
INFORMS Journal on Computing
Vol. 19, No. 2, Spring 2007, pp. 239–247
issn 1091-9856 �eissn 1526-5528 �07 �1902 �0239

informs ®

doi 10.1287/ijoc.1050.0163
©2007 INFORMS

Computational Assessment of Nested Benders and
Augmented Lagrangian Decomposition for

Mean-Variance Multistage Stochastic Problems
Panos Parpas, Berç Rustem

Department of Computing, Imperial College, London SW7 2AZ, United Kingdom
{pp500@doc.ic.ac.uk, br@doc.ic.ac.uk}

We consider decomposition approaches for the solution of multistage stochastic programs that appear in
financial applications. In particular, we discuss the performance of two algorithms that we test on the

mean-variance portfolio optimization problem. The first algorithm is based on a regularized version of Benders
decomposition, and we discuss its extension to the quadratic case. The second algorithm is an augmented
lagrangian method. Our results indicate that the algorithm based on regularized Benders decomposition is more
efficient, which is in line with similar studies performed in the linear setting.

Key words : stochastic programming; large-scale optimization; quadratic programming; mean-variance
optimization

History : Accepted by William J. Cook, Area Editor for Decision and Analysis of Algorithms; received June
2003; revised March 2004, June 2005, August 2005; accepted September 2005.

1. Introduction
We consider decomposition algorithms for multistage
stochastic programs with a convex quadratic cost
function. In particular we examine efficient solu-
tion algorithms for the mean-variance portfolio opti-
mization problem. Stochastic programming (SP) is
becoming an increasingly popular tool for modeling
decisions under uncertainty because of the flexible
way uncertain events can be modeled, and real-
world constraints can be imposed with relative ease.
SP also injects robustness to the optimization pro-
cess. Consider the following standard “deterministic”
quadratic program:

min
x

1
2x

′Hx+ c′x

s.t. Ax= b (1)

xl ≤ x≤ xu�

It is not always possible to know the exact values
of the problem data of (1) given by H , A, c, and b.
Instead, we may have some estimations in the form
of data gathered either empirically or known to be
approximated well by a probability distribution. The
SP framework allows us to solve problems where the
data of the problem are represented as functions of
the randomness, yielding results that are more robust
to deviations.
The power and flexibility of SP does, however,

come at a cost. Realistic models include many pos-
sible events distributed across several periods, and

the end result is a large-scale optimization problem
with hundreds of thousands of variables and con-
straints. Models of this scale cannot be handled by
general-purpose optimization algorithms, so special-
purpose algorithms attempt to take advantage of
the specific structure of SP models. We examine
two decomposition algorithms that had encouraging
results reported in linear SP; the first is based on the
regularized version of Benders decomposition devel-
oped by Ruszczynski (1986), and the second on an
augmented-lagrangian-based scheme developed by
Bertsekas and Tsitsiklis (1989).
Others (Blomvall and Lindberg 2002, Salinger and

Rockafellar 2003, Steinbach 1998) formulated multi-
stage SP as a problem in optimal control, where the
current stage variables depend on the parent node
variables, and used techniques from optimal control
theory to solve the resulting problem. Where inequal-
ity constraints were present in the model, Blomvall
and Lindberg (2002) used a logarithmic barrier func-
tion to incorporate them into the objective and solved
the resulting approximate problem. Another related
method is the approximation algorithm by Frauen-
dorfer (1996) where a sequence of scenario trees is
generated whose solution produces lower and upper
bounds on the solution of the true problem.
Our approach differs from the above formulations

in that we decompose the problem so that each node
is represented by a subproblem. We compensate for
the “loss” of information of the decomposition by
using cuts, in the case of Benders decomposition, or

239

Parpas and Rustem: Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition
240 INFORMS Journal on Computing 19(2), pp. 239–247, © 2007 INFORMS

a penalty term in the case of augmented lagrangian
decomposition. Similar studies between the two pro-
posed algorithms have been done for the linear case
by Vladimirou (1998) and Ruszczynski (1993); the
contribution of this paper is to study the algorithms
for quadratic problems.
In Section 2, we describe the problem in greater

detail. In Section 3 we discuss the two decomposition
algorithms. In Section 4, we detail the results from our
numerical experiments, and we conclude in Section 5.

2. Problem Statement
We consider a quadratic multistage SP. In the linear
case, SP was first proposed independently by Dantzig
(1955) and Beale (1955); for a more recent description
see Birge and Louveaux (1997) and Kall and Wallace
(1994). For two stages, the problem is

min
x

1
2x

′Hx+ c′x+�	x
 (2a)

s.t. Ax= b (2b)

xl ≤ x≤ xu� (2c)

We use ′ to denote the transpose of a vector or a
matrix. c and xu� l are known vectors in �n1 . Let A
and H be known matrices in �m1×n1 and �n1×n1 . These
quantities represent the state of the world that is
known. We assume that H is positive semidefinite. To
relate this information to the portfolio-optimization
problem, the decision vector x ∈ �n1 is the weight
representing the commitment of the investor to dif-
ferent assets; constraints (2b) and (2c) impose vari-
ous restrictions such as normalization of the weights,
upper and lower bounds on the decision variables,
etc. The first two terms in the objective function
(2a) model the goals of the decision maker that do
not depend on uncertain events. �	x
 represents the
expected value of the second-stage objective function:

�	x
= E��Q	x��	�

��

where

Q	x��	�

=min
y

1
2�y

′	�
H	�
y	�

− 	1−�
c′	�
y	�
 (3)

s.t. W	�
y	�
= h	�
− T 	�
x (4)

y	�
l ≤ y	�
≤ y	�
u� (5)

Let � be the set of all random events, and � ∈� be
the particular realization of an event so that when �
is known the random events are aggregated in the
vector �	�
= �y	�
�H	�
�W	�
�h	�
�T 	�
�yu� l	�
�,
and let � be the support of �. The uncertainty of the
second stage is represented by the random data H	�
,
W	�
, and T 	�
, which are matrices in �n2×n2 , �m2×n2 ,

and �m2×n1 respectively. The vectors c	�
, h	�
, and
yl�u	�
 are random vectors in �n2 , �m2 , and �n2 respec-
tively. We assume that the number of possible real-
izations of � is finite. Under this assumption, �	�

is taken to mean that for different �’s the data of
the problem change. The dependence of y on uncer-
tainty is depicted as y	�
 ∈ �n2 . The vector y	�
 is
still the decision variable but this notation is used to
stress the point that for different realizations of � we
must have a different y. In the objective function (3),
the quadratic term represents the risk of the invest-
ment measured by variance, while the linear term
represents the returns for particular realizations. The
scalar � ∈ �0�1� is used in (3) to describe the trade-off
between risk and return. Solving the problem for var-
ious �’s will generate points on the efficient frontier.
The constraints facilitate transactions, i.e, buy-

ing and selling assets (with transaction costs) and
re-balancing constraints; they obviously depend on
the previous stage. The decision variable y	�
 is
actually composed of three sub-vectors y	�
′ =
�w	�
 b	�
 s	�
�, where w, b, and s are weights, buy,
and sell variables, respectively. For ease of exposi-
tion they are aggregated into a single vector. A more
detailed description of the model is in Gulpinar et al.
(2003).
Deriving the multi-stage problem from the two-

stage formulation is just a matter of applying
the ideas described above recursively to attain the
required number of stages. In this context, stages can
be interpreted as time periods where the investor
has the opportunity to change the composition of the
portfolio.
For the multistage problem with Ts periods, the

first-stage decision remains the same but for t =
2� � � � � Ts we have

�t	xt−1
= E�t
�Qt	xt−1� �t	�

�� (6)

where

Qt	xt−1� �t	�

=min
y

� 1
2y

′
t	�
Ht	�
yt	�

−�	1−�
c′tyt	�
+�t+1	yt	�

s.t. Wt	�
yt	�
= ht	�
− Tt−1	�
xt−1

yt	�

l ≤ yt	�
≤ yt	�

u (7)

� =

1 if t = Ts

0 otherwise�

Note that � appears in the objective function of
(7) to enact our goal to maximize returns at the end
of the planning period; it is possible or even desir-
able to have different values for � in the intermediate
planning periods. For the last time period t = Ts , the
recourse function �Ts+1 is zero.
Our principal concern involves decomposition

algorithms for (7). For more insight into the properties

Parpas and Rustem: Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition
INFORMS Journal on Computing 19(2), pp. 239–247, © 2007 INFORMS 241

1

2 3

4 5 6 7

(a)

4

1

2

1

2

1

5

3

6

3

7

1
(b)

4

1

2

1

2

1

5

3

6

3

7

1
(c)

Figure 1 Different Views on Nonanticipativity

of stochastic quadratic problems the reader is referred
to Lau and Womersley (2001), and Louveaux (1978).
Before we delve into decomposition algorithms, we
introduce some terminology that will be used in the
next section.
The dynamic programming model (7) is usually re-

ferred to as nonanticipative. This property means that
decisions are based on the past and not the future.
There are two ways this concept can be represented,
namely compact and split-view formulations (see, e.g,
Rockafellar and Wets 1991).
The compact variable formulation can be mapped

directly onto a tree structure known as the scenario
tree; see Figure 1(a). The root of the tree represents
the state of the world that is deterministic. As we
move down the scenario tree, different events repre-
sent different realizations of �, each level of the tree
represents a different time period, and the path from
the root to a leaf node is known as a scenario. We
use � = 	t� k
 to denote the kth node in period t, a	�

the ancestor node, and d	�
 the descendant nodes.
Benders decomposition, to be introduced in the next
section, assumes such a structure and the result is a
decomposition of the large scale problem into several
subproblems, each representing a node in the tree.
In a split-variable formulation for each scenario,

from the set of possible scenarios, new decision vari-
ables are introduced so that the large-scale prob-
lem is decomposed into n subproblems, where n
is the number of scenarios. Conceptually, using this
approach, the nonanticipative constraints are com-
pletely relaxed; see Figure 1(b). To enforce these con-
straints, new constraints are introduced that “rebuild”
the links between subproblems, usually through some
penalty function (see Figure 1(c)).

3. Decomposition Algorithms
The importance of decomposition algorithms in SP
was recognized early on, as results in the theory

of stochastic programs are closely linked with their
solution algorithms. The two algorithms described in
this section represent two very promising approaches
in decomposition of SPs. Thus, a study of the two
algorithms is necessary to gain insight about which
method is more powerful for financial modeling.
Decomposition algorithms are not, however, the only
approach to tackle the state explosion from which SPs
suffer; approximation algorithms and stochastic meth-
ods are just two examples of other methods where
research is very active (Birge 1997). In this study, we
are concerned only with decomposition.

3.1. Nested Benders Decomposition (NBD)
Benders decomposition was first proposed in Ben-
ders (1962), and it has been applied to SP by Slyke
and Wets (1969); it is usually referred to as the
L-shaped method due to the structure of the constraint
matrix. The extension to the nonlinear convex case
has been done by Geoffrion (1972), and the extension
to the general convex SP appears in Birge and Rosa
(1996). The algorithm has also been widely studied
for multistage problems in a parallel environment by
Birge et al. (1996), and more recent studies appear in
Nielsen and Zenios (1997). Louveaux (1978) has also
studied the algorithm for the quadratic case.
It can easily be seen that (2) is equivalent to

min
x�#

1
2x

′Hx+ c′x+ e′#

s.t. Ax= b

# ≤ p�Q	x��	�

 (8)

xl ≤ x≤ xu�

where e is a vector of ones. The dimension of the
latter vector is equal to the number of nodes in the
next period. The expression p�Q	x��	�

 represents
the value of the next stage decision if event � occurs
(with probability p�). The dimensions of the rest of the
data are the same as in (2). Even though it is possible
to aggregate the # vector to a single variable, com-
putational studies (Birge 1997, Birge et al. 1996) have
shown that the reduction of variables did not enhance
performance, possibly due to loss of information.
To represent the recourse function in (8), we con-

struct an approximation using outer linearizations.
This is achieved by computing cuts (cutting planes).
There are two types of cuts: optimality and feasibil-
ity. Instead of solving the large-scale problem (8) we
solve the relaxed version

min
x

1
2x

′Hx+ c′x+ e′#

s.t. Ax= b

Dx≥ d (9a)

≥Gx+ g (9b)

xl ≤ x≤ xu�

Parpas and Rustem: Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition
242 INFORMS Journal on Computing 19(2), pp. 239–247, © 2007 INFORMS

where (9a) and (9b) represent feasibility and opti-
mality cuts, respectively. The aim of these constraints
is to approximate the feasible region of (8). Their
construction is detailed in the following two propo-
sitions. Feasibility cuts are identical to the linear case
and optimality cuts follow from the general convex
case; they are stated here to clarify their use in the
algorithm.

Proposition 1. The constraints (9a) are supporting
hyperplanes to the feasible region of the original objective
function Q	x
.

Proof. Assuming that t = T and for a fixed ��, the
�th problem in (7) takes the form

Q	x
=min
y

�

2
y′Hy− 	1−�
c′y

s.t. Wy = h− Txa	�
 (10)

yl ≤ y ≤ yu�

Assume that this problem is infeasible due to the
vector xa	�
 generated in a subproblem of a previous
stage. Consider

P	y�xa	�

=min
y

e′y+ + e′y−

s.t. Wy+ y+ − y− = h− Txa	�
 (11)

yl ≤ y ≤ yu (12)

y+�− ≥ 0�
Then since the original problem was infeasible due

to xa	�
 we must have P	·�xa	�

 > 0. Let + be the
Lagrange multiplier of the constraint in (11). By dual-
ity, we must also have +′	h− Txa	�

 ≤ 0. Set D = +′T
and d = +′h to obtain (9a), a supporting hyperplane
to Q	x
. To apply this result when t = T just note that
the same procedure is recursively applied by taking
under consideration the additional constraints from
cuts of other subproblems. �

Proposition 2. The constraints (9b) are supporting
hyperplanes to the original objective function Q	x
.

Proof. Again, we start with the problem in (10).
Let xk be the solution vector of a subproblem in the
previous stage. By the gradient inequality we must
have (� is dropped since it is clear from context)

Q	x
≥Q	xk
+,Q	xk
	x− xk

Q	xk
=
�

2
y′Hy− 	1−�
c′y++′	Wy−h+ Txk

,Q	xk
= +′T �

Thus Q	x
 ≥ +′Tx + 	a/2
y′Hy − 	1 − �
c′y + +′ ·
	Wy− h
� Set # =Q	x
, G= +′T , and g = 	�/2
y′Hy−
	1−�
c′y++	Wy−h
 to obtain (9b). Since we require

a lower support for the expected value, we then mul-
tiply G and g by the probability of � taking the par-
ticular realization of �� for two-stage problems and
the conditional probability for multistage problems.
The application of optimality cuts when t = T is again
developed recursively just by taking into account the
additional variables and constraints. �

The algorithm proceeds by solving the relaxed
problem (9) to obtain a solution vector, known as the
proposal vector. The latter is then used to solve the sub-
problems in (10). If a subproblem is feasible then an
optimality cut is appended to the constraint set of the
ancestor problem (also called the master problem). Oth-
erwise, only a feasibility cut is appended.
In the linear case, there are some well known draw-

backs to the algorithmic framework developed above
(Ruszczynski 1986, Birge 1997). We expect issues sim-
ilar to the following to manifest themselves in the
quadratic case:
• The algorithm tends to be inefficient in early it-

erations due to the poor description of the original
objective function provided by the cuts. Moreover, if
a good warm-start is used, the algorithm may devi-
ate significantly from this point, so any efficiency
achieved by a good starting point is lost.
• The number of cuts for master problems may

increase substantially, adding considerable computa-
tional burden to their solution.
For these reasons Ruszczynski (1986) proposed

a regularized version of the algorithm; see also
Ruszczynski (1993, 1995) for the multistage version.
Ruszczynski’s results, as well as a study performed by
Vladimirou (1998), indicate that the regularized ver-
sion outperforms the original algorithm.
The basic idea is to add a quadratic term .�x− �x�22

in the objective function, where �x is chosen as the
“best” current point, in a way to be made precise, and
. is a penalty parameter. For a high value of . the
algorithm is penalized from deviating from the cur-
rent point. In Ruszczynski (1986), the convergence of
the algorithm for . = 1

2 was established for the con-
vex case. The regularizing term stabilizes the behav-
ior of the algorithm between iterations, enables valid
deletion schemes of the cuts, and avoids degenerate
iterations that would otherwise be possible.
The original problem is now decomposed into

three types of subproblems. The first type is for the
root node. The following problem is solved at each
iteration:

min
x�#

1
2
�x′Hx− 	1−�
c′x+ e′#+ .

2
�x− �x�22

s.t. Ax= b

Gx≥ #+ g

Dx≥ d

xl ≤ x≤ xu�

Parpas and Rustem: Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition
INFORMS Journal on Computing 19(2), pp. 239–247, © 2007 INFORMS 243

The second type is for nonterminal nodes. The fol-
lowing subproblem needs to be considered:

min
y��#�

a

2
y′
�H�y� − 	1−�
c′�y� + e′#� +

.�

2
�y� − ŷ��22

s.t. Wy� = h� − Ta	�
xa	�

G�y� ≥ #� + g� (13)

D�y� ≥ d�

yl
� ≤ y� ≤ yu

� �

The third type is for terminal nodes. This type of
subproblem is identical to (13) without, of course, the
cuts in the constraint set and the regularizing term in
the objective function.
The way cuts are recursively defined and the way

subproblems are nested in each other has led this to
be referred to as nested Benders decomposition (NBD).
The algorithm can now be stated as follows:

Step 1. Set the iteration counter i= 0 and t = k= 0,
and let �x be a feasible point.

Step 2. Construct and solve �	t� k
 to find the solu-
tion vector xi

� .
2.1. If the problem is infeasible and t = 0 then

STOP: the problem is infeasible.
2.2. If the problem is infeasible and t > 0, gener-

ate an optimality cut (9a) and append it to the con-
straint set of a	�
.

2.3. If the problem was optimal and t > 0, gener-
ate an optimality cut (9b) and append it to the con-
straint set of a	�
.

Step 3. Compute

�F 	xi
�
= 1

2x
′Hx+ c′x+ ∑

j=d	�

#j

F 	�xi
�
= 1

2x
′Hx+ c′x+ ∑

j=d	�

Qj	x
�

If �F = F and t = k= 0 then STOP: �x is optimal;
Else go to Step 4
Step 4. Update the regularizing term:
4.1. If a subproblem returned a feasibility cut

then �xi+1
� = �xi

� .
4.2. If F 	xi

�
 > F 	�xi
�
 or F 	x

i
�
 > 2F 	�xi

�
+ 	1− 2
 �F ,
then set �xi+1

� = �xi
� , and increase ..

4.3. If F 	xi
�
 < F 	�xi

�
 or F 	x
i
�
 < 2F 	�xi

�
+ 	1− 2
 �F ,
then set �xi+1

� = xi
� and decrease ..

4.4. If F 	xi
�
 = �F , then set �xi+1

� = xi
� , and

decrease ..
Step 5. Set i = i + 1, find the next subproblem to

solve (see below), and go to Step 2.
There are a few points worth noting about the algo-

rithm. These are (i) the updating scheme for the reg-
ularizing term in Step 4, and (ii) the selection of the
next subproblem to solve in Step 5.
The updating scheme for the penalty parame-

ter is similar to the one deployed in other studies

(Vladimirou 1998, Ruszczynski 1986). Our numerical
experiments indicate that this scheme performs well
as long as the penalty parameter is never allowed to
exceed a certain threshold.
We give some motivation behind the selection of

the proximal point (see also Ruszczynski 1986). In
Step 4.1, we observe that a subproblem in the next
period returned a feasibility cut, so one can assume
that the regularizing point �xi is “better” than the new
point xi. The reason for this is that the xi caused
infeasibility while the regularizing point �xi is always
chosen to be feasible. Moreover, xi will also be infeasi-
ble in the next master iteration. Indeed, suppose that
the �th subproblem is infeasible due to xi. The opti-
mal objective-function value of the Phase-I problem
given by

G� =min4y+ + y− �Wy+ y+ − y− = h− Txi5 (14)

must be strictly positive, i.e, G� > 0. Let + be the sim-
plex multiplier of the feasibility problem in (14). Then,
by duality, we must have +T 	h− Txi
=G� > 0. From
the proof of Proposition 1 we have that in the next
iteration the constraint +T 	h−Tx
≤ 0 will be added to
the master problem. Consequently, xi will not satisfy
the feasibility constraint above.
A similar situation arises for Step 4.2. Intuitively,

since the newly generated point is not “better” (in a
descent sense) than the regularizing point, it will be
inappropriate to update the regularizing point. More-
over, xi will again be infeasible in the next iteration.
Similarly, for Step 4.2 to hold, the approximation #
of the objective function Q	x
 must, for at least one
subproblem (say, �), satisfy Q	xi
 > #� , assuming that
2 = 0. A similar argument can be used for 2 = 1, and
since the problem is convex, it is also true for 2 ∈
�0�1�.
Let 	y�+
 be fixed as the optimal KKT pair asso-

ciated with the �th problem, given by (10). By com-
plementary slackness, we have 	�/2
y′Hy − 	1− �
 ·
c′y + +′	Wy − h+ Txi
 = Q	xi
 (where, for clarity, we
dropped the box constraints). The optimality cut for
this subproblem is defined as # ≥Q	xi+1
 (see Propo-
sition 2). We already have that at xi, Q	xi
 > # (which
is the reason for introducing the cut). So xi will be
infeasible in the next iteration. The same argument
can be used for Step 4.3, where the opposite course of
action is taken.
In Step 4.4, we note that the approximation and

the true objective function are identical. This implies
that no new optimality cuts can be generated around
the point �xi

� . The description around this point is
complete, and consequently the penalty parameter .
is reduced in order to move away from the current
point, and avoid cycling.
The next point that needs clarification is Step 5,

where the next problem to be solved is selected. For

Parpas and Rustem: Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition
244 INFORMS Journal on Computing 19(2), pp. 239–247, © 2007 INFORMS

this step we used the Wittrock (1983) fast-forward-
fast-back (FFFB) scheme. Birge et al. (1996) compared
this scheme with alternatives such as forward-first
(FF) and back-first (BF), and FFFB was generally best;
this was confirmed by Gassmann (1990). In the FF
scheme the idea is to go back to a problem in stage
t − 1 only if all the nodes from t to T are optimal.
In the BF scheme the transition to the previous time
period is always made unless no new cuts exist for
that stage. In the FFFB scheme the same direction is
maintained as long as possible.

3.2. Augmented Lagrangian Decomposition (ALD)
An alternative algorithm to Benders decomposition
described in the previous section is based on the
augmented lagrangian and the method of multipliers
(Bertsekas 1999). The fundamental difference between
NBD and ALD is the way the two algorithms attack
nonanticipativity constraints. NBD handles these con-
straints by having a master problem generating pro-
posals to the subproblems further down the event
tree; proposal vectors are affected by “future” nodes
by feasibility and optimality cuts. In ALD a differ-
ent approach is taken: Nonanticipativity constraints
are relaxed by expressing the large-scale problem
in terms of smaller subproblems that are discour-
aged from violating the original constraints. The algo-
rithm we use was developed by Bertsekas and Tsit-
siklis (1989), so here we only sketch the main idea.
ALD was developed and applied to the stochastic
quadratic programming setting by Settergren (2001)
with encouraging results. Similar algorithms to ALD
have been developed for linear stochastic programs
(Mulvey and Ruszczynski 1992, 1995).
The expectation in (6) for a given time period can

also be written as

min
y

m∑
i=1

pi

(
�

2
y′
iHiyi − 	1−�
c′iyi

)

s.t. Wjyi = hj − Tjxa	i
 j = 1� � � � � r (15)

yl
i ≤ yi ≤ yu

i �

The problem in (15) is to be interpreted as follows:
At the current time period there are m scenarios, each
having different realizations for H ,W , c, etc. There are
r linking constraints (15) that are linked by the vec-
tor xa	i
. Bertsekas and Tsitsiklis (1989) decompose this
problem by introducing a new variable z as follows

min
y�z

m∑
i=1

pi

(
�

2
y′
iHiyi − 	1−�
c′iyi

)

s.t. Wjiyi = zij j = 1� � � � � r8 i ∈ I	j

zij = hj − Tjxa	i
 j = 1� � � � � r8 i ∈ I	j
 (16)

yl
i ≤ yi ≤ yu

i �

where I	j
 contains the indices of the subproblems
that the jth constraint “crosses,” i.e., I	j
= 4i �wji = 05.

“Crosses” means that a constraint contains data from
more than one subproblem. It is obvious that (15)
and (16) are exactly the same problem, but the struc-
ture of (16) facilitates a decomposition algorithm via
the relaxation of the constraints of (16). Bertsekas
and Tsitsiklis (1989) use the method of multipliers for
the general problem min4f 	x
 � Ax = b5. Let Lc	x�+

denote the associated augmented lagrangian defined
by Lc	x�+
= f 	x
++′	Ax−b
+ 	c/2
�Ax−b�22, where
+ is the vector of multipliers. The general algorith-
mic framework of the method of multipliers can be
described as follows:

Step 1. Initialization: Set the iteration counter k= 0,
and set c	0
 > 0. Set x	0
, and +	0
 as the starting point
for the decision variables, and lagrange multipliers,
respectively.

Step 2. Compute the next point

x	k+ 1
= argminLc	x�+	k

�

Step 3. Update the Lagrange multiplier vector

+	k+ 1
= +	k
+ c	k
	Ax	k+ 1
− b
.

Step 4. Update the penalty parameter c	k
, and set
k= k+1. If some convergence criterion is not satisfied
go to Step 2.
Applying this general algorithmic framework to

(16), the problem is decomposed into m sub-
problems and the nonanticipativity constraints are
enforced through the penalty term in the augmented
lagrangian.
The computation for the solution of (16) involves

keeping z fixed in order to compute the next incum-
bent for y, and then keeping y fixed in order to
compute the next incumbent for z. Thus, at the kth
iteration the following subproblems are solved:

yi	k+ 1
= argmin
�

{
pi

(
�

2
� ′
iHi�i − 	1−�
c′i�i

)

+ ∑
4j � i∈I	j
5

(
+′
ji	k
Wji�i +

c	k

2
	Wji�i − zji

2

)}

∀ i= 1� � � � �n

zji	k+ 1
= argmin
<ji

{
− ∑

i∈I	j

+′
ji	k
<ji +

c	k

2

· ∑
i∈I	j

	Wji�i − <ji

2

}
∀ j = 1� � � � � r

s.t. <ji = hj − Tjxa	i
 i ∈ I	j
�

followed by an update of the lagrange-multiplier vec-
tor +ji	k + 1
 = +ji	k
 + c	k
	Wjiyi	k + 1
 − zji	k + 1

�
From a computational point of view the above iter-
ative framework is inefficient because of the alter-
nate minimizations required, making this algorithm

Parpas and Rustem: Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition
INFORMS Journal on Computing 19(2), pp. 239–247, © 2007 INFORMS 245

unsuitable for a parallel environment. In our imple-
mentation we used the more efficient iteration pro-
posed in Bertsekas and Tsitsiklis (1989):

yi	k+ 1
 = argmin
�

{
pi

(
�

2
� ′
iHi�i − 	1−�
c′i�i

)

+ ∑
4j � i∈I	j
5

(
+′
j 	k
Wji�i +

c	k

2

· 	Wji	�i − yi	k

+wj

2

)}
� (17)

where wj = 	1/mj
	Wjyi − hj + Tjxa	i

, +j	k + 1
 =
+j	k
 + 	c	k
/mj
	Wjyi − hj + Tjxa	i

� and mj denotes
the cardinality of I	j
. The derivation of this iteration
is discussed in Bertsekas and Tsitsiklis (1989, p. 249).
The expression in (17) forms the main iteration of the
ALD algorithm. In order to have a complete descrip-
tion of the algorithm we need to specify how one can
perform the updates of the penalty parameter c	k

and how we tested for convergence.
The obvious convergence criteria for ALD are a test

for feasibility and small changes in the objective func-
tion. However, it is possible, due to a poor selection
of updates for c	k
, to reach a suboptimal solution.
For this reason, it is vital to check the KKT conditions
of the problem in addition to any other stopping cri-
teria. If the KKT conditions are not satisfied while the
change in the objective function is small (10−6 in our
implementation), the update strategy for the penalty
parameter appears to have been inappropriate. We
performed various experiments with different update
strategies for this penalty parameter and found that
the strategy that works best on most problems is to
start with a small value (0.001) and increase it at every
iteration by another small factor (1.05); being more
aggressive with the update of this parameter caused
the algorithm to terminate prematurely. Note that an
arbitrary starting point can be used to start the algo-
rithm. If a feasible solution or the solution from a
previous run is available it may be beneficial to start
with a higher penalty term.

4. Numerical Experiments
The algorithms were implemented in C++ and
integrated with state-of-the-art solvers. The BPMPD
solver (Meszaros 1999), a primal-dual interior point
method, was used to solve the LP/QP subproblems
that arise in the decomposition. NBD is also inte-
grated with the IBM Corporation (1991) OSL library
for solution of the phase-I problem in computation of
the feasibility cuts.
We tested the algorithms on the problems given

in Table 1. Problems prefixed with “wat” are from
the Watson family of problems (Finance Research
Group 2000). These problems forecast, to a horizon
of ten years, asset classes, liabilities, and riskless
assets (bank deposits and borrowing). In providing

Table 1 Problem Data

Problem Scen. Stages Col. Rows

wat16C 16 10 1�443 3�552
wat32C 32 10 2�483 6�112
wat64C 64 10 4�147 10�208
wat128C 128 10 6�643 16�352
wat256C 256 10 9�971 24�544
wat512C 512 10 13�299 32�736
wat768C 768 10 19�942 49�088
wat1024C 1�024 10 26�855 65�440
wat1152C 1�152 10 29�887 73�568
wat1536C 1�536 10 39�847 98�080
wat1920C 1�920 10 49�803 122�592
wat2304C 2�304 10 59�761 147�104
wat2688C 2�688 10 69�719 171�616
sim6250 6�250 6 589�806 156�306
sim10000 10�000 7 753�571 1�995�721

the solvers with the data, the same scenario tree struc-
ture was kept, and data that were not used in the
model were discarded. The last two problems, pre-
fixed with “sim,” were generated using a simulation
algorithm (Gulpinar et al. 2004). The latter algorithm
takes as input a tree data structure. The basic compo-
nent of this structure, the tree node, is constructed as
the centroid of a cluster of scenarios. Each iteration
consists of generating a random sequence, followed
by the computation of the centroids. The final scenario
tree consists of the centroid of each node.
The chosen test set has no specific structure, (e.g.,

sparsity pattern) and we expect this sample to be rep-
resentative of the class of quadratic multistage SPs.
All problems were solved on a Linux machine with
an Intel Xeon 2.6 GHz CPU and 3 GB of RAM.
The solution times for the problems are given

in Table 2. Column 1 is for the “original” Benders
decomposition, i.e., the same as NBD but without the
additional quadratic term. For brevity, we refer to this
version of the algorithm as ONBD. The number of
iterations for each algorithm are in parentheses. For

Table 2 CPU-Time (secs), (#iter)

Problem ONBD NBD ALD

wat16C 2.87 (11) 2.01 (11) 50.43 (56)
wat32C 4.96 (11) 3.48 (12) 97.89 (62)
wat64C 8.34 (12) 7.82 (12) 151.34 (57)
wat128C 15.53 (12) 10.38 (12) 263.43 (65)
wat256C 23.34 (12) 15.86 (12) 396.96 (68)
wat512C 30.92 (14) 21.01 (13) 76.23 (52)
wat768C 58.08 (12) 40.82 (12) 456.82 (72)
wat1024C 71.23 (13) 51.43 (14) 155.86 (54)
wat1152C 68.98 (12) 48.23 (13) 179.17 (61)
wat1536C 94.25 (13) 63.77 (14) 245.01 (71)
wat1920C 131.54 (14) 89.07 (13) 265.91 (82)
wat2304C 179.96 (13) 117.7 (11) 344.35 (77)
wat2688C 182.27 (14) 125.49 (15) 472.77 (84)
sim6250 1,028.93 (22) 824.99 (19) –
sim10000 1,338.06 (21) 951.37 (20) –

Parpas and Rustem: Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition
246 INFORMS Journal on Computing 19(2), pp. 239–247, © 2007 INFORMS

Benders decomposition, we counted each visit to the
root node as one iteration, while in ALD an itera-
tion occurs every time the decision vector is updated.
It is therefore difficult to draw conclusions from the
number of iterations. The “−” entry in Table 2 means
that the particular problem could not be solved to
tolerance. For the solution of the subproblems with
BPMPD, we used the same relative duality gap tol-
erance, 	�f 	xk+1
 − f 	xk
�2
/	�f 	xk
�2
 ≤ 10−7, as the
convergence criterion. We made extensive use of
the warm-start facilities of BPMPD and restarted the
subproblems at each iteration from the solution of
the previous iteration. This strategy worked well. An
attractive alternative would be to use the solution
vector from peer nodes, allowing warm-starting of
subproblems with the newest information available;
but this strategy would be expensive to generalize
in a parallel environment. Whenever an increase in
the penalty parameter of NBD (as detailed in Step 4)
was required we multiplied . by 2. When a decrease
was required we multiplied the . parameter by 0�8.
During the numerical experiments we found that, if
this penalty was allowed to exceed certain thresh-
olds, the algorithm may terminate early. For this rea-
son, we set an upper bound of 10 for this parameter.
From Figure 2, it is clear that the regularized ver-
sion of Benders decomposition is the most efficient of
the algorithms we considered. This result is in line
with similar studies performed in the linear setting.
One possible explanation is that the NBD algorithm
takes advantage of the constraint structure of multi-
stage stochastic programming problems more effec-
tively. Note that the ALD algorithm can be applied to
separable convex problems with a more general con-
straint structure, while NBD will need to be modified
to be applicable to other types of separable prob-
lems. SP problems are one of the most frequently
occurring class of large-scale problems, so it is impor-
tant to know whether cutting-plane-type algorithms

0

50

100

150

200

250

300

350

400

450

500

0 500 1,000 1,500 2,000 2,500 3,000

C
PU

-t
im

e

Scenarios

ONBD
NBD
ALD

Figure 2 Solution Times vs. Number of Scenarios

or lagrangian-based algorithms take advantage of this
structure more effectively. Based on the results of
our experiments, it seems that the NBD algorithm is
substantially better. Furthermore, we found that the
penalty parameter often caused notable changes to
the convergence times of both NBD and ALD. Find-
ing an update scheme that works for all problems is
a difficult task. In ALD, the penalty parameter has
two goals. One is forcing feasibility, and the other is
keeping iterations close to each other. Thus, a “sub-
optimal” penalty update scheme may be more dam-
aging than in NBD, which may give some insight to
the difference in performance of the two algorithms.
The second experiment involved computation of

the efficient frontier, i.e., first set � in (7) to zero
to maximize the expected returns and then succes-
sively increase � until � = 1, where the variance of
the portfolio is minimized. The purpose of this exper-
iment was to test whether the algorithms can take
advantage of a potentially useful starting point. We
compared the speed of computation of the efficient
frontier when (i) starting with � = 1 and then grad-
ually reducing this parameter, with (ii) starting with
� = 0 and then gradually increasing this parameter.
We found that starting from the minimization of vari-
ance (�= 1) the efficient frontier was computed faster
with both versions of Benders decomposition. If we
start by optimizing the linear part (�= 0) the compu-
tation of the efficient frontier took more time. This can
be attributed to the fact that, when minimizing the
linear part of the problem, useful information about
the objective function is not computed until the sub-
problems including the leaf nodes are solved. Con-
sequently, the first iterations are inefficient. As for
the speedup between successive computations of the
points on the efficient frontier, the regularized version
outperformed the original algorithm but the speed-
up was disappointing. One possible explanation is
that the updating scheme of the penalty term did not
allow dramatic speed-ups. Research on how to update
this parameter is far from over.
As mentioned earlier, the algorithm at initial iter-

ations may generate points that do not induce cuts
that sufficiently describe the recourse function. Since
finding the exact proposal vector may be counter-
productive, Gondzio and Sarkissian (1996) propose
solving master problems using an infeasible primal-
dual interior-point method with reduced tolerances.
Instead of solving master problems to optimality, we
solve them until an “acceptable” solution is found.
We experimented with this approach by starting with
a “large” duality gap tolerance of 10−1 and then
decreasing this parameter by a factor of 10 at every
master iteration. The results where very similar to
those of NBD, indicating promise for this approach.

Parpas and Rustem: Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition
INFORMS Journal on Computing 19(2), pp. 239–247, © 2007 INFORMS 247

We also observed that more inactive cuts were gen-
erated by the algorithm when using suboptimal pro-
posal vectors, and since these cuts are dropped, this
could help explain our lack of computational gain.
More research is needed to decide how the tolerances
of the algorithm should be managed.

5. Conclusions
We have studied performance of two decomposition
algorithms to solve large-scale optimization problems
that arise in financial applications. The regularized
decomposition method, known to perform well in
linear stochastic programming, was applied to the
quadratic case and tested against the more general
augmented lagrangian algorithm. Our results indi-
cate that the regularized decomposition scheme out-
performs the other algorithms we implemented. We
also came to realize that more work is needed on
the penalty parameter update strategy. An intriguing
direction would be to find an effective way to reuse
cuts between successive solutions of problems with
different �’s, as well as using inexact proposal vectors.

Acknowledgments
The work of the first author was partially supported by an
ORS grant and subsequently EPSRC Grant GR/T02560/01.
The authors also wish to acknowledge helpful comments
and criticisms of two anonymous referees, the Associate
Editor, and the Editor-in-Chief.

References
Beale, E. M. L. 1955. On minimizing a convex function subject to

linear inequalities. J. Roy. Statist. Soc. 17 173–184.
Benders, J. F. 1962. Partitioning procedures for solving mixed-

variables problems. Numerische Mathematik 4 238–252.
Bertsekas, D. P. 1999. Nonlinear Programming, 2nd ed. Athena Sci-

entific, Belmont, MA.
Bertsekas D. P., J. N. Tsitsiklis. 1989. Parallel, and Distributed Compu-

tation. Prentice-Hall, Englewood Cliffs, NJ.
Birge, J. R. 1997. Stochastic programming computation and appli-

cations. INFORMS J. Comput. 9 111–133.
Birge, J. R., F. Louveaux. 1997. Introduction to Stochastic Program-

ming. Springer-Verlag, New York.
Birge, J. R., C. H. Rosa. 1996. Parallel decomposition of large-scale

stochastic nonlinear programs. Ann. Oper. Res. 64 39–65.
Birge, J. R., C. J. Donohue, D. F. Holmes, O. G. Svintsitski. 1996. A

parallel implementation of the nested decomposition algorithm
for multistage stochastic linear programs. Math. Programming
75 327–352.

Blomvall, J., P. Lindberg. 2002. A Riccati-based primal interior point
solver for multistage stochastic programming. Eur. J. Oper. Res.
143 452–461.

Dantzig, G. B. 1955. Linear programming under uncertainty. Man-
agement Sci. 1 197–206.

Finance Research Group. 2000. Watson pension fund manage-
ment problem. Technical report, Judge Institute of Manage-
ment Studies, Cambridge University, Cambridge, UK.

Frauendorfer, K. 1996. Barycentric scenario trees in convex multi-
stage stochastic programming. Math. Programming 75 277–293.

Gassmann, H. 1990. MSLIP, a computer code for the multistage
stochastic linear programming problem. Math. Programming 47
407–423.

Geoffrion, A. M. 1972. Generalized Benders decomposition.
J. Optim. Theory Appl. 10 237–260.

Gondzio, J., R. Sarkissian. 1996. Column generation with a pri-
mal-dual method. Logilab Technical Report 96.6, Depart-
ment of Management Studies, University of Geneva, Geneva,
Switzerland.

Gulpinar, N., B. Rustem, R. Settergren. 2003. Multistage stochas-
tic mean-variance portfolio analysis with transaction costs.
A. Nagurney, ed. Innovations in Financial and Economic Net-
works, Vol. 3. Edward Elgar Publishers Ltd., UK, 46–63.

Gulpinar, N., B. Rustem, R. Settergren. 2004. Simulation and opti-
mization approaches to scenario tree generation. J. Econom.
Dynam. Control 28 1291–1315.

IBM Corporation. 1991. Optimization Subroutine Library 	OSL
: Guide
and References. Manual, IBM Corporation, Kingston, NY.

Kall, P., S. W. Wallace. 1994. Stochastic Programming. Wiley, Chich-
ester, UK.

Lau, K., R. S. Womersley. 2001. Multistage quadratic stochastic pro-
gramming. J. Comput. Appl. Math. 129 105–138.

Louveaux. F. 1978. Piecewise convex programs. Math. Programming
15 53–62.

Meszaros, C. 1999. The BPMPD interior solver for convex quadratic
problems. Technical report, Department of Computing, Impe-
rial College, London, UK.

Mulvey, J. M., A. Ruszczynski. 1992. A diagonal quadratic approx-
imation method for linear multistage stochastic programming
problems. System Modeling and Optimization 	Zurich, 1991
, Lec-
ture Notes in Control and Inform. Sci., Vol. 180. Springer, Berlin,
Germany, 588–597.

Mulvey, J. M., A. Ruszczynski. 1995. A new scenario decomposition
method for large-scale stochastic optimization. Oper. Res. 43
477–490.

Nielsen, S. S., S. A. Zenios. 1997. Scalable parallel Benders decom-
position for stochastic linear programming. Parallel Comput. 23
1069–1088.

Rockafellar, T., R. Wets. 1991. Scenarios and policy aggregation in
optimization under uncertainty. Math. Oper. Res. 16 119–147.

Ruszczynski, A. 1986. A regularized decomposition method for
minimizing a sum of polyhedral functions. Math. Programming
35 309–333.

Ruszczynski, A. 1993. Parallel decomposition of multistage stochas-
tic programming problems. Math. Programming 58 201–228.

Ruszczynski, A. 1995. On the regularized decomposition method
for stochastic programming problems. Stochastic Programming
	Neubiberg/München, 1993
, Lecture Notes in Economics and Math-
ematics Systems, Vol. 423. Springer, Berlin, Germany, 93–108.

Salinger, D. H. T. Rockafellar. 2003. Dynamic splitting: An algo-
rithm for deterministic and stochastic multiperiod optimiza-
tion. Stochastic Programming E-Print Series 	SPEPS
, http://
www.speps.info/.

Settergren, R. 2001. Decomposition of financial engineering prob-
lems. Technical report, Department of Computing, Imperial
College, London, UK.

Slyke, R. Van, R. J-B. Wets. 1969. L-shaped linear programs with
applications to control and stochastic programming. SIAM J.
Appl. Math. 17 638–663.

Steinbach, M. C. 1998. Recursive direct algorithms for multistage
stochastic programs in financial engineering. P. Kall, H. J.
Luthi, eds. Papers Internat. Conf. Oper. Res. Springer, New York,
241–250.

Vladimirou, H. 1998. Computational assessment of distributed
decomposition methods for stochastic linear programs. Eur. J.
Oper. Res. 108 653–670.

Wittrock, R. J. 1983. Advances in a nested decomposition algorithm
for solving staircase linear programs. Technical Report SOL
83-2, Department of Operations Research, Stanford University,
Stanford, CA.

