ) | Ik]〉+ εpM1‖∇Jk(Uk)‖2,

and by re-arranging the inequality above, the result follows.

Lemma 7.2. Suppose that

E[‖〈∇ufδ(Xk, Uk, ξ), P̂ k(ξ)〉‖2 + ‖∇uRδ(U, ξ)‖2 | Ik] ≤M2 +M3‖∇uJ (Uk)‖2 (12)

Then,
E[J (Uk+1) | Ik]− J (Uk) ≤ −ηk(µ− εpM1 − ηkM3L)‖∇Jk(Uk)‖2 + Lη2

kM2.

Proof.

E[J (Uk+1) | Ik]− J (Uk) ≤ −ηk〈∇J (Uk),E[G(Uk, ξ) | Ik]〉+
Lη2

k

2
E[‖G(Uk, ξ)‖2 | Ik] (13)

We can bound the first term using Lemma 7.1 We bound the second term as follows,

‖G(Uk, ξ)‖ = ‖ − 〈∇ufδ(Xk, Uk, ξ), P̂ k(ξ)〉+∇uRδ(Uk, ξ)‖

≤ ‖〈∇ufδ(Xk, Uk, ξ), P̂ k(ξ)〉‖+ ‖∇uRδ(Uk, ξ)‖

Taking squares on both sides, using the inequality (a+ b)2 ≤ 2(a2 + b2) and taking conditional expectations on both sides
we find,

E[‖G(Uk, ξ)‖2 | Ik] ≤ 2
(
E[‖〈∇ufδ(Xk, Uk, ξ), P̂ k(ξ)〉‖2 | Ik] + E[‖∇uRδ(Uk, ξ)‖2 | Ik]

)
≤ 2(M2 +M3‖∇uJ (Uk)‖2).

Using the bound above in (13), and Lemma 7.1 we obtain,

E[J (Uk+1)|Ik]− J (Uk) ≤ −ηk(µ− εpM1 − ηkM3L)‖∇Jk(Uk)‖2 + Lη2
kM2,

as claimed.
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Lemma 7.3. Suppose that Algorithm 4 is run with a fixed step-size η̄ such that,

0 < η̄ ≤ µ− εpM1

2M3L
, (14)

then after N iterations the following holds,

1

N

N∑
i=1

‖∇J (Uk)‖2 ≤ 2Lη̄M2

µ
+

2(J (UN )− J (U1))

η̄Nµ

Proof. Taking expectations on the bound obtained in Lemma 7.2 and using the law of total expectation we obtain,

E[J (Uk+1)]− E[J (Uk)] ≤ −η̄(µ− εpM1 − η̄kM3L)E[‖∇Jk(Uk)‖2] + Lη̄2
kM2

≤ − η̄µ
2
E[‖∇Jk(Uk)‖2] + Lη̄2M2.

Summing from k = 1 to iteration N we obtain,

J ? − J (U1) ≤ J(UM )− J(U1) ≤ − η̄µ
2

N∑
k=1

E[‖∇Jk(Uk)‖2] +NLη̄2M2.

Rearranging the inequality above we obtain the required result.

Proof. (Of Theorem 4.2) This result can be established by observing that the conditions imposed on the step-size imply that
ηk → 0. Therefore, for k sufficiently large the assumption on the step-size in Lemma 7.3 holds. The rest of the proof is the
same as the proof of Lemma 7.3.

7.5. Additional Figures for Section 5

Figure 4. Speed-up for the Ellipse dataset over a data-parallel implementation of SGD. Like the Swiss-Roll dataset the results suggest an
efficiency of 75% (for large networks) which is much greater than existing layer-parallel methods for training NNs.
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Figure 5. Accuracy for the Ellipse dataset when compared with a data-parallel implementation of Stochastic Gradient Descent (SGD).

Figure 6. Accuracy for the Swiss-Roll dataset when compared with a data-parallel implementation of Stochastic Gradient Descent (SGD).
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Figure 7. Accuracy for the MNIST dataset when compared with a data-parallel implementation of Stochastic Gradient Descent (SGD).


